[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009294236A - Array type optical component, method for manufacturing the same and optical system for array type semiconductor laser - Google Patents

Array type optical component, method for manufacturing the same and optical system for array type semiconductor laser Download PDF

Info

Publication number
JP2009294236A
JP2009294236A JP2006264033A JP2006264033A JP2009294236A JP 2009294236 A JP2009294236 A JP 2009294236A JP 2006264033 A JP2006264033 A JP 2006264033A JP 2006264033 A JP2006264033 A JP 2006264033A JP 2009294236 A JP2009294236 A JP 2009294236A
Authority
JP
Japan
Prior art keywords
light
array type
semiconductor laser
type semiconductor
optical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006264033A
Other languages
Japanese (ja)
Inventor
Junichi Nishimae
順一 西前
Keisuke Furuta
啓介 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006264033A priority Critical patent/JP2009294236A/en
Priority to PCT/JP2007/068776 priority patent/WO2008038699A1/en
Publication of JP2009294236A publication Critical patent/JP2009294236A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an array type optical component and an optical system for an array type semiconductor laser, wherein the output light from an array type semiconductor laser is converted to an isotropic condensing light beam through a relatively simple arrangement. <P>SOLUTION: The array type optical component 3 is constituted by stacking a plurality of triangular prismatic unit transmission optical elements each having a light incident face 3a for receiving the output light from the array type semiconductor laser 1, a light-reflecting face 3b for reflecting the light refracted on the light incident face 3a and a light exit face 3c for refracting the light reflected on the light-reflecting face 3b such that the light-reflecting faces 3b are substantially parallel. Assuming that an arranging direction of light-emitting points of the array type semiconductor laser 1 is a X direction, a traveling direction of the output light is a Z direction and a direction perpendicular to the X direction and the Z direction is a Y direction, the light-reflecting face 3b of each unit transmission optical element is arranged to be in parallel to the Z direction and to intersect a X-Z plane at substantially 45°. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アレイ型半導体レーザからの出力光を、光ファイバ等の光学素子と結合させるためのアレイ型光学部品、これを用いたアレイ型半導体レーザ用光学系、およびアレイ型光学部品の製造方法に関する。   The present invention relates to an array type optical component for coupling output light from an array type semiconductor laser to an optical element such as an optical fiber, an optical system for an array type semiconductor laser using the same, and a method for manufacturing the array type optical component About.

小型で高い出力が得られるレーザ光源として、アレイ型半導体レーザの応用が拡大している。アレイ型半導体レーザは、十数個〜数十個の複数の発光点を有し、それぞれの発光点から光が出力されるように構成されている。これらのアレイ状発光点からの複数の出力光を収束することによって、高出力のレーザ光源として利用することができる。例えぱ、アレイ型半導体レーザの出力光を光ファイバに結合することによって、より自由度が高く多様な応用が可能となる。   As a laser light source capable of obtaining a small size and high output, application of an array type semiconductor laser is expanding. The array type semiconductor laser has a plurality of light emission points of several tens to several tens, and is configured to output light from each light emission point. By converging a plurality of output lights from these array-like light emitting points, it can be used as a high-power laser light source. For example, by coupling the output light of the array type semiconductor laser to the optical fiber, various applications with higher flexibility are possible.

一般に、アレイ型半導体レーザの各発光点の出力ビームは、発光点の配列方向に対して垂直な方向には集光性が高いが、発光点の配列方向と平行な方向には集光性が低いといった特性を有する。従って、集光性の低い方向に多数のビームが整列するため、アレイ型半導体レーザ全体として発光点の配列方向と平行な方向の集光性が極端に低くなり、円形断面の光ファイバとの結合は困難である。   In general, the output beam of each light emitting point of an array type semiconductor laser has a high light collecting property in a direction perpendicular to the light emitting point arrangement direction, but has a light collecting property in a direction parallel to the light emitting point arrangement direction. It has characteristics such as low. Therefore, since many beams are aligned in the direction with low light condensing property, the light condensing property in the direction parallel to the arrangement direction of the light emitting points as the entire array type semiconductor laser becomes extremely low, and it is coupled with an optical fiber having a circular cross section. It is difficult.

