[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009296348A - Image capturing device - Google Patents

Image capturing device Download PDF

Info

Publication number
JP2009296348A
JP2009296348A JP2008148246A JP2008148246A JP2009296348A JP 2009296348 A JP2009296348 A JP 2009296348A JP 2008148246 A JP2008148246 A JP 2008148246A JP 2008148246 A JP2008148246 A JP 2008148246A JP 2009296348 A JP2009296348 A JP 2009296348A
Authority
JP
Japan
Prior art keywords
optical window
transmittance
green
color
spectral transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008148246A
Other languages
Japanese (ja)
Inventor
Daisuke Sasaki
大輔 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008148246A priority Critical patent/JP2009296348A/en
Publication of JP2009296348A publication Critical patent/JP2009296348A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Blocking Light For Cameras (AREA)
  • Optical Filters (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that in a monitor camera, a housing with an optical window to be protected or invisible from outside is mounted thereon and there is a case where the optical window is comprised of a lowered transmittance smoked color so as to be removable or invisible from outside depending on use environment but if spectral transmittance of the optical window is not properly determined, color balance of an image picked up by the monitor camera is lost when removably mounting the optical window on the housing. <P>SOLUTION: Spectral transmittance of an optical window is adjusted so that a change between transmissive light quantitative ratio of red and green determined when mounting the optical window in front of the optical system and the transmissive light quantitative ratio of blue and green is maintained within ≤5.0% on the basis of the transmissive light quantitative ratio of red and green and the transmissive light quantitative ratio of blue and green obtained by integrating from a visible wavelength region to an infrared wave length region based on composite transmittance of an image pick-up optical system, an infrared cut filter and image sensor color filter. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は着脱可能な光学窓を有するハウジングを備えた撮像装置において、撮影画像のカラーバランスへの影響を安定させる光学窓の分光透過率の調整範囲と、それを備えた撮像装置に関するものである。   The present invention relates to an adjustment range of a spectral transmittance of an optical window that stabilizes an influence on a color balance of a photographed image in an imaging apparatus including a housing having a detachable optical window, and an imaging apparatus including the adjustment range. .

撮像装置に備えられた光学フィルタの分光透過率の調整に関する従来例として、特許文献1に記載された「絞り装置および光学フィルタ」がある。これは撮像レンズの赤外領域における透過率の変動を、光学フィルタの透過率によって補正して、赤外領域において、可視領域の透過率と同等の透過率を得ることができるものである。   As a conventional example relating to the adjustment of the spectral transmittance of an optical filter provided in an imaging device, there is “aperture device and optical filter” described in Patent Document 1. This is because the transmittance variation in the infrared region of the imaging lens is corrected by the transmittance of the optical filter, and in the infrared region, a transmittance equivalent to the transmittance in the visible region can be obtained.

光学フィルタは、透過率が最大となるピーク波長を可視領域内に有する撮像レンズと共に前記被写体からの光を透過する光学フィルタであって、前記ピーク波長から赤外領域の波長までの間における前記撮像レンズとの合成透過率が実質的に一定となるように透過率が設定されている。
特許第3727934号公報
The optical filter is an optical filter that transmits light from the subject together with an imaging lens having a maximum peak wavelength in the visible region, and the imaging between the peak wavelength and the wavelength in the infrared region. The transmittance is set so that the combined transmittance with the lens is substantially constant.
Japanese Patent No. 3727934

屋外や屋内を監視する監視カメラにおいて、監視カメラに保護あるいは外部から見えづらくする目的で光学窓を有したハウジングを装着することがある。監視カメラは使用環境によって、前記光学窓を有したハウジングを着脱する、あるいは外部から見えづらくする目的で前記光学窓は透過率を下げたスモーク色で構成される場合がある。   2. Description of the Related Art In a surveillance camera that monitors outdoors or indoors, a housing having an optical window may be attached to the surveillance camera for the purpose of protecting or making it difficult to see from the outside. In some surveillance cameras, the optical window may be configured with a smoke color with reduced transmittance for the purpose of detaching the housing having the optical window or making it difficult to see from outside.

しかし前記光学窓が透過率を下げたスモーク色であった場合、光学窓の分光透過率が適切に設定されていないと、その影響で監視カメラの撮影画面のカラーバランスが崩れることがある。   However, when the optical window has a smoke color with a reduced transmittance, the color balance of the photographing screen of the surveillance camera may be lost due to the influence if the spectral transmittance of the optical window is not set appropriately.

