JP2009211946A - Porous film for battery separator, and battery equipped with the film - Google Patents
Porous film for battery separator, and battery equipped with the film Download PDFInfo
- Publication number
- JP2009211946A JP2009211946A JP2008053980A JP2008053980A JP2009211946A JP 2009211946 A JP2009211946 A JP 2009211946A JP 2008053980 A JP2008053980 A JP 2008053980A JP 2008053980 A JP2008053980 A JP 2008053980A JP 2009211946 A JP2009211946 A JP 2009211946A
- Authority
- JP
- Japan
- Prior art keywords
- film
- battery
- porous film
- porous
- separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011148 porous material Substances 0.000 claims description 23
- 229920005992 thermoplastic resin Polymers 0.000 claims description 19
- 239000011256 inorganic filler Substances 0.000 claims description 17
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 17
- 238000002156 mixing Methods 0.000 claims description 15
- 238000000137 annealing Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 238000001125 extrusion Methods 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 9
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000008151 electrolyte solution Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 36
- -1 polyethylene Polymers 0.000 description 14
- 239000000945 filler Substances 0.000 description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000007774 positive electrode material Substances 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229920001973 fluoroelastomer Polymers 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 241000446313 Lamella Species 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- UHALKNGKVBXOBL-UHFFFAOYSA-N [B+]=O.[O-2].[Mg+2] Chemical compound [B+]=O.[O-2].[Mg+2] UHALKNGKVBXOBL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、電池セパレータ用多孔質フィルム及び該フィルムを備える電池に関する。 The present invention relates to a porous film for a battery separator and a battery including the film.
近年、電気、電子機器の開発に伴い、様々なタイプの一次電池、二次電池が開発されており、そのエネルギー密度、出力密度等の性能の向上は目覚しい。特に、二次電池は携帯電話等の通信機器や、ノートパソコン、電動工具等に汎用されており、さらに最近では、電気自動車やハイブリット自動車等の電源等への適用も検討されている。
電池構成部材の一つであるセパレータは、電池内において正負極間に設置されて両極間の短絡を完全に防ぎつつ、電解質は良好に透過させることができる低抵抗なものが望まれており、例えば、特許文献1〜5に記載されたような熱可塑性樹脂からなる単層あるいは多層の多孔質フィルムが使用されている。
The separator, which is one of the battery constituent members, is installed between the positive and negative electrodes in the battery, and it is desired to have a low resistance that allows the electrolyte to permeate well while completely preventing a short circuit between both electrodes. For example, a single layer or multilayer porous film made of a thermoplastic resin as described in Patent Documents 1 to 5 is used.
しかし、最近では電気・電子機器類の高性能化及び多機能化等の影響でさらに高いエネルギー密度及び出力密度を有する電池、特に二次電池が求められており、中でも、最も性能の高い二次電池であるリチウムイオン二次電池への期待は大きい。 However, recently, batteries with higher energy density and output density, especially secondary batteries, have been demanded due to the effects of higher performance and multi-functionality of electrical and electronic devices. Expectations for lithium-ion secondary batteries, which are batteries, are great.
上記事情に鑑み、本発明は、低抵抗な電池セパレータ用多孔質フィルム、及び該フィルムを備え、優れた出力特性を有する電池を提供することを課題とする。 In view of the above circumstances, an object of the present invention is to provide a low-resistance porous film for a battery separator and a battery having the film and having excellent output characteristics.
本発明者らは上記課題を解決すべく鋭意検討した結果、微細孔構造として2種類の特定の空孔部を有する多孔質フィルムが、電池セパレータとして使用した場合に、既存のセパレータと比較して特に低抵抗になることを発見し、さらに、その多孔質フィルムを備える電池が、特に優れた出力特性を有することを見出し本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a porous film having two types of specific pores as a microporous structure is used as a battery separator, compared with an existing separator. The inventors have found that the resistance is particularly low, and found that a battery including the porous film has particularly excellent output characteristics, and completed the present invention.
すなわち、本発明は以下の通りである。
[1]
表裏面を貫通する微細孔構造を有する、電池セパレータ用多孔質フィルムであって、
前記微細孔構造が、下記(A)及び(B)の各空孔部、
(A):フィルムの表裏面方向と略平行に配置された板状空孔部
(B):前記板状空孔部の容積よりも大きな容積を有する空孔部
を含む、電池セパレータ用多孔質フィルム。
[2]
最大空孔径が0.5μm以上20μm以下である、上記[1]記載の電池セパレータ用多孔質フィルム。
[3]
正極、負極、電解液及び前記正極と前記負極の間に介在したセパレータとを備える電池であって、
前記セパレータが上記[1]又は[2]記載の電池セパレータ用多孔質フィルムである、電池。
[4]
以下の各工程を含む、電池セパレータ用多孔質フィルムの製造方法:
(a)無機フィラー及び熱可塑性樹脂を混合溶融押出し成型して原反フィルムを得る工程、
(b)前記原反フィルムをアニール後、延伸により多孔化して熱処理を行う工程。
[5]
前記混合溶融押出し成型の際のドロー比が50以上である、上記[4]記載の電池セパレータ用多孔質フィルムの製造方法。
[6]
前記アニールの際のアニール温度が前記熱可塑性樹脂の融点−80℃以上融点−5℃以下である、上記[4]又は[5]記載の電池セパレータ用多孔質フィルムの製造方法。
That is, the present invention is as follows.
[1]
A porous film for a battery separator having a fine pore structure penetrating the front and back surfaces,
The fine pore structure has the following hole portions (A) and (B):
(A): Plate-like hole portion arranged substantially parallel to the front and back surfaces of the film (B): Porous battery separator including a hole portion having a volume larger than the volume of the plate-like hole portion the film.
[2]
The porous film for battery separators according to the above [1], wherein the maximum pore diameter is 0.5 μm or more and 20 μm or less.
[3]
A battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator interposed between the positive electrode and the negative electrode,
A battery, wherein the separator is the porous film for battery separator according to the above [1] or [2].
[4]
A method for producing a porous film for a battery separator, including the following steps:
(A) a step of obtaining an original film by mixing and extruding an inorganic filler and a thermoplastic resin;
(B) A step of annealing the raw film and then making it porous by stretching and heat-treating.
[5]
The method for producing a porous film for a battery separator according to the above [4], wherein the draw ratio in the mixed melt extrusion molding is 50 or more.
[6]
The method for producing a porous film for a battery separator according to the above [4] or [5], wherein the annealing temperature in the annealing is from a melting point of −80 ° C. to a melting point of −5 ° C. of the thermoplastic resin.
本発明により、既存のセパレータと比較して特に低抵抗な電池セパレータ用多孔質フィルムを提供することができる。
また、本発明の多孔質フィルムをセパレータとして用いることで、既存の電池と比較して、特に優れた出力特性を有する電池を提供することができる。
According to the present invention, it is possible to provide a porous film for a battery separator that has a particularly low resistance compared to existing separators.
In addition, by using the porous film of the present invention as a separator, it is possible to provide a battery having particularly excellent output characteristics as compared with existing batteries.