アレイ型半導体レーザの結合光学系として、例えば、下記の非特許文献1の図8には、ステップミラーが記載されている。これは下記の特許文献1に開示されたものと同一である。ステップミラーは、洗濯板状に切り出した構造を持つミラーを2枚重ね合わせ、斜めに傾斜したステップ面を90°ねじって向かい合わせたものである。向かい合ったステップ面が反射面となっており、アレイ型半導体レーザの各発光点からの各々の出射ビームを第1、第2のステップミラーでの合計2回の反射によって90°回転させる。これによって集光性の高い方向に沿って多数個のビームが並ぶように各発光点のビームを再配列し、アレイ型半導体レーザの出力光を円形の光ファイバへの結合に適した等方的な集光性のビームに変換するものである。   As a coupling optical system of an array type semiconductor laser, for example, a step mirror is described in FIG. This is the same as that disclosed in Patent Document 1 below. The step mirror is obtained by superposing two mirrors having a structure cut out in the shape of a washing plate, and twisting a step surface inclined at 90 ° to face each other. Opposing step surfaces are reflecting surfaces, and each outgoing beam from each light emitting point of the array type semiconductor laser is rotated by 90 ° by a total of two reflections by the first and second step mirrors. As a result, the beam of each light emitting point is rearranged so that a large number of beams are aligned along the direction of high light condensing, and the output light of the array type semiconductor laser is isotropic suitable for coupling to a circular optical fiber. The beam is converted into a light-collecting beam.

しかしながら、こうしたステップミラーの組合せは、形状が複雑で、製作も困難であり、結合光学系が高価となる問題がある。   However, such a combination of step mirrors has a complicated shape, is difficult to manufacture, and has a problem that the coupling optical system is expensive.

また、実際には、ステップミラーとは別に、発光点の配列方向に垂直な方向と平行な方向で異なるビームの発散角を平行に揃えてから集光するためのコリメートレンズが用いられており、平行な方向に関しては、各発光点間のビームが発散角によって混合する前に各発光点からのビームをコリメートする必要がある。従来のステップミラー方式では、ビーム再配列に要する伝搬距離が長く、ステップミラーの後では各発光点間のビームが混合してしまうため、ステップミラーへの入射前に複雑な形状のマイクロレンズアレイを挿入する必要がある。その結果、全体の光学系がさらに高価となる問題がある。   In fact, apart from the step mirror, a collimating lens is used for condensing after aligning the divergence angles of different beams in parallel in a direction parallel to the direction perpendicular to the arrangement direction of the light emitting points, For parallel directions, it is necessary to collimate the beam from each emission point before the beam between each emission point is mixed by the divergence angle. In the conventional step mirror method, the propagation distance required for beam rearrangement is long, and the beam between each light emitting point is mixed after the step mirror. Therefore, a microlens array with a complicated shape is required before entering the step mirror. It is necessary to insert. As a result, there is a problem that the entire optical system becomes more expensive.

非特許文献1の図6には、プリズムアレイを用いた構成も報告されている。非特許文献1の図7には、アレイ型半導体レーザから入射したビームがプリズム内の反射によって変換されて出射していく様子が模式的に示されている。プリズム内面の3回の全反射によって、アレイ型半導体レーザの各発光点から出射されるビームを90°回転して平行成分と垂直成分を入れ換えることが可能であり、前述したステップミラーの構成と同様に、アレイ型半導体レーザの出力光を円形の光ファイバへの結合に適した等方的な集光性のビームに変換することができる。   In FIG. 6 of Non-Patent Document 1, a configuration using a prism array is also reported. FIG. 7 of Non-Patent Document 1 schematically shows a state in which a beam incident from an array type semiconductor laser is converted and emitted by reflection in a prism. By the total internal reflection of the inner surface of the prism three times, it is possible to rotate the beam emitted from each light emitting point of the array type semiconductor laser by 90 ° to replace the parallel component and the vertical component. In addition, the output light of the array type semiconductor laser can be converted into an isotropic condensing beam suitable for coupling to a circular optical fiber.

プリズムアレイを用いた方式では、各プリズム素子の形状は斜角柱形状であり、入出射面と3つの反射面を合わせて5面が光学面であることから、個々のプリズム素子を光学仕上げする必要があり、結合光学系が高価となる問題がある。   In the system using the prism array, the shape of each prism element is an oblique prism shape, and the five surfaces are the optical surfaces including the entrance / exit surface and the three reflecting surfaces, so it is necessary to optically finish each prism element. There is a problem that the coupling optical system becomes expensive.

