[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009288160A - Biosample analysis system, biosample analysis method, biosample pretreatment device, and biosample pretreatment method - Google Patents

Biosample analysis system, biosample analysis method, biosample pretreatment device, and biosample pretreatment method Download PDF

Info

Publication number
JP2009288160A
JP2009288160A JP2008142884A JP2008142884A JP2009288160A JP 2009288160 A JP2009288160 A JP 2009288160A JP 2008142884 A JP2008142884 A JP 2008142884A JP 2008142884 A JP2008142884 A JP 2008142884A JP 2009288160 A JP2009288160 A JP 2009288160A
Authority
JP
Japan
Prior art keywords
biological sample
support
reaction
immobilized
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008142884A
Other languages
Japanese (ja)
Inventor
Yukie Sasakura
由貴江 笹倉
Katsuhiro Kanda
勝弘 神田
Izumi Wake
泉 和氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008142884A priority Critical patent/JP2009288160A/en
Publication of JP2009288160A publication Critical patent/JP2009288160A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biosample analysis system and a biosample analysis method, applicable to tandem mass (MS/MS) analysis by LC-MS, having excellent accuracy, and suitable for a biosample, especially a protein, and to provide a biosample pretreatment device and a biosample pretreatment method which are necessary for analysis. <P>SOLUTION: This analysis system comprises the pretreatment device for reacting a plurality of immobilized enzymes acquired by immobilizing decomposition enzymes for a biosample on a support body with the biosample on each different reaction part, and an LC-MS device for performing MS/MS analysis of each reactant acquired by the pretreatment. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、生体試料、特にタンパク質に適した生体試料解析システム、生体試料解析手法、生体試料前処理装置及び生体試料前処理方法に関する。 The present invention relates to a biological sample analysis system, a biological sample analysis method, a biological sample pretreatment apparatus, and a biological sample pretreatment method suitable for biological samples, particularly proteins.

タンパク質は細胞内における転写・翻訳によって生合成された後、様々な修飾を受けることで機能を持った生体分子となる。これまでに300種類以上の翻訳後修飾が報告されており、それぞれタンパク質の構造、機能、局在性、相互作用等と密接に関連していることから、翻訳後修飾解析はタンパク質の機能や生体内メカニズムの解明に不可欠となっているまた異常な翻訳後修飾はガン、アルツハイマー病、糖尿病等、様々な疾患との関わりが報告されており、翻訳後修飾は有効な疾患マーカーや創薬ターゲットとして期待されている。 Proteins are biosynthesized by transcription and translation in cells and then subjected to various modifications to become functional biomolecules. To date, more than 300 post-translational modifications have been reported, each of which is closely related to the structure, function, localization, interaction, etc. of the protein. Abnormal post-translational modifications that are indispensable for elucidation of internal mechanisms have been reported to be associated with various diseases such as cancer, Alzheimer's disease, diabetes, etc. Post-translational modifications are effective disease markers and drug targets Expected.

翻訳後修飾の解析には、質量分析(MS)が有効な技術の一つとなっている。タンパク質のMS解析においては、通常タンパク質をトリプシン等のタンパク質分解酵素によってペプチドへと分解した後に測定、解析され修飾部位を同定する。そのためには、修飾部位のMS検出に適したペプチドを生成可能なタンパク質分解酵素を選択する必要がある。しかし、前記選択のために初期段階で複数の酵素反応系を構築することは、研究者等にとって大きな負担となっている。たとえば、候補となる酵素としては約20種類が存在し、一般的な酵素消化は一種類につき10時間を要する。ゆえに20種類の酵素を検討するには200時間必要となり、試料毎にこの検討を実施することは現実的には不可能である。   Mass spectrometry (MS) is an effective technique for analyzing post-translational modifications. In protein MS analysis, a protein is usually measured after being decomposed into a peptide by a proteolytic enzyme such as trypsin, and the modification site is identified. For this purpose, it is necessary to select a proteolytic enzyme capable of producing a peptide suitable for MS detection of the modified site. However, constructing a plurality of enzyme reaction systems at the initial stage for the selection is a heavy burden for researchers and the like. For example, there are about 20 candidate enzymes, and general enzyme digestion takes 10 hours for each type. Therefore, it takes 200 hours to examine 20 kinds of enzymes, and it is practically impossible to carry out this examination for each sample.

