JP2009214099A - Method for producing amide compound and catalyst to be used therein - Google Patents
Method for producing amide compound and catalyst to be used therein Download PDFInfo
- Publication number
- JP2009214099A JP2009214099A JP2009027337A JP2009027337A JP2009214099A JP 2009214099 A JP2009214099 A JP 2009214099A JP 2009027337 A JP2009027337 A JP 2009027337A JP 2009027337 A JP2009027337 A JP 2009027337A JP 2009214099 A JP2009214099 A JP 2009214099A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- copper
- water
- compound
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 165
- -1 amide compound Chemical class 0.000 title claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 131
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 90
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 72
- 229910001868 water Inorganic materials 0.000 claims abstract description 72
- 239000010419 fine particle Substances 0.000 claims abstract description 66
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 62
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 46
- 239000005749 Copper compound Substances 0.000 claims abstract description 40
- 150000001880 copper compounds Chemical class 0.000 claims abstract description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000001301 oxygen Substances 0.000 claims abstract description 38
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 38
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 34
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000002245 particle Substances 0.000 claims abstract description 16
- 239000010949 copper Substances 0.000 claims description 49
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 42
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 29
- 239000002904 solvent Substances 0.000 claims description 10
- 229920003169 water-soluble polymer Polymers 0.000 claims description 10
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 8
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 8
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 8
- 239000003223 protective agent Substances 0.000 claims description 7
- 239000005751 Copper oxide Substances 0.000 claims description 6
- 229910000431 copper oxide Inorganic materials 0.000 claims description 6
- 229940116318 copper carbonate Drugs 0.000 claims description 5
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 5
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 5
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 claims description 5
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 3
- 238000007259 addition reaction Methods 0.000 abstract description 39
- 239000006227 byproduct Substances 0.000 abstract description 8
- 230000001737 promoting effect Effects 0.000 abstract 1
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 54
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 29
- 238000002360 preparation method Methods 0.000 description 29
- 239000000243 solution Substances 0.000 description 27
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 23
- 150000001408 amides Chemical class 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 238000003786 synthesis reaction Methods 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 17
- 230000003197 catalytic effect Effects 0.000 description 15
- 239000002105 nanoparticle Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 239000000654 additive Substances 0.000 description 12
- 230000000996 additive effect Effects 0.000 description 10
- 239000012300 argon atmosphere Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 125000002560 nitrile group Chemical group 0.000 description 10
- ZKXWKVVCCTZOLD-FDGPNNRMSA-N copper;(z)-4-hydroxypent-3-en-2-one Chemical compound [Cu].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O ZKXWKVVCCTZOLD-FDGPNNRMSA-N 0.000 description 9
- ACRWYXSKEHUQDB-UHFFFAOYSA-N 3-phenylpropionitrile Chemical compound N#CCCC1=CC=CC=C1 ACRWYXSKEHUQDB-UHFFFAOYSA-N 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 5
- 239000011942 biocatalyst Substances 0.000 description 5
- 150000002825 nitriles Chemical class 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 4
- 239000002082 metal nanoparticle Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- GZPHSAQLYPIAIN-UHFFFAOYSA-N 3-pyridinecarbonitrile Chemical compound N#CC1=CC=CN=C1 GZPHSAQLYPIAIN-UHFFFAOYSA-N 0.000 description 3
- XDJAAZYHCCRJOK-UHFFFAOYSA-N 4-methoxybenzonitrile Chemical compound COC1=CC=C(C#N)C=C1 XDJAAZYHCCRJOK-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 150000004699 copper complex Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000011949 solid catalyst Substances 0.000 description 3
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 3
- 150000003623 transition metal compounds Chemical class 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- SJNALLRHIVGIBI-UHFFFAOYSA-N allyl cyanide Chemical compound C=CCC#N SJNALLRHIVGIBI-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 150000008430 aromatic amides Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- NNICRUQPODTGRU-UHFFFAOYSA-N mandelonitrile Chemical compound N#CC(O)C1=CC=CC=C1 NNICRUQPODTGRU-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 235000005152 nicotinamide Nutrition 0.000 description 2
- 239000011570 nicotinamide Substances 0.000 description 2
- 229960003966 nicotinamide Drugs 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetraline Natural products C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JBFHTYHTHYHCDJ-UHFFFAOYSA-N -5-Ethyldihydro-2(3H)-furanone Natural products CCC1CCC(=O)O1 JBFHTYHTHYHCDJ-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VLLSCJFPVSQXDM-UHFFFAOYSA-N 2-phenoxyacetonitrile Chemical compound N#CCOC1=CC=CC=C1 VLLSCJFPVSQXDM-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- HQSCPPCMBMFJJN-UHFFFAOYSA-N 4-bromobenzonitrile Chemical compound BrC1=CC=C(C#N)C=C1 HQSCPPCMBMFJJN-UHFFFAOYSA-N 0.000 description 1
- WZWIQYMTQZCSKI-UHFFFAOYSA-N 4-cyanobenzaldehyde Chemical compound O=CC1=CC=C(C#N)C=C1 WZWIQYMTQZCSKI-UHFFFAOYSA-N 0.000 description 1
- XOKDXPVXJWTSRM-UHFFFAOYSA-N 4-iodobenzonitrile Chemical compound IC1=CC=C(C#N)C=C1 XOKDXPVXJWTSRM-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 108010024026 Nitrile hydratase Proteins 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229930003537 Vitamin B3 Natural products 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000008431 aliphatic amides Chemical class 0.000 description 1
- 150000001336 alkenes Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000008359 benzonitriles Chemical class 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000002153 concerted effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N dimethyl sulfoxide Natural products CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 description 1
- 229920006391 phthalonitrile polymer Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- GPHQHTOMRSGBNZ-UHFFFAOYSA-N pyridine-4-carbonitrile Chemical compound N#CC1=CC=NC=C1 GPHQHTOMRSGBNZ-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- AYKOTYRPPUMHMT-UHFFFAOYSA-N silver;hydrate Chemical compound O.[Ag] AYKOTYRPPUMHMT-UHFFFAOYSA-N 0.000 description 1
- VFWRGKJLLYDFBY-UHFFFAOYSA-N silver;hydrate Chemical compound O.[Ag].[Ag] VFWRGKJLLYDFBY-UHFFFAOYSA-N 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 239000011708 vitamin B3 Substances 0.000 description 1
- 235000019160 vitamin B3 Nutrition 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Pyridine Compounds (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、有機化合物への水の付加反応、特にニトリル化合物への水の付加反応に用いることが可能であり、更にその反応が温和な条件下で進行し、副生成物を生成せずに高収率でアミド化合物を得ることが可能な触媒に関するものである。 The present invention can be used for the addition reaction of water to an organic compound, particularly the addition reaction of water to a nitrile compound, and the reaction proceeds under mild conditions without generating a by-product. The present invention relates to a catalyst capable of obtaining an amide compound with high yield.
アミド化合物の製造に関しては、例えば、ニトリル化合物への水の付加反応を利用するものが挙げられるが、かかる反応により得られるアミド化合物には、産業上有益なものが多い。例えば、紙力増強剤としてのアクリルアミドや、ビタミンB3の構成成分としてのニコチンアミド等が市場規模の大きな製品として工業生産されている。また、アミド化合物は、医薬品等の生理活性物質の合成中間体としても有用である。 With respect to the production of the amide compound, for example, a method utilizing an addition reaction of water to a nitrile compound can be mentioned. Many of the amide compounds obtained by such a reaction are industrially useful. For example, acrylamide as a paper strength enhancer and nicotinamide as a component of vitamin B3 are industrially produced as products with a large market scale. Amide compounds are also useful as synthetic intermediates for physiologically active substances such as pharmaceuticals.
上記ニトリル化合物への水の付加反応は、産業上実施されている手法であり、大まかに微生物由来の生体触媒を用いる手法と、人工触媒を用いる手法とに分けることができる。 The addition reaction of water to the nitrile compound is an industrially practiced technique, and can be roughly divided into a technique using a microorganism-derived biocatalyst and a technique using an artificial catalyst.
一般に生体触媒を用いる手法では、微生物の代謝の過程でニトリル化合物への水の付加反応が行われ、その産物としてアミド化合物が得られる。例えば、アクリルアミド化合物の合成には、ニトリルヒドラターゼの作用を有する微生物が生体触媒として用いられる(例えば、特開平5−30982号公報(特許文献1)参照)。しかしながら、生体触媒の場合にはさまざまなアミド化合物を製造できる汎用性は、必ずしも高くなく、汎用性の高い触媒が望まれている。また、生体触媒を用いる手法では、触媒の生体維持に要した廃水の処理が必要である。 In general, in a technique using a biocatalyst, water is added to a nitrile compound in the course of microorganism metabolism, and an amide compound is obtained as a product thereof. For example, microorganisms having the action of nitrile hydratase are used as biocatalysts for the synthesis of acrylamide compounds (see, for example, JP-A-5-30982 (Patent Document 1)). However, in the case of a biocatalyst, versatility capable of producing various amide compounds is not necessarily high, and a highly versatile catalyst is desired. Moreover, in the method using a biocatalyst, it is necessary to treat waste water required for maintaining the living body of the catalyst.
これに対し、人工触媒を用いる手法では、酸・塩基触媒、還元銅、銅-クロム系触媒、錯体触媒等を用いて水の付加反応が行われるが、それらの触媒は限定的な用途で使用されるものであり、また、酸・塩基触媒では高温の反応温度が必要であり、さらにアミド化合物の製造の後処理段階の中和過程において多量の無機塩等の副生成物が生じる問題もある。また、還元銅触媒では、高温の反応温度が必要であり、多量の水も必要であり、その濃縮操作も必要な問題点がある。更に、銅-クロム系触媒では有害金属であるクロムを使用することから環境保全の観点から問題がある。更に、錯体触媒法では、有害な揮発性有機溶媒を多量に使う必要があり、環境保全の観点から好ましくない。したがって、多量の無機塩を排出せず、有害金属を含まず、有害な揮発性有機溶媒を使わないアミド製造法が望まれている。 On the other hand, in the method using an artificial catalyst, water is added using an acid / base catalyst, reduced copper, a copper-chromium catalyst, a complex catalyst, etc., but these catalysts are used for limited applications. In addition, the acid / base catalyst requires a high reaction temperature, and there is a problem that a large amount of by-products such as inorganic salts are generated in the neutralization process in the post-treatment stage of the production of the amide compound. . In addition, the reduced copper catalyst requires a high reaction temperature, requires a large amount of water, and requires a concentration operation. Furthermore, the copper-chromium-based catalyst has a problem from the viewpoint of environmental protection because it uses chromium, which is a harmful metal. Furthermore, the complex catalyst method requires a large amount of harmful volatile organic solvent, which is not preferable from the viewpoint of environmental conservation. Therefore, an amide production method that does not discharge a large amount of inorganic salt, does not contain harmful metals, and does not use harmful volatile organic solvents is desired.