監視カメラに自動ホワイトバランス調整機能がついていた場合、前記光学窓の着脱によるカラーバランスの補正が可能となる。しかし、あらかじめ設定してある撮像光源別のホワイトバランスの引き込み範囲は、前記光学窓を装着していない状態で最適化されているため、前記光学窓を装着した状態では撮像光源によって自動ホワイトバランス調整機能が十分に効かないことがある。   When the surveillance camera has an automatic white balance adjustment function, color balance can be corrected by attaching and detaching the optical window. However, the preset white balance pull-in range for each imaging light source is optimized when the optical window is not installed, so automatic white balance adjustment is performed by the imaging light source when the optical window is installed. The function may not work sufficiently.

また監視カメラに自動赤外カットフィルタ切換え機能があり、赤外カットフィルタ切換えのタイミングを撮影画像の色に基づき判断していた場合、あらかじめ設定してある赤外光の色範囲は、前記光学窓を装着していない状態で最適化されているため、撮像光源によっては自動赤外カットフィルタ切換え機能が誤作動することがある。   The surveillance camera has an automatic infrared cut filter switching function, and when the infrared cut filter switching timing is determined based on the color of the photographed image, the preset infrared light color range is the optical window. Therefore, depending on the imaging light source, the automatic infrared cut filter switching function may malfunction.

本発明は、撮像光学系と、赤外カットフィルタと、前面にカラーフィルタを配した撮像素子と、光透過性樹脂により構成された着脱可能な光学窓を有するハウジングとを備えた撮像装置であって、前記撮像光学系と前記赤外カットフィルタと前記カラーフィルタの合成分光透過率を各色において可視波長領域から赤外波長領域まで積分して求められる赤色と緑色の透過光量比、及び青色と緑色の透過光量比を基準とし、
前記撮像光学系と前記赤外カットフィルタと前記カラーフィルタ及び前記光学窓の合成分光透過率を各色において可視波長領域から赤外波長領域まで積分して求められる赤色と緑色の透過光量比、及び青色と緑色の透過光量比と各々の基準との差異の和を5.0%以下に収まるように、前記光学窓の分光透過率を調整すると共に、着脱可能な光学窓を有するハウジングを備えた撮像装置である。
The present invention is an image pickup apparatus including an image pickup optical system, an infrared cut filter, an image pickup element having a color filter disposed on the front surface, and a housing having a detachable optical window made of a light-transmitting resin. The ratio of the transmitted light amount of red and green obtained by integrating the combined spectral transmittance of the imaging optical system, the infrared cut filter, and the color filter from the visible wavelength region to the infrared wavelength region in each color, and blue and green Based on the transmitted light ratio of
Red and green transmitted light amount ratio obtained by integrating the spectral spectral transmittance of the imaging optical system, the infrared cut filter, the color filter, and the optical window from the visible wavelength region to the infrared wavelength region in each color, and blue An image pickup apparatus including a housing having a detachable optical window and adjusting a spectral transmittance of the optical window so that a sum of a difference between each light intensity ratio of green and green and each reference is within 5.0%. is there.

上記のように光学窓の分光透過率を調整すると、撮像素子が受光する各色成分の透過光量比は光学窓の着脱により影響をほとんど受けないため、結果として撮影画像のカラーバランスの変化は視感度において判別しづらいレベルに安定させることが可能である。   When the spectral transmittance of the optical window is adjusted as described above, the ratio of transmitted light of each color component received by the image sensor is hardly affected by the attachment / detachment of the optical window. It is possible to stabilize at a level that is difficult to discriminate.

さらに前記着脱可能な光学窓を有するハウジングを備えた撮像装置は、前記光学窓を可視波長領域の平均透過率よりも赤外波長領域の平均透過率の方が高くなるように分光透過率を調整したことを特徴とする。   Furthermore, the image pickup apparatus including the housing having the removable optical window adjusts the spectral transmittance so that the average transmittance in the infrared wavelength region of the optical window is higher than the average transmittance in the visible wavelength region. It is characterized by that.

赤外波長領域まで撮影可能な監視カメラであって、さらに前記光学窓が透過率を下げたスモーク色であるハウジングを備えていた場合、夜間など撮影光量が少ない環境下での撮影では前記光学窓が撮像可能な最低照度性能を低下させることとなる。しかし、上記のように赤外波長領域の平均透過率を高く設定することによって、カラーバランスを安定させたまま最低照度性能の低下を防止することができる。   A surveillance camera capable of photographing up to an infrared wavelength region, and the optical window further includes a smoke-colored housing with reduced transmittance. Decreases the minimum illuminance performance that can be imaged. However, by setting the average transmittance in the infrared wavelength region high as described above, it is possible to prevent the minimum illuminance performance from being lowered while the color balance is stabilized.