また、プリズムアレイを用いた方式においても、ビーム再配列に要する伝搬距離が比較的長く、マイクロレンズアレイを挿入する必要があり、全体の光学系がさらに高価となる問題がある。   Further, even in a system using a prism array, the propagation distance required for beam rearrangement is relatively long, and it is necessary to insert a microlens array, so that the entire optical system becomes more expensive.

特表平10−510933号公報Japanese National Patent Publication No. 10-510933 山口哲著、「半導体レーザー光の伝送技術」レーザー研究、第27巻3号(1999年3月)、161〜166頁Tetsu Yamaguchi, “Transmission technology of semiconductor laser light” Laser Research, Vol. 27, No. 3 (March 1999), 161-166

上述したように、従来のアレイ型半導体レーザの結合光学系は、アレイ型半導体レーザの各発光点のビームを再配列して円形光ファイバへの結合に適したビームに変換するための光学部品として、製造が難しく、高価な部品が必要であるという問題がある。   As described above, the coupling optical system of the conventional array type semiconductor laser is an optical component for rearranging the beams at the respective emission points of the array type semiconductor laser and converting them into a beam suitable for coupling to a circular optical fiber. However, it is difficult to manufacture and requires expensive parts.

さらに、ビーム再配列のために比較的長い伝搬距離を要するために、マイクロレンズアレイを併用する必要があり、全体の光学系がさらに複雑で高価となる問題がある。   Furthermore, since a relatively long propagation distance is required for beam rearrangement, it is necessary to use a microlens array together, and there is a problem that the entire optical system becomes more complicated and expensive.

本発明の目的は、比較的簡単な構成で、アレイ型半導体レーザの出力光を等方的な集光性の光ビームに変換できるアレイ型光学部品およびアレイ型半導体レーザ用光学系を提供することである。   An object of the present invention is to provide an array type optical component and an array type semiconductor laser optical system capable of converting the output light of an array type semiconductor laser into an isotropic light beam with a relatively simple configuration. It is.

また本発明の目的は、こうしたアレイ型光学部品を安価かつ大量に生産が可能なアレイ型光学部品の製造方法を提供することである。   Another object of the present invention is to provide a method for manufacturing an array type optical component capable of producing such an array type optical component at low cost and in large quantities.

本発明に係るアレイ型光学部品は、光入射面と、該光入射面で屈折した光を反射する光反射面と、該光反射面で反射した光を屈折させる光出射面とを有する三角柱状の単位透過光学素子が、光反射面同士が略平行となるように複数積み重ねられて構成されたことを特徴とする。   The array-type optical component according to the present invention has a triangular prism shape having a light incident surface, a light reflecting surface that reflects light refracted by the light incident surface, and a light emitting surface that refracts light reflected by the light reflecting surface. A plurality of unit transmission optical elements are stacked so that the light reflecting surfaces are substantially parallel to each other.

また本発明に係るアレイ型半導体レーザ用光学系は、複数の発光点を有するアレイ型半導体レーザからの出力光を集光するための光学系であって、
出力光が入射する光入射面と、該光入射面で屈折した光を反射する光反射面と、該光反射面で反射した光を屈折させる光出射面とを有する三角柱状の単位透過光学素子が、光反射面同士が略平行となるように複数積み重ねられて構成されたアレイ型光学部品を備え、
アレイ型半導体レーザの発光点の配列方向をX方向とし、出力光の進行方向をZ方向とし、X方向およびZ方向に垂直な方向をY方向として、各単位透過光学素子の光反射面がZ方向に対して平行、かつX−Z面に対して略45°で交差するように、前記アレイ型光学部品が配置されていることを特徴とする。
An optical system for an array type semiconductor laser according to the present invention is an optical system for condensing output light from an array type semiconductor laser having a plurality of emission points,
A triangular prism-shaped unit transmission optical element having a light incident surface on which output light is incident, a light reflecting surface that reflects light refracted by the light incident surface, and a light emitting surface that refracts light reflected by the light reflecting surface Is provided with an array type optical component configured by stacking a plurality of light reflecting surfaces so as to be substantially parallel to each other,
The arrangement direction of the emission points of the array type semiconductor laser is the X direction, the traveling direction of the output light is the Z direction, and the direction perpendicular to the X direction and the Z direction is the Y direction. The array type optical component is arranged so as to be parallel to the direction and intersect with the XZ plane at about 45 °.

