[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009201284A - Variable speed driver of pm motor - Google Patents

Variable speed driver of pm motor Download PDF

Info

Publication number
JP2009201284A
JP2009201284A JP2008041530A JP2008041530A JP2009201284A JP 2009201284 A JP2009201284 A JP 2009201284A JP 2008041530 A JP2008041530 A JP 2008041530A JP 2008041530 A JP2008041530 A JP 2008041530A JP 2009201284 A JP2009201284 A JP 2009201284A
Authority
JP
Japan
Prior art keywords
motor
gain
current
phase
picking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008041530A
Other languages
Japanese (ja)
Inventor
Hiroaki Kakei
浩明 加計
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008041530A priority Critical patent/JP2009201284A/en
Publication of JP2009201284A publication Critical patent/JP2009201284A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable speed driver of a PM motor capable of performing pickup activation from a high-speed idling state by adding a few functions to the existing variable speed driver without superposing a high-frequency current or without flowing a pulse-like short circuit current. <P>SOLUTION: Upon picking up a motor when the motor in an idle state is started by being connected to the variable speed driver, current demands i<SB>d</SB><SP>*</SP>, i<SB>q</SB><SP>*</SP>of current control parts 1A, 1B are made zero, respectively, and in gain switching circuits 11, 12, 13, a gain in a current control system is made larger than that for control at normal time. In an arithmetic circuit 14, the rotation speed of the PM motor 1 is found from the time during zero-crossing of a detection current, and a position (phase) of the PM motor is found from the position of the zero-crossing and the rotation speed. The pickup activation is started with the found phase θ as the initial phase of coordinate conversion parts 2, 7, and afterward, control is switched to normal control. In the gain switching circuits, a gain on the "d" axis side in picking up the motor is made larger than that on the "q" axis side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、PM(永久磁石)モータの可変速駆動装置に係り、特にオブザーバによりモータの回転子位相を推定する位相推定手段を備えた装置において、モータの高速空転状態からの拾い上げ起動に関する。   The present invention relates to a variable speed drive device for a PM (permanent magnet) motor, and more particularly to picking up and starting a motor from a high-speed idling state in a device including phase estimation means for estimating a rotor phase of a motor by an observer.

PMモータの制御には、モータの回転子がもつ磁気突極性を利用して、オブザーバで回転子位相(磁極位相)を推定し、この回転子位相を基にモータ速度や位置を制御する可変速駆動装置の位置センサレス制御方法がある。   The PM motor is controlled by using the magnetic saliency of the rotor of the motor, estimating the rotor phase (magnetic pole phase) with an observer, and controlling the motor speed and position based on this rotor phase. There is a position sensorless control method of the driving device.

図4は、PMモータの位置センサレスベクトル制御装置のブロック図であり、磁極位置推定によって速度またはトルク制御を行う。   FIG. 4 is a block diagram of a PM motor position sensorless vector control device, which performs speed or torque control by magnetic pole position estimation.

同図の制御系は、速度制御演算手段またはトルク制御演算手段によりd,q2軸のトルク電流指令iq *と界磁電流指令id *が与えられる。トルク電流指令iq *及び界磁電流指令id *と、それらの電流検出値iq,idとの偏差を比例積分(PI)演算してd軸,q軸の電圧指令Vd,Vqを得る電流制御部1A,1Bと、これら電圧指令を座標変換部2により回転→固定座標変換して2相の電圧指令Vα,Vβを得、さらに2相/3相変換部3により3相の電圧指令Vu,Vv,Vwに変換し、これら電圧指令を基に逆変換回路4によるPMモータ5の電機子電流を制御する。 The control system shown in FIG. 2 is provided with a torque current command i q * and a field current command i d * for the d and q 2 axes by the speed control calculation means or the torque control calculation means. The deviation between the torque current command i q * and the field current command i d * and the detected current values i q , i d is proportionally integrated (PI) to calculate the voltage commands V d , V for the d-axis and q-axis. The current control units 1A and 1B for obtaining q , and these voltage commands are rotated by the coordinate conversion unit 2 to convert them to fixed coordinates to obtain two-phase voltage commands Vα and Vβ, and the two-phase / three-phase conversion unit 3 further converts the three phases. Are converted to voltage commands V u , V v , and V w, and the armature current of the PM motor 5 is controlled by the inverse conversion circuit 4 based on these voltage commands.