以下、本発明を実施するための最良の形態(以下、本実施の形態)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as the present embodiment) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
[電池セパレータ用多孔質フィルム]
本実施の形態の電池セパレータ用多孔質フィルム(以下、単に多孔質フィルムとも言う)は、表裏面を貫通する微細孔構造を有し、前記微細孔構造が、下記(A)及び(B)の各空孔部、(A):フィルムの表裏面方向と略平行に配置された板状空孔部、(B):前記板状空孔部容積よりも大きな容積を備えた空孔部、からなる。
[Porous film for battery separator]
The battery separator porous film of the present embodiment (hereinafter also simply referred to as a porous film) has a microporous structure penetrating the front and back surfaces, and the microporous structure is the following (A) and (B) From each hole part, (A): The plate-shaped hole part arrange | positioned substantially parallel to the front and back direction of a film, (B): The hole part provided with the volume larger than the said plate-shaped hole part volume, Become.
図1は、本実施の形態の多孔質フィルムの断面を、走査型電子顕微鏡(SEM)で観察した画像(倍率30000倍)であり、フィルム中に、(A):フィルムの表裏面方向と略平行に配置された板状空孔部と、(B):前記板状空孔部の容積よりも大きな容積を有した空孔部の、2種類の空孔部が存在していることが分かる。また、図2及び図3は、本実施の形態の多孔質フィルムの表面をSEMで観察した画像(それぞれ、倍率5000倍、倍率30000倍)であり、フィルム表裏面を貫通した空孔部(B)の存在を確認できる。 FIG. 1 is an image (magnification 30000 times) obtained by observing a cross section of the porous film of the present embodiment with a scanning electron microscope (SEM). In the film, (A): the front and back directions of the film are substantially the same. It can be seen that there are two types of hole portions: plate-like hole portions arranged in parallel and (B): a hole portion having a volume larger than the volume of the plate-like hole portion. . 2 and 3 are images obtained by observing the surface of the porous film of the present embodiment with an SEM (the magnification is 5000 times and the magnification is 30000 times, respectively), and the pores (B ) Can be confirmed.
本実施の形態の多孔質フィルムは、2種類の特定の空孔部を有することにより、内部の孔が膜厚方向に高い確率で連結するため、電池セパレータとして使用した場合に、公知の手法によって作製された多孔質フィルムに比べて内部抵抗を低く抑えることができ、その結果、優れた出力特性を有する電池を得ることができる。 The porous film of the present embodiment has two types of specific pores, so that the internal holes are connected with a high probability in the film thickness direction. The internal resistance can be suppressed lower than that of the produced porous film, and as a result, a battery having excellent output characteristics can be obtained.
多孔質フィルムの材料として使用される熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ−4−メチル−1−ペンテン、ポリフェニレンエーテル、ポリアミド、ポリイミド、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリエーテルエーテルケトン等が挙げられ、単一の樹脂でも2種以上の混合物であってもよい。これらの熱可塑性樹脂には、酸化防止等の目的で適宜公知の添加剤を加えてもかまわない。 Examples of the thermoplastic resin used as the material for the porous film include polyethylene, polypropylene, poly-4-methyl-1-pentene, polyphenylene ether, polyamide, polyimide, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, Examples thereof include polyether ether ketone, which may be a single resin or a mixture of two or more. A known additive may be added to these thermoplastic resins as appropriate for the purpose of preventing oxidation.
通常、多孔質フィルムの多孔化方法には、大別して湿式法と乾式法とが挙げられる。湿式法では、熱可塑性樹脂組成物に充填材や可塑剤を混合したものをフィルム状に押し出し成型し、その後フィルムから充填材や可塑剤を抽出等することで多孔化を行う。一方、乾式法では、熱可塑性樹脂を溶融押し出し成型する過程で該樹脂の結晶構造を制御し、その後、延伸に伴うラメラ結晶間のクレーズの発生及び成長によって多孔化を行う方法(延伸法)と、熱可塑性樹脂にフィラー等を分散させたものを溶融押出し成型して原反フィルムを得た後、該原反フィルムを延伸することによって樹脂/フィラー界面を剥離して多孔化する方法(界面剥離法)の大きく2通りある。 Usually, the method for making a porous film is roughly classified into a wet method and a dry method. In the wet method, a thermoplastic resin composition mixed with a filler and a plasticizer is extruded into a film shape, and then the filler and the plasticizer are extracted from the film to make it porous. On the other hand, in the dry method, a method of controlling the crystal structure of the thermoplastic resin in the process of melt-extrusion of the thermoplastic resin, and then performing porosity by generation and growth of crazes between lamellar crystals accompanying stretching (stretching method) and A method of extruding a resin / filler interface to obtain a porous film after melt extrusion molding a material in which a filler is dispersed in a thermoplastic resin to obtain an original film, and then stretching the original film (interface peeling) There are two main types.
本実施の形態の「(A):フィルムの表裏面方向と略平行に配置された板状空孔部」の形成方法としては、上記の延伸法を採用することができる。延伸法で開孔された空孔部(A)は、フィルム表裏面方向に略平行に形成される未延伸板状平面群と、該板状平面群間を該フィルムの延伸方向に略平行に配置され、かつ板状平面間につながる延伸配向した細いフィブリル群とによって形成される。ここで、未延伸板状平面群とはラメラ結晶領域のことであり、細いフィブリル群とはラメラ結晶間を結ぶ非晶領域のことをさす。 As the forming method of “(A): plate-like hole portions arranged substantially parallel to the front and back surface directions” of the present embodiment, the above-described stretching method can be employed. The hole portion (A) opened by the stretching method has an unstretched plate-like plane group formed substantially parallel to the film front and back direction and a space between the plate-like plane groups substantially parallel to the film stretching direction. Formed by stretch-oriented thin fibril groups arranged and connected between plate-like planes. Here, the unstretched plate-like plane group is a lamellar crystal region, and the thin fibril group is an amorphous region that connects the lamella crystals.
一方、本実施の形態の「(B):前記板状空孔部容積よりも大きな容積を備えた空孔部」の形成方法としては、上記界面剥離法を採用することができる。界面剥離法においては、フィラーとして無機物を含有する原反フィルムを延伸することによって樹脂/無機フィラー界面が剥離されて空孔部(B)を形成する。 On the other hand, as the formation method of “(B): hole portion having a volume larger than the plate-like hole portion volume” in the present embodiment, the above-described interface peeling method can be employed. In the interfacial peeling method, the resin / inorganic filler interface is peeled by stretching a raw film containing an inorganic substance as a filler to form a void (B).
多孔質フィルムに含まれる無機フィラーとしては、電池反応を阻害しなければ特に限定されず、例えば、硫酸バリウム、無水ケイ酸、酸化チタン(チタニア)、酸化アルミニウム(アルミナ)、チタン酸カリウム、酸化マグネシウム、酸化硼素、雲母、タルク、カオリナイト、モンモリロナイト、マイカ、炭酸カルシウム、チタン酸カリウム、チタン酸マグネシウムカリウム、チタン酸バリウム、酸化スズ、酸化亜鉛、ジルコニア等が挙げられ、中でも、硫酸バリウム、無水ケイ酸、チタニア、アルミナ、炭酸カルシウム、ジルコニアが好ましい。無機フィラーは、1種のみを用いても2種以上を併用してもよい。また、電池反応を阻害しないものであれば、無機フィラーに公知の手法で表面処理等を施すこともできる。 The inorganic filler contained in the porous film is not particularly limited as long as the battery reaction is not inhibited. For example, barium sulfate, silicic anhydride, titanium oxide (titania), aluminum oxide (alumina), potassium titanate, magnesium oxide Boron oxide, mica, talc, kaolinite, montmorillonite, mica, calcium carbonate, potassium titanate, magnesium titanate, barium titanate, tin oxide, zinc oxide, zirconia, etc., among others, barium sulfate, anhydrous silica Acid, titania, alumina, calcium carbonate and zirconia are preferred. An inorganic filler may use only 1 type or may use 2 or more types together. Moreover, as long as it does not inhibit a battery reaction, surface treatment etc. can also be given to an inorganic filler by a well-known method.
