[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009214371A - Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member - Google Patents

Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member Download PDF

Info

Publication number
JP2009214371A
JP2009214371A JP2008059112A JP2008059112A JP2009214371A JP 2009214371 A JP2009214371 A JP 2009214371A JP 2008059112 A JP2008059112 A JP 2008059112A JP 2008059112 A JP2008059112 A JP 2008059112A JP 2009214371 A JP2009214371 A JP 2009214371A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
reinforced composite
composite material
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008059112A
Other languages
Japanese (ja)
Inventor
Tatsuya Senba
竜也 仙波
Takashi Yoshiyama
高史 吉山
Norimasa Terao
教正 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008059112A priority Critical patent/JP2009214371A/en
Publication of JP2009214371A publication Critical patent/JP2009214371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a fiber-reinforced composite material which is capable of easily and strongly sticking with another member and in which a reinforcing fiber substrate is impregnated with an uncured matrix resin and it is cured, a fiber-reinforced composite material, and an integrated structural member using it. <P>SOLUTION: The method for manufacturing the fiber-reinforced composite material comprises a laminating process, a heat-pressing process and a curing process. In the laminating process, a reinforcing fiber substrate comprising a binder composition and having a sheet-like or a tape-like shape, and a thermoplastic resin sheet comprising a thermoplastic resin as a main component and having a melting point being at least 10°C or more lower than a melting point of the binder composition are laminated at least a part of the surface of the reinforcing fiber substrate. In the heat-pressing process, a film of the thermoplastic resin is formed on the surface of the reinforcing fiber substrate by melting the thermoplastic resin sheet, and the reinforcing fiber substrate on the surface of which the film of the thermoplastic resin is formed is molded into a specified shape. In the curing process, the reinforcing fiber substrate formed with the film of the thermoplastic resin is impregnated with a heat-curable resin, and a curing reaction is performed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、バインダー組成物を含む強化繊維基材に未硬化マトリックス樹脂を含浸、硬化させてなる繊維強化複合材料の製造方法に関するものである。さらに本発明は、バインダー組成物を含み表面に熱可塑性樹脂の被膜が形成された繊維強化複合材料、ならびに、その繊維強化複合材料と別の部材とを接合させる一体化構造部材の製造方法および一体化構造部材に関するものである。   The present invention relates to a method for producing a fiber-reinforced composite material obtained by impregnating and curing an uncured matrix resin on a reinforcing fiber substrate containing a binder composition. Furthermore, the present invention provides a fiber reinforced composite material containing a binder composition and having a thermoplastic resin coating formed on the surface thereof, and a method for producing an integrated structure member and an integrated member for joining the fiber reinforced composite material to another member. The present invention relates to a structural member.

繊維強化複合材料は、成形性、薄肉、軽量、高剛性、生産性、経済性に優れ、電気・電子機器部品、自動車機器部品、パソコン、OA機器、AV機器、携帯電話、電話機、ファクシミリ、家電製品、玩具用品のカバーや骨格、駆動部に使用されている。   Fiber reinforced composite materials are excellent in moldability, thin wall, light weight, high rigidity, productivity, and economical efficiency. Electrical / electronic equipment parts, automotive equipment parts, personal computers, OA equipment, AV equipment, mobile phones, telephones, facsimiles, home appliances. Used in products, toy cover, skeleton and drive unit.

従来より薄肉、軽量、高剛性に優れた素材として、連続した強化繊維を用いた繊維強化複合材料がある。繊維強化複合材料の代表的な製造方法として、連続した強化繊維に未硬化の樹脂を含浸させた繊維強化プリプレグを積層配置して硬化させる方法があるが、複雑形状の成形品を量産性よく容易に生産するのには不向きであった。   As a material superior in thickness, light weight, and high rigidity, there is a fiber-reinforced composite material using continuous reinforcing fibers. A typical method for manufacturing fiber reinforced composite materials is a method of stacking and curing fiber reinforced prepregs in which continuous reinforced fibers are impregnated with uncured resin, but it is easy to mass-produce molded products with complex shapes. It was unsuitable for production.

また、繊維強化複合材料の別の製造方法として、強化繊維基材を金型に賦形して未硬化の樹脂を注入し、当該強化繊維基材に樹脂を含浸させた後に硬化させる、いわゆるレジントランスファーモールディング(RTM)成形法が適用できる。この成形方法は、樹脂が未含浸の基材を賦形するため、比較的複雑な形状の成形品を作製することが可能である。しかし射出成形品や金属成形品などにより得られる複雑形状成形品と比較すると、複雑形状の成形品を作製することは困難である。   Another method for producing a fiber-reinforced composite material is a so-called resin in which a reinforcing fiber base is shaped into a mold, an uncured resin is injected, and the reinforcing fiber base is impregnated with a resin and then cured. A transfer molding (RTM) molding method can be applied. Since this molding method shapes a base material that is not impregnated with resin, it is possible to produce a molded product having a relatively complicated shape. However, it is difficult to produce a molded product having a complex shape as compared with a complex shape molded product obtained from an injection molded product or a metal molded product.

そこで、これらの各種独自の長所をもつ繊維強化プラスチック板や金属板などの複合材料を、他の成形品等と一体的に接合させる技術が求められている。   Therefore, there is a need for a technique for integrally joining composite materials such as fiber-reinforced plastic plates and metal plates having these various advantages to other molded products.

特許文献1には、別の部材と容易にかつ強固に接着させることのできる、RTM成形法を用いた繊維強化複合材料の製造方法、およびその製造方法に用いられる基材に関する技術が開示されている。すなわち、特許文献1は、連続強化繊維からなる基材の表面の少なくとも一部分に、熱可塑性樹脂が配置されている連続強化繊維基材であって、当該連続強化繊維基材から得られる成形品の表面に、熱可塑性樹脂の層を形成させるための複合材料表層用連続強化繊維基材に関するものである。また、本基材を成形品として、別の部材と接合する方法の具体例として、当該成形品を必要に応じ所定のサイズに後処理し、次いで当該成形品を射出成形金型にインサートし、その後、別の部材を当該成形品の熱可塑性シートの部分に配置し、前記金型に射出成形する手法がある。さらに、他の具体例として、繊維強化複合材料と別の部材をそれぞれ別に成型しておき、熱可塑性シートの部分に別の部材を熱溶着、振動溶着、超音波用着などで一体化させる方法がある。いずれにしても、熱可塑性シートを加熱して、溶着する手法が開示されている。   Patent Document 1 discloses a method for manufacturing a fiber-reinforced composite material using an RTM molding method, which can be easily and firmly bonded to another member, and a technique related to a base material used in the manufacturing method. Yes. That is, Patent Document 1 is a continuous reinforcing fiber base material in which a thermoplastic resin is disposed on at least a part of the surface of a base material made of continuous reinforcing fibers, and a molded article obtained from the continuous reinforcing fiber base material. The present invention relates to a continuous reinforcing fiber base material for a composite material surface layer for forming a thermoplastic resin layer on the surface. Further, as a specific example of a method of joining the base material as a molded product to another member, the molded product is post-processed to a predetermined size as necessary, and then the molded product is inserted into an injection mold, Thereafter, there is a technique in which another member is disposed on the thermoplastic sheet portion of the molded article and injection molded into the mold. Furthermore, as another specific example, a method in which a fiber reinforced composite material and another member are separately molded, and the other member is integrated with the thermoplastic sheet by heat welding, vibration welding, ultrasonic dressing, or the like. There is. In any case, a technique for heating and welding a thermoplastic sheet is disclosed.

