JP2009293102A - Sputtering target for depositing vertical magnetic recording medium film with low relative permeability - Google Patents
Sputtering target for depositing vertical magnetic recording medium film with low relative permeability Download PDFInfo
- Publication number
- JP2009293102A JP2009293102A JP2008150044A JP2008150044A JP2009293102A JP 2009293102 A JP2009293102 A JP 2009293102A JP 2008150044 A JP2008150044 A JP 2008150044A JP 2008150044 A JP2008150044 A JP 2008150044A JP 2009293102 A JP2009293102 A JP 2009293102A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- magnetic recording
- target
- recording medium
- sputtering target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
この発明は、ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するための比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットに関するものである。 The present invention relates to a sputtering target for forming a perpendicular magnetic recording medium film having a low relative permeability for forming a magnetic recording film applied to a high-density magnetic recording medium of a hard disk, particularly a magnetic recording film applied to a perpendicular magnetic recording medium. It is about.
ハードディスク装置は一般にコンピューターやデジタル家電等の外部記録装置として用いられており、記録密度の一層の向上が求められている。そのため、近年、超高密度の記録を実現できる垂直磁気記録方式が注目されてきた。この垂直磁気記録方式は、従来の面内記録方式と異なり、原理的に高密度化するほど記録磁化が安定すると言われており、すでに実用化されている。この垂直磁気記録方式のハードディスク媒体の記録層に適用する材料の有力な候補としてCoCrPt−SiO2グラニュラ磁気記録膜が提案されており、このCoCrPt−SiO2グラニュラ磁気記録膜はCrおよびPtを含むCo基焼結合金相と二酸化珪素相の混合相を有するスパッタリングターゲットを用いてマグネトロンスパッタ法により作製することが知られている(非特許文献1参照)。
このスパッタリングターゲットは、通常、二酸化珪素粉末、Cr粉末、Pt粉末およびCo粉末を、二酸化珪素:0.5〜15原子%、Cr:4〜20原子%、Pt:5〜25原子%を含有し、残部:Coからなる組成となるように配合し混合したのち、真空ホットプレスまたは熱間静水圧プレスすることにより作製されることが知られており、その他に市販のCrおよびPtを含むCo基合金粉末または急冷凝固して作製したCrおよびPtを含むCo基合金粉末と二酸化珪素粉末を二酸化珪素:0.5〜15原子%、Cr:4〜20原子%、Pt:5〜25原子%を含有し、残部:Coからなる組成となるように配合し混合したのち、真空ホットプレスまたは熱間静水圧プレスすることにより作製されることが知られている(特許文献1、特許文献2などを参照)。
さらに前記二酸化珪素のほかにTiO、Cr2O3、TiO2、Ta2O5、Al2O3、BeO2、MgO、ThO2、ZrO2、CeO2、Y2O3などの非磁性酸化物が使用できることが知られている(特許文献3、4参照)。
したがって、垂直磁気記録方式のハードディスク媒体の記録層を形成するためのターゲットの成分組成は、O:1〜30原子%、Cr:2〜20原子%、Pt:5〜25原子%、M金属(ただし、M金属はSi、Ti、Ta、Alの内のいずれか1種):0.5〜15原子%を含有し、残部:Coおよび不可避不純物からなる成分組成を有することが知られている。
This sputtering target usually contains silicon dioxide powder, Cr powder, Pt powder and Co powder containing silicon dioxide: 0.5 to 15 atomic%, Cr: 4 to 20 atomic%, Pt: 5 to 25 atomic%. The remainder: It is known to be prepared by mixing and mixing so as to have a composition consisting of Co, and then vacuum hot pressing or hot isostatic pressing, and in addition, a commercially available Co base containing Cr and Pt. Co-based alloy powder containing Cr and Pt and silicon dioxide powder prepared by rapid solidification by alloy powder or silicon dioxide powder: silicon dioxide: 0.5 to 15 atomic%, Cr: 4 to 20 atomic%, Pt: 5 to 25 atomic% It is known that it is prepared by blending and mixing so as to have a composition consisting of Co: balance: Co, and then vacuum hot pressing or hot isostatic pressing (Patent Document 1). See, eg, Patent Document 2).