さらに前記着脱可能な光学窓を有するハウジングを備えた撮像装置は、前記光学窓を構成する光透過性樹脂がポリカーボネートあるいはアクリルであって、前記光学窓の分光透過率の調整は、耐光性を有する樹脂調色顔料の組合せで調整することを特徴とする。   Furthermore, in the imaging apparatus including the housing having the removable optical window, the light-transmitting resin constituting the optical window is polycarbonate or acrylic, and the adjustment of the spectral transmittance of the optical window has light resistance. It is characterized by adjusting by a combination of resin toning pigments.

光学窓を構成する材料は、可視波長領域から赤外波長領域までの分光透過率を一定に管理されたNDフィルタであれば問題ないが、一般的にそのようなNDフィルタは含有成分の微妙な調整や多層コーティング等で高価であることが多い。また前記光学窓を有したハウジングは内部に撮像装置を格納するため大型化し、光学窓はさらに高価になる。しかし、上記のような分光透過率の調整範囲を持つ光学窓は、材質がポリカーボネートやアクリルであり、かつ樹脂調色顔料の組合せのみで十分製作が可能であり安価に構成できる。   There is no problem as long as the material constituting the optical window is an ND filter in which the spectral transmittance from the visible wavelength region to the infrared wavelength region is controlled to be constant, but in general, such an ND filter has a delicate content. It is often expensive due to adjustment and multilayer coating. Further, the housing having the optical window is increased in size because the image pickup apparatus is accommodated therein, and the optical window becomes more expensive. However, the optical window having the spectral transmittance adjustment range as described above is made of polycarbonate or acrylic, and can be sufficiently manufactured only by a combination of resin toning pigments and can be configured at low cost.

また前記光学窓の分光透過率の調整で耐光性を有した樹脂調色顔料を使用することで、長期間にわたる光学窓の使用でも撮影画像のカラーバランスが変化することはない。   Further, by using a resin toning pigment having light resistance by adjusting the spectral transmittance of the optical window, the color balance of the photographed image does not change even when the optical window is used for a long period of time.

本発明によれば、撮像光学系と赤外カットフィルタと撮像素子カラーフィルタの合成透過率に基づき、光学窓の分光透過率を所定の条件で調整することで、着脱に伴う撮影画像のカラーバランスを安定させた撮像装置を提供できる。   According to the present invention, based on the combined transmittance of the imaging optical system, the infrared cut filter, and the imaging element color filter, the spectral balance of the optical window is adjusted under a predetermined condition, so that the color balance of the photographed image that accompanies attachment and detachment. Can be provided.

次に、本発明の詳細を実施例の記述に従って説明する。   Next, details of the present invention will be described in accordance with the description of the embodiments.

以下に、本発明の実施の形態を添付の図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

前記着脱可能な光学窓を有したハウジングを備えた撮像装置において、撮像光学系と赤外カットフィルタと撮像素子カラーフィルタの合成透過率に基づいた、光学窓の分光透過率の調整範囲について実施形態を詳細に説明する。本発明の実施形態の概略図を図1に示す。   In an imaging apparatus including a housing having the detachable optical window, an embodiment of an adjustment range of the spectral transmittance of the optical window based on the combined transmittance of the imaging optical system, the infrared cut filter, and the image sensor color filter Will be described in detail. A schematic diagram of an embodiment of the present invention is shown in FIG.

着脱可能な光学窓を有したハウジングを備えた撮像装置は図1に示すように、撮像光学系2の前面に配置された着脱可能な光学窓1と、撮像光学系2と赤外カットフィルタ3と撮像素子5の前面に配された撮像素子カラーフィルタ4から構成されている。   As shown in FIG. 1, an image pickup apparatus having a housing having a detachable optical window includes a detachable optical window 1 disposed in front of the image pickup optical system 2, an image pickup optical system 2, and an infrared cut filter 3. And the image sensor color filter 4 disposed in front of the image sensor 5.

被写体からの反射光6は光学窓を装着しない場合、まず撮像光学系2及び赤外カットフィルタ3を透過することで、特定波長帯域をカットされる。   When the reflected light 6 from the subject does not have an optical window, the specific wavelength band is cut by first passing through the imaging optical system 2 and the infrared cut filter 3.

撮像光学系2の分光透過率を、fLwns(x)、赤外カットフィルタ3の分光透過率をfIR(x)とする。 The spectral transmittance of the imaging optical system 2 is assumed to be f Lwns (x), and the spectral transmittance of the infrared cut filter 3 is assumed to be f IR (x).

xは波長を示す。   x represents a wavelength.