3相/2相変換部6は、PMモータ5の各相検出電流iu,iv,iwを2相の電流iα,iβに変換し、これら電流を座標変換部7によって固定→回転座標変換で検出電流id,iqを得、これらを電流制御部1A,1Bへのフィードバック電流とする。 The three-phase / two-phase converter 6 converts the detected currents i u , i v , i w of the PM motor 5 into two-phase currents iα, iβ, and these currents are fixed by the coordinate converter 7 → rotating coordinates The detection currents i d and i q are obtained by conversion, and these are used as feedback currents to the current control units 1A and 1B.

座標変換部2、7はPMモータの磁極位相θを基準として座標変換し、この磁極位相θをPMモータから直接に検出するのに代えて、位相推定部8が磁極位置を推定する。この推定演算には、電圧指令Vα,Vβと電流検出信号iα,iβおよび角速度ω(モータ回転速度)を、モータモデルをもつオブザーバ8Aの電圧−電流方程式に代入した演算(図中のRはモータモデルの内部抵抗、Lはインダクタンス)により推定磁束λα、λβとして求め、これらから逆正接演算部8Bにより推定位相θeを得る。微分演算部8Cは推定磁束θeの微分によって推定角速度ωeを角速度ωとして得る。 The coordinate conversion units 2 and 7 perform coordinate conversion based on the magnetic pole phase θ of the PM motor, and instead of directly detecting the magnetic pole phase θ from the PM motor, the phase estimation unit 8 estimates the magnetic pole position. In this estimation calculation, the voltage commands Vα and Vβ, the current detection signals iα and iβ, and the angular velocity ω (motor rotational speed) are substituted into the voltage-current equation of the observer 8A having the motor model (R in the figure represents the motor). The estimated magnetic fluxes λα and λβ are obtained from the internal resistance of the model, L is the inductance), and the estimated phase θe is obtained from these by the arctangent calculation unit 8B. The differential operation unit 8C obtains the estimated angular velocity ω e as the angular velocity ω by differentiating the estimated magnetic flux θe.

ところで、インバータ(逆変換回路)によりモータを駆動する装置(可変速駆動装置)において、インバータの電源に瞬時停電などが発生してインバータを一旦停止させ、復電後に空転状態のモータにインバータを接続し、モータを現在速度から設定速度まで加速していくという、モータ拾い上げ方法がある。   By the way, in a device (variable speed drive device) that drives a motor with an inverter (inverse conversion circuit), an instantaneous power failure occurs in the power supply of the inverter, the inverter is temporarily stopped, and the inverter is connected to the idling motor after power recovery There is a method of picking up the motor in which the motor is accelerated from the current speed to the set speed.

このモータ拾い上げに際し、インバータの出力が零電圧でモータに接続すると、空転中のPMモータは端子に速度起電力が発生するため、PMモータ端子の短絡状態と同じ状態となり、空転速度が高い場合には過大な電流が発生する。   When picking up the motor, if the output of the inverter is connected to the motor with zero voltage, the idling PM motor generates a speed electromotive force at the terminal. Therefore, when the idling speed is high, the PM motor terminal is short-circuited. Generates excessive current.

これを抑制するためには、空転中のPMモータの速度誘起起電力と同一振幅で同一位相の電圧をインバータから出力する必要があるが、モータの回転子位置をオブザーバで推定する図4のような位置センサレス制御装置では、検出電流Iu,Iv,Iwがモータの誘起起電力の影響を受けるため回転子位置を推定できず、結果的にモータの回転子位置や速度に合わせた電圧振幅や位相をインバータ出力として制御することができない。 In order to suppress this, it is necessary to output from the inverter a voltage having the same amplitude and the same phase as the speed-induced electromotive force of the idling PM motor, but the rotor position of the motor is estimated by an observer as shown in FIG. In a position sensorless control device, the detected currents I u , I v , and I w are influenced by the induced electromotive force of the motor, so that the rotor position cannot be estimated. As a result, a voltage that matches the rotor position and speed of the motor Amplitude and phase cannot be controlled as inverter output.