また、特許文献2には、RTM成形法をより量産性を高めるために強化繊維との密着性が優れ、保存安定性の良い、プリフォーム作製用のバインダー組成物、およびこのバインダー組成物を用いたプリフォームを提供することが開示されている。   In addition, Patent Document 2 uses a binder composition for preform preparation, which has excellent adhesion to reinforcing fibers and has good storage stability in order to enhance mass productivity of the RTM molding method, and this binder composition. It is disclosed to provide a preform that has been present.

そこで、より量産性が高く、なおかつ別部材との強固な接着力を得るために、プリフォーム作製用バインダー組成物と、熱可塑性シートの両方を利用した繊維強化複合材料、および成型方法が用いられる傾向にあった。しかし、この方法では、繊維強化複合材料と別部材を接合する際の加熱によって、成形品表面のプリフォーム作製用バインダー組成物が溶出したり、成形品内部で当該バインダー組成物が溶けたりすることから、残量応力の解放やヒケひいてはガスが発生しボイドとなり、局部的な機械的強度劣化を引き起こすなどの問題がある。
特開2006−44261号報 特開2005―194456号報
Therefore, in order to obtain a higher mass productivity and a strong adhesive force with another member, a fiber reinforced composite material using both a preform-forming binder composition and a thermoplastic sheet, and a molding method are used. There was a trend. However, in this method, the binder composition for preform preparation on the surface of the molded article elutes or the binder composition dissolves inside the molded article by heating when joining the fiber reinforced composite material and another member. Therefore, there are problems such as release of residual stress and generation of gas sinks and voids, causing local mechanical strength deterioration.
JP 2006-44261 A JP 2005-194456 A

本発明は、かかる従来技術の問題点を解消し、別の部材と容易にかつ強固に接着させることのできる、RTM成形等に代表される、強化繊維基材に未硬化マトリックス樹脂を含浸、硬化する繊維強化複合材料の製造方法、繊維強化複合材料、および、それを用いた一体化構造部材の製造方法、一体化構造部材を提供することにある。   The present invention eliminates the problems of the prior art, and can easily and firmly adhere to another member, impregnated with an uncured matrix resin on a reinforcing fiber substrate, represented by RTM molding, and cured. An object of the present invention is to provide a method for manufacturing a fiber reinforced composite material, a fiber reinforced composite material, a method for manufacturing an integrated structural member using the same, and an integrated structural member.

すなわち本発明は、少なくとも、(A)バインダー組成物を含み、シート状またはテープ状の形態を有する強化繊維基材と、該強化繊維基材の表面の少なくとも一部分に、熱可塑性樹脂を主成分とし前記バインダー組成物の融点よりも10℃以上低い融点を有する熱可塑性樹脂シートを積層する積層工程、(B)前記熱可塑性樹脂シートを溶融させて、前記強化繊維基材の表面に熱可塑性樹脂の被膜を形成するとともに、その表面に、前記熱可塑性樹脂の被膜が形成された強化繊維基材を所定の形状に賦形する加熱プレス工程、(C)前記熱可塑性樹脂の被膜が形成された強化繊維基材に熱硬化性樹脂を注入し、硬化反応させる硬化工程、を有してなる繊維強化複合材料の製造方法である。   That is, the present invention includes at least a (A) binder composition, a reinforcing fiber base material having a sheet-like or tape-like form, and at least a part of the surface of the reinforcing fiber base material, the thermoplastic resin as a main component. A lamination step of laminating a thermoplastic resin sheet having a melting point lower by 10 ° C. or more than the melting point of the binder composition; (B) melting the thermoplastic resin sheet to form a thermoplastic resin on the surface of the reinforcing fiber base; A heating press step of forming a reinforcing fiber base on which the thermoplastic resin coating is formed into a predetermined shape on the surface thereof, and (C) a reinforcement in which the thermoplastic resin coating is formed. It is a manufacturing method of the fiber reinforced composite material which has a hardening process which inject | pours a thermosetting resin into a fiber base material, and makes it harden reaction.

また、本発明は、バインダー組成物を含み、シート状またはテープ状の形態を有する強化繊維基材と、熱硬化性樹脂を有してなる、所定の形状に成形された繊維強化複合材料であって、その表面に、熱可塑性樹脂を主成分とし前記バインダー組成物の融点よりも10℃以上低い融点を有する熱可塑性樹脂の被膜が形成されている繊維強化複合材料である。   The present invention also relates to a fiber-reinforced composite material formed into a predetermined shape, comprising a binder composition, a reinforcing fiber base material having a sheet-like or tape-like form, and a thermosetting resin. The fiber reinforced composite material has a thermoplastic resin coating formed on its surface, the main component of which is a thermoplastic resin, and a melting point of 10 ° C. lower than the melting point of the binder composition.

そして、かかる繊維強化複合材料に形成した熱可塑性樹脂の被膜部分に、望ましくは繊維強化複合材料、より望ましくは、表面に熱可塑性樹脂の被膜が形成された繊維強化複合材料からなる他の部材を、前記バインダー組成物の融点より低い温度で加熱、溶着する接合工程(工程(D))を有してなる一体化構造部材の製造方法とすることが好ましい。   The thermoplastic resin coating formed on the fiber reinforced composite material is preferably coated with a fiber reinforced composite material, and more preferably another member made of a fiber reinforced composite material with a thermoplastic resin coating formed on the surface. It is preferable to provide a method for producing an integrated structure member having a joining step (step (D)) in which heating and welding are performed at a temperature lower than the melting point of the binder composition.

さらに、かかる繊維強化複合材料に形成されている熱可塑性樹脂の被膜部分が、他の繊維強化複合材料と接合されている一体化構造部材、当該他の繊維強化複合材料の表面には熱可塑性樹脂の被膜が形成されており、繊維強化複合材料同士が、それぞれの熱可塑性樹脂の被膜の面で接合されている一体化構造部材とすることが好ましい。   Furthermore, the thermoplastic resin coating portion formed on the fiber reinforced composite material is joined to another fiber reinforced composite material, and the surface of the other fiber reinforced composite material is a thermoplastic resin. It is preferable to form an integrated structure member in which the fiber-reinforced composite materials are joined to each other on the surfaces of the respective thermoplastic resin coatings.