無機フィラーの平均粒子径は、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは3μm以下である。平均粒子径の下限としては、好ましくは0.01μm以上、より好ましくは0.05μm以上、さらに好ましくは0.1μm以上である。無機フィラーの平均粒子径が大きくなると機械的強度が弱くなる傾向にあり、小さくなるとフィラーが凝集してブツが発生しやすくなる傾向があるが、平均粒子径が上記範囲にあると、それらの問題を防ぎながら、電池用セパレータに使用した場合に抵抗が特に低い多孔質フィルムを得ることができる。ここで平均粒子径とは、レーザー回折法を用いて測定した値(JIS Z 8825−1)である。 The average particle diameter of the inorganic filler is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less. The lower limit of the average particle diameter is preferably 0.01 μm or more, more preferably 0.05 μm or more, and further preferably 0.1 μm or more. When the average particle size of the inorganic filler is increased, the mechanical strength tends to be weakened, and when the average particle size is decreased, the filler tends to aggregate and easily generate flaws. When used as a battery separator, a porous film having particularly low resistance can be obtained. Here, the average particle diameter is a value (JIS Z 8825-1) measured using a laser diffraction method.
無機フィラーの形状としては特に制限は無く、球状、繊維状、板状、その他無定形状、あるいはそれらの混合物であってもかまわない。 The shape of the inorganic filler is not particularly limited and may be spherical, fibrous, plate-like, other amorphous shapes, or a mixture thereof.
無機フィラーの混合比率は、空孔部を除いた多孔質フィルムに対して、好ましくは1.5体積%以上20体積%以下、より好ましくは1.5体積%以上10体積%以下である。混合比率が小さいと電池用セパレータに使用した場合に低抵抗化するのが困難となる傾向にあり、大きいとブツが発生したり膜強度が落ちる傾向があるが、混合比率が上記範囲にあると、フィルム中のブツ発生や、フィルム加工時、電池製作時におけるフィルムの裂け等の不良発生率を低く抑えながら、抵抗が特に低い多孔質フィルムを得ることができる。ここで無機フィラーの混合比率は、下記の式1で表すことができる。 The mixing ratio of the inorganic filler is preferably 1.5% by volume or more and 20% by volume or less, more preferably 1.5% by volume or more and 10% by volume or less with respect to the porous film excluding the pores. If the mixing ratio is small, it tends to be difficult to reduce the resistance when used for a battery separator. If the mixing ratio is large, there is a tendency that fluffing occurs or the film strength decreases, but the mixing ratio is in the above range. Further, it is possible to obtain a porous film having particularly low resistance while suppressing the occurrence rate of defects in the film and the occurrence rate of defects such as film tearing during film processing and battery production. Here, the mixing ratio of the inorganic filler can be expressed by the following formula 1.
[混合比率(体積%)]
=[無機フィラー量(m3)]
/([無機フィラー量(m3)]+[熱可塑性樹脂量(m3)])×100
・・・(式1)
[Mixing ratio (volume%)]
= [Amount of inorganic filler (m 3 )]
/ ([Inorganic filler amount (m 3 )] + [thermoplastic resin amount (m 3 )]) × 100
... (Formula 1)
本実施の形態の多孔質フィルムの厚さは、好ましくは5μm以上50μm以下である。多孔質フィルムの厚さが薄くなると強度が落ちて破断しやすくなる傾向があり、厚くなると電池セパレータに使用した場合の抵抗が高くなる傾向があるが、厚さが上記範囲にあると、延伸工程や電池製造時にフィルムが破れることが特に少なく、かつ電池セパレータとして使用した場合に、抵抗を特に低く抑えることができる。 The thickness of the porous film of the present embodiment is preferably 5 μm or more and 50 μm or less. When the thickness of the porous film is reduced, the strength tends to decrease and it is likely to break, and when the thickness is increased, the resistance when used for a battery separator tends to increase. In particular, when the battery is manufactured, the film is hardly broken, and when used as a battery separator, the resistance can be suppressed particularly low.
また、多孔質フィルムの空孔率は、好ましくは30%以上80%以下、より好ましくは35%以上65%以下である。空孔率が小さいと電池セパレータに使用した場合に抵抗が高くなる傾向があり、大きいと強度が落ちて破断しやすくなる傾向があるが、空孔率が上記範囲にあると、延伸工程や電池製造時にフィルムが破れることが特に少なく、かつ電池セパレータとして使用した場合に、抵抗を特に低く抑えることができる。ここで多孔質フィルムの空孔率は、下記の式2で表すことができる。 The porosity of the porous film is preferably 30% or more and 80% or less, more preferably 35% or more and 65% or less. If the porosity is small, the resistance tends to be high when used for a battery separator. If the porosity is large, the strength tends to decrease and the glass tends to break, but if the porosity is in the above range, the stretching process or the battery In particular, the film is hardly broken at the time of production, and when used as a battery separator, the resistance can be suppressed particularly low. Here, the porosity of the porous film can be expressed by the following formula 2.
[空孔率(%)]
=(1−[膜質量(kg)]/[樹脂及びフィラー混合物密度(kg/m3)]/[膜体積(m3)])×100
・・・(式2)(ここで、
[樹脂及びフィラー混合物密度(kg/m3)]
=([樹脂比率(体積%)]×[樹脂比重(kg/m3)]+[フィラー比率(体積%)]×[フィラー比重(kg/m3)])/100)
[Porosity (%)]
= (1- [Membrane mass (kg)] / [Resin and filler mixture density (kg / m 3 )] / [Membrane volume (m 3 )]) × 100
... (Formula 2) (where
[Density of resin and filler mixture (kg / m 3 )]
= ([Resin ratio (volume%)] × [resin specific gravity (kg / m 3 )] + [filler ratio (volume%)] × [filler specific gravity (kg / m 3 )]) / 100)
さらに、多孔質フィルムの最大空孔径は、好ましくは0.5μm以上20μm以下であり、より好ましくは0.5μm以上10μm以下、さらに好ましくは0.5μm以上5μm以下である。最大空孔径が大きくなるとフィルムの強度が弱くなる傾向があり、小さくなると電池用セパレータとして使用した場合に抵抗が高くなる傾向があるが、最大空孔径が上記範囲にあると、延伸工程や電池製造時にフィルムが破れることが少なく、かつ電池セパレータとして使用した場合に、抵抗を特に低く抑えることができる。ここで最大空孔径とは、多孔質フィルムの表面及びMD方向に平行に切り出した断面を電子顕微鏡でそれぞれ観察し、各画像の中で最大となる空孔の径をさす。ただし、空孔の形状で長径と短径で異なる場合は長径を空孔径として選択する。 Furthermore, the maximum pore diameter of the porous film is preferably 0.5 μm or more and 20 μm or less, more preferably 0.5 μm or more and 10 μm or less, and further preferably 0.5 μm or more and 5 μm or less. When the maximum pore size is increased, the strength of the film tends to be weakened. When the maximum pore size is decreased, the resistance tends to be increased when used as a battery separator. Sometimes the film is not easily torn and the resistance can be kept particularly low when used as a battery separator. Here, the maximum pore diameter refers to the maximum pore diameter in each image by observing the surface of the porous film and the cross-section cut in parallel with the MD direction with an electron microscope. However, if the shape of the hole differs between the major axis and the minor axis, the major axis is selected as the pore diameter.