本発明によれば、比較的単純な三角柱形状の素子を積み重ねた光学部品を用いて、アレイ型半導体レーザの出力光を等方的な集光性のビームに変換することが可能になる。その結果、円形の光ファイバへの結合光学系として、従来知られているステップミラーやプリズムアレイ方式と比較して、大量生産に適した低価格のアレイ型半導体レーザ用光学系を実現することができる。   According to the present invention, it is possible to convert the output light of an array type semiconductor laser into an isotropic condensing beam by using an optical component in which relatively simple triangular prism-shaped elements are stacked. As a result, as a coupling optical system to a circular optical fiber, it is possible to realize a low-cost array type semiconductor laser optical system suitable for mass production, as compared with the conventionally known step mirror and prism array methods. it can.

実施の形態1.
図1は、本発明の第1実施形態を示す斜視図である。アレイ型半導体レーザ用光学系は、アレイ型半導体レーザ1からの出力光を光ファイバ6に結合させる機能を有し、光進行方向に沿って、コリメートレンズ2と、アレイ型光学部品3と、コリメートレンズ4と、集光レンズ5などで構成される。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a first embodiment of the present invention. The optical system for the array type semiconductor laser has a function of coupling the output light from the array type semiconductor laser 1 to the optical fiber 6, and along the light traveling direction, the collimator lens 2, the array type optical component 3, and the collimator. The lens 4 and the condenser lens 5 are included.

アレイ型半導体レーザ1は、十数個〜数十個の複数の発光点を有し、各発光点から光が出力される。ここでは、理解容易のため、アレイ型半導体レーザ1の発光点の配列方向をX方向とし、出力光の進行方向をZ方向とし、X方向およびZ方向に垂直な方向をY方向としている。   The array type semiconductor laser 1 has a plurality of light emission points of several tens to several tens, and light is output from each light emission point. Here, for easy understanding, the arrangement direction of the emission points of the array type semiconductor laser 1 is set as the X direction, the traveling direction of the output light is set as the Z direction, and the X direction and the direction perpendicular to the Z direction are set as the Y direction.

コリメートレンズ2は、アレイ型半導体レーザ1からの出力光をY方向に集光する機能を有し、例えば、X方向に平行な母線を有するシリンドリカルレンズで構成される。   The collimating lens 2 has a function of condensing output light from the array type semiconductor laser 1 in the Y direction, and is constituted by, for example, a cylindrical lens having a generatrix parallel to the X direction.

コリメートレンズ4は、アレイ型光学部品3を通過した光をY方向に集光する機能を有し、例えば、X方向に平行な母線を有するシリンドリカルレンズで構成される。   The collimating lens 4 has a function of condensing light that has passed through the array-type optical component 3 in the Y direction, and is constituted by, for example, a cylindrical lens having a generatrix parallel to the X direction.

集光レンズ5は、コリメートレンズ4を通過した光をX方向およびY方向に集光する機能を有し、例えば、回転対称系のレンズで構成される。   The condensing lens 5 has a function of condensing light that has passed through the collimating lens 4 in the X direction and the Y direction, and is composed of, for example, a rotationally symmetric lens.

アレイ型光学部品3は、光入射面3aと、光入射面3aで屈折した光を反射する光反射面3bと、光反射面3bで反射した光を屈折させる光出射面3cとを有する三角柱状の単位透過光学素子が、光反射面3b同士が略平行となるように複数積み重ねられて構成される。そして、アレイ型光学部品3は、各単位透過光学素子の光反射面3bがZ方向に対して平行、かつX−Z面に対して略45°で交差するように、コリメートレンズ2とコリメートレンズ4の間に配置されている。   The array optical component 3 has a triangular prism shape having a light incident surface 3a, a light reflecting surface 3b that reflects light refracted by the light incident surface 3a, and a light emitting surface 3c that refracts light reflected by the light reflecting surface 3b. A plurality of unit transmission optical elements are stacked so that the light reflecting surfaces 3b are substantially parallel to each other. The array type optical component 3 includes the collimating lens 2 and the collimating lens so that the light reflecting surface 3b of each unit transmission optical element is parallel to the Z direction and intersects the XZ plane at approximately 45 °. 4 is arranged.