また一方で、近年、金属微粒子(ナノ粒子)の特性に注目した人工触媒の研究が急速に進みつつある。該金属ナノ粒子は、数個から数百個の原子からなる微結晶粒子であり、固体触媒に無い効果が得られる。かかる効果は、主としてその高い比表面積や表面構造の多様性に由来していると考えられている。具体的には、クラスターを構成する金属ナノ粒子が、一般的な固体触媒のバルク相での触媒作用に比べて飛躍的に高い触媒作用を示す。Pratiらは、Appl.Catal.A:General,291,199(2005)(非特許文献1)において、元来不活性な金を、活性炭に担持させた金ナノ粒子とすることで、多価アルコールを酸素酸化できることを報告している。また、多元系の金属ナノ粒子触媒は、一般に、イオン状態の混合溶液を還元することにより、水熱反応で金属ナノ粒子(金属間化合物)の核を形成する。例えば、特開平6−320002号公報(特許文献2)及び特開平7−204511号公報(特許文献3)においては、加熱処理して得た合金系ナノ粒子を触媒として用いたニトリル化合物への水の付加反応が、実施例ではアクリロニトリルへの水の付加反応のみが報告されている。白石らは高分子論文集,57,346(2000)(非特許文献2)において、合金系ナノ粒子触媒の作用機構を述べており、パラジウムがアクリロニトリルのオレフィン部と相互作用し、水が配位した銅の近傍にニトリル部位を固定する役割を果たすため、高い活性が発現すると説明している。 On the other hand, in recent years, research on artificial catalysts focusing on the characteristics of metal fine particles (nanoparticles) is proceeding rapidly. The metal nanoparticles are microcrystalline particles composed of several to several hundred atoms, and an effect not found in a solid catalyst can be obtained. Such an effect is considered to be mainly derived from the high specific surface area and the diversity of the surface structure. Specifically, the metal nanoparticles constituting the cluster exhibit a significantly higher catalytic action than the catalytic action in the bulk phase of a general solid catalyst. Prati et al., Appl. Catal. A: General, 291, 199 (2005) (Non-patent Document 1) reported that polyhydric alcohol can be oxidized with oxygen by using gold nanoparticles originally supported on activated carbon as gold. Yes. In addition, multi-component metal nanoparticle catalysts generally form nuclei of metal nanoparticles (intermetallic compounds) by hydrothermal reaction by reducing a mixed solution in an ionic state. For example, in JP-A-6-300022 (Patent Document 2) and JP-A-7-204511 (Patent Document 3), water to a nitrile compound using an alloy-based nanoparticle obtained by heat treatment as a catalyst. In the examples, only the addition reaction of water to acrylonitrile is reported. Shiraishi et al. Describe the mechanism of the action of alloy-based nanoparticle catalysts in the collection of polymer papers, 57, 346 (2000) (Non-patent Document 2). Palladium interacts with the olefin part of acrylonitrile and water coordinates. It is explained that high activity is exhibited because it plays a role of fixing a nitrile site in the vicinity of the copper.
特開平6−320002号公報及び特開平7−204511号公報に開示のアミド化合物の製造方法は、パラジウムと銅の合金ナノ粒子を触媒として使用しているが、該触媒は、必要に応じて別途に調製する必要がある。またその調製方法は単成分ナノ粒子に比べ煩雑であり、触媒調製時にpHをコントロールする等の条件設定が必要となる。 The method for producing an amide compound disclosed in JP-A-6-30002 and JP-A-7-204511 uses palladium and copper alloy nanoparticles as a catalyst. Need to be prepared. Moreover, the preparation method is more complicated than single-component nanoparticles, and it is necessary to set conditions such as controlling the pH during catalyst preparation.
そこで、本発明の目的は、温和な条件下、簡便な触媒調製で副生成物を生成せずに高効率で水の付加反応を促進させる触媒を提供することにある。特に、ニトリル類からアミド類の製造用触媒として有用であり、該触媒を用いるアミド化合物の製造方法を提供する。 Therefore, an object of the present invention is to provide a catalyst that promotes the water addition reaction with high efficiency without generating a by-product by simple catalyst preparation under mild conditions. In particular, the present invention provides a method for producing an amide compound that is useful as a catalyst for producing amides from nitriles and that uses the catalyst.
本発明者らは、上記目的を達成するために鋭意検討した結果、中心となるパラジウム、白金又はルテニウムの微粒子に、酸素含有銅化合物を加えることにより、液相中で水の付加反応に対し優れた触媒能を示す新規な触媒が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have added an oxygen-containing copper compound to the central palladium, platinum or ruthenium fine particles, thereby being excellent in water addition reaction in the liquid phase. The present inventors have found that a novel catalyst exhibiting catalytic ability can be obtained, and have completed the present invention.
即ち、本発明の触媒は、粒子径が1.0nm〜5.0nmの範囲であるパラジウム、白金又はルテニウムの微粒子を、酸素含有銅化合物と組み合わせてなることを特徴とする。 That is, the catalyst of the present invention is characterized by comprising fine particles of palladium, platinum or ruthenium having a particle diameter in the range of 1.0 nm to 5.0 nm in combination with an oxygen-containing copper compound.
なお、本発明の触媒は、パラジウム、白金又はルテニウムの微粒子と酸素含有銅化合物を混ぜ合わせるだけで調製でき、水の付加反応に触媒能を示すことを特徴とする。 The catalyst of the present invention can be prepared simply by mixing fine particles of palladium, platinum or ruthenium and an oxygen-containing copper compound, and is characterized by exhibiting catalytic ability for water addition reaction.
本発明の触媒の好適例においては、前記パラジウム、白金又はルテニウムの微粒子がクラスターである。 In a preferred example of the catalyst of the present invention, the fine particles of palladium, platinum or ruthenium are clusters.
本発明の触媒において、前記酸素含有銅化合物としては、硫酸銅、酸化銅、炭酸銅、硝酸銅及びビスアセチルアセトナト銅が好ましい。 In the catalyst of the present invention, the oxygen-containing copper compound is preferably copper sulfate, copper oxide, copper carbonate, copper nitrate and copper bisacetylacetonate.
本発明の触媒は、前記パラジウム、白金又はルテニウムの微粒子が、水溶性高分子よりなる保護剤により単分散で存在する微粒子であることが好ましい。 The catalyst of the present invention is preferably a fine particle in which the fine particles of palladium, platinum, or ruthenium are present in a monodispersed state by a protective agent made of a water-soluble polymer.
本発明の触媒は、前記酸素含有銅化合物と前記パラジウム、白金又はルテニウムの微粒子とのモル比(Cu/M)[但し、MはPd、Pt又はRuである]が0.1〜10であることが好ましい。なお、モル比(Cu/M)は、パラジウム、白金又はルテニウムのモル数に対する銅のモル数の比である。 In the catalyst of the present invention, the molar ratio (Cu / M) of the oxygen-containing copper compound and the palladium, platinum or ruthenium fine particles [wherein M is Pd, Pt or Ru] is 0.1 to 10. preferable. The molar ratio (Cu / M) is the ratio of the number of moles of copper to the number of moles of palladium, platinum, or ruthenium.
本発明の触媒は、更に、水溶性高分子よりなる保護剤を含むことが好ましい。ここで、前記水溶性高分子としては、ポリビニルピロリドンが好ましい。 The catalyst of the present invention preferably further contains a protective agent made of a water-soluble polymer. Here, the water-soluble polymer is preferably polyvinylpyrrolidone.
本発明の触媒の他の好適例においては、前記微粒子が白金からなり、該微粒子の溶媒がpH6.0以上であるのが好ましい。 In another preferred embodiment of the catalyst of the present invention, the fine particles are preferably composed of platinum, and the solvent of the fine particles is preferably pH 6.0 or more.
本発明の触媒は、アミド化合物製造用触媒として好適である。 The catalyst of the present invention is suitable as a catalyst for producing an amide compound.
また、本発明のアミド化合物の製造方法は、上記の触媒の存在下、ニトリル化合物に水を付加させる工程において、パラジウム若しくはルテニウムを含む触媒の存在下では80℃以上で行い、又は白金を含む触媒の存在下では100℃以上で行うことを特徴とする。 Further, the method for producing an amide compound of the present invention is a step of adding water to a nitrile compound in the presence of the above catalyst in the presence of a catalyst containing palladium or ruthenium at 80 ° C. or higher, or a catalyst containing platinum It is characterized by being carried out at 100 ° C. or higher in the presence of.
本発明によれば、パラジウム、白金又はルテニウムの微粒子に、酸素含有銅化合物を加えることで温和な条件下で機能し、且つ再利用が可能な加水分解反応及び付加反応を促進させる新規な触媒を提供することができる。また、かかる触媒を用いることで、特定の触媒反応系専用の多元系触媒を調製することなく、目的とするアミド化合物を温和な条件下で簡便に高い選択率で製造することができ、更に生体触媒を用いた際に必要となる水処理施設等も不要となる。 According to the present invention, a novel catalyst that functions under mild conditions by adding an oxygen-containing copper compound to fine particles of palladium, platinum, or ruthenium, and promotes a recyclable hydrolysis reaction and addition reaction. Can be provided. Further, by using such a catalyst, the target amide compound can be easily produced at a high selectivity under mild conditions without preparing a multi-component catalyst dedicated to a specific catalytic reaction system. A water treatment facility required when using a catalyst is also unnecessary.