前記撮像光学系2及び赤外カットフィルタ3を透過した反射光6は、撮像素子カラーフィルタ4により赤色、緑色、青色成分に分解され撮像素子5へ入射する。   The reflected light 6 that has passed through the imaging optical system 2 and the infrared cut filter 3 is decomposed into red, green, and blue components by the image sensor color filter 4 and enters the image sensor 5.

撮像素子カラーフィルタ4の各色の分光透過率をfR(x)、fG(x)、fB(x)とする。 The spectral transmittance of each color of the image sensor color filter 4 is assumed to be f R (x), f G (x), and f B (x).

撮像光学系2と赤外カットフィルタ3及び撮像素子カラーフィルタ4の各色の分光透過率グラフを図2、分光透過率の表を図4に示す。   FIG. 2 shows a spectral transmittance graph of each color of the imaging optical system 2, the infrared cut filter 3, and the image sensor color filter 4, and FIG. 4 shows a table of spectral transmittance.

最終的に撮像素子5へ入射する反射光は、
撮像光学系2と赤外カットフィルタ3と撮像素子カラーフィルタ4の合成透過率
R0(x)=fLens(x)・fIR(x)・fR(x)
G0(x)=fLens(x)・fIR(x)・fG(x)
B0(x)=fLens(x)・fIR(x)・fB(x)
で表わされる。
The reflected light finally incident on the image sensor 5 is
Composite transmittance of imaging optical system 2, infrared cut filter 3, and image sensor color filter 4 F R0 (x) = f Lens (x), f IR (x), f R (x)
F G0 (x) = f Lens (x), f IR (x), f G (x)
F B0 (x) = f Lens (x), f IR (x), f B (x)
It is represented by

撮像素子カラーフィルタ4の分光透過率と前記合成透過率FR0(x)、FG0(x)、FB0(x)のグラフを図3、分光透過率の表を図4に示す。 A graph of the spectral transmittance of the image sensor color filter 4 and the combined transmittances F R0 (x), F G0 (x), and F B0 (x) is shown in FIG. 3, and a table of spectral transmittance is shown in FIG.

また撮像素子5が受光する赤色、緑色、青色の透過光量は、前記合成透過率FR0(x)、FG0(x)、FB0(x)を可視波長領域から赤外波長領域の範囲で積分した値 The red, green, and blue transmitted light received by the image sensor 5 is the combined transmittance F R0 (x), F G0 (x), and F B0 (x) in the range from the visible wavelength region to the infrared wavelength region. Integrated value

Figure 2009296348
Figure 2009296348

で表わされる。 It is represented by

撮影画像のカラーバランスは、前記撮像素子5が受光する赤色、緑色、青色の透過光量に基づいて、明るさ成分である緑色透過光量を基準として、赤色及び青色透過光量との比をとることで定量化できる。   The color balance of the photographed image is based on the transmitted light amounts of red, green, and blue light received by the image sensor 5 and is based on the ratio of the transmitted light amount of red and blue with reference to the transmitted light amount of green that is a brightness component. It can be quantified.

前記光学窓を装着しない場合における撮影画像のカラーバランスは、赤色と緑色の透過光量比   When the optical window is not installed, the color balance of the photographed image is the ratio of the transmitted light amount between red and green.

Figure 2009296348
Figure 2009296348

青色と緑色の透過光量比   Blue to green transmitted light ratio

Figure 2009296348
Figure 2009296348

で表わすことができる。 It can be expressed as

図3に示す撮像素子カラーフィルタ4の分光透過率と前記合成透過率FR0(x)、FG0(x)、FB0(x)を比較すると、撮像光学系2及び赤外カットフィルタ3の影響で430nmより短波長側及び650nmより長波長側において合成透過率FR0(x)、FG0(x)、FB0(x)が減衰していることが分かる。 When the spectral transmittance of the image sensor color filter 4 shown in FIG. 3 is compared with the combined transmittances F R0 (x), F G0 (x), and F B0 (x), the imaging optical system 2 and the infrared cut filter 3 are compared. It can be seen that the combined transmittances F R0 (x), F G0 (x), and F B0 (x) are attenuated due to the influence on the shorter wavelength side than 430 nm and on the longer wavelength side than 650 nm.

この帯域の波長光は430nmから650nmの帯域の波長光と比較し透過率が低いため、撮像素子5が受光する赤色、緑色、青色の透過光量に対する影響が少ない、つまり撮影画像のカラーバランスに影響が少ないと言える。   The wavelength light in this band has a lower transmittance than the wavelength light in the band of 430 nm to 650 nm, and therefore has little effect on the red, green, and blue transmitted light received by the image sensor 5, that is, it affects the color balance of the photographed image. It can be said that there are few.