PMモータの位置センサレス検出を行う方法として、モータの電流指令id *,iq *に高周波電流を重畳させたときのフィードバック電流iα,iβからモータの回転子位置を求めるものがある。この回転子位置推定方法をモータの空転状態からの起動に利用する場合、回転子位置推定手段の制御ゲインが低いと、電流制御が不安定となり、望まざるトルクを発生し、最悪の場合には過電流保護動作により、再起動できなくなる。そこで、この起動法における回転子位置推定手段による回転子位置推定の制御ゲインを上げて応答を速めることで過電流を回避する起動法もある(例えば、特許文献1参照)。 As a method for performing position sensorless detection of a PM motor, there is a method for obtaining a rotor position of a motor from feedback currents iα and iβ when a high-frequency current is superimposed on motor current commands i d * and i q * . When this rotor position estimation method is used for starting the motor from the idling state, if the control gain of the rotor position estimation means is low, current control becomes unstable, and undesired torque is generated. The overcurrent protection operation makes it impossible to restart. Therefore, there is also an activation method that avoids overcurrent by increasing the control gain of the rotor position estimation by the rotor position estimation means in this activation method to speed up the response (for example, see Patent Document 1).

他の起動法として、インバータの出力を短時間だけ短絡状態に設定し、そのときPMモータから発生するパルス状の短絡電流がその誘起起電力の位相とちょうど逆の位相で発生する原理を利用し、この短絡電流発生は時間間隔をあけて2回実行し、その時間差と位相差より速度を推定、さらには位置(位相)を推定する起動法がある。   Another starting method is to use the principle that the output of the inverter is set in a short-circuit state for a short time, and then the pulsed short-circuit current generated from the PM motor is generated in exactly the opposite phase of the induced electromotive force. This short-circuit current generation is executed twice with a time interval, and there is an activation method in which the speed is estimated from the time difference and the phase difference, and further the position (phase) is estimated.

この起動法は、2回の短絡電流発生間隔が回転子の回転が電気角で180°以内になることが必要となるため、これらの制約を無くした速度・位置(位相)の推定方法として、短絡電流発生を3回以上とし、これらの発生電流の時間差と位相差を求め、さらにその差分をとって速度および位相を求める方法もある(例えば、特許文献2参照)。
特開2005−80458号公報 特開2004−215466号公報
Since this starting method requires that the short-circuit current generation interval of the rotation of the rotor be within 180 ° in terms of electrical angle, as an estimation method of speed / position (phase) without these restrictions, There is also a method in which the short-circuit current is generated three times or more, the time difference and phase difference of these generated currents are obtained, and the speed and phase are obtained by taking the difference (see, for example, Patent Document 2).
JP 2005-80458 A JP 2004-215466 A

上記の特許文献1の起動法は、電流指令に高周波電流を重畳させたときの電流iα,iβから回転子位置推定手段がモータの回転子位置推定を行い、起動時の制御ゲインを上げて応答を速めることで過電流を回避する。しかし、高周波電流重畳制御は、オブザーバ制御に比べて騒音(高周波による磁気騒音の発生)や効率が非常に悪くなる(高周波はトルクに寄与しない無効電力分となる)。また、高周波電流重畳回路と演算アルゴリズムを組み込むことは、システムを複雑にすると共に、演算を行なうCPUの負荷を上げることになり、特に高速回転領域では演算処理速度で問題になる場合がある。   In the starting method of the above-mentioned patent document 1, the rotor position estimating means estimates the rotor position of the motor from the currents iα and iβ when the high frequency current is superimposed on the current command, and increases the control gain at the time of starting to respond. Overcurrent is avoided by speeding up. However, the high-frequency current superimposition control has much worse noise (generation of magnetic noise due to high frequency) and efficiency than the observer control (high frequency is a reactive power component that does not contribute to torque). Incorporating a high-frequency current superimposing circuit and an arithmetic algorithm complicates the system and increases the load on the CPU that performs the arithmetic operation. In particular, the arithmetic processing speed may be a problem in a high-speed rotation region.