以下に、本発明を詳細に説明する。本発明の触媒は、粒子径が1.0nm〜5.0nmの範囲であるパラジウム、白金又はルテニウムの微粒子を、酸素含有銅化合物と組み合わせてなることを特徴とする。上述の通り、アミド化合物の製造に用いる多元系の複合触媒は、通常、その調製が煩雑で且つその調製には厳密な条件設定を必要とし、更には反応系別に専用の多元触媒を調製する必要があるため、その汎用性が低いものである。しかしながら、本発明者らは、一般的なパラジウム、白金又はルテニウムの微粒子に酸素含有銅化合物を混ぜ合わせるだけで、溶媒中で加水分解反応や付加反応に優れた触媒能を示す新規な触媒が得られることを見出した。驚くべきことに、かかる触媒は、その調製が容易であることに加えて、温和な条件下でニトリル化合物からアミド化合物を製造することができ、従来のアミド化合物の製造方法における中和過程で見られた無機塩等の副生成物を多量に生成することなく、ニトリル化合物からアミド化合物を高収率で製造することができる。金属微粒子(ナノ粒子)を含む本触媒系が水の付加反応を促進させる理由は、必ずしも明らかではないが、ニトリル基がパラジウム、白金又はルテニウムに配位することによるニトリル化合物の活性化と、水が銅に配位することによる水の活性化が起こるものと考えている。すなわち、本触媒系は水の付加反応を2元機能型で触媒する。白石らが高分子論文集,57,346(2000)(非特許文献2)において、提唱している作用機構では、原料のニトリル化合物(アクリロニトリル)の二重結合部分がパラジウムに配位することにより、銅の近傍にアクリロニトリルを固定すると述べている。本触媒系では、ニトリル基の近傍に二重結合のないヒドロシンナモニトリルでも水の付加反応が進行しており、白石らの触媒系とは全く異なるものであることは明らかである。本触媒系ではニトリル化合物への水の付加反応において、アミド化合物の段階で反応は停止し、カルボン酸までの水和が進行しない。また、逆反応である、アミド化合物からニトリル化合物への脱水反応は進行しない。このため、アミド化合物が高収率で得られることが本触媒系の特徴である。本触媒系の活性の高さは、ナノ粒子固有の高い比表面積に由来すると考えられる。パラジウムや白金の単結晶の結晶構造は面心立方格子構造であり、それらのナノ粒子は立方八面体を形成することがわかっている。立方八面体では、2殻構造(原子数 55)で約76%、3殻構造(原子数 147)で約63%の原子が最外殻(外表面)に位置する。更にナノ粒子はバルク相に比べ、ステップやキンクなどの存在割合が高いため、配位不飽和性の高い表面原子が多く存在する。固体触媒の場合、まず基質が反応場である触媒表面に吸着する必要があるが、反応性の高い、配位不飽和性の高い表面原子に優先して化学吸着することから、ナノ粒子表面上では基質であるニトリル化合物が高密度で配位することによって水の付加反応が促進されていることが推察される。また、本発明の触媒は、特にアミド化合物製造用触媒として好適で、任意のニトリル化合物に水を付加させることができ、基質であるニトリル化合物の種類に制限されない。 The present invention is described in detail below. The catalyst of the present invention is characterized in that palladium, platinum or ruthenium fine particles having a particle diameter in the range of 1.0 nm to 5.0 nm are combined with an oxygen-containing copper compound. As described above, multi-component composite catalysts used for the production of amide compounds are usually complicated to prepare and require strict conditions for their preparation, and it is also necessary to prepare dedicated multi-component catalysts for each reaction system. Therefore, its versatility is low. However, the present inventors have obtained a novel catalyst having excellent catalytic ability for hydrolysis reaction and addition reaction in a solvent simply by mixing oxygen-containing copper compound with general palladium, platinum or ruthenium fine particles. I found out that Surprisingly, in addition to being easy to prepare, such a catalyst can produce an amide compound from a nitrile compound under mild conditions, and it can be seen in the neutralization process in the conventional method for producing an amide compound. An amide compound can be produced in a high yield from a nitrile compound without producing a large amount of by-products such as the obtained inorganic salt. The reason why this catalyst system including metal fine particles (nanoparticles) promotes the water addition reaction is not necessarily clear, but activation of the nitrile compound by coordination of the nitrile group to palladium, platinum or ruthenium, and water It is thought that activation of water occurs due to coordination with copper. That is, the present catalyst system catalyzes the water addition reaction in a dual function form. In Shiroishi et al., 57, 346 (2000) (Non-patent Document 2), the mechanism of action proposed is that the double bond portion of the starting nitrile compound (acrylonitrile) is coordinated to palladium. States that acrylonitrile is fixed in the vicinity of copper. In this catalyst system, water addition reaction proceeds even with hydrocinnamonitrile having no double bond in the vicinity of the nitrile group, which is clearly different from the catalyst system of Shiroishi et al. In this catalyst system, in the addition reaction of water to the nitrile compound, the reaction stops at the amide compound stage, and hydration to the carboxylic acid does not proceed. Further, the dehydration reaction from the amide compound to the nitrile compound, which is a reverse reaction, does not proceed. For this reason, it is the feature of this catalyst system that an amide compound is obtained with a high yield. The high activity of this catalyst system is thought to be derived from the high specific surface area inherent to the nanoparticles. The crystal structure of single crystals of palladium and platinum is a face-centered cubic lattice structure, and these nanoparticles are known to form a cubic octahedron. In the cubic octahedron, about 76% of atoms are located in the outermost shell (outer surface) in the 2-shell structure (55 atoms), and about 63% in the 3-shell structure (147 atoms). Furthermore, since nanoparticles have a higher proportion of steps, kinks, and the like than the bulk phase, there are many surface atoms with high coordination unsaturation. In the case of a solid catalyst, the substrate must first be adsorbed on the surface of the catalyst, which is the reaction field. However, since it is preferentially chemisorbed on surface atoms with high reactivity and coordination unsaturation, Then, it is guessed that the addition reaction of water is accelerated | stimulated because the nitrile compound which is a substrate coordinates at high density. In addition, the catalyst of the present invention is particularly suitable as a catalyst for producing an amide compound, can add water to any nitrile compound, and is not limited to the type of nitrile compound as a substrate.
更に、本発明の触媒は、有害金属であるクロムなどの使用を必要とせず、また下記で説明するように、任意の溶媒を用いることができるため、環境保全の観点からも好ましい。 Furthermore, since the catalyst of the present invention does not require the use of chromium, which is a harmful metal, and any solvent can be used as described below, it is preferable from the viewpoint of environmental protection.
本発明の触媒に用いるパラジウム、白金又はルテニウムの微粒子は、保護剤として、ポリビニルピロリドン、ナフタリンスルホン酸縮合物、クエン酸、ポリアクリル酸、4級アミン等の水溶性高分子を用いることで、該パラジウム、白金又はルテニウムの微粒子を単分散で存在させることができる。なお、これら水溶性高分子の中では、ポリビニルピロリドンが特に好ましい。また、上記保護剤としては、水溶性高分子に制限されず、金属微粒子に通常使用される有機配位子や界面活性剤を用いてもよい。 The fine particles of palladium, platinum, or ruthenium used in the catalyst of the present invention can be obtained by using a water-soluble polymer such as polyvinylpyrrolidone, naphthalenesulfonic acid condensate, citric acid, polyacrylic acid, or quaternary amine as a protective agent. Fine particles of palladium, platinum or ruthenium can be present in a monodisperse manner. Of these water-soluble polymers, polyvinyl pyrrolidone is particularly preferred. Moreover, as said protective agent, it is not restricted to water-soluble polymer, You may use the organic ligand and surfactant normally used for metal microparticles.
また、本発明の触媒に用いるパラジウム、白金又はルテニウムの微粒子は、その粒子径が1.0nm〜5.0nmの範囲であることを要する。該微粒子の粒子径が上記特定した範囲内にあれば、触媒として作用し、水の付加反応を促進させることができる。従って、その粒子径が上記特定した範囲から外れると、水の付加反応に対する触媒能が低下することが予想される。 The fine particles of palladium, platinum or ruthenium used for the catalyst of the present invention are required to have a particle size in the range of 1.0 nm to 5.0 nm. If the particle diameter of the fine particles is within the above specified range, it can act as a catalyst and promote water addition reaction. Therefore, when the particle diameter deviates from the above specified range, the catalytic ability for the water addition reaction is expected to decrease.
本発明の触媒に用いる酸素含有銅化合物は、分子内に酸素原子を含む銅化合物であり、具体例としては、硫酸銅(CuSO4)、酸化銅(CuO、Cu2O)、炭酸銅(CuCO3・Cu(OH)2)、硝酸銅(Cu(NO)2)、酢酸銅、配位子中に酸素を含む銅錯体等が挙げられる。例えば、上記パラジウム、白金又はルテニウムの微粒子を含む触媒系に酸素含有銅化合物を加えることで、ニトリル化合物への水の付加反応を達成することができるが、この理由は、前記の配位不飽和性が高く反応性の高いナノ粒子表面活性点と、酸素含有銅化合物による水の活性化作用の協奏的な働きによるものと思われる。なお、これら酸素含有銅化合物は、1種単独で使用してもよいし、2種以上を混合して使用してもよい。また、これらの酸素含有銅化合物は、二価の銅化合物に制限されず、一価の銅化合物でもよい。更に、これらの酸素含有銅化合物は、水和物の形態であってもよい。
The oxygen-containing copper compound used in the catalyst of the present invention is a copper compound containing an oxygen atom in the molecule. Specific examples thereof include copper sulfate (CuSO 4 ), copper oxide (CuO, Cu 2 O), copper carbonate (CuCO 3 · Cu (OH) 2 ), copper nitrate (Cu (NO) 2 ), copper acetate, and copper complexes containing oxygen in the ligand. For example, the addition reaction of water to a nitrile compound can be achieved by adding an oxygen-containing copper compound to the catalyst system containing fine particles of palladium, platinum, or ruthenium. This is probably due to the concerted action of the highly active and highly reactive nanoparticle surface active sites and the water activation effect of oxygen-containing copper compounds. In addition, these oxygen containing copper compounds may be used individually by 1 type, and may mix and
また、本発明の触媒に用いることができる配位子中に酸素を含む銅錯体として、具体的には、ビスアセチルアセトナト銅(Cu(acac)2)、ビス(ヘキサフルオロアセチルアセトナト)銅が挙げられ、これらの中でも、ビスアセチルアセトナト銅が経済性の観点から特に好ましい。 Further, as a copper complex containing oxygen in the ligand that can be used in the catalyst of the present invention, specifically, bisacetylacetonato copper (Cu (acac) 2 ), bis (hexafluoroacetylacetonato) copper Among these, bisacetylacetonato copper is particularly preferable from the viewpoint of economy.