本課題を克服するためには、固定化酵素を用いたタンパク質分解技術が有効となる。この場合、n種類のタンパク質分解酵素を同一支持体上に固定化して反応を行うことでスループットをn倍向上させ、短時間で適したタンパク質分解酵素を決定することが可能となる。また短時間で多くの実験数を稼ぐことができるため、高精度データが取得可能となる。   In order to overcome this problem, a proteolytic technique using an immobilized enzyme is effective. In this case, by performing the reaction by immobilizing n types of proteolytic enzymes on the same support, it is possible to improve the throughput n times and determine a suitable proteolytic enzyme in a short time. Moreover, since a large number of experiments can be earned in a short time, highly accurate data can be acquired.

このような、複数種類の酵素によりタンパク質分解酵素を決定する方法としては、(1)特開2006-262829、(2)特開2005-513490および特開2007-309673が開示されている。
(1)には、支持体上に複数種類の酵素を固定化し、複数種類の酵素と一種類の試料を単独反応槽内部で同時に反応させる手法が報告されている。
また、(2)には、複数種類のタンパク質分解酵素を固相化したMALDIターゲット上に添加し、試料をMALDI-MSによって解析する手法が報告されている。
As such a method for determining a proteolytic enzyme using a plurality of types of enzymes, (1) JP-A-2006-262829, (2) JP-A-2005-513490 and JP-A-2007-309673 are disclosed.
In (1), a method is reported in which a plurality of types of enzymes are immobilized on a support, and a plurality of types of enzymes and one type of sample are simultaneously reacted inside a single reaction vessel.
In (2), a method of adding a plurality of types of proteolytic enzymes onto a solid-phased MALDI target and analyzing the sample by MALDI-MS is reported.

特開2005-513490号公報JP 2005-513490 JP 特開2007-309673号公報JP 2007-309673 A

しかしながら、上記(1)は試料を単独反応槽内部で同時に反応させるため、効率よく反応を進めることはできるが、酵素間のコンタミが発生し、精度が低下するということが課題となる。
一方、(2)は、MALDI-MSの解析手法であり、これらによって酵素反応に必要なタンパク質量は約0.2 ugと微量であり,液体クロマトグラフ質量分析計(LC-MS)による翻訳後修飾解析を行うためには不十分である。
However, in the above (1), since the sample is reacted at the same time inside the single reaction tank, the reaction can proceed efficiently, but the problem is that contamination between enzymes occurs and accuracy is lowered.
On the other hand, (2) is an analysis method of MALDI-MS, and the amount of protein required for enzyme reaction is as small as about 0.2 ug, and post-translational modification analysis using a liquid chromatograph mass spectrometer (LC-MS). It is not enough to do.

本発明の目的は、LC-MSによるタンデムマス(MS/MS)解析に適用でき,精度の優れた生体試料、特にタンパク質に適した生体試料解析システム、生体試料解析手法、解析に必要な生体試料前処理装置及び生体試料前処理方法を提供することにある。   The object of the present invention is applicable to tandem mass (MS / MS) analysis by LC-MS, and is a highly accurate biological sample, particularly a biological sample analysis system suitable for proteins, a biological sample analysis method, and a biological sample necessary for the analysis. It is providing the pre-processing apparatus and the biological sample pre-processing method.

上記目的を達成するために、本発明は、生体試料の分解酵素を支持体上に固定化された複数の固定化酵素をそれぞれ別の反応部で前記生体試料と反応させる前処理装置と、前記前処理から得られる反応物をそれぞれMS/MS解析するLC-MS装置からなることを特徴とする。 In order to achieve the above object, the present invention provides a pretreatment apparatus for reacting a plurality of immobilized enzymes, on which a degrading enzyme of a biological sample is immobilized on a support, with the biological sample in separate reaction units, Each of the reactants obtained from the pretreatment comprises an LC-MS apparatus for MS / MS analysis.