特許文献2のように、パルス状の短絡電流からモータの回転子位置推定を行うオブザーバを適用した起動法は、パルス状の短絡電流から位置を推定した拾い上げを行う機能を持たせるため、そのアルゴリズムを大幅に変更する必要があり、拾い上げ起動の機能を追加するためには装置の大幅な改良が必要となってしまう問題がある。   As in Patent Document 2, the start-up method using an observer that estimates the rotor position of a motor from a pulse-like short-circuit current has a function of performing a pick-up that estimates the position from a pulse-like short-circuit current. There is a problem that a significant improvement of the apparatus is required to add the pick-up activation function.

本発明の目的は、高周波電流重畳やパルス状の短絡電流を流すことなく、既存の位置センサレス制御装置に少しの機能追加で、高速空転状態からの拾い上げ起動ができるPMモータの可変速駆動装置を提供することにある。   The object of the present invention is to provide a variable speed drive device for a PM motor that can be picked up and started from a high speed idling state by adding a little function to an existing position sensorless control device without flowing a high frequency current superposition or a pulsed short circuit current. It is to provide.

本発明は、モータの誘起電圧が高い高速空転状態においても前記の課題を解決した拾い上げができるように、モータ拾い上げ時に電流制御系のゲインを大きくして電流制御系の応答性を高めることにより、モータの誘起電圧より発生するモータ電流の絶対値(波高値)を抑制し、このときのモータ電流がもつゼロクロスからモータの速度と位置(位相θ)を演算によって求め、このモータの速度と位相に合わせた逆変換回路の出力を得るものであり、以下の構成を特徴とする。   The present invention increases the gain of the current control system at the time of picking up the motor and increases the responsiveness of the current control system so that the above problem can be picked up even in a high speed idling state where the induced voltage of the motor is high. The absolute value (crest value) of the motor current generated from the induced voltage of the motor is suppressed, and the motor speed and position (phase θ) are obtained from the zero cross of the motor current at this time by calculation. The output of the combined inverse conversion circuit is obtained and has the following configuration.

(1)PMモータの電流指令と検出電流のフィードバック制御に基づいて逆変換回路の出力電圧を制御する電流制御系と、PMモータのα軸、β軸の電圧指令と、α軸、β軸の検出電流からオブザーバにより回転子の位相を推定する位相推定手段とを備えたPMモータの可変速駆動装置において、
空転状態のモータを起動するモータ拾い上げ時に、前記電流制御系の電流指令を0にし、かつ電流制御系のゲインを通常時の制御よりも大きくする拾い上げゲイン回路と、
前記検出電流のゼロクロス間の時間からPMモータの回転速度を求め、ゼロクロスの位置と回転速度からPMモータの位置(位相)を求める演算手段と、
を備えたことを特徴とする。
(1) A current control system for controlling the output voltage of the inverse conversion circuit based on the feedback control of the PM motor current command and detection current, the PM motor α-axis and β-axis voltage commands, and the α-axis and β-axis In a variable speed drive device for a PM motor comprising phase estimation means for estimating the phase of a rotor by an observer from a detected current,
A pick-up gain circuit that sets the current command of the current control system to 0 and picks up the gain of the current control system larger than the normal control when picking up the motor that starts the idling motor;
Calculation means for obtaining the rotational speed of the PM motor from the time between the zero crosses of the detected current, and obtaining the position (phase) of the PM motor from the position and rotational speed of the zero cross;
It is provided with.

(2)前記拾い上げゲイン回路は、
通常時のゲインに対してモータ拾い上げ時のゲインを係数で設定するゲイン設定器と、
モータ拾い上げ時に前記ゲイン設定器で設定するゲインを電流制御系のd軸,q軸の電圧指令Vd,Vqに掛ける乗算器と、
によって電流制御系のモータ拾い上げ時のゲインを通常時の制御よりも大きくするゲイン切り替え回路を備えたことを特徴とする。
(2) The pick-up gain circuit is
A gain setter that sets the gain when picking up the motor with a coefficient relative to the gain at the normal time,
A multiplier that multiplies the voltage commands Vd and Vq of the d-axis and q-axis of the current control system by a gain set by the gain setting device when picking up the motor;
Is provided with a gain switching circuit that makes the gain at the time of picking up the motor of the current control system larger than the control at the normal time.