本発明の触媒は、酸素含有銅化合物とパラジウム、白金又はルテニウムの微粒子とのモル比(Cu/M)[但し、MはPd、Pt又はRuである]が0.1〜10であることが好ましく、0.1を超えて且つ1.0未満であることが更に好ましい。該モル比(Cu/M)が0.1未満では(即ち、酸素含有銅化合物の割合が低減すると)、水の付加反応に対する触媒能が低下する。一方、該モル比(Cu/M)が10を超えると、(即ち、酸素含有銅化合物の割合が増大すると)、触媒効率は増加しない。 The catalyst of the present invention preferably has a molar ratio (Cu / M) between the oxygen-containing copper compound and palladium, platinum or ruthenium fine particles (where M is Pd, Pt or Ru) of 0.1 to 10, More preferably, it is more than 0.1 and less than 1.0. When the molar ratio (Cu / M) is less than 0.1 (that is, when the proportion of the oxygen-containing copper compound is reduced), the catalytic ability for the water addition reaction is lowered. On the other hand, when the molar ratio (Cu / M) exceeds 10, (that is, when the proportion of the oxygen-containing copper compound increases), the catalyst efficiency does not increase.
また、本発明のアミド化合物の製造方法は、上述の触媒の存在下、加熱条件下でニトリル化合物に水を付加させる工程を含むことを特徴とする。ここで、触媒を構成する金属微粒子としてパラジウム微粒子又はルテニウム微粒子を選択した場合においては、80℃以上の加熱を行うことを要し、80〜180℃の範囲で行うことが好ましい。一方、触媒を構成する金属微粒子として白金微粒子を選択した場合においては、100℃以上の加熱を行うことを要し、180〜250℃の範囲で行うことが好ましい。本発明によれば、上記触媒を用いることにより、副生成物を生成することなく目的とするアミド化合物を高収率で製造することができる。また、芳香族アミド、ヘテロ置換芳香族アミド、脂肪族アミド等の各種アミド化合物を製造することができ、広い汎用性を有する。また、本発明のアミド化合物の製造方法においては、上記触媒を構成するパラジウム、白金又はルテニウムの微粒子がクラスターであることが好ましく、この場合、更に、ポリビニルピロリドン、ナフタリンスルホン酸縮合物、クエン酸、ポリアクリル酸、4級アミン等の水溶性高分子を保護剤として用いることで、触媒を構成する微粒子を単分散で存在させることができる。これにより、アミド化合物の収率を大幅に向上させることができる。 Moreover, the manufacturing method of the amide compound of this invention is characterized by including the process of adding water to a nitrile compound on heating conditions in presence of the above-mentioned catalyst. Here, when palladium fine particles or ruthenium fine particles are selected as the metal fine particles constituting the catalyst, heating at 80 ° C. or higher is required, and it is preferably performed in the range of 80 to 180 ° C. On the other hand, when platinum fine particles are selected as the metal fine particles constituting the catalyst, it is necessary to perform heating at 100 ° C. or higher, and it is preferable to carry out in the range of 180 to 250 ° C. According to the present invention, by using the above catalyst, the target amide compound can be produced in a high yield without generating a by-product. In addition, various amide compounds such as aromatic amides, hetero-substituted aromatic amides, aliphatic amides and the like can be produced and have wide versatility. In the method for producing an amide compound of the present invention, the fine particles of palladium, platinum or ruthenium constituting the catalyst are preferably clusters. In this case, polyvinylpyrrolidone, naphthalenesulfonic acid condensate, citric acid, By using a water-soluble polymer such as polyacrylic acid or quaternary amine as a protective agent, the fine particles constituting the catalyst can be present in a monodisperse form. Thereby, the yield of an amide compound can be improved significantly.
本発明のアミド化合物の製造方法に用いる触媒は、上記した通り、パラジウム、白金又はルテニウムの微粒子と酸素含有銅化合物を混ぜ合わせるだけで調製することができ、かかる触媒の調製には、塩等の副生成物が生じる問題もない。加えて、上記特定した温度範囲の加熱処理を行うことで付加反応に対する触媒能が発揮される。このため、パラジウム、白金又はルテニウムの微粒子と酸素含有銅化合物を予め反応させて触媒を調製する必要がなく、例えば、触媒の調製時に、パラジウム、白金又はルテニウムの微粒子及び酸素含有銅化合物と共に、ニトリル化合物、水、溶媒等を同時に加えることもできる。 As described above, the catalyst used in the method for producing an amide compound of the present invention can be prepared simply by mixing fine particles of palladium, platinum or ruthenium and an oxygen-containing copper compound. There is no problem of generating by-products. In addition, the catalytic ability for the addition reaction is exhibited by performing the heat treatment in the specified temperature range. Therefore, there is no need to prepare a catalyst by previously reacting fine particles of palladium, platinum or ruthenium with an oxygen-containing copper compound. For example, when preparing a catalyst, a nitrile is added together with fine particles of palladium, platinum or ruthenium and an oxygen-containing copper compound. A compound, water, solvent and the like can be added simultaneously.
本発明のアミド化合物の製造方法に用いるニトリル化合物としては、特に制限されないが、例えば、アセトニトリル、プロピオニトリル、ブチロニトリル、ヒドロシンナモニトリル、マンデロニトリル、フェノキシアセトニトリル等の一価の脂肪族ニトリル類、マロノニトリル、サクシノニトリル、アジポニトリル、ポリアクリロニトリル等の多価の脂肪族ニトリル類、アクリロニトリル、メタクリロニトリル、アリルシアニド等の不飽和脂肪族ニトリル類、ベンゾニトリル、p-メトキシベンゾニトリル、p-クロロベンゾニトリル、p-ブロモベンゾニトリル、p-ヨードベンゾニトリル、p-シアノベンズアルデヒド、3-シアノピリジン、4-シアノピリジン、フタロニトリル等の芳香族ニトリル類等が挙げられる。また、本発明によれば、反応性の低いニトリル化合物、例えばp-メトキシベンゾニトリルやヒドロシンナモニトリルを用いた場合でさえ高い収率で対応するアミド化合物を製造することができる。また、本発明によれば、窒素原子を含有する3-シアノピリジンも効率よく、工業的に重要なニコチンアミドに変換することができる。さらに、工業的に重要なアクリルアミドも製造することが可能である。 The nitrile compound used in the method for producing the amide compound of the present invention is not particularly limited. For example, monovalent aliphatic nitriles such as acetonitrile, propionitrile, butyronitrile, hydrocinnamonitrile, mandelonitrile, phenoxyacetonitrile, etc. Polyvalent aliphatic nitriles such as malononitrile, succinonitrile, adiponitrile, polyacrylonitrile, unsaturated aliphatic nitriles such as acrylonitrile, methacrylonitrile, allyl cyanide, benzonitrile, p-methoxybenzonitrile, p-chlorobenzo Examples thereof include aromatic nitriles such as nitrile, p-bromobenzonitrile, p-iodobenzonitrile, p-cyanobenzaldehyde, 3-cyanopyridine, 4-cyanopyridine, and phthalonitrile. In addition, according to the present invention, a corresponding amide compound can be produced in a high yield even when a low-reactivity nitrile compound such as p-methoxybenzonitrile or hydrocinnamonitrile is used. Further, according to the present invention, 3-cyanopyridine containing a nitrogen atom can also be efficiently converted into industrially important nicotinamide. Furthermore, industrially important acrylamide can also be produced.
また、本発明のアミド化合物の製造方法に用いる触媒は、溶媒を含有することができる。
上記触媒に用いることができる溶媒、即ち、上記ニトリル化合物への水の付加反応に用いることができる溶媒としては、水の他、例えば、ジメトキシエタン、ジエチルエーテル、アニソール、テトラヒドロフラン、エチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジオキサン、シクロペンチルメチルエーテル等のエーテル類;メタノール、エタノール、n-ブタノール、ベンジルアルコール、エチレングリコール、ジエチレングリコール等のアルコール類;フェノール等のフェノール類;ギ酸、酢酸、プロピオン酸、トルイル酸等のカルボン酸類;酢酸メチル、酢酸ブチル、安息香酸ベンジル等のエステル類;ベンゼン、トルエン、エチルベンゼン、テトラリン等の芳香族炭化水素;n-ヘキサン、n-オクタン、シクロヘキサン等の脂肪族炭化水素;ジクロロメタン、トリクロロエタン、クロロベンゼン等のハロゲン化炭化水素;ニトロメタン、ニトロベンゼン等のニトロ化合物;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のカルボン酸アミド;ヘキサメチルリン酸トリアミド等の他のアミド化合物;N,N-ジメチルイミダゾリジノン等の尿素;ジメチルスルホン等のスルホン類;ジメチルスルホキシド等のスルホキシド類;ガンマブチロラクトン、カプロラクトン等のラクトン類;ジメチルカーボネート、エチレンカーボネート等の炭酸エステル類;トリグライム、テトラグライム等のポリエーテル類等が挙げられる。また、原料となるアクリロニトリル、アセトニトリル、ベンゾニトリル、3-シアノピリジン、ポリアクリロニトリル等のニトリル化合物そのものを溶媒として用いてもよい。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
Moreover, the catalyst used for the manufacturing method of the amide compound of this invention can contain a solvent.
As a solvent that can be used for the catalyst, that is, a solvent that can be used for the addition reaction of water to the nitrile compound, for example, dimethoxyethane, diethyl ether, anisole, tetrahydrofuran, ethylene glycol dimethyl ether, Ethers such as ethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dioxane and cyclopentyl methyl ether; alcohols such as methanol, ethanol, n-butanol, benzyl alcohol, ethylene glycol and diethylene glycol; phenols such as phenol; formic acid, acetic acid and propion Acids, carboxylic acids such as toluic acid; esters such as methyl acetate, butyl acetate, benzyl benzoate; benzene, toluene, ethylbenzene, tetralin Aromatic hydrocarbons such as n-hexane, n-octane and cyclohexane; halogenated hydrocarbons such as dichloromethane, trichloroethane and chlorobenzene; nitro compounds such as nitromethane and nitrobenzene; N, N-dimethylformamide; Carboxylic acid amides such as N, N-dimethylacetamide and N-methylpyrrolidone; Other amide compounds such as hexamethylphosphoric triamide; Ureas such as N, N-dimethylimidazolidinone; Sulfones such as dimethylsulfone; Dimethyl sulfoxide Sulfoxides such as lactones; lactones such as gamma butyrolactone and caprolactone; carbonates such as dimethyl carbonate and ethylene carbonate; and polyethers such as triglyme and tetraglyme. Further, a nitrile compound itself such as acrylonitrile, acetonitrile, benzonitrile, 3-cyanopyridine, polyacrylonitrile or the like as a raw material may be used as a solvent. These may be used alone or in combination of two or more.