図2は、アレイ型光学部品3の機能を示す説明図であり、図2(a)は光進行方向に垂直なX−Y面を示し、図2(b)は単位透過光学素子の断面図を示す。図2(a)に示すように、水平なスリット状の光束(a−b)がZ方向に進行して、光入射面3aに入射すると、光入射面3aで屈折して、光反射面3bに向けて進行する。続いて、光束は光反射面3bで反射されて、光出射面3cに向けて進行し、光出射面3cで屈折すると、垂直なスリット状の光束(A−B)に変換される。   2A and 2B are explanatory views showing the function of the array type optical component 3. FIG. 2A shows an XY plane perpendicular to the light traveling direction, and FIG. 2B is a cross-sectional view of the unit transmission optical element. Indicates. As shown in FIG. 2A, when a horizontal slit-shaped light beam (a-b) travels in the Z direction and enters the light incident surface 3a, it is refracted by the light incident surface 3a and is reflected by the light reflecting surface 3b. Proceed toward. Subsequently, the light beam is reflected by the light reflecting surface 3b, travels toward the light emitting surface 3c, and is refracted by the light emitting surface 3c to be converted into a vertical slit-shaped light beam (AB).

従って、1つの単位透過光学素子は、X方向に細長い光束がZ方向に沿って光入射面3aに入射すると、光束をZ軸回りに90°回転して、光出射面3cからY方向に細長い光束をZ方向に沿って出射する機能、即ち、90°回転プリズムとして機能することが判る。   Accordingly, when a light beam that is elongated in the X direction is incident on the light incident surface 3a along the Z direction, one unit transmission optical element rotates the light beam by 90 ° around the Z axis and is elongated in the Y direction from the light emitting surface 3c. It can be seen that the light beam is emitted along the Z direction, that is, functions as a 90 ° rotating prism.

再び、図1に戻って、アレイ型半導体レーザ1の各発光点から出射したビームは、発光点の配列方向であるX方向には集光性が低く、Y方向には集光性が高いことから、コリメートレンズ2によりY方向にのみ集光され、Y方向に関して略平行なビームに変換される。X方向については、アレイ型半導体レーザ1での放射角がそのまま維持されるため、隣接した発光点からのビームが互いに混合する前に90°回転が完了するように、アレイ型光学部品3が位置決めされる。   Referring back to FIG. 1, the beam emitted from each light emitting point of the array type semiconductor laser 1 has a low light collecting property in the X direction, which is the arrangement direction of the light emitting points, and a high light collecting property in the Y direction. Are collimated by the collimating lens 2 only in the Y direction and converted into a beam substantially parallel to the Y direction. In the X direction, since the radiation angle at the array type semiconductor laser 1 is maintained as it is, the array type optical component 3 is positioned so that the 90 ° rotation is completed before the beams from the adjacent light emitting points are mixed with each other. Is done.

コリメートレンズ2を通過した各ビームが、アレイ型光学部品3の各光入射面3aに入射すると、上述のようにZ軸回りに90°回転して、光出射面3cから出射する。これにより各ビームのX方向発散角とY方向発散角が交換される。さらに、光出射面3cから出射した各ビームがコリメートレンズ4を通過すると、Y方向にのみ集光され、Y方向に関して略平行なビームに変換される。X方向については、コリメートレンズ2によって制御された発散角がそのまま維持される。   When each beam that has passed through the collimating lens 2 is incident on each light incident surface 3a of the array type optical component 3, it is rotated by 90 ° around the Z axis as described above and emitted from the light emitting surface 3c. Thereby, the X-direction divergence angle and the Y-direction divergence angle of each beam are exchanged. Further, when each beam emitted from the light exit surface 3c passes through the collimating lens 4, it is condensed only in the Y direction and converted into a beam substantially parallel to the Y direction. For the X direction, the divergence angle controlled by the collimating lens 2 is maintained as it is.

こうして各発光点から出射したビームは、コリメートレンズ2,アレイ型光学部品3およびコリメートレンズ4を通過することによって、等方的な集光性のビームに変換され、直交2方向に関する発散角が制御される。さらに、コリメートレンズ2,4の倍率を調整することによって、X方向発散角とY方向発散角が等しい円形のビームを得ることができる。   Thus, the beam emitted from each light emitting point passes through the collimating lens 2, the array type optical component 3 and the collimating lens 4 to be converted into an isotropic condensing beam, and the divergence angle in two orthogonal directions is controlled. Is done. Further, by adjusting the magnification of the collimating lenses 2 and 4, a circular beam having the same X-direction divergence angle and Y-direction divergence angle can be obtained.