なお、バインダー組成物としては、ポリビニルホルマールを主成分とした(すなわち、ポリビニルホルマールを好ましくは80質量%以上、より好ましくは90質量%以上含む)熱可塑性樹脂を含む組成物を、熱可塑性樹脂の被膜には、3元共重合ポリアミド樹脂を主成分とした(すなわち、3元共重合ポリアミド樹脂を好ましくは80質量%以上、より好ましくは90質量%以上含む)樹脂組成物が用いることが好ましい。   As the binder composition, a composition containing a thermoplastic resin mainly composed of polyvinyl formal (that is, preferably containing 80% by mass or more, more preferably 90% by mass or more of polyvinyl formal) is used. For the coating, it is preferable to use a resin composition containing a terpolymer polyamide resin as a main component (that is, preferably containing 80% by mass or more, more preferably 90% by mass or more).

本発明によれば、例えば、RTM成形等に代表される成形方法により、バインダー組成物を含み、表面の少なくとも一部分に、熱可塑性樹脂を主成分とし前記バインダー組成物の融点よりも10℃以上低い融点を有する熱可塑性樹脂シートを積層した強化繊維基材に、未硬化マトリックス樹脂を含浸、硬化した得られた繊維強化複合材料を用いて、別の部材と接合させた一体化構造部材を得る際に、接着強度の高い一体化構造部材を容易に得ることができるとともに、他の部材と接合時の加熱により、当該繊維強化複合材料をからなる成形品の内部のバインダー組成物が溶融、流出することがなく、ガス化による局部的な機械的特性の劣化、あるいは品位の劣化(見た目の悪化)が抑制された繊維強化複合材料からなる成形品、一体化構造部材を得ることができる。   According to the present invention, for example, by a molding method typified by RTM molding or the like, the binder composition is included, and at least a part of the surface is mainly composed of a thermoplastic resin and is lower by 10 ° C. or more than the melting point of the binder composition. When obtaining an integrated structure member joined to another member using a fiber reinforced composite material obtained by impregnating and curing an uncured matrix resin on a reinforced fiber base material laminated with a thermoplastic resin sheet having a melting point In addition, an integrated structural member with high adhesive strength can be easily obtained, and the binder composition inside the molded article made of the fiber reinforced composite material melts and flows out by heating at the time of joining with other members. Molded parts made of fiber-reinforced composite materials with integrated mechanical structure that have no degradation of local mechanical properties due to gasification or deterioration of quality (deterioration of appearance). It is possible to obtain.

以下に、本発明の繊維強化複合材料について、望ましい実施の形態とともに詳細に説明する。   Hereinafter, the fiber-reinforced composite material of the present invention will be described in detail together with preferred embodiments.

図1〜図6は、本発明の一実施態様に係る繊維強化複合材料の成形方法、一体化構造部材の製造方法を示している。図3には、バインダー組成物8を含有し、シート状またはテープ状の形態を有する強化繊維基材10と、熱可塑性樹脂シート3を、強化繊維基材2が3層、熱可塑性シート3が1層となるように積層された図を示している。   FIGS. 1-6 has shown the shaping | molding method of the fiber reinforced composite material which concerns on one embodiment of this invention, and the manufacturing method of an integrated structural member. In FIG. 3, the reinforcing fiber base material 10 containing the binder composition 8 and having a sheet-like or tape-like form, the thermoplastic resin sheet 3, the reinforcing fiber base material 2 has three layers, and the thermoplastic sheet 3 has The figure laminated | stacked so that it might become 1 layer is shown.

この強化繊維基材10には、図2に示すように、熱可塑性樹脂を含むバインダー組成物8が散布されている。ここで、バインダー組成物8は熱可塑性樹脂を含んでいることが好ましい。当該熱可塑性樹脂は、バインダー組成物8中に好ましくは30〜80質量%、より好ましくは40〜70質量%含んでいると良い。なお、バインダー組成物8に含まれる熱可塑性樹脂以外の樹脂には、エポキシ樹脂に代表されるような熱硬化性樹脂が用いられる。   As shown in FIG. 2, the reinforcing fiber base material 10 is dispersed with a binder composition 8 containing a thermoplastic resin. Here, the binder composition 8 preferably contains a thermoplastic resin. The thermoplastic resin is preferably contained in the binder composition 8 in an amount of 30 to 80% by mass, more preferably 40 to 70% by mass. In addition, as the resin other than the thermoplastic resin included in the binder composition 8, a thermosetting resin represented by an epoxy resin is used.

図2では、強化繊維基材2の表側のみにバインダー8を散布している様子を示しているが、強化繊維基材2の両面にバインダー組成物8を散布しても良い。なお、図4では、バインダー組成物8を散布した強化繊維基材10の面とは別の面に、他の強化繊維基材2を積層している。   In FIG. 2, the binder 8 is sprayed only on the front side of the reinforcing fiber base 2, but the binder composition 8 may be sprayed on both surfaces of the reinforcing fiber base 2. In FIG. 4, another reinforcing fiber substrate 2 is laminated on a surface different from the surface of the reinforcing fiber substrate 10 on which the binder composition 8 is dispersed.

バインダー組成物8に含まれる熱可塑性樹脂は、ポリビニルホルマール、ポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂が好ましく用いられるが、このなかでも、強化繊維基材との接着性という観点から、ポリビニルホルマールを主成分とした熱可塑性樹脂が好ましく用いられる。なお、ポリビニルホルマールを主成分とした熱可塑性樹脂とは、その全てがポリビニルホルマールで構成されていても良いが、ポリビニルホルマールを好ましくは80質量%以上、より好ましくは90質量%以上含む熱可塑性樹脂組成物であっても良いことを意味する。   As the thermoplastic resin contained in the binder composition 8, polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, and phenoxy resins are preferably used. A thermoplastic resin mainly composed of polyvinyl formal is preferably used. The thermoplastic resin mainly composed of polyvinyl formal may be composed entirely of polyvinyl formal, but is preferably 80% by mass or more, more preferably 90% by mass or more of polyvinyl formal. It means that it may be a composition.