また、上記触媒は、微粒子が白金である場合、そのpHが6.0以上の溶液であるのが好ましい。該溶液のpHが6.0未満では、アミド化合物の収率が低下する場合があり、目的とするアミド化合物の収率確保の観点より好ましくない。 The catalyst is preferably a solution having a pH of 6.0 or more when the fine particles are platinum. If the pH of the solution is less than 6.0, the yield of the amide compound may decrease, which is not preferable from the viewpoint of securing the yield of the target amide compound.
上記ニトリル化合物への水の付加反応において、水の使用量は、収率の観点からニトリル化合物のニトリル基1モル当り0.1〜1000モル当量の範囲が好ましく、0.5〜1000モル当量の範囲が更に好ましく、1.0〜1000モル当量の範囲が一層好ましく、10〜1000モル当量の範囲が特に好ましい。水の使用量がニトリル基1モル当り0.1モル当量未満では、アミド化合物の収率の低下が大きくなり、一方、水の使用量がニトリル基1モル当り1000モル当量を超えると、ニトリル化合物の触媒への接触が抑制されるためアミド化合物の収率が低下する場合がある。 In the addition reaction of water to the nitrile compound, the amount of water used is preferably in the range of 0.1 to 1000 molar equivalents and more preferably in the range of 0.5 to 1000 molar equivalents per mole of nitrile group of the nitrile compound from the viewpoint of yield. The range of 1.0 to 1000 molar equivalents is more preferred, and the range of 10 to 1000 molar equivalents is particularly preferred. If the amount of water used is less than 0.1 molar equivalent per mole of nitrile group, the yield of the amide compound is greatly reduced. On the other hand, if the amount of water used exceeds 1000 molar equivalents per mole of nitrile group, the catalyst of the nitrile compound In some cases, the yield of the amide compound may be reduced because contact with the water is suppressed.
上記ニトリル化合物への水の付加反応において、触媒に含まれるパラジウム、白金又はルテニウムの微粒子の使用量は、ニトリル化合物のニトリル基に対して、0.00001〜1.0倍モルの範囲が好ましく、0.001〜0.5倍モルの範囲が更に好ましい。該微粒子の使用量が0.00001倍モル未満では、反応速度が低下し工業的に不利であり、一方、1.0倍モルを超えると、経済性が低下する。 In the addition reaction of water to the nitrile compound, the amount of fine particles of palladium, platinum or ruthenium contained in the catalyst is preferably in the range of 0.00001 to 1.0 times mol, 0.001 to 0.5 times the nitrile group of the nitrile compound. A molar range is more preferred. When the amount of the fine particles used is less than 0.00001 times mol, the reaction rate is lowered and industrially disadvantageous. On the other hand, when the amount exceeds 1.0 times mol, the economic efficiency is lowered.
また、上記付加反応は、反応系が実質的に液相に保たれるのに十分な圧力で行うことが好ましい。ここで、該付加反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましいが、特に限定されるものではなく、空気中でもかまわない。なお、反応形式は特に限定されず、回分式でも連続式でもよい。また、本発明の製造方法により得られるアミド化合物は、蒸留や晶析等の方法により回収できる。該アミド化合物を回収後の本触媒は、再度反応に利用できる。 The addition reaction is preferably performed at a pressure sufficient to keep the reaction system substantially in a liquid phase. Here, the addition reaction is preferably performed in an atmosphere of an inert gas, preferably nitrogen gas or argon gas, but is not particularly limited, and may be performed in air. The reaction format is not particularly limited, and may be batch or continuous. The amide compound obtained by the production method of the present invention can be recovered by methods such as distillation and crystallization. The catalyst after recovering the amide compound can be used again for the reaction.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(触媒の調製例1)
市販のパラジウム微粒子(ナノ粒子)溶液(ナノキューブジャパン社製、パラジウム平均粒径1.8 nm、パラジウム濃度5.0モル%(ニトリル基に対して)、水:エタノール=1:1(v/v)、保護剤としてポリビニルピロリドン含有)をそのまま触媒として溶液のまま用いた。
(Catalyst Preparation Example 1)
Commercially available palladium fine particle (nanoparticle) solution (manufactured by Nanocube Japan, palladium average particle size 1.8 nm, palladium concentration 5.0 mol% (based on nitrile group), water: ethanol = 1: 1 (v / v), protection Polyvinylpyrrolidone containing agent) was used as it was as a solution in the form of a catalyst.
(触媒の調製例2)
市販の白金微粒子(ナノ粒子)溶液(ナノキューブジャパン社製、白金平均粒径1.5 nm,白金濃度5.0モル%(ニトリル基に対して)、水:エタノール=1:1(v/v)、保護剤としてポリビニルピロリドン含有)をそのまま触媒として溶液のまま用いた。
(Catalyst Preparation Example 2)
Commercially available platinum fine particle (nanoparticle) solution (manufactured by Nanocube Japan, platinum average particle size 1.5 nm, platinum concentration 5.0 mol% (based on nitrile group), water: ethanol = 1: 1 (v / v), protection Polyvinylpyrrolidone containing agent) was used as it was as a solution in the form of a catalyst.
(本発明の触媒の調製例3)
調製例1で調製した触媒溶液に、ビスアセチルアセトナト銅(Cu(acac)2)を反応開始直前に室温で添加し、アミド合成用触媒Aを調製した。なお、ビスアセチルアセトナト銅とパラジウム微粒子とのモル比(Cu/Pd)は2であった。
(Preparation Example 3 of the catalyst of the present invention)
Bisacetylacetonato copper (Cu (acac) 2 ) was added to the catalyst solution prepared in Preparation Example 1 at room temperature just before the start of the reaction to prepare a catalyst A for amide synthesis. The molar ratio (Cu / Pd) between bisacetylacetonato copper and palladium fine particles was 2.
(本発明の触媒の調製例4)
調製例2で調製した触媒溶液に、ビスアセチルアセトナト銅(Cu(acac)2)を反応開始直前に室温で添加し、アミド合成用触媒B(pH=1.5)を得た。なお、ビスアセチルアセトナト銅と白金微粒子とのモル比(Cu/Pt)は2であった。
(Preparation Example 4 of the catalyst of the present invention)
Bisacetylacetonato copper (Cu (acac) 2 ) was added to the catalyst solution prepared in Preparation Example 2 at room temperature just before the start of the reaction to obtain an amide synthesis catalyst B (pH = 1.5). The molar ratio (Cu / Pt) of copper bisacetylacetonate to platinum fine particles was 2.
<金属微粒子の違いによる触媒効果>
アミド合成用触媒Aを用いたときの典型的な実験例を示す。アルゴン雰囲気下でネジ式試験管に触媒溶液0.5 mLを加え(パラジウム量1.1mg、ビスアセチルアセトナト銅5.6mg)、ベンゾニトリル(0.02 mL,0.2 mmol)を加えた。試験管を密栓した後、100 ℃に加熱したヒートブロックにセットし、8時間加熱した。室温まで冷却した後、反応液をガスクロマトグラフ装置により定量し、ベンズアミド濃度とベンゾニトリル濃度を求めた。表1は、100 ℃,8時間後におけるベンゾニトリルへの水の付加反応のベンズアミド収率を示している。ベンズアミドの収率の計算式を以下に示す。
ベンズアミド収率(%)=[ベンズアミド濃度(生成物)]/[ベンゾニトリル初濃度(基質)]× 100
パラジウム及び白金の双方で、金属微粒子のみでは100℃における触媒能は殆ど認められなかったが、酸素含有銅化合物であるビスアセチルアセトナト銅を加えることで、パラジウム系での触媒におけるベンズアミド収率が飛躍的に向上した。
<Catalyst effect due to difference in metal fine particles>
A typical experimental example using the amide synthesis catalyst A is shown. Under an argon atmosphere, 0.5 mL of the catalyst solution was added to a screw-type test tube (palladium amount 1.1 mg, bisacetylacetonato copper 5.6 mg), and benzonitrile (0.02 mL, 0.2 mmol) was added. After sealing the test tube, it was set in a heat block heated to 100 ° C. and heated for 8 hours. After cooling to room temperature, the reaction solution was quantified with a gas chromatograph, and the benzamide concentration and the benzonitrile concentration were determined. Table 1 shows the benzamide yield of the addition reaction of water to benzonitrile after 8 hours at 100 ° C. The formula for calculating the yield of benzamide is shown below.
Benzamide yield (%) = [benzamide concentration (product)] / [benzonitrile initial concentration (substrate)] × 100
In both palladium and platinum, catalytic activity at 100 ° C. was hardly observed with metal fine particles alone, but by adding bisacetylacetonato copper, which is an oxygen-containing copper compound, the yield of benzamide in catalysts based on palladium was increased. Dramatically improved.
次に、加熱処理の温度を180 ℃に変えた以外は、表1に示す反応と同様の条件で、ベンゾニトリルへの水の付加反応を行い、ベンズアミド収率を求めた。結果を表2に示す。パラジウム微粒子にビスアセチルアセトナト銅を加えた触媒系では、収率が100%に向上した。また、白金の微粒子にビスアセチルアセトナト銅を加えた触媒系も、収率が7%に向上した。なお、パラジウム微粒子にビスアセチルアセトナト銅を加えた触媒系では、1時間以内に収率が100%に達した。すなわち、180 ℃においても酸素含有銅化合物であるビスアセチルアセトナト銅を加えることによる触媒機能の向上は明らかである。 Next, water was added to benzonitrile under the same conditions as those shown in Table 1 except that the temperature of the heat treatment was changed to 180 ° C., and the benzamide yield was determined. The results are shown in Table 2. In the catalyst system in which bisacetylacetonato copper was added to fine palladium particles, the yield was improved to 100%. A catalyst system in which bisacetylacetonate copper was added to platinum fine particles also improved the yield to 7%. In the catalyst system in which bisacetylacetonato copper was added to the palladium fine particles, the yield reached 100% within 1 hour. That is, even at 180 ° C., the catalytic function is clearly improved by adding bisacetylacetonato copper, which is an oxygen-containing copper compound.