(3)前記ゲイン切り替え回路は、モータ拾い上げ時のd軸側のゲインをq軸側よりも大きくした構成を特徴とする。   (3) The gain switching circuit is characterized in that the gain on the d-axis side when picking up the motor is larger than that on the q-axis side.

以上のとおり、本発明によれば、モータ拾い上げ時に電流制御系のゲインを大きくして電流制御系の応答性を高めることにより、モータの誘起電圧より発生するモータ電流の絶対値(波高値)を抑制し、このときのモータ電流がもつゼロクロスからモータの速度と位置(位相θ)を演算によって求め、このモータの速度と位相に合わせた逆変換回路の出力を得るため、高周波電流重畳やパルス状の短絡電流を流すことなく、既存の可変速駆動装置に少しの機能追加で、高速空転状態からの拾い上げ起動ができる。   As described above, according to the present invention, the absolute value (crest value) of the motor current generated from the induced voltage of the motor is increased by increasing the gain of the current control system and increasing the response of the current control system when picking up the motor. The motor speed and position (phase θ) is calculated from the zero cross of the motor current at this time, and the output of the inverse conversion circuit that matches the motor speed and phase is obtained. Without adding a short-circuit current, it can be picked up and started from a high-speed idling state by adding a few functions to the existing variable-speed drive device.

図1は、本発明の実施形態を示すPMモータの可変速駆動装置の全体構成図である。同図が図4と異なる部分は、拾い上げゲイン回路として、モータ拾い上げ時に電流制御部1A,1Bによる電圧指令Vd,VqのPI演算結果に係数(拾い上げゲイン)を掛けるゲイン設定器11と係数器12,13からなるゲイン切り替え回路を設ける。また、検出電流iα、iβのゼロクロス間の時間からPMモータの回転速度を求め、ゼロクロスの位置と回転速度からPMモータの位置(位相)を求める演算回路14を設ける。このモータ拾い上げ時は、可変速駆動装置が回生モードとなり、この回生エネルギーを吸収する図示しないバッテリまたはキャパシタなどの蓄電装置もしくは発電制動用抵抗器が必要となる。 FIG. 1 is an overall configuration diagram of a variable speed drive device for a PM motor showing an embodiment of the present invention. 4 differs from FIG. 4 in that a gain setting circuit 11 and a coefficient are used as a pick-up gain circuit to multiply the PI calculation result of the voltage commands V d and V q by the current control units 1A and 1B when picking up the motor. A gain switching circuit comprising the units 12 and 13 is provided. In addition, an arithmetic circuit 14 is provided that obtains the rotational speed of the PM motor from the time between the zero crosses of the detected currents iα and iβ, and obtains the position (phase) of the PM motor from the position and rotational speed of the zero cross. When the motor is picked up, the variable speed drive device is in a regenerative mode, and a power storage device such as a battery or a capacitor (not shown) or a power generation braking resistor that absorbs the regenerative energy is required.

ゲイン切り替え回路の追加により、モータ拾い上げ時に電流制御系のゲインを大きくすることで電流制御系の応答性を高め、この高い応答性の電流制御でモータの誘起電圧より発生するモータ電流の絶対値(波高値)を抑制する。このときのモータ電流がもつゼロクロスから、演算回路14がモータの速度と位置(位相θ)を演算によって求め、この位相θを座標変換部2,7に初期設定する。この設定により、可変速駆動装置ではモータの速度と位相に合わせた逆変換回路4の出力を得て拾い上げ起動を行い、その後に通常制御に戻す。   By adding a gain switching circuit, the response of the current control system is increased by increasing the gain of the current control system when picking up the motor, and the absolute value of the motor current generated from the induced voltage of the motor by this highly responsive current control ( (Crest value) is suppressed. The arithmetic circuit 14 calculates the motor speed and position (phase θ) from the zero cross of the motor current at this time, and initializes the phase θ in the coordinate conversion units 2 and 7. With this setting, the variable speed drive device obtains the output of the inverse conversion circuit 4 in accordance with the speed and phase of the motor, picks up and activates, and then returns to normal control.