強化繊維基材2の形態としては、繊維束から構成された織物、多数本の強化繊維が一方向に配列された強化繊維束(一方向性繊維束)、この一方向性繊維束から構成された一方向性織物など、それらを組み合わせたもの、複数層配置したものなどが挙げられる。なかでも基材の生産性の観点から、織物、一方向性繊維束が好ましい。強化繊維基材2は、同一の形態の複数本の繊維束から構成されていても、あるいは、異なる形態の複数本の繊維束から構成されていても良い。一つの強化繊維束を構成する強化繊維数は、通常、300〜48,000本である。使用される強化繊維基材2の繊維素材としては、例えば、ガラス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維、ポリアラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、玄武岩繊維がある。これらは、単独または2種以上併用して用いられる。なかでも、炭素繊維は、これらの繊維の中でもより高強度、高弾性率であることから、優れた機械的特性の繊維強化複合材料が得られることから、より好ましい。   The form of the reinforcing fiber substrate 2 includes a woven fabric composed of fiber bundles, a reinforcing fiber bundle in which a large number of reinforcing fibers are arranged in one direction (unidirectional fiber bundle), and the unidirectional fiber bundle. In addition, a combination of these, such as a unidirectional woven fabric, and a plurality of layers are arranged. Of these, woven fabrics and unidirectional fiber bundles are preferred from the viewpoint of substrate productivity. The reinforcing fiber base 2 may be composed of a plurality of fiber bundles having the same form or may be composed of a plurality of fiber bundles having different forms. The number of reinforcing fibers constituting one reinforcing fiber bundle is usually 300 to 48,000. Examples of the fiber material of the reinforcing fiber base 2 used include glass fiber, carbon fiber, metal fiber, aromatic polyamide fiber, polyaramid fiber, alumina fiber, silicon carbide fiber, boron fiber, and basalt fiber. These are used alone or in combination of two or more. Among these, carbon fibers are more preferable because these fibers have higher strength and higher elastic modulus, and thus a fiber-reinforced composite material having excellent mechanical properties can be obtained.

また、図3に示すとおり、強化繊維基材2の表面の少なくとも一部分に積層される熱可塑性樹脂シート3を構成する熱可塑性樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド樹脂などが好ましく、別部材16との接着強度を高める観点から、溶解度パラメータδ(SP値)が8〜16であることが好ましく、より好ましくは9〜16、さらに好ましくは10〜15、とりわけ好ましくは11〜14である。また、好ましい熱可塑性樹脂シート3を構成する熱可塑性樹脂であるポリアミド樹脂として、3元共重合ポリアミド樹脂を主成分とした樹脂組成物を用いることがより好ましく、かかる3元共重合ポリアミド樹脂のなかでも、より別部材16との接着強度を高めるという観点から、ポリアミド6/66/610樹脂を用いることが特に好ましい。なお、3元共重合ポリアミド樹脂を主成分とした樹脂組成物とは、その全てが3元共重合ポリアミド樹脂で構成されていても良いが、3元共重合ポリアミド樹脂を好ましくは80質量%以上、より好ましくは90質量%以上含む樹脂組成物であっても良いことを意味する。   Further, as shown in FIG. 3, as the thermoplastic resin constituting the thermoplastic resin sheet 3 laminated on at least a part of the surface of the reinforcing fiber substrate 2, polyethylene terephthalate, polybutylene terephthalate, polyamide resin, etc. are preferable. From the viewpoint of increasing the adhesive strength with the member 16, the solubility parameter δ (SP value) is preferably 8 to 16, more preferably 9 to 16, further preferably 10 to 15, and particularly preferably 11 to 14. . Further, as the polyamide resin which is a thermoplastic resin constituting the preferred thermoplastic resin sheet 3, it is more preferable to use a resin composition containing a terpolymer copolymer polyamide resin as a main component. However, it is particularly preferable to use polyamide 6/66/610 resin from the viewpoint of further increasing the adhesive strength with another member 16. The resin composition mainly composed of the terpolymer polyamide resin may be composed of the terpolymer polyamide resin, but the terpolymer polyamide resin is preferably 80% by mass or more. More preferably, it means that the resin composition may contain 90% by mass or more.

前記熱可塑性樹脂シート3の形態としては、不織布、織物、粒子、フィルム、これらの少なくとも2種類以上を組み合わせた形態であることが好ましい。上記形態とすることにより、強化繊維基材に熱可塑性樹脂が十分に含浸し、かつ繊維強化複合材料の表面を適切に覆うことができ、別の部材との強固な接着力を発現することができる。   The thermoplastic resin sheet 3 is preferably in the form of a combination of at least two or more of non-woven fabric, woven fabric, particles, film, and the like. By adopting the above form, the reinforced fiber base material can be sufficiently impregnated with the thermoplastic resin, and the surface of the fiber reinforced composite material can be appropriately covered, and a strong adhesive force with another member can be expressed. it can.

次に、本発明の繊維強化複合材料の製造方法について、望ましい実施の形態とともに詳細に説明する。   Next, the manufacturing method of the fiber reinforced composite material of this invention is demonstrated in detail with desirable embodiment.

図1の1は賦形金型を示しており、上型1aと下型1bとの型締めにより、強化繊維基材10(バインダー組成物8を含有する強化繊維基材2)を3層と熱可塑性樹脂シート3を1層の積層構成の基材群を加圧して所定の厚み、形状にすると同時に、強化繊維基材10(賦形金型1)を加熱し、バインダー組成物8および熱可塑性樹脂シート3を軟化(溶融)させて、強化繊維基材2に密着、粘着させる。このとき、熱可塑性樹脂シート3は軟化(溶融)されることによって、強化繊維基材2の表面に被膜が形成された構成となる。なお、ここでいう熱可塑性樹脂の被膜とは、強化繊維基材2の表面の全面が熱可塑性樹脂で覆われている必要はなく、その後、別の部材と接合させることにより一体化構造部材を得ることができる範囲内で、熱可塑性樹脂で覆われていない箇所があっても差し支えはない。   1 in FIG. 1 shows a shaping mold, and three layers of reinforcing fiber substrate 10 (reinforcing fiber substrate 2 containing binder composition 8) are formed by clamping the upper die 1a and the lower die 1b. The thermoplastic resin sheet 3 is pressurized to a predetermined thickness and shape by pressing a base material group having a single layer structure, and at the same time, the reinforcing fiber base material 10 (shaped mold 1) is heated, and the binder composition 8 and heat are heated. The plastic resin sheet 3 is softened (melted) to adhere and adhere to the reinforcing fiber base 2. At this time, the thermoplastic resin sheet 3 is softened (melted) so that a film is formed on the surface of the reinforcing fiber base 2. In addition, the coating film of the thermoplastic resin here does not need to cover the entire surface of the reinforcing fiber base 2 with the thermoplastic resin, and after that, the integrated structural member is bonded to another member. There is no problem even if there is a portion not covered with the thermoplastic resin within the range that can be obtained.

図3は、図1の拡大(1)5部分の拡大模式図を示す。その後、賦形金型1a1bを冷却し、バインダー組成物8および熱可塑性樹脂シート3は、粘着力を維持しつつ硬化して、賦形金型1から脱型後も積層体も簡単にばらばらにならない程度に一体化したプリフォーム4を形成する。   FIG. 3 shows an enlarged schematic view of the enlarged (1) 5 portion of FIG. Thereafter, the shaping mold 1a1b is cooled, and the binder composition 8 and the thermoplastic resin sheet 3 are cured while maintaining the adhesive force, and the laminate is easily separated after being removed from the shaping mold 1. The preform 4 integrated to such an extent that it does not become is formed.