本実施の形態の多孔質フィルムは、単層で使用してもよいし、積層して使用してもよい。積層品の場合、その内の少なくとも1層が実質的に本実施の形態の多孔質フィルム層であればかまわない。積層方法としては、所望の層を形成するように溶融共押出し成型した後、延伸多孔化して積層多孔質フィルムを得る方法や、所望の層をそれぞれ別々に作製した後に積層多孔化して積層多孔質フィルムを得る方法等を用いることができる。 The porous film of the present embodiment may be used as a single layer or may be used after being laminated. In the case of a laminated product, at least one of the layers may be substantially the porous film layer of the present embodiment. As a lamination method, after melt coextrusion molding so as to form a desired layer, a method of obtaining a laminated porous film by stretching and forming a porous layer, or laminating and forming a laminated porous film after separately producing the desired layers, respectively. A method for obtaining a film can be used.
[電池セパレータ用多孔質フィルムの製造方法]
本実施の形態の電池セパレータ用多孔質フィルムの製造方法は、(a)無機フィラー及び熱可塑性樹脂を混合溶融押出し成型して原反フィルムを得る工程、(b)前記原反フィルムをアニール後、延伸により多孔化して熱処理を行う工程、を含む。
[Method for producing porous film for battery separator]
The method for producing a porous film for a battery separator of the present embodiment includes (a) a step of obtaining an original film by mixing and extruding an inorganic filler and a thermoplastic resin, and (b) after annealing the original film, And a step of performing heat treatment by making it porous by stretching.
[工程(a)]
工程(a)は、上記で列挙した熱可塑性樹脂及び無機フィラーを混合溶融押出し成型して原反フィルムを得る工程である。
[Step (a)]
The step (a) is a step of obtaining a raw film by mixing and extruding the thermoplastic resin and inorganic filler listed above.
本工程においては、無機フィラーと熱可塑性樹脂を事前に混合・分散し、それを押出し機に供給して溶融押出し成型してもよいし、押出し機に熱可塑性樹脂及び無機フィラーを別々に供給して溶融押出し成型してもかまわない。事前に混合・分散にする方法としては公知の手法を用いることができ、例えば、1軸押出し機、2軸押出し機、ミキシングロール等を用いて溶融混練してペレットを得る方法、ヘンシェルミキサー、タンブラー等でエアブレンドを行う方法等が挙げられる。溶融押出し成型は公知の1軸あるいは2軸の押出し機を用いることができ、ダイスもまたTダイ、サーキュラーダイ等、フィルム作製時に使用する公知のものを用いることができる。 In this step, the inorganic filler and the thermoplastic resin may be mixed and dispersed in advance and supplied to the extruder for melt extrusion molding, or the thermoplastic resin and the inorganic filler may be separately supplied to the extruder. It may be melt extruded. As a method of mixing and dispersing in advance, a known method can be used. For example, a method of obtaining pellets by melt kneading using a single screw extruder, a twin screw extruder, a mixing roll, etc., a Henschel mixer, a tumbler The method of performing air blending etc. is mentioned. For the melt extrusion molding, a known uniaxial or biaxial extruder can be used, and a known die used for film production, such as a T die or a circular die, can also be used.
また、本工程においては、成型の際のドロー比を、好ましくは50以上、より好ましくは200以上、さらに好ましくは300以上になるように引き取り速度を調整する。ドロー比が上記範囲であると、押し出された原反フィルムのラメラ結晶を特に高度に配向することができ、その結果フィルムを延伸し多孔化した際に、孔が高度に連結したものになりやすい。 In this step, the take-up speed is adjusted so that the draw ratio during molding is preferably 50 or more, more preferably 200 or more, and even more preferably 300 or more. When the draw ratio is in the above range, the lamella crystals of the extruded raw film can be particularly highly oriented, and as a result, when the film is stretched and made porous, the pores tend to be highly connected. .
さらに、配向したラメラ結晶の固定のために、ダイスから押出された直後に溶融フィルムを急冷・固定化させてもよい。急冷の方法としては、冷却媒体を直接溶融フィルムに吹き付ける手法や冷媒によって冷却されたロール等を使用して間接的に冷却する手法等の公知の手法を使用することができる。 Furthermore, in order to fix the oriented lamellar crystals, the molten film may be quenched and fixed immediately after being extruded from the die. As the rapid cooling method, a known method such as a method of spraying a cooling medium directly on the molten film or a method of indirectly cooling using a roll cooled by a refrigerant or the like can be used.
[工程(b)]
工程(b)は、工程(a)で得られた原反フィルムをアニール後、延伸により多孔化して熱処理を行う工程である。
[Step (b)]
Step (b) is a step in which the raw film obtained in step (a) is annealed and then made porous by stretching and heat-treated.
上記のようにして得られた原反フィルムに、結晶配向性を高めるためにアニール処理を施すことができる。アニール温度は、使用した熱可塑性樹脂の、好ましくは融点−80℃以上融点−5℃以下である。アニール温度が高すぎると原反フィルムが溶解して結晶構造自体を壊してしまうおそれがあり、低すぎると配向性を高める効果が低くなる傾向があるが、アニール温度が上記範囲にあると、特に結晶構造を壊さずに配向性を高めることができる。 The raw film obtained as described above can be annealed in order to enhance crystal orientation. The annealing temperature of the used thermoplastic resin is preferably a melting point of −80 ° C. or higher and a melting point of −5 ° C. or lower. If the annealing temperature is too high, the raw film may be dissolved and the crystal structure itself may be broken.If the annealing temperature is too low, the effect of increasing the orientation tends to be low. The orientation can be increased without breaking the crystal structure.
延伸の際の延伸方法は1軸延伸法でも2軸延伸法でもよく、2軸延伸法では同時2軸延伸法でも逐次2軸延伸法でもかまわない。また延伸温度は、使用する熱可塑性樹脂のガラス転移温度以上融点以下であるのが好ましく、ガラス転移温度以上融点−10℃以下であるのがより好ましい。この温度範囲で延伸すると原反フィルムが破断等することなく延伸が可能で、かつ孔が高度に連結した多孔質構造になりやすい。さらに、所望の延伸倍率まで1度に延伸しても、複数回に分けて延伸してもよく、延伸温度もそれぞれで変更することができる。 The stretching method at the time of stretching may be a uniaxial stretching method or a biaxial stretching method, and the biaxial stretching method may be a simultaneous biaxial stretching method or a sequential biaxial stretching method. The stretching temperature is preferably not lower than the glass transition temperature and not higher than the melting point of the thermoplastic resin to be used, and more preferably not lower than the glass transition temperature and not higher than the melting point−10 ° C. When the film is stretched in this temperature range, the original film can be stretched without breaking, and a porous structure in which the pores are highly connected tends to be obtained. Furthermore, the film may be stretched once up to a desired stretch ratio, or may be stretched in multiple times, and the stretching temperature can be changed for each.