*1 調製例1又は調製例2に記載の触媒を用いた。
*2 調製例3又は調製例4に記載のアミド合成用触媒A又はBを用いた。
* 1 The catalyst described in Preparation Example 1 or Preparation Example 2 was used.
* 2 The amide synthesis catalyst A or B described in Preparation Example 3 or Preparation Example 4 was used.
表1及び表2の結果から、本発明の触媒を用いた場合にのみ、ベンゾニトリルからベンズアミドの生成が認められた。なお、表1及び表2に示されていないが、ビスアセチルアセトナト銅を単独で使用してもベンゾニトリルへの水の付加反応は、全く進行しなかった。 From the results in Tables 1 and 2, the formation of benzamide from benzonitrile was observed only when the catalyst of the present invention was used. Although not shown in Tables 1 and 2, even when bisacetylacetonato copper was used alone, the reaction of adding water to benzonitrile did not proceed at all.
<添加物の違いによる触媒効果>
調製例1に記載の触媒を用い、添加物の違いがベンズアミド収率に与える影響を検討した。結果を図1に示す。
<Catalyst effect due to different additives>
Using the catalyst described in Preparation Example 1, the effect of the difference in the additive on the benzamide yield was examined. The results are shown in FIG.
図1の結果から、酸素含有銅化合物を加えた触媒を用いた場合にベンゾニトリルからベンズアミドの生成が認められた。特に、ビスアセチルアセトナト銅(収率88%)、硫酸銅(収率98%)、炭酸銅(収率96%)又は酸化銅(収率73%)を用いた場合にアミド化合物の収率が高いことが分かった。即ち、パラジウム微粒子と適切な銅化合物の組み合わせは、ニトリル化合物への水の付加反応を触媒する新規な触媒系 の一つとして有効であることが明らかとなった。 From the results shown in FIG. 1, the formation of benzamide from benzonitrile was observed when a catalyst to which an oxygen-containing copper compound was added was used. In particular, the yield of amide compound when using bisacetylacetonato copper (yield 88%), copper sulfate (yield 98%), copper carbonate (yield 96%) or copper oxide (yield 73%) It turned out to be expensive. That is, it has been clarified that the combination of palladium fine particles and an appropriate copper compound is effective as one of novel catalyst systems for catalyzing the addition reaction of water to a nitrile compound.
<酸素含有銅化合物の添加量が触媒能に及ぼす影響>
ベンゾニトリルからベンズアミドの合成において、酸素含有銅化合物(Cu(acac)2)の添加量を変えてモル比(Cu/Pd)を変化させた以外、調製例3と同様の方法で得たアミド合成用触媒を用い、銅化合物の添加量が触媒能に及ぼす影響について評価した。典型的な実験例を示す。アルゴン雰囲気下でネジ式試験管に触媒溶液0.5 mLを加え(パラジウム量1.1mg、ビスアセチルアセトナト銅5.6 mg)、ベンゾニトリル(0.02 mL,0.2 mmol)を加えた。試験管を密栓した後、80 ℃に加熱したヒートブロックにセットし、16時間加熱した。室温まで冷却した後、反応液をガスクロマトグラフ装置により定量し、ベンズアミド濃度とベンゾニトリル濃度を求めた。
なお、触媒効率(TON,16時間)は、下記式で計算した。
In the synthesis of benzamide from benzonitrile, the amide synthesis obtained by the same method as in Preparation Example 3 except that the molar ratio (Cu / Pd) was changed by changing the amount of oxygen-containing copper compound (Cu (acac) 2 ) The effect of the addition amount of the copper compound on the catalytic performance was evaluated using the catalyst for catalyst. A typical experimental example is shown. Under an argon atmosphere, 0.5 mL of the catalyst solution was added to a screw-type test tube (palladium amount 1.1 mg, bisacetylacetonate copper 5.6 mg), and benzonitrile (0.02 mL, 0.2 mmol) was added. After sealing the test tube, it was set in a heat block heated to 80 ° C. and heated for 16 hours. After cooling to room temperature, the reaction solution was quantified with a gas chromatograph, and the benzamide concentration and the benzonitrile concentration were determined.
The catalyst efficiency (TON, 16 hours) was calculated by the following formula.
上記式より計算された結果を図2に示す。なお、図2の(b)は、(a)を対数表示したものである。ここで、[Cu(acac)2]は、銅錯体のモル濃度であり、[Pd微粒子]は、パラジウムのモル濃度である。 The result calculated from the above equation is shown in FIG. FIG. 2B is a logarithmic representation of (a). Here, [Cu (acac) 2 ] is the molar concentration of the copper complex, and [Pd fine particles] is the molar concentration of palladium.
図2の結果から明らかなように、酸素含有銅化合物の添加効果は、該酸素含有銅化合物の添加量が極めて低い割合から高い割合まで広く確認され、TON値はモル比(Cu/Pd)が約0.2で最高値をとった。このことから、上記アミド合成用触媒における酸素含有銅化合物とパラジウム微粒子とのモル比(Cu/Pd)は0.1を超えて且つ1.0未満の範囲が添加効率の面から好適であることが分かった。 As is apparent from the results of FIG. 2, the effect of adding the oxygen-containing copper compound is widely confirmed from a very low ratio to a high ratio of the oxygen-containing copper compound added, and the TON value has a molar ratio (Cu / Pd). The highest value was obtained at about 0.2. From this, it was found that the molar ratio (Cu / Pd) of the oxygen-containing copper compound to the palladium fine particles in the amide synthesis catalyst is preferably in the range of more than 0.1 and less than 1.0 from the viewpoint of the addition efficiency.
<pHの影響>
調製例4に記載のアミド合成用触媒BのpHの影響について評価した。触媒Bの溶液のpHは、0.1 M NaOHを滴下することで調整した。実験はアルゴン雰囲気下でネジ式試験管に触媒溶液0.5 mLを加え、ベンゾニトリル(0.02 mL,0.2 mmol)を加えた。試験管を密栓した後、反応温度100 ℃で16時間加熱した。結果を表3に示す。白金微粒子にビスアセチルアセトナト銅を加えたのみの触媒系では、収率が1%以下であったが、溶液のpHを中性 (6.9) に調整した触媒系は、収率が96%に向上した。すなわち、白金触媒系においてpHの調整により触媒機能の向上が可能なことがわかった。なお、中性条件(pH = 6.9)では、白金微粒子のみでは反応が進行しなかった。
<Influence of pH>
The influence of the pH of the amide synthesis catalyst B described in Preparation Example 4 was evaluated. The pH of the catalyst B solution was adjusted by adding 0.1 M NaOH dropwise. In the experiment, 0.5 mL of the catalyst solution was added to a screw-type test tube in an argon atmosphere, and benzonitrile (0.02 mL, 0.2 mmol) was added. The test tube was sealed and heated at a reaction temperature of 100 ° C. for 16 hours. The results are shown in Table 3. The catalyst system in which bisacetylacetonatocopper was added to platinum fine particles only had a yield of 1% or less. However, the catalyst system in which the pH of the solution was adjusted to neutral (6.9) had a yield of 96%. Improved. That is, it was found that the catalyst function can be improved by adjusting the pH in the platinum catalyst system. Under neutral conditions (pH = 6.9), the reaction did not proceed with only platinum fine particles.
<各種ニトリル化合物に対する汎用性の評価>
調製例3に記載のアミド合成用触媒Aと同様の方法で、硫酸銅、酸化銅又はビスアセチルアセトナト銅を用いて触媒を調製し、ベンゾニトリル以外のニトリル化合物への水の付加反応を行った。添加物として酸素含有銅化合物を使わない調製例1の触媒を用いた結果(none)も含めて実験結果を表4にまとめた。典型的な実験例を示す。アルゴン雰囲気下でネジ式試験管に触媒溶液0.5mLを加え(パラジウム量1.1mg,ビスアセチルアセトナト銅5.6 mg)、ニトリル化合物(0.2 mmol)を加えた。試験管を密栓した後、100 ℃に加熱したヒートブロックにセットし、16時間加熱した。室温まで冷却した後、反応液をガスクロマトグラフ装置により定量し、アミド濃度とニトリル濃度を求めた。
<Evaluation of versatility for various nitrile compounds>
In the same manner as the catalyst A for amide synthesis described in Preparation Example 3, a catalyst is prepared using copper sulfate, copper oxide or copper bisacetylacetonate, and water is added to a nitrile compound other than benzonitrile. It was. Table 4 summarizes the experimental results including the results (none) of using the catalyst of Preparation Example 1 that does not use an oxygen-containing copper compound as an additive. A typical experimental example is shown. Under an argon atmosphere, 0.5 mL of a catalyst solution was added to a screw-type test tube (palladium amount 1.1 mg, bisacetylacetonato copper 5.6 mg), and a nitrile compound (0.2 mmol) was added. After sealing the test tube, it was set in a heat block heated to 100 ° C. and heated for 16 hours. After cooling to room temperature, the reaction solution was quantified with a gas chromatograph and the amide concentration and nitrile concentration were determined.
表4の結果から、本発明によれば、反応性の低いニトリル化合物、例えば電子供与性置換基であるメトキシ基がパラ位に結合したベンゾニトリル誘導体であるp-メトキシベンゾニトリルや脂肪族ニトリルであるヒドロシンナモニトリルを用いた場合でも、ベンゾニトリルと同等であるか又はそれより高い収率で対応するアミド化合物を合成できることが分かった。これは、従来の人工触媒に見られない特長である。なお、副生成物はガスクロマトグラフ装置では全く確認できなかった。また、どのニトリル化合物の場合でも、パラジウム微粒子のみ(none)では水の付加反応は進行せず、酸素含有銅化合物は必須である。 From the results of Table 4, according to the present invention, a low-reactivity nitrile compound such as p-methoxybenzonitrile or an aliphatic nitrile which is a benzonitrile derivative in which a methoxy group which is an electron-donating substituent is bonded to the para-position. It has been found that the corresponding amide compound can be synthesized in a yield equivalent to or higher than that of benzonitrile even when a certain hydrocinnamonitrile is used. This is a feature not found in conventional artificial catalysts. By-products could not be confirmed at all with a gas chromatograph apparatus. In any nitrile compound, the addition reaction of water does not proceed with only the palladium fine particles (none), and the oxygen-containing copper compound is essential.