図5は、本発明に好ましく用いられる、RTM成形金型の模式図を示している。金型は、上型11aと下型11bとの型締めにより、内部に所望の凹凸形状のキャビティー12が形成できる。キャビティー12に前述のプリフォーム4を載置し、型締め後、熱硬化性樹脂を注入口より注入し、排出口から樹脂が出て来たことを確認することにより、キャビティー内に樹脂が充満したこととして樹脂注入を停止し、その後所定の温度で硬化反応させる。   FIG. 5 shows a schematic diagram of an RTM molding die preferably used in the present invention. In the mold, a cavity 12 having a desired uneven shape can be formed inside by clamping the upper mold 11a and the lower mold 11b. The preform 4 is placed in the cavity 12, and after mold clamping, a thermosetting resin is injected from the injection port, and it is confirmed that the resin has come out from the discharge port. As a result, the resin injection is stopped and then a curing reaction is performed at a predetermined temperature.

本発明に係る製造方法は、熱可塑性樹脂シート3を、バインダー組成物8を事前に散布、付着させた強化繊維基材2の積層品の表面の少なくとも一部分に積層する積層工程があり、次いで、バインダー組成物8と熱可塑性樹脂シート3を軟化させ、積層した強化繊維基材10同士を密着させるとともに、強化繊維基材2に熱可塑性樹脂の被膜を形成させる加熱工程(図1bと図4)を有し、次いで、熱可塑性樹脂の被膜を形成した強化繊維基材2に、熱硬化性樹脂を注入・硬化する工程(図5)を有することが重要である。予熱工程(図1bと図4)にてバインダー組成物8が積層したそれぞれの強化繊維基材2を接合しまた、強化繊維基材2に熱可塑性シート3が含浸、かつ表面に被膜を形成するため、次いで熱硬化性樹脂を注入・硬化させることで別の部材と強固に接着可能な繊維強化複合材料が作製できる。なお、加熱工程において、熱可塑性樹脂の被膜を形成させるとともに、賦形金型1a1bにより、強化繊維基材2を所定の形状に賦形する(加熱工程と当該賦形の工程を併せて、加熱プレス工程と称する)ことにより、繊維強化複合材料が所定の形状に成形される。   The production method according to the present invention includes a laminating step in which the thermoplastic resin sheet 3 is laminated on at least a part of the surface of the laminated product of the reinforcing fiber base material 2 to which the binder composition 8 has been dispersed and adhered in advance. A heating step (FIGS. 1b and 4) in which the binder composition 8 and the thermoplastic resin sheet 3 are softened so that the laminated reinforcing fiber bases 10 are brought into close contact with each other and a film of the thermoplastic resin is formed on the reinforcing fiber base 2 Next, it is important to have a step (FIG. 5) of injecting and curing the thermosetting resin into the reinforcing fiber base 2 on which the thermoplastic resin film is formed. In the preheating step (FIGS. 1b and 4), the respective reinforcing fiber bases 2 on which the binder composition 8 is laminated are joined, and the reinforcing fiber base 2 is impregnated with the thermoplastic sheet 3 and a film is formed on the surface. Therefore, a fiber-reinforced composite material that can be firmly bonded to another member can be manufactured by injecting and curing a thermosetting resin. In the heating step, a thermoplastic resin film is formed, and the reinforcing fiber base 2 is shaped into a predetermined shape by the shaping mold 1a1b (the heating step and the shaping step are combined and heated). The fiber-reinforced composite material is formed into a predetermined shape by calling the pressing step.

また、加熱工程(図4)では、熱可塑性樹脂シート3由来の熱可塑性樹脂を強化繊維基材2に効率よく含浸させるために、圧力を0.01〜10MPa付与した状態で行うのが好ましい。より好ましくは0.03〜5MPaである。圧力は金型を一時的に締めるなどの工程で付与することができる。強化繊維基材2を加熱し、バインダー組成物と8熱可塑性樹脂シート3を軟化させ、上記範囲の圧力を付与することで、強化繊維基材2に熱可塑性樹脂が含浸しやすく、かつ強化繊維基材2の表面に、効果的に熱可塑性樹脂の被膜を形成することができる。表面に熱可塑性樹脂の被膜が形成されるためには、強化繊維基材2の基材厚みとキャビティーの基材厚み、また熱可塑性シートの基材厚みなどを、強化繊維基材2への熱可塑性樹脂の含浸と、強化繊維基材2の表面への被膜が両立するように調整する必要がある。   Moreover, in a heating process (FIG. 4), in order to efficiently impregnate the reinforced fiber base material 2 with the thermoplastic resin derived from the thermoplastic resin sheet 3, it is preferably performed in a state where a pressure of 0.01 to 10 MPa is applied. More preferably, it is 0.03-5 MPa. The pressure can be applied in a process such as temporarily closing the mold. The reinforcing fiber base 2 is heated, the binder composition and the 8 thermoplastic resin sheet 3 are softened, and the pressure within the above range is applied, whereby the reinforcing fiber base 2 is easily impregnated with the thermoplastic resin, and the reinforcing fiber A thermoplastic resin film can be effectively formed on the surface of the substrate 2. In order to form a thermoplastic resin coating on the surface, the substrate thickness of the reinforcing fiber substrate 2, the substrate thickness of the cavity, the substrate thickness of the thermoplastic sheet, etc. It is necessary to adjust so that the impregnation of the thermoplastic resin and the coating on the surface of the reinforcing fiber base 2 are compatible.

なお、熱可塑性樹脂シート3(強化繊維基材2の表面に被膜が形成された後は、当該被膜)の融点は、用いられるバインダー組成物8の融点より10℃以上低いことを必要とし、好ましくは20℃以上低いことである。それぞれの融点をかかる範囲とすることにより、接着強度の高い一体化構造部材を容易に得ることができるとともに、他の部材と接合時の加熱温度をバインダー組成物の融点より低く設定することにより、当該繊維強化複合材料をからなる成形品の内部のバインダー組成物が溶融、流出することがなく、ガス化による局部的な機械的特性の劣化、あるいは品位の劣化が抑制された繊維強化複合材料からなる成形品が得られるためである。なお、作業性や工程安定性のという観点からは、熱可塑性樹脂シート3(強化繊維基材2の表面に被膜が形成された後は、当該被膜)の融点が、用いられるバインダー組成物8の融点より30℃以下低いことが好ましい。   The melting point of the thermoplastic resin sheet 3 (after the coating is formed on the surface of the reinforcing fiber substrate 2) needs to be 10 ° C. or more lower than the melting point of the binder composition 8 to be used. Is lower by 20 ° C. or more. By setting each melting point to such a range, an integrated structural member with high adhesive strength can be easily obtained, and the heating temperature at the time of joining with other members is set lower than the melting point of the binder composition. From the fiber reinforced composite material in which the binder composition inside the molded product comprising the fiber reinforced composite material does not melt and flow out, and the local mechanical property deterioration or quality deterioration due to gasification is suppressed. This is because a molded product is obtained. In addition, from the viewpoint of workability and process stability, the melting point of the thermoplastic resin sheet 3 (the film after the film is formed on the surface of the reinforcing fiber base 2) has a melting point of the binder composition 8 used. It is preferably 30 ° C. or lower than the melting point.