次に透過特性の異なる2種類の光学窓の分光透過率を図5に示す。   Next, FIG. 5 shows spectral transmittances of two types of optical windows having different transmission characteristics.

サンプル1の光学窓の分光透過率をg1(x)、サンプル2の光学窓の分光透過率をg2(x)とする。 The spectral transmittance of the optical window of sample 1 is g 1 (x), and the spectral transmittance of the optical window of sample 2 is g 2 (x).

サンプル1の光学窓は、波形のばらつきが少なく長波長側になるに従って徐々に透過率が上がる特性を持つ。サンプル2の光学窓は、波形のばらつきが多く短波長側及び長波長側で急激に透過率が上がる特性を持っている。   The optical window of sample 1 has a characteristic that the transmittance gradually increases as it becomes longer wavelength side with little variation in waveform. The optical window of the sample 2 has a characteristic that the transmittance is abruptly increased on the short wavelength side and the long wavelength side with many waveform variations.

サンプル1の光学窓を装着した場合、撮像素子5へ入射する反射光は、撮像光学系2と赤外カットフィルタ3と撮像素子カラーフィルタ4及びサンプル1の光学窓の合成透過率は、
R1(x)=g1(x)・FR0(x)、FG1(x)=g1(x)・FG0(x)、FB1(x)=g1(x)・FB0(x)で表わされる。
When the optical window of the sample 1 is mounted, the reflected light incident on the image sensor 5 is the combined transmittance of the image pickup optical system 2, the infrared cut filter 3, the image sensor color filter 4, and the optical window of the sample 1.
F R1 (x) = g 1 (x) · F R0 (x), F G1 (x) = g 1 (x) · F G0 (x), F B1 (x) = g 1 (x) · F B0 It is represented by (x).

光学窓を装着しない時の前記合成透過率と、サンプル1装着時の合成透過率のグラフを図6、分光透過率の表を図7に示す。またサンプル1装着時の撮影画像のカラーバランスは、   FIG. 6 shows a graph of the combined transmittance when the optical window is not mounted and the combined transmittance when the sample 1 is mounted, and FIG. 7 shows a table of spectral transmittance. In addition, the color balance of the photographed image when Sample 1 is installed is

Figure 2009296348
Figure 2009296348

で表わすことができる。 It can be expressed as

サンプル2の光学窓を装着した場合、撮像素子5へ入射する反射光は、撮像光学系2と赤外カットフィルタ3と撮像素子カラーフィルタ4及びサンプル2の光学窓の合成透過率は、
R2(x)=g2(x)・FR0(x)、FG2(x)=g2(x)・FG0(x)、FB2(x)=g2(x)・FB0(x)で表わされる。
When the optical window of the sample 2 is mounted, the reflected light incident on the image sensor 5 is the combined transmittance of the image pickup optical system 2, the infrared cut filter 3, the image sensor color filter 4, and the optical window of the sample 2.
F R2 (x) = g 2 (x) · F R0 (x), F G2 (x) = g 2 (x) · F G0 (x), F B2 (x) = g 2 (x) · F B0 It is represented by (x).

光学窓を装着しない時の前記合成透過率と、サンプル2装着時の合成透過率のグラフを図8、分光透過率の表を図9に示す。またサンプル2装着時の撮影画像のカラーバランスは、   FIG. 8 is a graph of the combined transmittance when the optical window is not mounted and the combined transmittance when the sample 2 is mounted, and FIG. 9 is a table of spectral transmittance. In addition, the color balance of the captured image when Sample 2 is installed is

Figure 2009296348
Figure 2009296348

で表わすことができる。 It can be expressed as

前記光学窓の着脱に伴う撮影画像のカラーバランスの変化は、装着しない場合の赤色と緑色の透過光量比及び青色と緑色の透過光量比を基準とし、装着した場合の赤色と緑色の透過光量比及び青色と緑色の透過光量比と各々の基準との差異を加算することで定量的に評価できる。   The change in the color balance of the photographed image that accompanies the attachment / detachment of the optical window is based on the ratio of the transmitted light amount of red and green and the transmitted light amount ratio of blue and green when not mounted, and the transmitted light amount ratio of red and green when mounted. In addition, it is possible to evaluate quantitatively by adding the difference between the transmitted light amount ratio of blue and green and the respective standards.