また、上記目的を達成するために、本発明は、生体試料の分解酵素を支持体上に固定化された複数の固定化酵素とそれぞれ別の反応部で前記生体試料と反応させる前処理工程と、前記工程で得られた反応物をそれぞれLC-MS装置によるMS/MS解析する分析工程を有する。   In order to achieve the above object, the present invention comprises a pretreatment step of reacting a biological sample with a plurality of immobilized enzymes immobilized on a support and the biological sample in a separate reaction part. And an analysis step of performing MS / MS analysis on each of the reactants obtained in the above step using an LC-MS apparatus.

さらに、上記目的を達成するために、本発明は、生体試料の分解酵素を支持体上に固定化された複数の固定化酵素と前記生体試料と反応させる前処理装置であって、前記複数の固定化酵素はそれぞれ別の反応部で反応させることを特徴とする。   Furthermore, in order to achieve the above-mentioned object, the present invention provides a pretreatment device for reacting a biological sample with a plurality of immobilized enzymes immobilized on a support and a degrading enzyme of the biological sample. Each of the immobilized enzymes is reacted in a separate reaction section.

また、上記目的を達成するために、本発明は、生体試料の分解酵素を支持体上に固定化された複数の固定化酵素と前記生体試料と反応させる前処理方法であって、前記複数の固定化酵素はそれぞれ別の反応部で反応させることを特徴とする。   In order to achieve the above object, the present invention provides a pretreatment method for reacting a plurality of immobilized enzymes immobilized on a support with a degrading enzyme of a biological sample with the biological sample. Each of the immobilized enzymes is reacted in a separate reaction section.

本発明によれば、LC-MSによるタンデムマス(MS/MS)解析に適用でき,精度の優れた生体試料解析システム、生体試料解析手法、解析に必要な生体試料前処理装置及び生体試料前処理方法を提供することができる。   According to the present invention, it is applicable to tandem mass (MS / MS) analysis by LC-MS, and is a highly accurate biological sample analysis system, biological sample analysis method, biological sample pretreatment apparatus and biological sample pretreatment necessary for analysis A method can be provided.

本発明の実施するための最良の形態としてタンパク質解析を例とって説明する。対象となるタンパク質としては、人工的に強制発現および精製したタンパク質またはタンパク質複合体、細胞や組織からの抽出物あるいは血液(血清、血漿)、尿、脳髄液、唾液等から精製したタンパク質またはタンパク質複合体、および未精製の細胞や組織からの抽出物あるいは血液(血清、血漿)、尿、脳髄液、唾液等が想定される。 As the best mode for carrying out the present invention, protein analysis will be described as an example. Target proteins include proteins or protein complexes that have been artificially forced and expressed and purified, extracts from cells and tissues or blood (serum, plasma), urine, cerebrospinal fluid, saliva, etc. Extracts from the body and unpurified cells and tissues or blood (serum, plasma), urine, cerebral spinal fluid, saliva, etc. are envisaged.

固定化するタンパク質分解酵素としては、トリプシン、キモトリプシン、エンドプロテイナーゼArgC、エンドプロテイナーゼAspN、エンドプロテイナーゼGluC、エンドプロテイナーゼLysC、アミノペプチダーゼ、カルボキシペプチダーゼ、パパイン、ペプシン、プラスミン、プラスミノーゲン、スロンビン、ファクターX等が想定される。   Examples of proteolytic enzymes to be immobilized include trypsin, chymotrypsin, endoproteinase ArgC, endoproteinase AspN, endoproteinase GluC, endoproteinase LysC, aminopeptidase, carboxypeptidase, papain, pepsin, plasmin, plasminogen, thrombin, factor X, etc. Is assumed.