さらに、上記延伸により多孔化した多孔質フィルムに対して熱処理を施すことができる。熱処理温度は使用した熱可塑性樹脂の融点や軟化点以下等の実質的に形状変化が起こらない温度領域で行う必要がある。 Furthermore, heat treatment can be performed on the porous film made porous by the stretching. It is necessary to perform the heat treatment temperature in a temperature range where the shape does not substantially change such as the melting point or softening point of the thermoplastic resin used.
[電池]
本実施の形態においては、上記で得られた多孔質フィルムをセパレータとして利用することで、出力特性に優れた電池を提供することができる。本実施の形態における電池は、公知の方法により、円筒型、角型、コイン型等の形状に作製される。該電池を構成するセパレータ以外の構成部材は特に限定されないが、以下のようなものが例示できる。
[battery]
In the present embodiment, a battery having excellent output characteristics can be provided by using the porous film obtained above as a separator. The battery in this embodiment is manufactured in a cylindrical shape, a rectangular shape, a coin shape, or the like by a known method. Although constituent members other than the separator constituting the battery are not particularly limited, the following can be exemplified.
正極材料(正極活物質)としては、リチウム含有金属酸化物、硫化物又は塩化物のようなリチウム含有金属化合物が使用される。リチウム含有金属酸化物としては、例えば、コバルト、マンガン、ニッケル、クロム、鉄及びバナジウムからなる群より選ばれる少なくとも1種類以上の金属とリチウムとのリチウム複合酸化物が使用される。このようなリチウム複合酸化物としては、例えば、LiCoO2、LiMn2O4、LiNiO2等が挙げられる。 As the positive electrode material (positive electrode active material), a lithium-containing metal compound such as a lithium-containing metal oxide, sulfide or chloride is used. As the lithium-containing metal oxide, for example, a lithium composite oxide of at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron, and vanadium and lithium is used. Examples of such a lithium composite oxide include LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 .
正極は、上記の正極材料をアセチレンブラック、カーボンブラック等の導電剤及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の結着剤と混練して正極合剤とした後、この正極材料を集電体としてのアルミニウム箔やステンレス製のラス板に塗布して、乾燥、加圧成型後、50℃〜250℃程度の温度で2時間程度、真空加熱処理することにより作製される。 The positive electrode is prepared by kneading the above positive electrode material with a conductive agent such as acetylene black or carbon black and a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) to form a positive electrode mixture. The material is applied to an aluminum foil or a stainless steel lath plate as a current collector, dried, press-molded, and then vacuum-heated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
負極(負極活物質)としては、リチウムを吸蔵・放出可能なカーボン又はグラファイトを含む炭素材料、例えば、コークス、天然黒鉛や人造黒鉛等の炭素材料、複合スズ酸化物が使用される。特に、格子面(002)の面間隔(d002)が0.335〜0.340nmである黒鉛型結晶構造を有する炭素材料を使用することが好ましい。なお、粉末状の炭素材料はエチレンプロピレンジエンターポリマー(EPDM)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の結着剤と混練して負極合剤として使用される。 As the negative electrode (negative electrode active material), carbon capable of occluding and releasing lithium or a carbon material containing graphite, for example, carbon materials such as coke, natural graphite and artificial graphite, and composite tin oxide are used. In particular, it is preferable to use a carbon material having a graphite-type crystal structure in which the lattice spacing (002) (d002) is 0.335 to 0.340 nm. The powdery carbon material is kneaded with a binder such as ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and used as a negative electrode mixture.
電解液としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、アセトニトリル、1,2−ジメトキシエタン、テトラヒドロフラン等の有機溶媒に電解質を溶解したものが使用される。電解質としては、例えば、LiPF6、LiBF4、LiClO4、CF3SO3Li、(CF3SO2)2NLi、(C2F5SO2)2NLi、LiC(SO2CF3)3等が挙げられる。これらの電解質は、1種で使用してもよく、2種以上組み合わせて使用してもよい。これら電解質は、前記の有機溶媒に通常0.1〜3M/L、好ましくは0.5〜1.5M/Lの濃度で溶解されて使用される。 The electrolyte used is an electrolyte dissolved in an organic solvent such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane, tetrahydrofuran, etc. Is done. Examples of the electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) 2 NLi, LiC (SO 2 CF 3 ) 3 and the like. Is mentioned. These electrolytes may be used alone or in combination of two or more. These electrolytes are used after being dissolved in the organic solvent at a concentration of usually 0.1 to 3 M / L, preferably 0.5 to 1.5 M / L.
上記構成部材を使用するリチウム電池の製造方法については特に限定されないが、例えば円筒型電池は以下のような方法により製造できる。LiCoO2(正極活物質)を80質量%、アセチレンブラック(導電剤)を10質量%、ポリフッ化ビニリデン(結着剤)を10質量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加えて混合したものをアルミニウム箔上に塗布し、乾燥、加圧成型、加熱処理して正極を調製する。グラファイト(負極活物質)を90質量%、ポリフッ化ビニリデン(結着剤)を10質量%の割合で混合し、これに1−メチル−2−ピロリドン溶剤を加え、混合したものを銅箔上に塗布し、乾燥、加圧成型、加熱処理して負極を調製する。そして、前記正極、負極及び本発明のセパレータを円筒状に捲回し、前記非水電解液を注入させて円筒型リチウム二次電池(直径18mm、高さ65mm)を作製することができる。 Although the manufacturing method of the lithium battery using the said structural member is not specifically limited, For example, a cylindrical battery can be manufactured with the following methods. 80% by mass of LiCoO 2 (positive electrode active material), 10% by mass of acetylene black (conductive agent) and 10% by mass of polyvinylidene fluoride (binder) are mixed, and this is mixed with 1-methyl-2-pyrrolidone. A mixture obtained by adding a solvent is applied onto an aluminum foil, dried, pressure-molded, and heat-treated to prepare a positive electrode. Graphite (negative electrode active material) is mixed in 90% by mass and polyvinylidene fluoride (binder) in a proportion of 10% by mass, 1-methyl-2-pyrrolidone solvent is added thereto, and the resulting mixture is placed on a copper foil. The negative electrode is prepared by coating, drying, pressure molding, and heat treatment. And the said positive electrode, a negative electrode, and the separator of this invention are wound cylindrically, The said nonaqueous electrolyte solution is inject | poured, and a cylindrical lithium secondary battery (diameter 18mm, height 65mm) can be produced.
以下に本実施の形態を具体的に説明した実施例及び比較例を例示するが、本実施の形態はその要旨を超えない限り以下の実施例に限定されるものではない。なお、各種特性値の評価方法は以下の通りである。 Examples and comparative examples that specifically describe the present embodiment will be exemplified below, but the present embodiment is not limited to the following examples unless it exceeds the gist. The evaluation methods for various characteristic values are as follows.