サンプル1の光学窓による変化として、ΔH1=|HR1-HR0|/HR0+|HB1-HB0|/HB0
サンプル2の光学窓による変化として、ΔH2=|HR2-HR0|/HR0+|HB2-HB0|/HB0
で表わせる。
ΔH 1 = | H R1 -H R0 | / H R0 + | H B1 -H B0 | / H B0
ΔH 2 = | H R2 −H R0 | / H R0 + | H B2 −H B0 | / H B0
It can be expressed as

光学窓の着脱による撮影画像のカラーバランスの変化ΔHを人の目でほとんど判別できない程度に抑えるには、一般的にL*a*b表色系における色差ΔE*abを1.5以下に抑えれば良いとされている。撮像する被写体の色彩や明度にも依存するが、L*a*b表色系における色差ΔE*abの1.5以下は、前記カラーバランスの変化ΔHに換算するとおおよそ5.0%以下であれば達成が可能である。   In order to suppress the change ΔH in the color balance of the photographed image due to the attachment / detachment of the optical window to such an extent that it can hardly be discerned by human eyes, the color difference ΔE * ab in the L * a * b color system is generally suppressed to 1.5 or less. It should be good. Although depending on the color and brightness of the subject to be imaged, 1.5 or less of the color difference ΔE * ab in the L * a * b color system should be approximately 5.0% or less when converted to the color balance change ΔH. Can be achieved.

サンプル1の光学窓の着脱に伴う合成透過率の変化として、図6に着目すると青色透過率であるFB1(x)はFB0(x)より下回り、赤色透過率であるFR1(x)はFR0(x)より上回っていることがわかる。 As the change in the combined transmittance accompanying the attachment / detachment of the optical window of Sample 1, when focusing on FIG. 6, the blue transmittance F B1 (x) is lower than F B0 (x), and the red transmittance is F R1 (x). It can be seen that is higher than F R0 (x).

青色と緑色の透過光量比の基準との差異は、ΔHB1=|HB1-HB0|/HB0であり図7に示すように7.55%であり、
赤色と緑色の透過光量比の基準との差異は、ΔHR1=|HR1-HR0|/HR0であり図7に示すように7.87%である。
The difference between the blue and green transmitted light amount ratio reference is ΔH B1 = | H B1 -H B0 | / H B0, which is 7.55% as shown in FIG.
The difference between the red and green transmitted light amount ratio reference is ΔH R1 = | H R1 −H R0 | / H R0, which is 7.87% as shown in FIG.

前記透過光量比の基準との差異の和である撮影画像のカラーバランスの変化ΔH1は、15.42%となる。よって着脱可能なサンプル1の光学窓を有したハウジングを備えた撮像装置は、光学窓の着脱に伴う撮影画像のカラーバランスの変化ΔH1が大きく、色再現性や色情報を用いた制御に関して安定性が保てない。 The change ΔH 1 in the color balance of the photographed image, which is the sum of the differences from the transmitted light amount ratio reference, is 15.42%. Therefore, the image pickup apparatus including the housing having the optical window of the detachable sample 1 has a large change ΔH 1 in the color balance of the photographed image accompanying the attachment / detachment of the optical window, and is stable with respect to color reproducibility and control using color information. Sex cannot be maintained.

サンプル2の光学窓の着脱に伴う合成透過率の変化として、図8に着目すると青色透過率であるFB2(x)、赤色透過率であるFR2(x)共に波形はばらついているが、
青色と緑色の透過光量比の基準との差異は、ΔHB2=|HB2-HB0|/HB0であり図9に示すように3.24%であり、
赤色と緑色の透過光量比の基準との差異は、ΔHR2=|HR2-HR0|/HR0であり図9に示すように0.46%である。
As the change in the combined transmittance associated with the attachment and detachment of the optical window of sample 2, the waveform varies for both F B2 (x) which is blue transmittance and F R2 (x) which is red transmittance when focusing on FIG.
The difference from the blue and green transmitted light amount ratio reference is ΔH B2 = | H B2 −H B0 | / H B0, which is 3.24% as shown in FIG.
The difference between the red and green transmitted light amount ratio reference is ΔH R2 = | H R2 −H R0 | / H R0, which is 0.46% as shown in FIG.

前記透過光量比の基準との差異の和である撮影画像のカラーバランスの変化ΔH2は、3.70%となる。よって着脱可能なサンプル2の光学窓を有したハウジングを備えた撮像装置は、光学窓の着脱に伴う撮影画像のカラーバランスの変化ΔH2がほとんど無く、色再現性や色情報を用いた制御に関して安定性が高い。 A change ΔH 2 in the color balance of the photographed image, which is the sum of the differences from the transmitted light ratio, is 3.70%. Therefore, the image pickup apparatus including the housing having the optical window of the detachable sample 2 has almost no change ΔH 2 in the color balance of the photographed image due to the attachment / detachment of the optical window, and is related to control using color reproducibility and color information. High stability.