In addition to silicon dioxide, nonmagnetic oxidation such as TiO, Cr 2 O 3 , TiO 2 , Ta 2 O 5 , Al 2 O 3 , BeO 2 , MgO, ThO 2 , ZrO 2 , CeO 2 , Y 2 O 3, etc. It is known that products can be used (see Patent Documents 3 and 4).
Therefore, the component composition of the target for forming the recording layer of the perpendicular magnetic recording type hard disk medium is as follows: O: 1 to 30 atomic%, Cr: 2 to 20 atomic%, Pt: 5 to 25 atomic%, M metal ( However, it is known that M metal contains any one of Si, Ti, Ta, and Al): 0.5 to 15 atomic%, and has a component composition consisting of the balance: Co and inevitable impurities. .
この従来の磁気記録媒体膜形成用スパッタリングターゲットは、強磁性合金であるCrおよびPtを含むCo基合金を素地とし、この素地中にSiO2、TiO2、Ta2O5、Al2O3など非磁性酸化物が均一分散している組織を有するために、非磁性体ターゲットと比較して磁束がターゲット内部を通過する割合が大きく、ターゲット上空に漏れ出る磁束が極めて少ない。このことはターゲット下部に磁気回路を配置し、ターゲット上空に漏れ出る磁束を利用して希ガスの電離効率を高めることで放電を安定化させ、成膜速度を向上させているマグネトロンスパッタリング法にとっては大きな問題となる。すなわち、ターゲット上空に漏れ出る磁束が少ない漏洩磁束密度の低いターゲット(すなわち比透磁率の高いターゲット)を用いてマグネトロンスパッタリングを行なうと、放電が安定しないかあるいは放電することができても成膜速度が極端に遅くなるなどの問題を引き起こすからである。
また、漏洩磁束密度の低いターゲットは、一旦マグネトロンスパッタリングを行ってエロージョンが形成されると、エロージョン部分から磁束が集中的に漏洩し、その部分だけが益々集中的にスパッタされていくためにターゲットの利用効率が低下したり、成膜速度が経時変化したり、基板面内に膜厚のばらつきが生じたり、さらにターゲット上への再デポ膜の大量付着が生じるなどといった問題を引き起こしやすい。
This conventional sputtering target for forming a magnetic recording medium film is based on a Co-based alloy containing Cr and Pt, which are ferromagnetic alloys, in which SiO 2 , TiO 2 , Ta 2 O 5 , Al 2 O 3, etc. Since the nonmagnetic oxide has a uniformly dispersed structure, the proportion of magnetic flux passing through the inside of the target is larger than that of the nonmagnetic target, and the magnetic flux leaking over the target is extremely small. This is for magnetron sputtering, which has a magnetic circuit placed under the target and stabilizes the discharge by increasing the ionization efficiency of the noble gas by utilizing the magnetic flux leaking over the target, thereby improving the deposition rate. It becomes a big problem. In other words, if magnetron sputtering is performed using a target with a low leakage magnetic flux density (ie, a target with high relative permeability) that has a small amount of magnetic flux leaking over the target, the deposition rate is stable even if the discharge is not stable or can be discharged. This causes problems such as extremely slowing down.
Also, a target with a low leakage magnetic flux density is such that once erosion is formed by magnetron sputtering, magnetic flux leaks intensively from the erosion part, and only that part is intensively sputtered. It tends to cause problems such as a decrease in utilization efficiency, a change in deposition rate over time, a variation in film thickness within the substrate surface, and a large amount of redeposition film deposited on the target.
そこで、本発明者らは、比透磁率の一層低い磁気記録媒体膜形成用スパッタリングターゲットを得るべく研究を行なった。
その結果、原料粉末として表面にCoおよびCrの酸化物層を被覆したCo−Cr二元系合金粉末、Pt粉末およびMの酸化物粉末を用意し、これら原料粉末を、O:1〜30原子%、Cr:2〜20原子%、Pt:5〜25原子%、M(ただし、MはSi、Ti、Ta、Alの内のいずれか1種):0.5〜15原子%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するように配合し、混合し、得られた混合粉末を真空ホットプレスすることにより得られた磁気記録媒体膜形成用スパッタリングターゲットは、CoおよびCrの酸化物層を被覆したCo−Cr二元系合金相、Pt相およびM金属の酸化物相として分散した組織を有するターゲットが得られ、この組織を有するターゲットは従来の磁気記録媒体膜形成用スパッタリングターゲットに比べて比透磁率が一層低下する、という研究結果が得られたのである。
Therefore, the present inventors have studied to obtain a sputtering target for forming a magnetic recording medium film having a lower relative permeability.