次に、以下の反応式に示す条件で、調製例3に記載のアミド合成用触媒Aと同様の方法で、ビスアセチルアセトナト銅に替えて酸化銅(CuO)を用いて触媒を調製し、アクリロニトリルへの水の付加反応を行ったところ、高い収率で対応するアクリルアミドを合成することができた。
(本発明の触媒の調製例5)
市販のパラジウム微粒子(ナノ粒子)溶液(ナノキューブジャパン社製、パラジウム平均粒径1.8 nm、パラジウム濃度0.8モル%(ニトリル基に対して)、水:エタノール=1:1(v/v)、保護剤としてポリビニルピロリドン含有)に、添加物として遷移金属化合物を反応開始直前に室温で添加し、アミド合成用触媒を得た。なお、遷移金属化合物とパラジウム微粒子とのモル比(遷移金属化合物/Pd)は2であった。
(Preparation Example 5 of the catalyst of the present invention)
Commercially available palladium fine particle (nanoparticle) solution (manufactured by Nanocube Japan, palladium average particle size 1.8 nm, palladium concentration 0.8 mol% (based on nitrile group), water: ethanol = 1: 1 (v / v), protection A transition metal compound as an additive was added at room temperature immediately before the start of the reaction to obtain an amide synthesis catalyst. The molar ratio of the transition metal compound to the palladium fine particles (transition metal compound / Pd) was 2.
<アクリロニトリルへの適用(1)>
添加物の違いによる触媒効果
調製例5に記載のアミド合成用触媒において、添加物としてビスアセチルアセトナト銅(Cu(acac)2),酢酸銅(Cu(OAc)2),酸化銅(II)(CuO),酸化銅(I)(Cu2O),硫化銅(II)(CuS),塩化銅(II)(CuCl),塩化銅(I)(CuCl2),炭酸銅(CuCO3・Cu(OH)2),アセチルアセトナト亜鉛(Zn(acac)2)又は酸化銀(Ag2O)を用いて触媒を調製し、アクリロニトリルへの水の付加反応を行った。実験はアルゴン雰囲気下で行い、ネジ式試験管に触媒溶液0.5 mLとアクリロニトリル(0.066 mL,1.0 mmol)を加えた。試験管を密栓した後、100 ℃に加熱したヒートブロックにセットし、16時間加熱した。
<Application to acrylonitrile (1)>
Catalytic effect due to difference in additive In the catalyst for amide synthesis described in Preparation Example 5, bisacetylacetonato copper (Cu (acac) 2 ), copper acetate (Cu (OAc) 2 ), copper (II) oxide as additives (CuO), copper oxide (I) (Cu 2 O), copper sulfide (II) (CuS), copper chloride (II) (CuCl), copper chloride (I) (CuCl 2 ), copper carbonate (CuCO 3 · Cu A catalyst was prepared using (OH) 2 ), acetylacetonato zinc (Zn (acac) 2 ) or silver oxide (Ag 2 O), and water was added to acrylonitrile. The experiment was performed in an argon atmosphere, and 0.5 mL of the catalyst solution and acrylonitrile (0.066 mL, 1.0 mmol) were added to the screw-type test tube. After sealing the test tube, it was set in a heat block heated to 100 ° C. and heated for 16 hours.
表5の結果から、添加物としてCu(acac)2、Cu(OAc)2、CuO、Cu2O又はCuCO3・Cu(OH)2を用いたときアクリロニトリルからアクリルアミドの生成が認められた。特に、CuO又はCu2Oを用いた場合にアクリルアミドの収率が高いことが分かった。また、ベンゾニトリルの結果と同様に、パラジウム微粒子のみでは水の付加反応は進行しなかった。 From the results in Table 5, it was confirmed that acrylamide was formed from acrylonitrile when Cu (acac) 2 , Cu (OAc) 2 , CuO, Cu 2 O, or CuCO 3 .Cu (OH) 2 was used as an additive. In particular, it was found that the yield of acrylamide was high when CuO or Cu 2 O was used. Similarly to the result of benzonitrile, the addition reaction of water did not proceed with only the palladium fine particles.
<アクリロニトリルへの適用(2)>
金属粒子の違いによる触媒効果
調製例5に記載のアミド合成用触媒において、市販のパラジウム微粒子に替えてルテニウム微粒子(平均粒径 2nm)又は銀微粒子(平均粒径 10〜20nm)(共に田中貴金属工業製)を用いた以外は、調製例5に示す同様の条件で、添加物に酸化銅(II)(CuO)を用いて触媒を調製し、アクリロニトリルへの水の付加反応を行った。実験は、アルゴン雰囲気下でネジ式試験管に触媒溶液0.5 mLを加え、アクリロニトリル(0.066 mL,1.0 mmol)を加えた。試験管を密栓した後、反応温度100 ℃で16時間加熱した。
<Application to acrylonitrile (2)>
Catalytic effect due to difference in metal particles In the catalyst for amide synthesis described in Preparation Example 5, ruthenium fine particles (
表6の結果から、ルテニウム微粒子を用いたときアクリルアミドの生成が認められた。一方、銀微粒子の触媒活性は殆ど認められなかった。また、微粒子のみ(表6の番号3と4)では水の付加反応は進行しなかった。
From the results in Table 6, acrylamide formation was observed when ruthenium fine particles were used. On the other hand, the catalytic activity of silver fine particles was hardly recognized. In addition, the addition reaction of water did not proceed with only the fine particles (
<アクリロニトリルへの適用(3)>
反応温度の影響
調製例5に記載のアミド合成用触媒において、添加物として酸化銅(II)(CuO)を用いて触媒を調製し、アクリロニトリルへの水の付加反応を行った。実験は、アルゴン雰囲気下でネジ式試験管に触媒溶液0.5 mLを加え、アクリロニトリル(0.066 mL,1.0 mmol)を加えた。試験管を密栓した後、16時間加熱した。結果を図3に示す。
<Application to acrylonitrile (3)>
Influence of reaction temperature In the catalyst for amide synthesis described in Preparation Example 5, a catalyst was prepared using copper (II) oxide (CuO) as an additive, and water was added to acrylonitrile. In the experiment, 0.5 mL of the catalyst solution was added to a screw-type test tube under an argon atmosphere, and acrylonitrile (0.066 mL, 1.0 mmol) was added. The test tube was sealed and heated for 16 hours. The results are shown in FIG.
図3の結果から、反応温度80℃以上でアクリルアミドの生成が認められた。 From the results of FIG. 3, the formation of acrylamide was observed at a reaction temperature of 80 ° C. or higher.
<アクリロニトリルへの適用(4)>
空気曝露の影響
調製例5に記載のアミド合成用触媒において、添加物として酸化銅(II)(CuO)を用いて触媒を調製し、アクリロニトリルへの水の付加反応を行った。実験は大気中でネジ式試験管に触媒溶液0.5 mLを加え、アクリロニトリル(0.066 mL,1.0 mmol)を加えた。試験管を密栓した後、反応温度100 ℃で16時間加熱した。結果を図4に示す。
<Application to acrylonitrile (4)>
Influence of air exposure In the catalyst for amide synthesis described in Preparation Example 5, a catalyst was prepared using copper (II) oxide (CuO) as an additive, and water was added to acrylonitrile. In the experiment, 0.5 mL of the catalyst solution was added to a screw test tube in the atmosphere, and acrylonitrile (0.066 mL, 1.0 mmol) was added. The test tube was sealed and heated at a reaction temperature of 100 ° C. for 16 hours. The results are shown in FIG.
図4の結果から、大気曝露下(空気存在下)においてもアクリルアミドの生成が確認された。したがって、アクリルアミド製造時においてアルゴン雰囲気下である必要はないことは明らかである。 From the results in FIG. 4, it was confirmed that acrylamide was produced even under atmospheric exposure (in the presence of air). Therefore, it is clear that there is no need to be in an argon atmosphere when producing acrylamide.
<アクリロニトリルへの適用(5)>
アクリルアミド収率の経時変化
調製例5に記載のアミド合成用触媒において、添加物として酸化銅(II)(CuO)を用いて触媒を調製し、アクリロニトリルへの水の付加反応を行った。実験はアルゴン雰囲気下でネジ式試験管に触媒溶液0.5 mLを加え、アクリロニトリル(0.066 mL,1.0 mmol)を加えた。試験管を密栓した後、100 ℃に加熱したヒートブロックにセットし、アクリルアミド収率の推移を測定した。結果を図5に示す。
<Application to acrylonitrile (5)>
Changes in acrylamide yield over time In the catalyst for amide synthesis described in Preparation Example 5, a catalyst was prepared using copper (II) oxide (CuO) as an additive, and water was added to acrylonitrile. In the experiment, 0.5 mL of a catalyst solution was added to a screw-type test tube under an argon atmosphere, and acrylonitrile (0.066 mL, 1.0 mmol) was added. After sealing the test tube, it was set in a heat block heated to 100 ° C., and the change in acrylamide yield was measured. The results are shown in FIG.
図5の結果から、アクリルアミド収率は実験開始後およそ16時間まで増加を続けた。アクリルアミドは反応開始直後から生成し、この触媒系に誘導期はないことが確認できた。 From the results of FIG. 5, the acrylamide yield continued to increase until approximately 16 hours after the start of the experiment. Acrylamide was produced immediately after the start of the reaction, and it was confirmed that this catalyst system had no induction period.