サンプル2の光学窓の分光透過率は、430nmより短波長側及び650nmより長波長側にて透過率が上がっているが、この波長帯域は上記のように撮影画像のカラーバランスの変化ΔH2にほとんど影響を与えていない。650nmより長波長側で透過率が高いことは、赤外光による暗視撮影に有利である。よって赤外波長領域まで撮影可能な撮像装置においては、可視波長領域の平均透過率よりも赤外波長領域の平均透過率の方が高くなるように前記光学窓の分光透過率を調整することが望ましい。 The spectral transmittance of the optical window of sample 2 increases on the short wavelength side from 430 nm and on the long wavelength side from 650 nm, and this wavelength band is changed to the change ΔH 2 in the color balance of the photographed image as described above. Has almost no effect. A high transmittance on the longer wavelength side than 650 nm is advantageous for night vision photography using infrared light. Therefore, in an imaging device capable of photographing up to the infrared wavelength region, the spectral transmittance of the optical window can be adjusted so that the average transmittance in the infrared wavelength region is higher than the average transmittance in the visible wavelength region. desirable.

サンプル2の光学窓の分光透過率の波形特性は、全波長帯域においてばらつきを有しているが、着脱に伴う撮像画像のカラーバランスの変化ΔH2は安定している。このようなばらつきを許容できるため、光学窓を構成する材料は、例えば光透過性を有するポリカーボネートやアクリル等の樹脂材料であり、一般的な樹脂調色顔料の組合せのみでも十分調整可能である。また前記樹脂調色顔料は、光学窓の長期間の使用でも分光透過率の変化がないよう耐光性を有したものを使用することが望ましい。 The waveform characteristics of the spectral transmittance of the optical window of sample 2 have variations in the entire wavelength band, but the change ΔH 2 in the color balance of the captured image accompanying attachment / detachment is stable. Since such variations can be tolerated, the material constituting the optical window is, for example, a resin material such as polycarbonate or acrylic having light transmittance, and can be sufficiently adjusted only by a combination of general resin toning pigments. Further, it is desirable to use the resin toning pigment having light resistance so that the spectral transmittance does not change even when the optical window is used for a long time.

本発明のように、光学窓の分光透過率を調整すれば、撮像装置の色再現性や色情報を用いた制御の安定性を損なうことがない。また、赤外波長領域を撮像可能な撮像装置においては、赤外光での撮影可能な最低照度性能を下げることはない。さらに分光透過率の波形特性にばらつきを許容できるため、安価な樹脂及び樹脂調色顔料の調整のみで光学窓を構成可能である。   If the spectral transmittance of the optical window is adjusted as in the present invention, the color reproducibility of the image pickup apparatus and the control stability using the color information are not impaired. Further, in an imaging device capable of imaging the infrared wavelength region, the minimum illuminance performance that can be captured with infrared light is not lowered. Furthermore, since the variation in the waveform characteristics of the spectral transmittance can be allowed, an optical window can be configured only by adjusting inexpensive resin and resin toning pigment.

本発明の実施形態の概略図Schematic of an embodiment of the invention 撮像光学系と赤外カットフィルタとカラーフィルタの分光透過率Spectral transmittance of imaging optical system, infrared cut filter and color filter カラーフィルタの分光透過率と合成透過率Spectral transmittance and combined transmittance of color filter 撮像光学系と赤外カットフィルタとカラーフィルタの分光透過率及び合成透過率の表Table of spectral transmittance and combined transmittance of imaging optical system, infrared cut filter and color filter 光学窓の分光透過率Spectral transmittance of optical window サンプル1の光学窓の着脱に伴う合成透過率Synthetic transmittance associated with attachment / detachment of the optical window of sample 1 サンプル1の光学窓の着脱に伴う撮影画像のカラーバランスの変化Change in color balance of sampled image as the optical window of sample 1 is attached / detached サンプル2の光学窓の着脱に伴う合成透過率Synthetic transmittance associated with attachment / detachment of the optical window of sample 2 サンプル2の光学窓の着脱に伴う撮影画像のカラーバランスの変化Change in the color balance of the photographed image when the optical window of sample 2 is attached or detached

Claims (3)