コリメートレンズ4を通過したビームは、集光レンズ5によってX方向およびY方向に集光され、光ファイバ6の開口数に適合した発散角およびビーム径に調整された後、光ファイバ6に入射する。   The beam that has passed through the collimating lens 4 is condensed in the X direction and the Y direction by the condenser lens 5, adjusted to a divergence angle and a beam diameter that match the numerical aperture of the optical fiber 6, and then enters the optical fiber 6. .

以上のように、アレイ型光学部品3は、単純な形状である三角柱状の透過光学素子を多段に積み重ねて構成しているために、結合光学系を安価に構成できる。   As described above, since the array type optical component 3 is configured by stacking triangular prism-shaped transmission optical elements having a simple shape in multiple stages, the coupling optical system can be configured at low cost.

本発明に係るアレイ型光学部品3は、ビームの90°回転に要する伝搬距離が短くて済むため、アレイ型半導体レーザ1の隣接発光点からのビームが混合する前に90°回転を完了させることができる。このため、各発光点からのビームのX方向発散角は、単純な形状のコリメートレンズ4を用いて制御可能になるため、従来で必要であったマイクロレンズアレイが不要となり、安価な結合光学系を構成できる。   In the array type optical component 3 according to the present invention, since the propagation distance required for the 90 ° rotation of the beam is short, the 90 ° rotation is completed before the beams from the adjacent light emitting points of the array type semiconductor laser 1 are mixed. Can do. For this reason, the X-direction divergence angle of the beam from each light emitting point can be controlled by using a simple-shaped collimator lens 4, thereby eliminating the need for a conventional microlens array, and an inexpensive coupling optical system. Can be configured.

なお、アレイ型光学部品3を構成する単位透過光学素子は、少なくとも光入射面3aと、光反射面3bと、光出射面3cとを含む略三角形の断面形状である場合を説明したが、ビームの不通過部分を切り落とした多角形形状でも同じ機能を有することは言うまでもない。   The unit transmission optical element constituting the array type optical component 3 has been described as having a substantially triangular cross-sectional shape including at least the light incident surface 3a, the light reflecting surface 3b, and the light emitting surface 3c. Needless to say, the polygonal shape obtained by cutting off the non-passing portion has the same function.

アレイ型光学部品3の製造方法としては、切削および研磨による製作が容易であり、あるいはモールド成形のための金型製作が容易である。   As a manufacturing method of the array-type optical component 3, it is easy to manufacture by cutting and polishing, or it is easy to manufacture a mold for molding.

また、アレイ型光学部品3は、3つの光学面を持つ三角柱であるから、長尺の三角柱を製作し、いわば金太郎飴のように適当に分割して積み重ねることによって安価に製造することができる。   Moreover, since the array type optical component 3 is a triangular prism having three optical surfaces, it can be manufactured at low cost by manufacturing a long triangular prism, and dividing and stacking appropriately as in the case of Kintaro. .

また、アレイ型光学部品3は、光ファイバの延伸法と同様に、底面同士が略平行となるように、複数の三角形が積み重なった断面形状を有する相似形の素材(プリフォーム)を、断面垂直方向に沿って引き伸ばすことによって製作することも可能であり、これにより安価で大量に生産することができる。   Similarly to the optical fiber drawing method, the array-type optical component 3 is made of a similar material (preform) having a cross-sectional shape in which a plurality of triangles are stacked so that the bottom surfaces are substantially parallel to each other. It is also possible to manufacture by stretching along the direction, which makes it possible to produce a large amount at a low cost.

本発明の第1実施形態を示す斜視図である。1 is a perspective view showing a first embodiment of the present invention. アレイ型光学部品3の機能を示す説明図であり、図2(a)は光進行方向に垂直なX−Y面を示し、図2(b)は単位透過光学素子の断面図を示す。FIGS. 2A and 2B are explanatory views showing functions of the array type optical component 3, in which FIG. 2A shows an XY plane perpendicular to the light traveling direction, and FIG. 2B shows a cross-sectional view of a unit transmission optical element.