As a result, a Co—Cr binary alloy powder, a Pt powder, and an M oxide powder coated with a Co and Cr oxide layer on the surface were prepared as raw material powders. %, Cr: 2 to 20 atomic%, Pt: 5 to 25 atomic%, M (however, M is any one of Si, Ti, Ta and Al): 0.5 to 15 atomic% The remainder: a sputtering target for forming a magnetic recording medium film obtained by mixing and mixing so as to have a component composition composed of Co and inevitable impurities, and vacuum hot pressing the obtained mixed powder is made of Co and Cr A target having a structure dispersed as a Co—Cr binary alloy phase coated with an oxide layer, a Pt phase, and an M metal oxide phase is obtained, and the target having this structure is a conventional sputter for forming a magnetic recording medium film. The research result that the relative permeability is further reduced compared to the talling target was obtained.
この発明は、これら研究結果に基づいてなされたものであって、
(1)O:1〜30原子%、Cr:2〜20原子%、Pt:5〜25原子%、M金属:0.5〜15原子%を含有し、残部:Coおよび不可避不純物からなる成分組成を有する磁気記録媒体膜形成用スパッタリングターゲットにおいて、表面がCoおよびCrの酸化物層により被覆されたCo−Cr二元系合金相、Pt相およびMの酸化物相が均一分散している組織を有する比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット、に特徴を有するものである。
This invention was made based on these research results,
(1) O: 1 to 30 atomic%, Cr: 2 to 20 atomic%, Pt: 5 to 25 atomic%, M metal: 0.5 to 15 atomic%, and the balance: Co and inevitable impurities In a sputtering target for forming a magnetic recording medium film having a composition, a Co—Cr binary alloy phase whose surface is coated with a Co and Cr oxide layer, a Pt phase, and an M oxide phase are uniformly dispersed And a sputtering target for forming a perpendicular magnetic recording medium film having a low relative magnetic permeability.
原料粉末として表面にCoおよびCrの酸化物層を被覆したCo−Cr二元系合金粉末を使用することによって、ホットプレス中にCoおよびCrの酸化物層がPtのCo−Cr二元系合金相内部への拡散侵入を阻止し、Co−Cr二元系合金相の比透磁率の上昇を阻止するためにターゲット全体の比透磁率が低下するものと考えられる。Co−Cr二元系合金相の表面に形成されたCoおよびCrの酸化物層は素地のPtがCo−Cr二元系合金相の外周に拡散侵入してCo−Cr二元系合金相の比透磁率の上昇させるのを阻止する効果があるので、CoおよびCrの酸化物層の厚さは5nm以上であることが一層好ましいが、その厚さが300nmを越えると異常放電の原因になることから、Co−Cr二元系合金相の表面に形成されたCoおよびCrの酸化物層の厚さは5〜300nmの範囲内にあることが一層好ましい。 By using a Co—Cr binary alloy powder having a Co and Cr oxide layer coated on the surface as a raw material powder, a Co—Cr binary alloy in which the Co and Cr oxide layers are Pt during hot pressing. It is considered that the relative permeability of the entire target is lowered in order to prevent diffusion penetration into the phase and prevent an increase in the relative permeability of the Co—Cr binary alloy phase. The oxide layer of Co and Cr formed on the surface of the Co—Cr binary alloy phase has the base Pt diffused and penetrated into the outer periphery of the Co—Cr binary alloy phase. The thickness of the oxide layer of Co and Cr is more preferably 5 nm or more because it has an effect of preventing the increase of the relative magnetic permeability, but if the thickness exceeds 300 nm, abnormal discharge is caused. Therefore, the thickness of the Co and Cr oxide layers formed on the surface of the Co—Cr binary alloy phase is more preferably in the range of 5 to 300 nm.