撮像光学系と、赤外カットフィルタと、前面にカラーフィルタを配した撮像素子と、光透過性樹脂により構成された着脱可能な光学窓を有するハウジングとを備えた撮像装置であって、
前記撮像光学系と前記赤外カットフィルタと前記カラーフィルタの合成分光透過率を各色において可視波長領域から赤外波長領域まで積分して求められる赤色と緑色の透過光量比、及び青色と緑色の透過光量比を基準とし、
前記撮像光学系と前記赤外カットフィルタと前記カラーフィルタ及び前記光学窓の合成分光透過率を各色において可視波長領域から赤外波長領域まで積分して求められる赤色と緑色の透過光量比、及び青色と緑色の透過光量比と各々の基準との差異の和が5.0%以下に収まるように、
前記光学窓の分光透過率を調整すると共に、着脱可能な光学窓を有するハウジングを備えたことを特徴とする撮像装置。
An imaging apparatus comprising: an imaging optical system; an infrared cut filter; an imaging element having a color filter disposed on a front surface; and a housing having a removable optical window made of a light-transmitting resin,
Red and green transmitted light amount ratio obtained by integrating the combined spectral transmittance of the imaging optical system, the infrared cut filter and the color filter from the visible wavelength region to the infrared wavelength region in each color, and transmission of blue and green Based on the light intensity ratio,
Red and green transmitted light amount ratio obtained by integrating the spectral spectral transmittance of the imaging optical system, the infrared cut filter, the color filter, and the optical window from the visible wavelength region to the infrared wavelength region in each color, and blue So that the sum of the difference between the light intensity ratio of green and green and each standard falls within 5.0%
An image pickup apparatus comprising: a housing having a detachable optical window while adjusting a spectral transmittance of the optical window.
前記光学窓は、可視波長領域の平均透過率よりも赤外波長領域の平均透過率の方が高くなるように分光透過率を調整したことを特徴とする請求項1に記載の撮像装置。   2. The imaging apparatus according to claim 1, wherein the optical window has a spectral transmittance adjusted so that an average transmittance in an infrared wavelength region is higher than an average transmittance in a visible wavelength region. 前記光学窓を構成する光透過性樹脂はポリカーボネートあるいはアクリルであって、
前記光学窓の分光透過率の調整は、耐光性を有する樹脂調色顔料の組合せで調整することを特徴とする請求項1、又は請求項2に記載の撮像装置。
The light-transmitting resin constituting the optical window is polycarbonate or acrylic,
3. The imaging apparatus according to claim 1, wherein the spectral transmittance of the optical window is adjusted by a combination of light-resistant resin toning pigments.
JP2008148246A 2008-06-05 2008-06-05 Image capturing device Pending JP2009296348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148246A JP2009296348A (en) 2008-06-05 2008-06-05 Image capturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148246A JP2009296348A (en) 2008-06-05 2008-06-05 Image capturing device

Publications (1)

Publication Number Publication Date
JP2009296348A true JP2009296348A (en) 2009-12-17

Family

ID=41544105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148246A Pending JP2009296348A (en) 2008-06-05 2008-06-05 Image capturing device

Country Status (1)

Country Link
JP (1) JP2009296348A (en)

Similar Documents

Publication Publication Date Title
US8018509B2 (en) Image input processing apparatus and method
US7579577B2 (en) Image capturing apparatus having a filter section disposed on periphery of a light passing section of a partial wavelength spectrum diaphragm section
US8149294B2 (en) Image capturing device which sets color conversion parameters based on an image sensor and separate light sensor
WO2006031690A3 (en) Imaging apparatus
TWI708510B (en) A method for enhancing color images, and an assembly performing such method
WO2008062637A1 (en) Imaging device
KR20080048113A (en) Carmera module
JP2018023077A (en) Video camera imaging device
CN107197168A (en) The image capturing system of image-pickup method and application this method
JPH05110938A (en) Lens unit for television camera
JP2009296348A (en) Image capturing device
JP2011029858A (en) Imaging apparatus
JP5153441B2 (en) Imaging apparatus, control method thereof, and program
JP2003102029A (en) Color imaging device, optical filter for color imaging device, and interchangeable lens for the color imaging device
CN210183413U (en) Imaging device
US9906705B2 (en) Image pickup apparatus
JP3972654B2 (en) Solid-state image sensor camera and door phone with camera
CN112284528A (en) Radiance meter
KR100797417B1 (en) Device and method for adjusinng white balance
JP2013186369A (en) Image display device and image display method
CN113985508B (en) Infrared photographic filter, infrared photographic assembly and camera thereof
JP6299175B2 (en) camera
JP2013066051A (en) Photographing device
KR101036172B1 (en) Closed circuit television camera with focus adjusting mode
US10567713B2 (en) Camera and method of producing color images

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630