[評価方法]
(1)多孔質構造の観察:サンプルの表面を走査型電子顕微鏡(日立製作所製 S4700)にて観察した。倍率30000倍にて、下記(A)の孔の有無を確認し、倍率5000倍で下記(B)の孔の有無を確認した。孔の確認ができた場合は「有」、確認ができない場合は「無」とした。
(A):フィルムの表裏面方向と略平行に配置された板状空孔部
(B):前記板状空孔部容積よりも大きな容積を有する空孔部
(2)膜厚:ダイヤルゲージ(尾崎製作所製 PEACOCK No.25(商標))を用いて測定した。
(3)空孔率:10cm角のサンプルをとり、その体積と質量から前述の(式2)を用いて計算した。
(4)最大空孔径:サンプルの表面及び断面を走査型電子顕微鏡(日立製作所製 S4700)にて、それぞれ任意に5枚撮影し(倍率5000倍(視野広さ約25μm×約17μmで撮影、空孔径が小さく孔が確認できない場合は倍率30000倍、視野広さ約4μm×約3μmで撮影))、各写真において空孔の径が最大となるものの径を最大空孔径とした。ただし、空孔の形状が長円状、楕円状、あるいは層状等で長径と短径で異なる場合は長径側を空孔径とした。
(5)突刺強度:カトーテック製「KES−G5ハンディー圧縮試験器」(商標)を用いて、針先端の曲率半径0.5mm、突き刺し速度2mm/secの条件で突き刺し試験を行い、最大突き刺し荷重(N)を測定した。なお、評価は下記基準にて行った。
○:2N以上
×:2N未満
(6)電池出力特性:下記実施例及び比較例に示された手法にて得られた多孔質フィルムをセパレータとし、LiCoO2を正極活物質、グラファイト及びアセチレンブラックを導電剤、フッ素ゴムを結着剤として各々LiCoO2:グラファイト:アセチレンブラック:フッ素ゴム=88:7.5:2.5:2の質量比で混合したものをジメチルホルムアミドペーストとしてアルミニウム箔に塗布乾燥したシートを正電極とし、ニードルコークス:フッ素ゴム=95:5の質量比で混合したものをジメチルホルムアミドペーストとして銅箔に塗布乾燥したシートを負電極として用い、電解液としてプロピレンカーボネートとブチロラクトンを1:1で混合した溶媒にホウフッ化リチウム1.0Mで調整した溶液を用いてリチウムイオン二次電池を製造した。
この電池の放電終止電圧3Vまでの1C放電容量と5C放電容量を測定し、5C容量/1C容量を出力特性値とした。出力特性の評価は、下記基準に即して行った。
○:0.7以上
△:0.5以上0.7未満
×:0.5未満
[Evaluation methods]
(1) Observation of porous structure: The surface of the sample was observed with a scanning electron microscope (S4700, manufactured by Hitachi, Ltd.). The presence or absence of the following holes (A) was confirmed at a magnification of 30000 times, and the presence or absence of the following holes (B) was confirmed at a magnification of 5000 times. When the hole was confirmed, “Yes” was indicated. When the hole was not confirmed, “No” was indicated.
(A): Plate-like hole portion arranged substantially parallel to the front and back surfaces of the film (B): Hole portion having a volume larger than the plate-like hole portion volume (2) Film thickness: Dial gauge ( Measurement was performed using PEACOCK No. 25 (trademark) manufactured by Ozaki Seisakusho.
(3) Porosity: A 10 cm square sample was taken and calculated from its volume and mass using (Equation 2) described above.
(4) Maximum pore diameter: The surface and cross section of the sample were arbitrarily photographed with a scanning electron microscope (S4700, manufactured by Hitachi, Ltd.), respectively (magnification 5000 times (field size approximately 25 μm × approximately 17 μm) When the hole diameter is small and no hole can be confirmed, the maximum hole diameter is defined as the diameter of the largest hole diameter in each photograph. However, in the case where the shape of the hole is an ellipse, an ellipse, a layer, or the like, and the major axis and the minor axis are different, the major axis side is defined as the pore diameter.
(5) Puncture strength: Using a “KES-G5 Handy Compression Tester” (trademark) manufactured by Kato Tech, a puncture test is performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. (N) was measured. The evaluation was performed according to the following criteria.
○: 2N or more ×: Less than 2N (6) Battery output characteristics: A porous film obtained by the method shown in the following Examples and Comparative Examples was used as a separator, LiCoO 2 was used as a positive electrode active material, graphite, and acetylene black. Conductive agent and fluororubber as binder were mixed with LiCoO2: graphite: acetylene black: fluororubber = 88: 7.5: 2.5: 2 in a weight ratio, applied to aluminum foil as dimethylformamide paste and dried. A sheet obtained by mixing the sheet with a positive electrode and a mass ratio of needle coke: fluororubber = 95: 5 as a dimethylformamide paste and drying on a copper foil is used as a negative electrode, and propylene carbonate and butyrolactone are used as an electrolyte. The solution prepared with 1.0M lithium borofluoride in the solvent mixed in 1. To produce a lithium ion secondary battery to have.
The 1C discharge capacity and 5C discharge capacity up to 3V of the discharge end voltage of this battery were measured, and 5C capacity / 1C capacity was defined as the output characteristic value. The output characteristics were evaluated according to the following criteria.
○: 0.7 or more Δ: 0.5 or more and less than 0.7 ×: less than 0.5
(実施例1)
ポリプロピレン(商品名:F113G(株式会社プライムポリマー製)、密度0.90、重量平均分子量30万)を97.5体積%と、アルミナフィラー(商品名:アドバンストアルミナAA03(住友化学株式会社製)平均粒子径0.3μm)2.5体積%を2軸押出し機にフィーダーを介して投入した。押出し機は口径25mm、L/D=48のものを使用し、成型温度は220℃、押出し回転数は100rpmとして投入した原料を混練した。その後、溶融樹脂をリップ幅6mmのTダイより押出し、25℃の空気を吹き付けて空冷冷却しながら95℃に温度調整したキャストロールで引き取り、多孔質原反フィルムを得た。この際、ドロー比は300であった。
得られた原反フィルムを130℃環境下に1時間の条件でアニールしたあと、30℃の環境下でフィルム走行方向に原反寸法に対し+50%寸法変化するように1軸延伸し、その後110℃の環境下でフィルム走行方向に原反寸法に対し+150%寸法変化するように1軸延伸した。その後、150℃環境下、2分間の条件で熱処理し、多孔質フィルムを作製した。
Example 1
Polypropylene (trade name: F113G (manufactured by Prime Polymer Co., Ltd.), density 0.90, weight average molecular weight 300,000) 97.5% by volume, alumina filler (trade name: advanced alumina AA03 (manufactured by Sumitomo Chemical Co., Ltd.)) average 2.5 volume% (particle diameter 0.3 μm) was charged into a twin screw extruder through a feeder. The extruder used had an aperture of 25 mm and L / D = 48, the raw material was kneaded at a molding temperature of 220 ° C. and an extrusion rotational speed of 100 rpm. Thereafter, the molten resin was extruded from a T-die having a lip width of 6 mm, and was taken up with a cast roll whose temperature was adjusted to 95 ° C. while blowing air at 25 ° C. and cooling with air to obtain a porous raw film. At this time, the draw ratio was 300.
The obtained raw film was annealed in a 130 ° C. environment for 1 hour, and then uniaxially stretched in a film running direction in a 30 ° C. environment so as to change the dimension of the original film by + 50%. The film was uniaxially stretched so as to change the dimension by + 150% with respect to the original dimension in the film running direction in an environment of ° C. Then, it heat-processed on the conditions for 2 minutes in 150 degreeC environment, and produced the porous film.