このようにして得られた繊維強化複合材料は、表面に熱可塑性樹脂の被膜部分が形成されているので、図6に示すような他の部材(別部材)16と接合することにより、容易に一体化構造部材を得ることができる。特に、別部材16として繊維強化複合材料を用いると、本発明に係る繊維強化複合材料15の熱可塑性樹脂の被膜部分を、別部材16と接合させることで、接着強度の高い一体化構造部材となるので好ましい。さらに、別部材16である繊維強化複合材料の表面にも熱可塑性樹脂の被膜が形成されている場合、それぞれの熱可塑性樹脂の被膜の面で接合することにより、さらに接着強度の高い一体化構造部材となり、より好ましい。   Since the fiber-reinforced composite material obtained in this way has a thermoplastic resin coating on the surface, it can be easily joined with another member (separate member) 16 as shown in FIG. An integral structural member can be obtained. In particular, when a fiber reinforced composite material is used as the separate member 16, the thermoplastic resin coating portion of the fiber reinforced composite material 15 according to the present invention is joined to the separate member 16, thereby providing an integrated structural member having high adhesive strength. This is preferable. Furthermore, when a thermoplastic resin coating is also formed on the surface of the fiber reinforced composite material that is the separate member 16, an integrated structure with higher adhesive strength can be obtained by bonding on the surface of each thermoplastic resin coating. It becomes a member and is more preferable.

実施例で用いた特性の評価は、以下の通りである。   The evaluation of the characteristics used in the examples is as follows.

[垂直接着強度]
一体化構造部材から、繊維強化複合材料と別の部材が接合している部分より、垂直接着強度評価サンプルを10mm×10mm(サンプル全面が接合部)の大きさで切り出した。
[Vertical adhesive strength]
From the part where the fiber reinforced composite material and another member are joined from the integrated structural member, a vertical adhesive strength evaluation sample was cut out in a size of 10 mm × 10 mm (the whole sample is a joint).

次いでサンプルを測定装置の治具に固定した。測定装置としては“インストロン”(登録商標)5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。尚、サンプルの固定は、サンプルがインストロンのチャックに把持できるものはそのままチャックに挟み引張試験を行うが、把持できないものはサンプルに接着剤(スリーボンド1782、株式会社スリーボンド製)を塗布し、23±5℃、50±5%RHで4時間放置して治具と接着させてもよい。   Next, the sample was fixed to a jig of a measuring device. As the measuring device, “Instron” (registered trademark) 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used. For fixing the sample, if the sample can be held by an Instron chuck, the sample is held in the chuck as it is and a tensile test is performed. If the sample cannot be held, an adhesive (Three Bond 1782, manufactured by Three Bond Co., Ltd.) is applied to the sample. It may be allowed to stand for 4 hours at ± 5 ° C. and 50 ± 5% RH to adhere to the jig.

引張試験は、雰囲気温度が調節可能な試験室において、25℃の雰囲気温度で行った。   The tensile test was performed at an ambient temperature of 25 ° C. in a test chamber in which the ambient temperature can be adjusted.

試験開始前に、サンプルは、試験室内において、少なくとも5分間、引張試験の負荷がかからない状態を維持し、また、サンプルに熱電対を配置して、雰囲気温度と同等になったことを確認した後に、引張試験を行った。  Before starting the test, after the sample has been kept in the test chamber for at least 5 minutes without being subjected to a tensile test load, and a thermocouple is placed on the sample to ensure that it is equivalent to the ambient temperature A tensile test was performed.

引張試験は、引張速度1.27mm/分にて、両者の接着面から90°方向に引っ張って行い、その最大荷重を接着面積で除した値を垂直接着強度(単位:MPa)とした。また、試料数はn=5とした。   The tensile test was performed by pulling from the adhesion surface of both at 90 ° direction at a tensile speed of 1.27 mm / min, and the value obtained by dividing the maximum load by the adhesion area was defined as the vertical adhesion strength (unit: MPa). The number of samples was n = 5.

(実施例1)
[板状一体化構造部材]
(繊維強化複合材料)
東レ(株)製“トレカ織物”CO6343(目付(W)200g/m、繊維強化基材の厚み(t)0.29mm)を所定の大きさにカットした強化繊維基材に、ポリビニルホルマールを主成分とした融点が200℃以上の粉末を約20g/m均一に散布し、散布した繊維強化基材を金型内に6枚積層し、最表面に熱可塑性樹脂シートとして東レ(株)製、3元共重合ポリアミド樹脂CM4000(ナイロン6/66/610、融点150℃、溶解度パラメータδ(SP値)13.3)のフィルム(目付60g/m)を、成形体と同様の大きさにカットしたものを重ねて積層し、型締めを行った。次に、金型温度を155℃に加温して5分間保持した後、80℃以下に冷却し、強化繊維基材の積層体を金型から脱型する。脱型された強化繊維積層体は、ポリビニルホルマールを主成分とした粉末(ポリビニルホルマール“ビニレック”Kタイプ(窒素(株)製)60質量部、液状ビスフェノールA型エポキシ樹脂“エピコート828”(ジャパンエポキシレジン(株)製)10質量部、固形ビスフェノールA型エポキシ樹脂“エピコート1001” (ジャパンエポキシレジン(株)製)30質量部)の粘着力により金型形状に保持されており、本形態をプリフォームと呼ぶ。
Example 1
[Plate-like integrated structural member]
(Fiber reinforced composite material)
Toray Industries, Inc. “Torayca fabric” CO6343 (weight per unit (W) 200 g / m 2 , fiber reinforced base material thickness (t) 0.29 mm) cut to a predetermined size, polyvinyl formal Toray Co., Ltd. as a thermoplastic resin sheet on the outermost surface was sprayed uniformly about 20 g / m 2 of powder with a melting point of 200 ° C. or higher as the main component, and the spread fiber reinforced base material was laminated in the mold. A ternary copolymerized polyamide resin CM4000 (nylon 6/66/610, melting point 150 ° C., solubility parameter δ (SP value) 13.3) film (weight per unit: 60 g / m 2 ) is the same size as the molded body The cut pieces were stacked and laminated, and the molds were clamped. Next, the mold temperature is heated to 155 ° C. and held for 5 minutes, and then cooled to 80 ° C. or lower, and the laminate of the reinforcing fiber base is removed from the mold. The demolded reinforcing fiber laminate is composed of 60 parts by mass of a powder composed mainly of polyvinyl formal (polyvinyl formal “Vinylec” K type (produced by Nitrogen Co., Ltd.)), liquid bisphenol A epoxy resin “Epicoat 828” (Japan Epoxy) Resin Co., Ltd.) 10 parts by mass, solid bisphenol A type epoxy resin “Epicoat 1001” (Japan Epoxy Resin Co., Ltd.) 30 parts by mass) is held in the mold shape, This is called renovation.