図1の構成において、通常時は、オブザーバ8A等で構成される位相推定部8による磁極位相θを推定し、この推定値を基に位置センサレス制御を行う。モータ拾い上げ制御時には、電流指令Id *、Iq *は共に0とし、位相θの情報もわからないので0とする。このときに、検出される電流Idはモータの誘起電圧と同期しているため、検出される電流Idのゼロクロス間の時間を測定することによりPMモータの回転速度を求める。また、電流Idのゼロクロスの位置(ポイント)と回転速度を用いることでPMモータの位置(位相)を求める。 In the configuration of FIG. 1, in the normal state, the magnetic pole phase θ is estimated by the phase estimation unit 8 configured by the observer 8A and the like, and position sensorless control is performed based on this estimated value. At the time of motor pick-up control, the current commands I d * and I q * are both 0, and the phase θ information is not known, so it is 0. At this time, since the detected current I d is synchronized with the induced voltage of the motor, the rotational speed of the PM motor is obtained by measuring the time between zero crossings of the detected current I d . Further, the position (phase) of the PM motor is obtained by using the zero cross position (point) and the rotation speed of the current I d .

これら回転速度と位置の演算回路14およびゲイン設定器11と係数器12,13は、専用のディジタル演算手段として追加する構成、または制御装置がコンピュータ構成とされる場合にはソフトウェア構成として追加することができる。いずれの場合にも、少しの演算と制御機能の追加で済み、大幅な装置変更やアルゴリズム追加が不要になる。   The rotation speed and position calculation circuit 14, the gain setting unit 11, and the coefficient units 12 and 13 are added as dedicated digital calculation means, or added as a software configuration when the control device is configured as a computer. Can do. In either case, only a few calculations and control functions are required, and no significant device change or algorithm addition is required.

上記のゲイン設定器11によるゲイン設定は、通常時の制御でゲインを大きくすると振動するため、拾い上げ時と通常時でゲインを使い分けなくてはならない。通常時のゲインはここでは1とし、拾い上げ時のゲインを1よりも大きくする。   The gain setting by the gain setting unit 11 vibrates when the gain is increased in the normal control. Therefore, the gain must be properly used for picking up and normal. Here, the gain at the normal time is set to 1, and the gain at the time of picking up is made larger than 1.

図2は、ゲイン切り替え回路の具体例を示す。ゲインを切り替えの判断部15は、位置センサレス制御装置が通常制御モードか拾い上げ制御モードかによって判断し、切り替えスイッチ16を通常ゲインと拾い上げゲインの一方に切り替える。   FIG. 2 shows a specific example of the gain switching circuit. The gain switching determination unit 15 determines whether the position sensorless control device is in the normal control mode or the pickup control mode, and switches the changeover switch 16 to one of the normal gain and the pickup gain.

この図では、VdとVqに掛けるゲインは同じとする構成で示すが、実際はVd側に掛けるゲインを大きくするほうが効果的である。また、実際に掛けるゲインは通常時を1とすると、約2〜8倍程度でよい。あまり大きすぎるとオーバーフロー等の問題が生じるので注意しなければならない。 In this figure, the gain applied to V d and V q is shown as being the same, but in practice, it is more effective to increase the gain applied to the V d side. Further, the gain to be actually applied may be about 2 to 8 times when the normal time is 1. If it is too large, problems such as overflow will occur.

このように、ゲインを使い分けることによって拾い上げを容易に行なうことができる。図3はゲインを切り替えたときの電流波形のイメージを示し、実線がゲインを操作しない場合の波形を示し、破線が拾い上げゲインを掛けた場合の波形を示すもので、通常時と拾い上げ時の電流の周波数は変わらず、ゲイン切り替えで電流波高値のみが変化する。なお、モータ空転時の誘起電圧による回生エネルギーは、図示しないバッテリまたはキャパシタなどの蓄電装置への充電もしくは発電制動用抵抗器での消費のどちらでもよい。   In this way, picking up can be easily performed by properly using the gain. FIG. 3 shows an image of the current waveform when the gain is switched, the solid line shows the waveform when the gain is not operated, and the broken line shows the waveform when the pick-up gain is multiplied. The current at the normal time and the pick-up time The frequency does not change, and only the current peak value changes when the gain is switched. Note that the regenerative energy generated by the induced voltage during idling of the motor may be charged to a power storage device such as a battery or a capacitor (not shown) or consumed by a power generation braking resistor.