後述するタンパク質分解酵素の固定化用の支持体の形状としては、固体の平面基板、ビーズ、ならびに中空構造体が用いられ、その材質としては、例えばニトロセルロースやPVDF等のメンブレン、ガラス、ウエハー等のシリコン、プラスチック等の樹脂、金属等に、必要に応じて固定に適した表面修飾を施したものを用いることができる。表面修飾としては、物理吸着によって目的分子を固定化することができるポリ-L-リジンやアミノシラン、共有結合によって目的分子を固定化することができるアルデヒド基やエポキシ基のような官能基、及び目的分子との親和性を利用して固定化することができるアビジンやNi-NTAなどを用いることができる。本発明では支持体に固定化した酵素を固体化酵素と呼ぶ。   As the shape of the support for immobilizing the proteolytic enzyme described later, a solid flat substrate, beads, and a hollow structure are used, and examples of the material include membranes such as nitrocellulose and PVDF, glass, wafers, and the like. It is possible to use a material such as a resin such as silicon or plastic, a metal, or the like that is subjected to surface modification suitable for fixing as required. Surface modification includes poly-L-lysine and aminosilane that can immobilize the target molecule by physical adsorption, functional groups such as aldehyde group and epoxy group that can immobilize the target molecule by covalent bond, and purpose Avidin or Ni-NTA that can be immobilized using affinity for molecules can be used. In the present invention, an enzyme immobilized on a support is referred to as a solidifying enzyme.

本発明では、従来とは異なり平面の支持体上で酵素反応を行うためには、支持体上で試料を反応させるための反応槽を複数個形成する。そして、その反応槽内部で複数のタンパク質分解酵素をそれぞれ異なった反応槽で固定化し、反応槽内部で試料と反応させる。反応槽としては、隣接する反応槽における試料反応とのコンタミを避けるために、それぞれの反応槽は、反応時には可能の限り開口部が少なく、密封状態となることが望ましい。   In the present invention, unlike the conventional case, in order to perform an enzyme reaction on a flat support, a plurality of reaction vessels for reacting a sample on the support are formed. Then, a plurality of proteolytic enzymes are immobilized in different reaction tanks inside the reaction tank and reacted with the sample inside the reaction tank. As reaction vessels, in order to avoid contamination with the sample reaction in the adjacent reaction vessel, it is desirable that each reaction vessel has as few openings as possible during the reaction and is sealed.

反応槽の形状は、反応槽内部での試料の対流を促し、反応を効率的に行う角のない形状、例えば円形、楕円形がよい。反応槽内部で対流等により発生の気泡は反応効率の低下を引き起こす。そこで、それを抑止するために、反応槽の内面形状が一部に窪んで幅が狭くなっている形状が特に有効である。必要な試料量が多くなると反応槽も大きくなり、窪みの数も多くする。   The shape of the reaction vessel is preferably an angleless shape that facilitates convection of the sample inside the reaction vessel and efficiently performs the reaction, for example, a circle or an ellipse. Bubbles generated by convection or the like inside the reaction tank cause a reduction in reaction efficiency. Therefore, in order to suppress this, a shape in which the inner shape of the reaction vessel is partially recessed and the width is narrow is particularly effective. As the required amount of sample increases, the reaction vessel also increases and the number of depressions increases.

反応槽の材質としては、支持体に吸着させることができるシリコーンゴム等が想定される。例えばPDMS(polydimethylsiloxane、ポリジメチルシロキサン)は生体試料の吸着が少なく、優れた素材である。   As a material of the reaction vessel, silicone rubber or the like that can be adsorbed on a support is assumed. For example, PDMS (polydimethylsiloxane) is an excellent material with little biological sample adsorption.