この発明の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットを製造するには、原料粉末として表面にCoおよびCrの酸化物層により被覆したCo−Cr二元系合金粉末、Pt粉末およびMの酸化物粉末を用意し、これら原料粉末を、O:1〜30原子%、Cr:2〜20原子%、Pt:5〜25原子%、M(ただし、MはSi、Ti、Ta、Alの内のいずれか1種):0.5〜15原子%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するように配合し、混合し、得られた混合粉末を真空ホットプレスすることにより製造する。 In order to produce a sputtering target for forming a perpendicular magnetic recording medium film having a low relative magnetic permeability according to the present invention, a Co—Cr binary alloy powder coated with a Co and Cr oxide layer on its surface as a raw material powder, Pt powder, and M oxide powders are prepared, and these raw material powders are divided into O: 1 to 30 atomic%, Cr: 2 to 20 atomic%, Pt: 5 to 25 atomic%, M (where M is Si, Ti, Ta, Any one of Al): 0.5 to 15 atomic%, balance: blended so as to have a component composition consisting of Co and inevitable impurities, mixed, and the obtained mixed powder is vacuum hot pressed It is manufactured by doing.
原料粉末の一つである前記表面にCoおよびCrの酸化物層により被覆したCo−Cr二元系合金粉末は、Cr:4.2〜33.3原子%を含有し、残部がCoからなる組成を有するCo−Cr二元系合金粉末を、大気中、温度:150〜350℃で0.5〜2時間加熱する熱処理を施すことにより作製することができる。
したがって、この発明の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットの素地中に分散している表面にCoおよびCrの酸化物層が被覆したCo−Cr二元系合金相もCr:4.2〜33.3原子%を含有し、残部がCoからなる組成を有している。この表面にCoおよびCrの酸化物層が被覆したCo−Cr二元系合金粉末の成分組成および素地中に均一分散している表面にCoおよびCrの酸化物層が形成されているCo−Cr二元系合金相の成分組成はこの発明の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットの成分組成によって決定される。前記表面にCoおよびCrの酸化物層により被覆したCo−Cr二元系合金粉末を製造するために使用するCo−Cr二元系合金原料粉末は50%粒径(D50)が5〜40μmのものを使用することが好ましい。
The Co—Cr binary alloy powder coated with the Co and Cr oxide layers on the surface, which is one of the raw material powders, contains Cr: 4.2 to 33.3 atomic%, with the balance being Co. The Co—Cr binary alloy powder having the composition can be produced by performing a heat treatment in the atmosphere at a temperature of 150 to 350 ° C. for 0.5 to 2 hours.
Therefore, the Co—Cr binary alloy phase in which the surface dispersed in the substrate of the sputtering target for forming a perpendicular magnetic recording medium film having a low relative permeability according to the present invention is coated with an oxide layer of Co and Cr is also Cr: It has a composition containing 4.2 to 33.3 atomic%, with the balance being Co. The composition of the Co-Cr binary alloy powder coated with the Co and Cr oxide layers on this surface and the Co-Cr oxide layer formed on the surface uniformly dispersed in the substrate The component composition of the binary alloy phase is determined by the component composition of the sputtering target for forming a perpendicular magnetic recording medium film having a low relative magnetic permeability according to the present invention. The Co—Cr binary alloy raw material powder used for producing the Co—Cr binary alloy powder coated on the surface with an oxide layer of Co and Cr has a 50% particle size (D 50 ) of 5 to 40 μm. Are preferably used.
この発明の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットを用いると、マグネトロンスパッタリングを効率よく行なうことができ、コンピューター並びにデジタル家電等の産業の発展に大いに貢献し得るものである。 When the sputtering target for forming a perpendicular magnetic recording medium film having a low relative magnetic permeability according to the present invention is used, magnetron sputtering can be performed efficiently, which can greatly contribute to the development of industries such as computers and digital home appliances.