次に、あらかじめ所定の形状に賦形されたプリフォームを、成形型に配置し、予め60℃に加温したマトリックス樹脂(エポキシ樹脂 “エピコート”828(ジャパンエポキシレジン(株)製)90質量部、“ERISYS”GE−20(CVC社製)10質量部、“アンカミン”2049(PTIジャパン社製)32質量部)を、樹脂注入装置を用い、注入圧0.2MPaで金型内に注入し、強化繊維基材に含浸させた。成形品厚みは、強化繊維の体積含有量が60%となるよう1.1mmに調節した。含浸後、155℃の温度で2時間保持した後、30℃の温度まで降温し、脱型して繊維強化複合材料を得た。得られた繊維強化複合材料は厚さ1.1mm。   Next, 90 parts by mass of a matrix resin (epoxy resin “Epicoat” 828 (manufactured by Japan Epoxy Resin Co., Ltd.)), which is preliminarily shaped into a predetermined shape, placed in a mold and preheated to 60 ° C. 10 parts by mass of “ERISYS” GE-20 (manufactured by CVC) and 32 parts by mass of “Ancamine” 2049 (manufactured by PTI Japan) were injected into the mold at an injection pressure of 0.2 MPa using a resin injection device. Then, the reinforcing fiber substrate was impregnated. The thickness of the molded product was adjusted to 1.1 mm so that the volume content of the reinforcing fibers was 60%. After impregnation, it was held at a temperature of 155 ° C. for 2 hours, then cooled to a temperature of 30 ° C. and demolded to obtain a fiber-reinforced composite material. The resulting fiber reinforced composite material has a thickness of 1.1 mm.

(別部材)
上記繊維強化複合材料と同じ繊維強化複合材料を別部材として使用した。
(Separate parts)
The same fiber reinforced composite material as the above fiber reinforced composite material was used as a separate member.

(一体化)
上記繊維強化複合材料および別部材を、熱板にて160℃で3分間加熱後、熱可塑性樹脂シート由来の被膜を有する面同士を接合面として張り合わせ、20MPaの圧力にて2分間保持して一体化し、板状の一体化構造部材とした。得られた一体化構造部材の垂直接着強度の評価を試みたところ、6MPaにおいて、接合部分が剥離するよりも前に試料と治具との接着剤による固定部分が剥離したことから、6MPa以上であると評価された。
(Integrated)
The fiber reinforced composite material and the separate member are heated on a hot plate at 160 ° C. for 3 minutes, and then the surfaces having a coating derived from a thermoplastic resin sheet are bonded together as a joining surface, and held at a pressure of 20 MPa for 2 minutes to be integrated. Into a plate-like integrated structural member. Attempts were made to evaluate the vertical bond strength of the obtained integrated structural member. At 6 MPa, the fixed part by the adhesive between the sample and the jig peeled off before the bonded part peeled off. It was evaluated that there was.

本発明の強化繊維複合材料を作製する賦形金型の一実施態様図示である。It is one embodiment illustration of the shaping die which produces the reinforced fiber composite material of this invention. 本発明の強化繊維基材にバインダー組成物を散布した模式図である。It is the schematic diagram which spread | dispersed the binder composition on the reinforced fiber base material of this invention. 本発明の強化繊維基材の積層状態の断面模式図である。It is a cross-sectional schematic diagram of the lamination | stacking state of the reinforced fiber base material of this invention. 本発明の強化繊維機材と熱可塑性シートを加圧した状態の模式図である。It is a schematic diagram of the state which pressurized the reinforcing fiber equipment and thermoplastic sheet of this invention. 本発明のRTM成型金型の模式図である。It is a schematic diagram of the RTM molding die of this invention. 本発明の繊維強化複合材料と別部材を接合した状態の模式図である。It is a schematic diagram of the state which joined the fiber reinforced composite material of this invention, and another member.

符号の説明Explanation of symbols

1a:上型
1b:下型
2:強化繊維基材
3:熱可塑性樹脂シート
4:プリフォーム
5:拡大(1)
6:拡大(2)
7:拡大(3)
8:バインダー組成物
10:強化繊維基材(バインダー組成物付)
11a:上型
11b:下型
12:キャビティー
13:樹脂注入機
14:廃棄樹脂タンク
15:繊維強化成形品
16:別部材
DESCRIPTION OF SYMBOLS 1a: Upper mold | type 1b: Lower mold | type 2: Reinforcement fiber base material 3: Thermoplastic resin sheet 4: Preform 5: Expansion (1)
6: Expansion (2)
7: Expansion (3)
8: Binder composition 10: Reinforcing fiber substrate (with binder composition)
11a: Upper mold 11b: Lower mold 12: Cavity 13: Resin injection machine 14: Waste resin tank 15: Fiber reinforced molded product 16: Separate member

Claims (7)