符号の説明Explanation of symbols

1 アレイ型半導体レーザ、 2 コリメートレンズ、 3 アレイ型光学部品、
3a 光入射面、 3b 光反射面、 3c 光出射面、 4 コリメートレンズ、
5 集光レンズ、 6 光ファイバ。
1 array type semiconductor laser, 2 collimating lens, 3 array type optical component,
3a light incident surface, 3b light reflecting surface, 3c light emitting surface, 4 collimating lens,
5 Condenser lens, 6 Optical fiber.

Claims (5)

光入射面と、該光入射面で屈折した光を反射する光反射面と、該光反射面で反射した光を屈折させる光出射面とを有する三角柱状の単位透過光学素子が、光反射面同士が略平行となるように複数積み重ねられて構成されたことを特徴とするアレイ型光学部品。   A triangular prism-shaped unit transmission optical element having a light incident surface, a light reflecting surface that reflects light refracted by the light incident surface, and a light emitting surface that refracts light reflected by the light reflecting surface is a light reflecting surface. An array type optical component, wherein a plurality of the optical components are stacked so as to be substantially parallel to each other. 複数の発光点を有するアレイ型半導体レーザからの出力光を集光するための光学系であって、
出力光が入射する光入射面と、該光入射面で屈折した光を反射する光反射面と、該光反射面で反射した光を屈折させる光出射面とを有する三角柱状の単位透過光学素子が、光反射面同士が略平行となるように複数積み重ねられて構成されたアレイ型光学部品を備え、
アレイ型半導体レーザの発光点の配列方向をX方向とし、出力光の進行方向をZ方向とし、X方向およびZ方向に垂直な方向をY方向として、各単位透過光学素子の光反射面がZ方向に対して平行、かつX−Z面に対して略45°で交差するように、前記アレイ型光学部品が配置されていることを特徴とするアレイ型半導体レーザ用光学系。
An optical system for condensing output light from an array type semiconductor laser having a plurality of light emitting points,
A triangular prism-shaped unit transmission optical element having a light incident surface on which output light is incident, a light reflecting surface that reflects light refracted by the light incident surface, and a light emitting surface that refracts light reflected by the light reflecting surface Is provided with an array type optical component configured by stacking a plurality of light reflecting surfaces so as to be substantially parallel to each other,
The arrangement direction of the emission points of the array type semiconductor laser is the X direction, the traveling direction of the output light is the Z direction, and the direction perpendicular to the X direction and the Z direction is the Y direction. An optical system for an array type semiconductor laser, wherein the array type optical components are arranged so as to be parallel to a direction and intersect with an XZ plane at about 45 °.
アレイ型半導体レーザとアレイ型光学部品との間に設けられ、アレイ型半導体レーザからの出力光をY方向に集光するための第1集光レンズと、
アレイ型光学部品を通過した光をY方向に集光するための第2集光レンズと、
第2集光レンズを通過した光をX方向およびY方向に集光するための第3集光レンズとをさらに備えることを特徴とする請求項2記載のアレイ型半導体レーザ用光学系。
A first condenser lens provided between the array type semiconductor laser and the array type optical component, for condensing output light from the array type semiconductor laser in the Y direction;
A second condenser lens for condensing light that has passed through the array-type optical component in the Y direction;
3. The optical system for an array type semiconductor laser according to claim 2, further comprising a third condenser lens for condensing the light that has passed through the second condenser lens in the X direction and the Y direction.
第3集光レンズを通過した光を伝送するための光ファイバをさらに備えることを特徴とする請求項3記載のアレイ型半導体レーザ用光学系。   4. The optical system for an array type semiconductor laser according to claim 3, further comprising an optical fiber for transmitting light that has passed through the third condenser lens. 底面同士が略平行となるように、複数の三角形が積み重なった断面形状を有する素材を、断面垂直方向に沿って引き伸ばすことによって製作することを特徴とするアレイ型光学部品の製造方法。   A method of manufacturing an array-type optical component, wherein a material having a cross-sectional shape in which a plurality of triangles are stacked so that the bottom surfaces are substantially parallel to each other is stretched along a vertical direction of the cross-section.
JP2006264033A 2006-09-28 2006-09-28 Array type optical component, method for manufacturing the same and optical system for array type semiconductor laser Pending JP2009294236A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006264033A JP2009294236A (en) 2006-09-28 2006-09-28 Array type optical component, method for manufacturing the same and optical system for array type semiconductor laser
PCT/JP2007/068776 WO2008038699A1 (en) 2006-09-28 2007-09-27 Array type optical component and method for manufacturing the same, and optical system for array type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264033A JP2009294236A (en) 2006-09-28 2006-09-28 Array type optical component, method for manufacturing the same and optical system for array type semiconductor laser