原料粉末として、表1に示される成分組成を有する平均粒径:20μmのCo−Cr二元系合金粉末を用意し、このCo−Cr二元系合金粉末を表1に示される条件で熱処理することによりCo−Cr二元系合金粉末の表面にCoおよびCrの酸化物層を有する酸化膜被覆Co−Cr二元系合金粉末A〜Dを作製した。さらに、平均粒径:25μmのPt粉末、平均粒径:5μmのCo粉末、平均粒径:15μmのCr粉末を用意し、さらに非磁性酸化物粉末としていずれも平均粒径:3μmのSiO2粉末、TiO2粉末、Ta2O5粉末およびAl2O3粉末を用意した。 As a raw material powder, a Co—Cr binary alloy powder having an average particle diameter of 20 μm having the component composition shown in Table 1 is prepared, and the Co—Cr binary alloy powder is heat-treated under the conditions shown in Table 1. Thus, oxide film-coated Co—Cr binary alloy powders A to D having Co and Cr oxide layers on the surface of the Co—Cr binary alloy powder were produced. Furthermore, a Pt powder having an average particle size of 25 μm, a Co powder having an average particle size of 5 μm, and a Cr powder having an average particle size of 15 μm are prepared. Further, as a non-magnetic oxide powder, both are SiO 2 powder having an average particle size of 3 μm. TiO 2 powder, Ta 2 O 5 powder and Al 2 O 3 powder were prepared.
実施例1
表1の酸化膜被覆Co−Cr二元系合金粉末AにPt粉末およびSiO2粉末を配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで12時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。この板状ホットプレス体の成分組成を蛍光X線分析装置により測定し、その結果を表2に示した。さらに、この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット1を作製し、さらにこの本発明ターゲット1を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察し、その組織を表2に示した。
さらに、この本発明ターゲット1についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 1
The oxide film-coated Co—Cr binary alloy powder A in Table 1 is blended with Pt powder and SiO 2 powder, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 12 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body. The component composition of this plate-like hot press body was measured with a fluorescent X-ray analyzer, and the results are shown in Table 2. Furthermore, by cutting this plate-like hot press body, the target 1 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm is produced, and the target 1 of the present invention is further cut, and its cut surface Was observed by an electron microprobe analyzer (EPMA) surface analysis method, and the structure was shown in Table 2.
Furthermore, the maximum relative magnetic permeability in the in-plane direction of the target 1 of the present invention was measured, and the results are shown in Table 2.
従来例1
先に用意したCo粉末、Cr粉末、Pt粉末およびSiO2粉末を配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。この板状ホットプレス体の成分組成を蛍光X線分析装置により測定し、その結果を表2に示した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット1を作製し、この従来ターゲット1を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察しその組織を表2に示した。さらに、この従来ターゲット1についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional example 1
The previously prepared Co powder, Cr powder, Pt powder and SiO 2 powder are blended, and the blended powder obtained is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in this container is an Ar gas atmosphere Replaced in, then sealed the container. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body. The component composition of this plate-like hot press body was measured with a fluorescent X-ray analyzer, and the results are shown in Table 2.
By cutting this plate-like hot press body, a conventional target 1 having a diameter of 152.4 mm and a thickness of 5 mm is produced, the conventional target 1 is cut, and the cut surface is an electron beam microprobe. Table 2 shows the structure observed by the surface analysis method of an analyzer (EPMA). Furthermore, the maximum relative permeability in the target in-plane direction of this conventional target 1 was measured, and the result is shown in Table 2.
実施例2
表1の酸化膜被覆Co−Cr二元系合金粉末B、Pt粉末およびTiO2粉末を配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:950℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。この板状ホットプレス体の成分組成を蛍光X線分析装置により測定し、その結果を表2に示した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット2を作製し、さらにこの本発明ターゲット2を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察し、その組織を表2に示した。さらに、この本発明ターゲット2についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 2
The oxide film-coated Co—Cr binary alloy powder B, Pt powder and TiO 2 powder shown in Table 1 were blended, and the resulting blended powder was put into a 10-liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled into a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 950 ° C., pressure: 35 MPa, and 3 hours. The component composition of this plate-like hot press body was measured with a fluorescent X-ray analyzer, and the results are shown in Table 2.