(実施例2)
ポリプロピレンをポリエチレン(商品名:S160S(旭化成ケミカルズ株式会社製)、密度0.95、重量平均分子量20万)に変更し、原反フィルムのアニール条件を110℃環境下で1時間、及び熱処理条件を130℃環境下で2分間としたこと以外は実施例1と同様の方法により多孔質フィルムを作製した。
(Example 2)
Polypropylene was changed to polyethylene (trade name: S160S (Asahi Kasei Chemicals Co., Ltd.), density 0.95, weight average molecular weight 200,000), and the annealing conditions of the raw film were changed to 110 ° C for 1 hour and the heat treatment conditions A porous film was produced in the same manner as in Example 1 except that the temperature was 130 ° C. for 2 minutes.
(実施例3)
アルミナフィラーの平均粒子径を0.3μmから2.5μm(商品名:アドバンストアルミナAA3、住友化学株式会社製)にしたこと以外は実施例1と同様の方法により多孔質フィルムを作製した。
(Example 3)
A porous film was produced in the same manner as in Example 1 except that the average particle size of the alumina filler was changed from 0.3 μm to 2.5 μm (trade name: Advanced Alumina AA3, manufactured by Sumitomo Chemical Co., Ltd.).
(比較例1)
ポリプロピレン(商品名:F113G(株式会社プライムポリマー製)、密度0.90、重量平均分子量30万)を2軸押出し機にフィーダーを介して投入した。押出し機は口径25mm、L/D=48のものを使用し、成型温度は220℃、押出し回転数は100rpmとして投入した原料を混練した。その後、溶融樹脂をリップ幅6mmのTダイより押出し、25℃の空気を吹き付けて空冷冷却しながら95℃に温度調整したキャストロールで引き取り、多孔質原反フィルムを得た。この際、ドロー比は300であった。
得られた原反フィルムを130℃環境下、1時間の条件でアニールしたあと、30℃の環境下でフィルム走行方向に原反寸法に対し+50%寸法変化するように1軸延伸し、その後110℃の環境下でフィルム走行方向に原反寸法に対し+150%寸法変化するように1軸延伸した。その後、150℃環境下、2分間の条件で熱処理し、多孔質フィルムを作製した。
(Comparative Example 1)
Polypropylene (trade name: F113G (manufactured by Prime Polymer Co., Ltd.), density 0.90, weight average molecular weight 300,000) was charged into a twin screw extruder through a feeder. The extruder used had an aperture of 25 mm and L / D = 48, the raw material was kneaded at a molding temperature of 220 ° C. and an extrusion rotational speed of 100 rpm. Thereafter, the molten resin was extruded from a T-die having a lip width of 6 mm, and was taken up with a cast roll whose temperature was adjusted to 95 ° C. while blowing air at 25 ° C. and cooling with air to obtain a porous raw film. At this time, the draw ratio was 300.
The obtained original film was annealed in a 130 ° C. environment for 1 hour, and then uniaxially stretched in a 30 ° C. environment so as to change the dimension of the original film by + 50% in the film running direction. The film was uniaxially stretched so as to change the dimension by + 150% with respect to the original dimension in the film running direction in an environment of ° C. Then, it heat-processed on the conditions for 2 minutes in 150 degreeC environment, and produced the porous film.
(比較例2)
ポリプロピレンをポリエチレン(商品名:S160S(旭化成ケミカルズ株式会社製)、密度0.95、重量平均分子量20万)に変更し、原反フィルムのアニール条件を110℃環境下で1時間、熱処理条件を130℃環境下で2分間としたこと以外は比較例1と同様の方法により多孔質フィルムを作製した。
(Comparative Example 2)
Polypropylene was changed to polyethylene (trade name: S160S (manufactured by Asahi Kasei Chemicals Corporation), density 0.95, weight average molecular weight 200,000), and the annealing condition of the raw film was 110 ° C. for 1 hour and the heat treatment condition was 130. A porous film was produced in the same manner as in Comparative Example 1 except that the temperature was set at 2 ° C. for 2 minutes.
(比較例3)
ポリプロピレン(密度0.90、重量平均分子量30万)を97.5体積%と、アルミナフィラー(商品名:アドバンストアルミナAA03(住友化学株式会社製)平均粒子径0.3μm)2.5体積%を2軸押出し機にフィーダーを介して投入した。押出し機は口径25mm、L/D=48のものを使用し、成型温度は220℃、押出し回転数は100rpmとして投入した原料を混練した。その後、溶融樹脂をリップ幅0.5mmのTダイより押出し、95℃に温度調整したキャストロールで引き取り、多孔質原反フィルムを得た。この際、ドロー比は25であった。
得られた原反フィルムを130℃環境下に1時間の条件でアニールしたあと、30℃の環境下でフィルム走行方向に原反寸法に対し+50%寸法変化するように1軸延伸し、その後110℃の環境下でフィルム走行方向に原反寸法に対し+150%寸法変化するように1軸延伸した。その後、150℃環境下、2分間の条件で熱処理し、多孔質フィルムを作製した。
(Comparative Example 3)
97.5% by volume of polypropylene (density 0.90, weight average molecular weight 300,000) and 2.5% by volume of alumina filler (trade name: Advanced Alumina AA03 (Sumitomo Chemical Co., Ltd.) average particle size 0.3 μm) It put into the twin screw extruder through a feeder. The extruder used had an aperture of 25 mm and L / D = 48, the raw material was kneaded at a molding temperature of 220 ° C. and an extrusion rotational speed of 100 rpm. Thereafter, the molten resin was extruded from a T-die having a lip width of 0.5 mm and taken up with a cast roll whose temperature was adjusted to 95 ° C. to obtain a porous raw film. At this time, the draw ratio was 25.
The obtained raw film was annealed in a 130 ° C. environment for 1 hour, and then uniaxially stretched in a film running direction in a 30 ° C. environment so as to change the dimension of the original film by + 50%. The film was uniaxially stretched so as to change the dimension by + 150% with respect to the original dimension in the film running direction in an environment of ° C. Then, it heat-processed on the conditions for 2 minutes in 150 degreeC environment, and produced the porous film.
(比較例4)
アニール処理を実施しなかったこと以外は、実施例1と同様の方法により多孔質フィルムを作製した。
各実施例及び比較例における、原料割合、成型条件、物性等を表1にまとめた。
(Comparative Example 4)
A porous film was produced in the same manner as in Example 1 except that the annealing treatment was not performed.
Table 1 summarizes the raw material ratio, molding conditions, physical properties, and the like in each Example and Comparative Example.
表1の結果から明らかなように、本実施の形態の多孔質フィルム(実施例1〜3)は、2種類の特定の空孔部を有しており、抵抗が特に低いため、それを用いて作製された電池の出力特性に優れていた。
これに対して、比較例1及び2の多孔質フィルムは、空孔部(B)が存在せず、比較例3及び4の多孔質フィルムは、空孔部(A)が存在しないため、抵抗が十分に低くならず、それを用いて作製された電池の出力特性にも劣っていた。
As is clear from the results in Table 1, the porous films of the present embodiment (Examples 1 to 3) have two types of specific pores, and the resistance is particularly low. The battery produced in this way was excellent in output characteristics.