本発明の実施形態を示すPMモータの可変速駆動装置の全体構成図。1 is an overall configuration diagram of a variable speed drive device for a PM motor showing an embodiment of the present invention. ゲイン切り替え回路の具体例。A specific example of a gain switching circuit. ゲイン切り替え時の電流波形イメージ。Current waveform image when switching gain. PMモータの可変速駆動装置の構成例。The structural example of the variable speed drive device of PM motor.

符号の説明Explanation of symbols

1A,1B 電流制御部
2 座標変換部
3 2相/3相変換部
4 逆変換回路
5 PMモータ
6 3相/2相変換部
7 座標変換部
8 位相推定部
8A オブザーバ
8B 逆正接演算部
8C 微分演算部
11 ゲイン設定器
12、13 乗算器
14 演算回路
15 ゲイン判断部
16 切り替えスイッチ
1A, 1B Current control unit 2 Coordinate conversion unit 3 2-phase / 3-phase conversion unit 4 Inverse conversion circuit 5 PM motor 6 3-phase / 2-phase conversion unit 7 Coordinate conversion unit 8 Phase estimation unit 8A Observer 8B Inverse tangent calculation unit 8C Differentiation Operation unit 11 Gain setting unit 12, 13 multiplier
14 Arithmetic circuit 15 Gain judgment unit 16 Changeover switch

Claims (3)

PMモータの電流指令と検出電流のフィードバック制御に基づいて逆変換回路の出力電圧を制御する電流制御系と、PMモータのα軸、β軸の電圧指令と、α軸、β軸の検出電流からオブザーバにより回転子の位相を推定する位相推定手段とを備えたPMモータの可変速駆動装置において、
空転状態のモータを起動するモータ拾い上げ時に、前記電流制御系の電流指令を0にし、かつ電流制御系のゲインを通常時の制御よりも大きくする拾い上げゲイン回路と、
前記検出電流のゼロクロス間の時間からPMモータの回転速度を求め、ゼロクロスの位置と回転速度からPMモータの位置(位相)を求める演算手段と、
を備えたことを特徴とするPMモータの可変速駆動装置。
From the current control system that controls the output voltage of the inverse conversion circuit based on the feedback control of the PM motor current command and detected current, the PM motor α-axis and β-axis voltage commands, and the α-axis and β-axis detected currents In a variable speed drive device for a PM motor comprising phase estimation means for estimating the phase of a rotor by an observer,
A pick-up gain circuit that sets the current command of the current control system to 0 and picks up the gain of the current control system larger than the normal control when picking up the motor that starts the idling motor;
Calculation means for obtaining the rotational speed of the PM motor from the time between the zero crosses of the detected current, and obtaining the position (phase) of the PM motor from the position and rotational speed of the zero cross;
A variable speed drive device for a PM motor, comprising:
前記拾い上げゲイン回路は、
通常時のゲインに対してモータ拾い上げ時のゲインを係数で設定するゲイン設定器と、
モータ拾い上げ時に前記ゲイン設定器で設定するゲインを電流制御系のd軸,q軸の電圧指令Vd,Vqに掛ける乗算器と、
によって電流制御系のモータ拾い上げ時のゲインを通常時の制御よりも大きくするゲイン切り替え回路を備えたことを特徴とする請求項1に記載のPMモータの可変速駆動装置。
The pick-up gain circuit is
A gain setter that sets the gain when picking up the motor with a coefficient relative to the gain at the normal time,
A multiplier that multiplies the voltage commands Vd and Vq of the d-axis and q-axis of the current control system by a gain set by the gain setting device when picking up the motor;
2. The variable speed drive device for a PM motor according to claim 1, further comprising a gain switching circuit for increasing a gain at the time of picking up the motor of the current control system larger than that at a normal control.
前記ゲイン切り替え回路は、モータ拾い上げ時のd軸側のゲインをq軸側よりも大きくした構成を特徴とする請求項2に記載のPMモータの可変速駆動装置。   The variable speed drive device for a PM motor according to claim 2, wherein the gain switching circuit has a configuration in which a gain on the d-axis side when picking up the motor is larger than that on the q-axis side.
JP2008041530A 2008-02-22 2008-02-22 Variable speed driver of pm motor Pending JP2009201284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041530A JP2009201284A (en) 2008-02-22 2008-02-22 Variable speed driver of pm motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041530A JP2009201284A (en) 2008-02-22 2008-02-22 Variable speed driver of pm motor