By cutting this plate-like hot press body, the target 2 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm is produced, and the target 2 of the present invention is further cut. Observation was made by the surface analysis method of a line microprobe analyzer (EPMA), and the structure was shown in Table 2. Furthermore, the maximum relative magnetic permeability in the target in-plane direction of this inventive target 2 was measured, and the results are shown in Table 2.
従来例2
先に用意したCo粉末、Cr粉末、Pt粉末およびTiO2粉末を配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:950℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。この板状ホットプレス体の成分組成を蛍光X線分析装置により測定し、その結果を表2に示した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット2を作製し、さらにこの従来ターゲット2を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察し、その組織を表2に示した。さらにこの従来ターゲット2についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional example 2
The previously prepared Co powder, Cr powder, Pt powder and TiO 2 powder were blended, and the blended powder obtained was put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in this container was replaced with an Ar gas atmosphere Replaced in, then sealed the container. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled into a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 950 ° C., pressure: 35 MPa, and 3 hours. The component composition of this plate-like hot press body was measured with a fluorescent X-ray analyzer, and the results are shown in Table 2.
By cutting this plate-like hot press body, a conventional target 2 having a diameter of 152.4 mm and a thickness of 5 mm is produced, the conventional target 2 is further cut, and the cut surface is cut into an electron microbeam. The surface was observed by a probe analyzer (EPMA) surface analysis method, and the structure was shown in Table 2. Further, the maximum relative magnetic permeability in the target in-plane direction of this conventional target 2 was measured, and the results are shown in Table 2.
実施例3
表1の酸化膜被覆Co−Cr二元系合金粉末C、Pt粉末およびTa2O5粉末を配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1120℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。この板状ホットプレス体の成分組成を蛍光X線分析装置により測定し、その結果を表2に示した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット3を作製し、この本発明ターゲット3を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察し、その組織を表2に示した。さらにこの本発明ターゲット3についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 3
The oxide film-coated Co—Cr binary alloy powder C, Pt powder and Ta 2 O 5 powder in Table 1 were blended, and the resulting blended powder was put into a 10-liter container together with zirconia balls serving as a grinding medium. The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled into a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1120 ° C., pressure: 35 MPa, and holding for 3 hours. The component composition of this plate-like hot press body was measured with a fluorescent X-ray analyzer, and the results are shown in Table 2.
By cutting this plate-like hot press body, the target 3 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm was produced, the target 3 of the present invention was cut, and the cut surface was converted to an electron beam. The structure was observed by a surface analysis method using a microprobe analyzer (EPMA). Furthermore, the maximum relative magnetic permeability in the in-plane direction of this target 3 of the present invention was measured, and the results are shown in Table 2.
従来例3
先に用意したCo粉末、Cr粉末、Pt粉末およびTa2O5粉末を配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1120℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。この板状ホットプレス体の成分組成を蛍光X線分析装置により測定しその結果を表2に示した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット3を作製し、さらにこの従来ターゲット3を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察し、その組織を表2に示した。さらにこの従来ターゲット3についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional example 3
The previously prepared Co powder, Cr powder, Pt powder, and Ta 2 O 5 powder are blended, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is changed to Ar. After replacing in a gas atmosphere, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled into a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1120 ° C., pressure: 35 MPa, and holding for 3 hours. The component composition of this plate-like hot press body was measured with a fluorescent X-ray analyzer, and the results are shown in Table 2.
By cutting this plate-like hot press body, a conventional target 3 having dimensions of diameter: 152.4 mm and thickness: 5 mm is produced, and further, this conventional target 3 is cut, and the cut surface is converted into an electron microbeam. The surface was observed by a probe analyzer (EPMA) surface analysis method, and the structure was shown in Table 2. Further, the maximum relative magnetic permeability in the target in-plane direction of this conventional target 3 was measured, and the results are shown in Table 2.