In contrast, the porous films of Comparative Examples 1 and 2 have no pores (B), and the porous films of Comparative Examples 3 and 4 have no pores (A). Was not sufficiently low, and the output characteristics of a battery produced using the same were inferior.
Claims (6)
前記微細孔構造が、下記(A)及び(B)の各空孔部、
(A):フィルムの表裏面方向と略平行に配置された板状空孔部
(B):前記板状空孔部の容積よりも大きな容積を有する空孔部
を含む、電池セパレータ用多孔質フィルム。 A porous film for a battery separator having a fine pore structure penetrating the front and back surfaces,
The fine pore structure has the following hole portions (A) and (B):
(A): Plate-like hole portion arranged substantially parallel to the front and back surfaces of the film (B): Porous battery separator including a hole portion having a volume larger than the volume of the plate-like hole portion the film.
前記セパレータが請求項1又は2記載の電池セパレータ用多孔質フィルムである、電池。 A battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator interposed between the positive electrode and the negative electrode,
A battery, wherein the separator is the porous film for a battery separator according to claim 1.
(a)無機フィラー及び熱可塑性樹脂を混合溶融押出し成型して原反フィルムを得る工程、
(b)前記原反フィルムをアニール後、延伸により多孔化して熱処理を行う工程。 A method for producing a porous film for a battery separator, including the following steps:
(A) a step of obtaining an original film by mixing and extruding an inorganic filler and a thermoplastic resin;
(B) A step of annealing the raw film and then making it porous by stretching and heat-treating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008053980A JP2009211946A (en) | 2008-03-04 | 2008-03-04 | Porous film for battery separator, and battery equipped with the film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008053980A JP2009211946A (en) | 2008-03-04 | 2008-03-04 | Porous film for battery separator, and battery equipped with the film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009211946A true JP2009211946A (en) | 2009-09-17 |
Family
ID=41184897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008053980A Pending JP2009211946A (en) | 2008-03-04 | 2008-03-04 | Porous film for battery separator, and battery equipped with the film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009211946A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011246539A (en) * | 2010-05-25 | 2011-12-08 | Asahi Kasei E-Materials Corp | Method for producing biaxially stretched polyolefin-based porous film, and biaxially stretched polyolefin-based porous film |
JP2011256258A (en) * | 2010-06-08 | 2011-12-22 | Asahi Kasei E-Materials Corp | Microporous film and method for producing the same, and separator for battery |
JP2014519155A (en) * | 2012-04-27 | 2014-08-07 | 南通天豊電子新材料有限公司 | Method for producing a safety separator with a microporous composite structure by inducing uniaxial stretching |
WO2017043728A1 (en) * | 2015-09-07 | 2017-03-16 | 삼성에스디아이 주식회사 | Method for producing porous film, porous film produced thereby, and separator or electrochemical cell comprising same |
WO2018164454A1 (en) * | 2017-03-07 | 2018-09-13 | 삼성에스디아이 주식회사 | Porous film, separator comprising same, and electrochemical cell |
JP7304502B1 (en) * | 2023-03-31 | 2023-07-06 | 住友化学株式会社 | Non-aqueous electrolyte secondary battery separator, non-aqueous electrolyte secondary battery member, and non-aqueous electrolyte secondary battery |
KR102587283B1 (en) | 2023-04-04 | 2023-10-12 | 안성희 | Method for manufacturing porous film, the porous film, and secondary battery or separator comprising the porous film |
-
2008
- 2008-03-04 JP JP2008053980A patent/JP2009211946A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011246539A (en) * | 2010-05-25 | 2011-12-08 | Asahi Kasei E-Materials Corp | Method for producing biaxially stretched polyolefin-based porous film, and biaxially stretched polyolefin-based porous film |
JP2011256258A (en) * | 2010-06-08 | 2011-12-22 | Asahi Kasei E-Materials Corp | Microporous film and method for producing the same, and separator for battery |
JP2014519155A (en) * | 2012-04-27 | 2014-08-07 | 南通天豊電子新材料有限公司 | Method for producing a safety separator with a microporous composite structure by inducing uniaxial stretching |
WO2017043728A1 (en) * | 2015-09-07 | 2017-03-16 | 삼성에스디아이 주식회사 | Method for producing porous film, porous film produced thereby, and separator or electrochemical cell comprising same |
WO2018164454A1 (en) * | 2017-03-07 | 2018-09-13 | 삼성에스디아이 주식회사 | Porous film, separator comprising same, and electrochemical cell |
CN110383533A (en) * | 2017-03-07 | 2019-10-25 | 三星Sdi株式会社 | Perforated membrane, partition and electrochemical cell including perforated membrane |
US20200035972A1 (en) * | 2017-03-07 | 2020-01-30 | Samsung Sdi Co., Ltd. | Porous film, separator comprising same, and electrochemical cell |
EP3595040A4 (en) * | 2017-03-07 | 2021-01-13 | Samsung SDI Co., Ltd. | Porous film, separator comprising same, and electrochemical cell |
US11502372B2 (en) | 2017-03-07 | 2022-11-15 | Samsung Sdi Co., Ltd. | Porous film, separator comprising same, and electrochemical cell |
JP7304502B1 (en) * | 2023-03-31 | 2023-07-06 | 住友化学株式会社 | Non-aqueous electrolyte secondary battery separator, non-aqueous electrolyte secondary battery member, and non-aqueous electrolyte secondary battery |
KR102587283B1 (en) | 2023-04-04 | 2023-10-12 | 안성희 | Method for manufacturing porous film, the porous film, and secondary battery or separator comprising the porous film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5648284B2 (en) | Laminated film and non-aqueous electrolyte secondary battery | |
JP5286817B2 (en) | Separator | |
JP5158027B2 (en) | Sodium secondary battery | |
JP6773044B2 (en) | Porous membrane and power storage device | |
WO2010074151A1 (en) | Separator for battery, and non-aqueous lithium battery | |
WO2005015660A1 (en) | Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same | |
WO2005057690A1 (en) | Nonaqueous electrolyte secondary battery | |
JP2011100635A (en) | Laminated film and nonaqueous electrolyte secondary battery | |
JP6823718B2 (en) | Polyolefin microporous membranes, separators for power storage devices, and power storage devices | |
JPWO2012042716A1 (en) | Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same | |
JP2010113804A (en) | Nonaqueous electrolyte secondary battery | |
JP2009143060A (en) | Multi-layer porous film | |
JP2010007053A (en) | Microporous polyolefin film | |
JP5500424B2 (en) | Battery separator and non-aqueous lithium secondary battery | |
JP5422372B2 (en) | Battery separator and non-aqueous lithium secondary battery | |
JP2009211946A (en) | Porous film for battery separator, and battery equipped with the film | |
JP2009211947A (en) | Porous film for battery separator, and battery equipped with the film | |
JP4984372B2 (en) | Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same | |
WO2020137336A1 (en) | Microporous polyolefin membrane and method for producing microporous polyolefin membrane | |
JP2010171006A (en) | Separator for cell and nonaqueous lithium secondary battery | |
JP5295857B2 (en) | Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery | |
JP2008088284A (en) | Polyolefin microporous film | |
JP5920441B2 (en) | Laminated film and non-aqueous electrolyte secondary battery | |
CN114270617A (en) | Separator for electrochemical device having heat-resistant layer and secondary battery comprising same | |
KR20200136699A (en) | Separator for secondary battery, preparing method thereof, and secondary battery including the same |