Publications (1)

Publication Number Publication Date
JP2009294236A true JP2009294236A (en) 2009-12-17

Family

ID=39230134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264033A Pending JP2009294236A (en) 2006-09-28 2006-09-28 Array type optical component, method for manufacturing the same and optical system for array type semiconductor laser

Country Status (2)

Country Link
JP (1) JP2009294236A (en)
WO (1) WO2008038699A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3061963A1 (en) * 2017-01-18 2018-07-20 Safran OPTICAL DEVICE FOR THE LASER PROCESSING OF INTERNAL SURFACES OF A RECOVERY PIECE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517110A (en) * 1978-07-21 1980-02-06 Nippon Telegr & Teleph Corp <Ntt> Microfilm retrieval device
US4724317A (en) * 1985-12-05 1988-02-09 Baxter Travenol Laboratories, Inc. Optical data collection apparatus and method used with moving members
JPH0397139A (en) * 1989-09-08 1991-04-23 Fujitsu Ltd Optical information processor
JP3071360B2 (en) * 1993-04-30 2000-07-31 新日本製鐵株式会社 Optical path converter used for linear array laser diode, laser device using the same, and method of manufacturing the same
EP0961152B1 (en) * 1998-05-25 2005-12-14 Fisba Optik Ag Method and device for forming a collimated beam of light from the emissions of a plurality of light sources
JP4694073B2 (en) * 1999-11-10 2011-06-01 浜松ホトニクス株式会社 Manufacturing method of optical lens
EP1396735B1 (en) * 2001-05-09 2009-01-28 Hamamatsu Photonics K.K. Method of producing an optical lens
US6888679B2 (en) * 2002-11-20 2005-05-03 Mems Optical, Inc. Laser diode bar integrator/reimager

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3061963A1 (en) * 2017-01-18 2018-07-20 Safran OPTICAL DEVICE FOR THE LASER PROCESSING OF INTERNAL SURFACES OF A RECOVERY PIECE
US11311971B2 (en) 2017-01-18 2022-04-26 Safran Optical device for laser treatment of the internal surfaces of a covering part

Also Published As

Publication number Publication date
WO2008038699A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
US6700709B1 (en) Configuration of and method for optical beam shaping of diode laser bars
US6407870B1 (en) Optical beam shaper and method for spatial redistribution of inhomogeneous beam
US6778732B1 (en) Generation of high-power, high brightness optical beams by optical cutting and beam-shaping of diode lasers
JP3862657B2 (en) Semiconductor laser device and solid-state laser device using the same
KR101886133B1 (en) Light source system and laser light source
US6757106B2 (en) Optical lens, optical lens unit, stacked type optical lens, optical system and semiconductor laser apparatus
CA2957343C (en) Device for shaping laser radiation
JPH10510933A (en) Apparatus for focusing and shaping emitted light of multiple diode laser arrays
KR101616635B1 (en) Laser beam-combining optical device
JP6413030B1 (en) Light guide device, laser module, and method of manufacturing light guide device
JP2006171348A (en) Semiconductor laser device
JP2011520292A (en) Method and device for high brightness diode output
US20070053066A1 (en) Device for homogenizing light and configuration for illuminating or focusing with such a device
JPH0798402A (en) Optical path converter used for linear array laser diode and laser device using the same and its production
JP2015015305A (en) Laser device
JP2002239773A (en) Device and method for semiconductor laser beam machining
JP4264231B2 (en) Concentrator
JP2009271206A (en) Laser beam-shaping optical system and laser beam supply device using the same
JP4739819B2 (en) Light flux array density conversion method, light flux array density conversion member, and light source device
JP2009294236A (en) Array type optical component, method for manufacturing the same and optical system for array type semiconductor laser
JPWO2005013446A1 (en) Semiconductor laser device
KR20190054472A (en) Total internal reflection prism unit, total internal reflection prism assembly including the same and apparatus for forming a line beam including the same
RU188813U1 (en) LASER DIODE MODULE
JP2004287181A (en) Optical waveguide, optical waveguide array and laser condenser
JP2002107566A (en) Optical functional module