実施例4
表1に示される酸化膜被覆Co−Cr二元系合金粉末D、Pt粉末およびAl2O3粉末を配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1050℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。この板状ホットプレス体の成分組成を蛍光X線分析装置により測定し、その結果を表2に示した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット4を作製し、さらにこの本発明ターゲット4を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察し、その組織を表2に示した。さらに、この本発明ターゲット4についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 4
The oxide film-coated Co—Cr binary alloy powder D, Pt powder, and Al 2 O 3 powder shown in Table 1 were blended, and the obtained blended powder was put into a 10-liter container together with zirconia balls as a grinding medium. The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled into a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1050 ° C., pressure: 35 MPa, and 3 hours. The component composition of this plate-like hot press body was measured with a fluorescent X-ray analyzer, and the results are shown in Table 2.
By cutting this plate-like hot press body, the target 4 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm was produced, and the target 4 of the present invention was further cut. Observation was made by the surface analysis method of a line microprobe analyzer (EPMA), and the structure was shown in Table 2. Furthermore, the maximum relative magnetic permeability in the in-plane direction of the target 4 of the present invention was measured, and the results are shown in Table 2.
従来例4
先に用意したCo粉末、Cr粉末、Pt粉末およびAl2O3粉末を配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1050℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。この板状ホットプレス体の成分組成を蛍光X線分析装置により測定し、その結果を表2に示した。この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット4を作製し、この従来ターゲット4を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察し、その組織を表2に示した。さらに、この従来ターゲット4についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional example 4
The previously prepared Co powder, Cr powder, Pt powder, and Al 2 O 3 powder are blended, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is Ar. After replacing in a gas atmosphere, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled into a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1050 ° C., pressure: 35 MPa, and 3 hours. The component composition of this plate-like hot press body was measured with a fluorescent X-ray analyzer, and the results are shown in Table 2. By cutting this plate-like hot press body, a conventional target 4 having a diameter of 152.4 mm and a thickness of 5 mm is produced, the conventional target 4 is cut, and the cut surface is used as an electron beam microprobe. The structure was observed by the surface analysis method of an analyzer (EPMA). Further, the maximum relative magnetic permeability in the target in-plane direction of this conventional target 4 was measured, and the results are shown in Table 2.
表1〜2に示される結果から、本発明ターゲット1と従来ターゲット1とは成分組成がほぼ同じであっても、素地中にCoとCrの酸化物層を被覆したCo−Cr二元系合金相が均一分散している本発明ターゲット1は従来ターゲット1に比べて、比透磁率が小さいところから、スパッタリングに際して漏洩磁束密度が大きく、したがって、本発明ターゲット1は従来ターゲット1に比べて効率よくスパッタできることが分かる。
同様に、本発明ターゲット2〜4と従来ターゲット2〜4とはそれぞれ成分組成がほぼ同じであっても、素地中にCoとCrの酸化物層を被覆したCo−Cr二元系合金相が均一分散している本発明ターゲット2〜4はそれぞれ従来ターゲット2〜4に比べて、比透磁率が小さいところから、スパッタリングに際して漏洩磁束密度が大きく、したがって、本発明ターゲット2〜4はそれぞれ従来ターゲット2〜4に比べて効率よくスパッタできることが分かる。
From the results shown in Tables 1 and 2, even though the composition of the present invention target 1 and the conventional target 1 are substantially the same, a Co—Cr binary alloy in which an oxide layer of Co and Cr is coated in the substrate The target 1 of the present invention in which the phases are uniformly dispersed has a smaller magnetic permeability than the conventional target 1 and thus has a large leakage magnetic flux density during sputtering. Therefore, the target 1 of the present invention is more efficient than the conventional target 1. It can be seen that sputtering can be performed.