少なくとも下記(A)〜(C)の工程を有してなる繊維強化複合材料の製造方法。
(A)バインダー組成物を含み、シート状またはテープ状の形態を有する強化繊維基材と、該強化繊維基材の表面の少なくとも一部分に、熱可塑性樹脂を主成分とし前記バインダー組成物の融点よりも10℃以上低い融点を有する熱可塑性樹脂シートを積層する積層工程
(B)前記熱可塑性樹脂シートを溶融させて、前記強化繊維基材の表面に熱可塑性樹脂の被膜を形成するとともに、その表面に、前記熱可塑性樹脂の被膜が形成された強化繊維基材を所定の形状に賦形する加熱プレス工程
(C)前記熱可塑性樹脂の被膜が形成された強化繊維基材に熱硬化性樹脂を注入し、硬化反応させる硬化工程
A method for producing a fiber-reinforced composite material comprising at least the following steps (A) to (C).
(A) A reinforcing fiber base material containing a binder composition and having a sheet-like or tape-like form, and at least a part of the surface of the reinforcing fiber base material, based on a thermoplastic resin as a main component, from the melting point of the binder composition Laminating step (B) of laminating a thermoplastic resin sheet having a melting point lower by 10 ° C. or more, melting the thermoplastic resin sheet to form a thermoplastic resin film on the surface of the reinforcing fiber base, and its surface And (C) a heat pressing step of shaping the reinforcing fiber substrate on which the thermoplastic resin coating is formed into a predetermined shape. (C) applying a thermosetting resin to the reinforcing fiber substrate on which the thermoplastic resin coating is formed. Injecting and curing reaction
バインダー組成物を含み、シート状またはテープ状の形態を有する強化繊維基材と、熱硬化性樹脂を有してなる、所定の形状に成形された繊維強化複合材料であって、その表面に、熱可塑性樹脂を主成分とし前記バインダー組成物の融点よりも10℃以上低い融点を有する熱可塑性樹脂の被膜が形成されている繊維強化複合材料。 A fiber reinforced composite material, which includes a binder composition and has a sheet-like or tape-like form and a thermosetting resin, and is molded into a predetermined shape, on the surface thereof, A fiber-reinforced composite material in which a thermoplastic resin film having a melting point of 10 ° C. or more lower than the melting point of the binder composition is mainly formed of a thermoplastic resin. 前記バインダー組成物として、ポリビニルホルマールを主成分とした熱可塑性樹脂を含む組成物が用いられており、前記熱可塑性樹脂の被膜には、3元共重合ポリアミド樹脂を主成分とした樹脂組成物が用いられている、請求項2に記載の繊維強化複合材料。 As the binder composition, a composition containing a thermoplastic resin mainly composed of polyvinyl formal is used, and a resin composition mainly composed of a terpolymer polyamide resin is used for the thermoplastic resin film. The fiber-reinforced composite material according to claim 2, which is used. 請求項1に記載の(A)〜(C)の工程を経て得た繊維強化複合材料に形成された熱可塑性樹脂の被膜部分に、さらに、(D)他の部材を、前記バインダー組成物の融点より低い温度で加熱、溶着する接合工程、を有してなる一体化構造部材の製造方法。 The thermoplastic resin coating part formed on the fiber-reinforced composite material obtained through the steps (A) to (C) according to claim 1, and (D) another member is further added to the binder composition. The manufacturing method of the integrated structure member which has a joining process heated and welded at temperature lower than melting | fusing point. 他の部材として繊維強化複合材料が用いられる、請求項4に記載の一体化構造部材の製造方法。 The manufacturing method of the integrated structure member according to claim 4, wherein a fiber-reinforced composite material is used as the other member. 請求項1に記載の方法で製造された繊維強化複合材料、または、請求項2または3に記載の繊維強化複合材料に形成されている熱可塑性樹脂の被膜部分が、他の繊維強化複合材料と接合されている一体化構造部材。 The fiber-reinforced composite material produced by the method according to claim 1 or the thermoplastic resin coating portion formed on the fiber-reinforced composite material according to claim 2 or 3 is made of another fiber-reinforced composite material. An integrated structural member that is joined. 前記他の繊維強化複合材料の表面には熱可塑性樹脂の被膜が形成されており、繊維強化複合材料同士が、それぞれの熱可塑性樹脂の被膜の面で接合されている、請求項6に記載の一体化構造部材。 The thermoplastic resin film is formed on the surface of the other fiber reinforced composite material, and the fiber reinforced composite materials are bonded to each other on the surface of the thermoplastic resin film. Integrated structural member.
JP2008059112A 2008-03-10 2008-03-10 Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member Pending JP2009214371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059112A JP2009214371A (en) 2008-03-10 2008-03-10 Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059112A JP2009214371A (en) 2008-03-10 2008-03-10 Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member

Publications (1)

Publication Number Publication Date
JP2009214371A true JP2009214371A (en) 2009-09-24

Family

ID=41186780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059112A Pending JP2009214371A (en) 2008-03-10 2008-03-10 Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member

Country Status (1)

Country Link
JP (1) JP2009214371A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091252A (en) * 2011-10-26 2013-05-16 Bando Chemical Industries Ltd Carbon fiber reinforced resin-molded article, and method for manufacturing the same
JP2018538174A (en) * 2015-12-10 2018-12-27 アルケマ フランス Process for producing fiber reinforced polyamide matrix composites from reactive prepolymer precursor compositions
CN112533753A (en) * 2018-08-09 2021-03-19 东丽株式会社 Reinforcing fiber tape material, method for producing same, reinforcing fiber laminate using reinforcing fiber tape material, and fiber-reinforced resin molded article
US11712858B2 (en) 2018-03-06 2023-08-01 Subaru Corporation Method of shaping preform and method of molding composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091252A (en) * 2011-10-26 2013-05-16 Bando Chemical Industries Ltd Carbon fiber reinforced resin-molded article, and method for manufacturing the same
JP2018538174A (en) * 2015-12-10 2018-12-27 アルケマ フランス Process for producing fiber reinforced polyamide matrix composites from reactive prepolymer precursor compositions
US11712858B2 (en) 2018-03-06 2023-08-01 Subaru Corporation Method of shaping preform and method of molding composite material
CN112533753A (en) * 2018-08-09 2021-03-19 东丽株式会社 Reinforcing fiber tape material, method for producing same, reinforcing fiber laminate using reinforcing fiber tape material, and fiber-reinforced resin molded article

Similar Documents

Publication Publication Date Title
KR101630219B1 (en) Method for producing metal composite, and chassis for electronic equipment
JP5417631B2 (en) Molding method of thermoplastic resin composite material molded product
CN106003850B (en) Honeycomb sandwich structure part and preparation method thereof
TW201831321A (en) Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet
WO2013008720A1 (en) Thermoplastic resin pre-preg, molded preform and molded composite using same, and method for producing molded preform and molded composite
TW201429691A (en) Bonding of composite materials
JP5953756B2 (en) Manufacturing method of electronic device casing
US10913223B2 (en) Fibre reinforced composites
US11931927B2 (en) Method for producing fiber reinforced plastic product, and core
JP2009214371A (en) Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member
JP2007331369A (en) Fiber-reinforced plastic molded object and its manufacturing method
JP5712944B2 (en) Method for producing metal composite
WO2017068812A1 (en) Method for manufacturing fiber-reinforced resin structure, system for manufacturing fiber-reinforced resin structure, and fiber-reinforced resin structure
JP2012131221A (en) Method for producing metal composite
TW201618962A (en) Sandwich components composed of poly(meth)acrylate-based foam bodies and reversibly crosslinkable composites
JP6012653B2 (en) Manufacturing method of fiber reinforced plastic molding
JP3056610B2 (en) Laminated molded article and molding method
WO2023062870A1 (en) Metal-prepreg complex
JP2024141918A (en) Structure and manufacturing method thereof
KR102472506B1 (en) Method for manufacturing composite material
JP2024139872A (en) A method for manufacturing a composite article.
JP2018039130A (en) Method for molding composite material and device for molding composite material
JP2017119433A (en) Composite molding and method for manufacturing the same
TW202436070A (en) Integrated molded product, frame structure, flying body, and method for manufacturing integrated molded product
Beiss et al. Vibration joining of filament reinforced thermosets