(本発明の触媒の調製例6)
市販のパラジウム微粒子(ナノ粒子)溶液(ナノキューブジャパン社製、パラジウム平均粒径1.8 nm、パラジウム濃度0.8モル%(ニトリル基に対して)、水:エタノール=1:1(v/v)、保護剤としてポリビニルピロリドン含有)の溶剤を、一旦減圧下で留去し、水:エタノールの混合割合を変えた溶液で再溶解した。その後、添加物として酸化銅(II)(CuO)を反応開始直前に室温で添加し、アミド合成用触媒を得た。なお、酸化銅(II)(CuO)とパラジウム微粒子とのモル比(Cu/Pd)は2であった。
(Preparation Example 6 of the catalyst of the present invention)
Commercially available palladium fine particle (nanoparticle) solution (manufactured by Nanocube Japan, palladium average particle size 1.8 nm, palladium concentration 0.8 mol% (based on nitrile group), water: ethanol = 1: 1 (v / v), protection The solvent of polyvinylpyrrolidone as an agent) was once distilled off under reduced pressure and redissolved with a solution in which the mixing ratio of water: ethanol was changed. Thereafter, copper (II) oxide (CuO) as an additive was added at room temperature immediately before the start of the reaction to obtain an amide synthesis catalyst. The molar ratio (Cu / Pd) of copper (II) oxide (CuO) and fine palladium particles was 2.
<アクリロニトリルへの適用(7)>
水添加量の影響
調製例6に記載のアミド合成用触媒において、基質(アクリロニトリル)と水の比率([H2O]/[基質])が5〜100になるよう調整した微粒子溶液に、添加物として酸化銅(II)(CuO)を用いて触媒を調製し、アクリロニトリルへの水の付加反応を行った。実験は、アルゴン雰囲気下でネジ式試験管に触媒溶液0.5 mLを加え、アクリロニトリル(0.066 mL,1.0 mmol)を加えた。試験管を密栓した後、100 ℃に加熱したヒートブロックにセットし、アクリルアミド収率の推移をガスクロマトグラフ装置で測定した。結果を図6に示す。なお、[H2O]は水のモル濃度であり、[基質]は基質(アクリロニトリル)のモル濃度である。
<Application to acrylonitrile (7)>
Effect of water addition amount In the catalyst for amide synthesis described in Preparation Example 6, added to a fine particle solution adjusted so that the ratio of substrate (acrylonitrile) to water ([H 2 O] / [substrate]) is 5 to 100 A catalyst was prepared using copper (II) oxide (CuO) as a product, and water was added to acrylonitrile. In the experiment, 0.5 mL of the catalyst solution was added to a screw-type test tube under an argon atmosphere, and acrylonitrile (0.066 mL, 1.0 mmol) was added. After sealing the test tube, it was set in a heat block heated to 100 ° C., and the transition of acrylamide yield was measured with a gas chromatograph. The results are shown in FIG. [H 2 O] is the molar concentration of water, and [Substrate] is the molar concentration of the substrate (acrylonitrile).
図6の結果から、付加反応に必要な水の過剰率が、アクリロニトリルに対して少過剰の5でもアクリルアミドは生成した。また、アクリロニトリルに対して100倍以上の水が存在しても、アクリルアミドは生成した。 From the results shown in FIG. 6, acrylamide was produced even when the excess amount of water required for the addition reaction was a small excess 5 relative to acrylonitrile. Acrylamide was produced even when there was 100 times more water than acrylonitrile.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009027337A JP2009214099A (en) | 2008-02-14 | 2009-02-09 | Method for producing amide compound and catalyst to be used therein |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008033279 | 2008-02-14 | ||
JP2009027337A JP2009214099A (en) | 2008-02-14 | 2009-02-09 | Method for producing amide compound and catalyst to be used therein |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009214099A true JP2009214099A (en) | 2009-09-24 |
Family
ID=41186544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009027337A Pending JP2009214099A (en) | 2008-02-14 | 2009-02-09 | Method for producing amide compound and catalyst to be used therein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009214099A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012157777A1 (en) * | 2011-05-19 | 2012-11-22 | ダイヤニトリックス株式会社 | Method for producing acrylamide aqueous solution |
JP2013535579A (en) * | 2010-08-06 | 2013-09-12 | シャーメン ユニバーシティー | Surface structure control and manufacturing method of metal nano catalyst |
US9057084B2 (en) | 2011-05-19 | 2015-06-16 | Mitsubishi Rayon Co., Ltd. | Method for producing aqueous acrylamide solution |
JP2016141644A (en) * | 2015-02-02 | 2016-08-08 | 国立研究開発法人産業技術総合研究所 | Method for producing organic silane compound and catalyst composition for organic silane compound synthesis |
CN112341353A (en) * | 2020-11-05 | 2021-02-09 | 广州市荔盛化学品有限公司 | Propyl betaine and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49108011A (en) * | 1973-02-20 | 1974-10-14 | ||
JPS59120249A (en) * | 1982-12-27 | 1984-07-11 | Agency Of Ind Science & Technol | Preparation of noble metal catalyst |
JPH06320002A (en) * | 1993-05-07 | 1994-11-22 | Mitsui Toatsu Chem Inc | Method for hydrating nitrile |
JP2004148173A (en) * | 2002-10-29 | 2004-05-27 | Toyota Central Res & Dev Lab Inc | Harmful substance cleaning catalyst and its manufacturing process |
JP2004261735A (en) * | 2003-03-03 | 2004-09-24 | Tanaka Kikinzoku Kogyo Kk | Metal colloid and catalyst using the metal colloid as raw material |
-
2009
- 2009-02-09 JP JP2009027337A patent/JP2009214099A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49108011A (en) * | 1973-02-20 | 1974-10-14 | ||
JPS59120249A (en) * | 1982-12-27 | 1984-07-11 | Agency Of Ind Science & Technol | Preparation of noble metal catalyst |
JPH06320002A (en) * | 1993-05-07 | 1994-11-22 | Mitsui Toatsu Chem Inc | Method for hydrating nitrile |
JP2004148173A (en) * | 2002-10-29 | 2004-05-27 | Toyota Central Res & Dev Lab Inc | Harmful substance cleaning catalyst and its manufacturing process |
JP2004261735A (en) * | 2003-03-03 | 2004-09-24 | Tanaka Kikinzoku Kogyo Kk | Metal colloid and catalyst using the metal colloid as raw material |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013535579A (en) * | 2010-08-06 | 2013-09-12 | シャーメン ユニバーシティー | Surface structure control and manufacturing method of metal nano catalyst |
WO2012157777A1 (en) * | 2011-05-19 | 2012-11-22 | ダイヤニトリックス株式会社 | Method for producing acrylamide aqueous solution |
KR20140024002A (en) * | 2011-05-19 | 2014-02-27 | 미쯔비시 레이온 가부시끼가이샤 | Method for producing acrylamide aqueous solution |
CN103687844A (en) * | 2011-05-19 | 2014-03-26 | 三菱丽阳株式会社 | Method for producing aqueous acrylamide solution |
US9057084B2 (en) | 2011-05-19 | 2015-06-16 | Mitsubishi Rayon Co., Ltd. | Method for producing aqueous acrylamide solution |
US9102590B2 (en) | 2011-05-19 | 2015-08-11 | Mitsubishi Rayon Co., Ltd. | Method for producing acrylamide aqueous solution |
AU2012256709B2 (en) * | 2011-05-19 | 2016-07-07 | Mitsubishi Chemical Corporation | Method for producing acrylamide aqueous solution |
JP6098510B2 (en) * | 2011-05-19 | 2017-03-22 | 三菱レイヨン株式会社 | Method for producing acrylamide aqueous solution |
KR101894617B1 (en) | 2011-05-19 | 2018-09-03 | 미쯔비시 케미컬 주식회사 | Method for producing acrylamide aqueous solution |
JP2016141644A (en) * | 2015-02-02 | 2016-08-08 | 国立研究開発法人産業技術総合研究所 | Method for producing organic silane compound and catalyst composition for organic silane compound synthesis |
CN112341353A (en) * | 2020-11-05 | 2021-02-09 | 广州市荔盛化学品有限公司 | Propyl betaine and preparation method thereof |
CN112341353B (en) * | 2020-11-05 | 2022-11-25 | 广州市荔盛化学品有限公司 | Propyl betaine and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5745393B2 (en) | Use of noble metal-containing supported catalysts for oxidative dehydrogenation. | |
RU2019137486A (en) | CATALYST FOR FISCHER-TROPSCH SYNTHESIS, CONTAINING NITRIDE CARRIER, AND METHOD OF ITS PREPARATION, AND ITS APPLICATION | |
JP2009214099A (en) | Method for producing amide compound and catalyst to be used therein | |
CN1522240A (en) | Process for the manufacture of diethylenetriamine and higher polyethylenepolyamines | |
JP4642116B2 (en) | Method for producing cyclic unsaturated compound | |
TWI577659B (en) | Oxidative esterification process | |
JP4588848B2 (en) | Process for producing pentanediol from alkoxydihydropyran | |
JP7125674B2 (en) | Method for producing ε-caprolactam | |
JP4041952B2 (en) | Gold ultrafine particle support and catalyst comprising the support | |
US8269048B2 (en) | Allylic oxidation method for the preparation of fragrances using metal-organic compounds and gold catalysts | |
JP2010017696A (en) | Metal nano-particle catalyst and oxygen oxidation method | |
CN104415753B (en) | The method for directly synthesizing bimetal nano material | |
EP2817092B1 (en) | Metal powderdous catalyst comprising a fe-alloy | |
US4365091A (en) | Method for the production of acrylamide | |
JP2007176891A (en) | Method for producing nitrogen-containing compound | |
V Pramod et al. | Coupling of cyclohexanol dehydrogenation-nitrobenzene hydrogenation over MgO-Al2O3 hydrotalcite supported Cu catalysts: effect of Cu loading | |
CN1136180C (en) | Preparation of aryl methyl ketone | |
JP2003053188A (en) | Metallic particle carrying and supporting body method of manufacturing carboxylate | |
JP2008036602A (en) | Catalyst for oxidation reaction, method for producing the same, and method for producing p-xylylene diacetate using the same | |
KR101402226B1 (en) | Method for producing propylene glycol from alkyl lactate and a catalyst used therein | |
JP2008100983A (en) | Method for producing cycloalkanol and/or cycloalkanone | |
JP2003103174A (en) | Metallic particle carrier and method for producing unsaturated carbonyl compound | |
JPH1143463A (en) | Production of carboxylic ester | |
JP2011084501A (en) | Method for producing cyclic unsaturated compound | |
JP3392812B2 (en) | Method for producing hydroxycarboxylic acid ester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130226 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130702 |