Similarly, even though the present invention targets 2 to 4 and the conventional targets 2 to 4 have substantially the same component composition, the Co—Cr binary alloy phase in which the Co and Cr oxide layers are coated in the substrate is formed. Since the present invention targets 2 to 4 which are uniformly dispersed are smaller in relative permeability than the conventional targets 2 to 4, respectively, the leakage magnetic flux density is large during sputtering. Therefore, the present invention targets 2 to 4 are each the conventional target. It can be seen that sputtering can be performed more efficiently than 2-4.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008150044A JP2009293102A (en) | 2008-06-09 | 2008-06-09 | Sputtering target for depositing vertical magnetic recording medium film with low relative permeability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008150044A JP2009293102A (en) | 2008-06-09 | 2008-06-09 | Sputtering target for depositing vertical magnetic recording medium film with low relative permeability |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009293102A true JP2009293102A (en) | 2009-12-17 |
Family
ID=41541546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008150044A Withdrawn JP2009293102A (en) | 2008-06-09 | 2008-06-09 | Sputtering target for depositing vertical magnetic recording medium film with low relative permeability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009293102A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012036452A (en) * | 2010-08-06 | 2012-02-23 | Tanaka Kikinzoku Kogyo Kk | Target for magnetron sputtering, and method of manufacturing the same |
JP2012087412A (en) * | 2011-11-17 | 2012-05-10 | Tanaka Kikinzoku Kogyo Kk | Target for magnetron sputtering and method of producing the same |
WO2013073323A1 (en) * | 2011-11-17 | 2013-05-23 | 田中貴金属工業株式会社 | Target for use in magnetron sputtering and manufacturing process therefor |
-
2008
- 2008-06-09 JP JP2008150044A patent/JP2009293102A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012036452A (en) * | 2010-08-06 | 2012-02-23 | Tanaka Kikinzoku Kogyo Kk | Target for magnetron sputtering, and method of manufacturing the same |
US9053910B2 (en) | 2010-08-06 | 2015-06-09 | Tanaka Kikinzoku Kogyo K.K. | Magnetron sputtering target and process for producing the same |
US9928996B2 (en) | 2010-08-06 | 2018-03-27 | Tanaka Kikinzoku Kogyo K.K. | Magnetron sputtering target and process for producing the same |
JP2012087412A (en) * | 2011-11-17 | 2012-05-10 | Tanaka Kikinzoku Kogyo Kk | Target for magnetron sputtering and method of producing the same |
WO2013073323A1 (en) * | 2011-11-17 | 2013-05-23 | 田中貴金属工業株式会社 | Target for use in magnetron sputtering and manufacturing process therefor |
US9502224B2 (en) | 2011-11-17 | 2016-11-22 | Tanaka Kikinzoku Kogyo K.K. | Magnetron sputtering target and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009001860A (en) | Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability | |
TWI482867B (en) | Non - magnetic Particle Dispersive Type Strong Magnetic Sputtering Target | |
US9228251B2 (en) | Ferromagnetic material sputtering target | |
JP2009132975A (en) | Sputtering target for forming film of perpendicular magnetic recording medium having low relative permeability | |
JP6359622B2 (en) | Sputtering target containing Co or Fe | |
JP2009001861A (en) | Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability | |
TW201125993A (en) | Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic material thin film comprising co or co alloy phase and oxide phase, and magnetic recording medium produced using the magnetic material thin film | |
JPWO2013094605A1 (en) | Fe-Pt sputtering target in which C particles are dispersed | |
TW201512418A (en) | Sputtering target for forming magnetic thin film | |
JP4673453B1 (en) | Ferromagnetic material sputtering target | |
JP2010222639A (en) | METHOD OF MANUFACTURING Co-BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM HAVING LOW MAGNETIC PERMEABILITY | |
JP2009001862A (en) | Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability | |
JP2008045173A (en) | FeCoB-BASED TARGET MATERIAL TO WHICH Cr IS ADDED | |
JP2008240011A (en) | Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLE | |
JP2009293102A (en) | Sputtering target for depositing vertical magnetic recording medium film with low relative permeability | |
JP2010272177A (en) | Sputtering target for forming magnetic recording medium film, and method for producing the same | |
JP5944580B2 (en) | Sputtering target | |
JP2010095794A (en) | METHOD FOR PRODUCING Co-Fe-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL | |
JP5024660B2 (en) | Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles | |
JP2009132976A (en) | Sputtering target for depositing perpendicular magnetic recording medium film having low relative magnetic permeability | |
JP4968445B2 (en) | Sputtering target for forming high-density magnetic recording medium film with less generation of particles | |
JP2009108335A (en) | MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY | |
JP5418897B2 (en) | Method for producing Co-Fe alloy sputtering target material | |
JP5024659B2 (en) | Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles | |
JP2007291489A (en) | Method for manufacturing sputtering target to be used in forming film of perpendicular magnetic recording medium having low relative magnetic permeability in in-plane direction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110906 |