Publications (1)

Publication Number Publication Date
JP2009201284A true JP2009201284A (en) 2009-09-03

Family

ID=41144196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041530A Pending JP2009201284A (en) 2008-02-22 2008-02-22 Variable speed driver of pm motor

Country Status (1)

Country Link
JP (1) JP2009201284A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197900B1 (en) 2009-05-25 2012-11-05 가부시끼가이샤 도시바 Motor driver for washing machine
EP2573934A4 (en) * 2010-05-20 2017-08-30 Kabushiki Kaisha Toshiba, Inc. Control device without a rotation sensor
WO2018203387A1 (en) * 2017-05-02 2018-11-08 三菱電機株式会社 Electric motor control apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137367A (en) * 1991-11-12 1993-06-01 Mitsubishi Electric Corp Motor controller
JP2004328920A (en) * 2003-04-25 2004-11-18 Yaskawa Electric Corp Sensorless control method and control device for ac motor
JP2007135250A (en) * 2005-11-08 2007-05-31 Meidensha Corp Restarting system for synchronous motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05137367A (en) * 1991-11-12 1993-06-01 Mitsubishi Electric Corp Motor controller
JP2004328920A (en) * 2003-04-25 2004-11-18 Yaskawa Electric Corp Sensorless control method and control device for ac motor
JP2007135250A (en) * 2005-11-08 2007-05-31 Meidensha Corp Restarting system for synchronous motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197900B1 (en) 2009-05-25 2012-11-05 가부시끼가이샤 도시바 Motor driver for washing machine
EP2573934A4 (en) * 2010-05-20 2017-08-30 Kabushiki Kaisha Toshiba, Inc. Control device without a rotation sensor
WO2018203387A1 (en) * 2017-05-02 2018-11-08 三菱電機株式会社 Electric motor control apparatus
JPWO2018203387A1 (en) * 2017-05-02 2019-07-25 三菱電機株式会社 Motor controller

Similar Documents

Publication Publication Date Title
US9590552B2 (en) Motor drive device and electric compressor
JP5853097B2 (en) Three-phase synchronous motor drive device, integrated three-phase synchronous motor, positioning device and pump device
JP3627683B2 (en) Motor control device
JP5697745B2 (en) Synchronous motor drive system
JP4067949B2 (en) Motor control device
US6344725B2 (en) Method and apparatus for controlling a synchronous motor
JP3719910B2 (en) Motor control device
JP4989075B2 (en) Electric motor drive control device and electric motor drive system
JP4406552B2 (en) Electric motor control device
JP5281339B2 (en) Synchronous motor drive system and control device used therefor
WO2011145334A1 (en) Control device without a rotation sensor
WO2014128887A1 (en) Motor control device
JP2001245498A (en) Control apparatus of synchronous motor and vehicle using the same
JP3894286B2 (en) Control device for permanent magnet synchronous motor
JP6241460B2 (en) Electric motor control device
JP2004072906A (en) Vector control inverter arrangement
JP5509167B2 (en) Synchronous motor control system
JP2000156993A (en) Apparatus and method for control of permanent magnet synchronous machine
CN109983689B (en) Inverter control device and motor drive system
JP4590761B2 (en) Control device for permanent magnet type synchronous motor
JP2002051580A (en) Position-sensorless control method for synchronous motor, and position-sensorless controller
JP5223280B2 (en) Turbocharger control system with electric motor
JP2009201284A (en) Variable speed driver of pm motor
JP2019208329A (en) Sensorless vector control device and sensorless vector control method
JP4826550B2 (en) Turbocharger control system with electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108