まず、第1の実施形態を図1から図7を用いて説明する。図1にタンパク質解析システムの実施例を示す。本タンパク質解析システムは、酵素反応前の試料を保管するための酵素反応前試料保管部701と、試料を酵素消化するための試料酵素反応部702と、酵素反応後の試料を保管するための酵素反応後試料保管部703と、試料を解析するためのLC-MS装置704と、酵素反応前試料保管部分701からへ試料を導入するための試料導入部705と、酵素反応後の試料を試料酵素反応部702から酵素反応後試料保管部703へ回収するための試料回収部706と、酵素反応後試料保管部703からLC-MS装置704へ試料を導入するための試料移動部707を備えている。   First, a first embodiment will be described with reference to FIGS. FIG. 1 shows an embodiment of a protein analysis system. This protein analysis system includes a pre-enzyme sample storage unit 701 for storing a sample before the enzyme reaction, a sample enzyme reaction unit 702 for enzymatic digestion of the sample, and an enzyme for storing the sample after the enzyme reaction A sample storage unit 703 after the reaction, an LC-MS device 704 for analyzing the sample, a sample introduction unit 705 for introducing the sample from the sample storage unit 701 before the enzyme reaction, and a sample enzyme after the enzyme reaction A sample recovery unit 706 for recovering from the reaction unit 702 to the sample storage unit 703 after the enzyme reaction, and a sample moving unit 707 for introducing the sample from the sample storage unit 703 after the enzyme reaction to the LC-MS device 704 are provided. .

ここで、試料導入部705、試料回収部706、試料移動部707は,対象部分へ移動するための位置決め機構および可動機構を備えている一般的な機構を用いることができる。また、反応前試料保管部分701と反応後試料保管部703も従来のものを用いることができる。   Here, as the sample introduction unit 705, the sample recovery unit 706, and the sample moving unit 707, a general mechanism including a positioning mechanism and a movable mechanism for moving to the target portion can be used. Further, the pre-reaction sample storage part 701 and the post-reaction sample storage part 703 can also be conventional ones.

そこで、試料酵素反応消化部702とLC-MS装置704について図2乃至図7用いて説明する。図2は、本実施形態のタンパク質解析をする工程を示し、図3は、図2に示す工程にそって主に試料酵素反応消化部702の構成、プロセスを示す。図2及び図3における(1)〜(9)の数字は以下に説明する工程を示す。   Therefore, the sample enzyme reaction digester 702 and the LC-MS apparatus 704 will be described with reference to FIGS. FIG. 2 shows the steps of protein analysis of this embodiment, and FIG. 3 mainly shows the configuration and process of the sample enzyme reaction digester 702 along the steps shown in FIG. The numbers (1) to (9) in FIGS. 2 and 3 indicate the steps described below.

本実施形態は、(1)平面支持体上に複数種類のタンパク質分解酵素を固定化するための固定化反応槽を形成する工程、(2)複数種類のタンパク質分解酵素を支持体上の固定化反応槽内部に添加する工程、(3)タンパク質分解酵素を支持体に固定化する工程、(4)支持体を洗浄して固定化されなかったタンパク質分解酵素を除去する工程、(5)固定化タンパク質分解酵素と試料を反応させるための試料反応槽を形成する工程、(6)試料反応槽内部に試料を添加する工程、(7)試料を添加した試料反応槽内部に振動を加えることで撹拌して分解反応を行う工程、(8)生成したタンパク質分解物を回収する工程及び(9)回収したタンパク質分解物をLC-MS解析するする工程、からなる。ただし、本発明は上記の実施形態に限定されるものではない。   This embodiment includes (1) a step of forming an immobilization reaction tank for immobilizing a plurality of types of proteolytic enzymes on a flat support, and (2) immobilization of a plurality of types of proteolytic enzymes on the support. (3) Immobilization of the proteolytic enzyme on the support, (4) Washing the support to remove the non-immobilized proteolytic enzyme, (5) Immobilization A step of forming a sample reaction tank for reacting the proteolytic enzyme with the sample, (6) A step of adding the sample to the inside of the sample reaction vessel, (7) Agitating by applying vibration to the inside of the sample reaction vessel to which the sample has been added And (8) a step of recovering the produced protein degradation product, and (9) a step of performing LC-MS analysis on the recovered protein degradation product. However, the present invention is not limited to the above embodiment.

以下、各工程について詳細に説明する。
(1)平面支持体上に複数種類のタンパク質分解酵素を固定化するための固定化反応槽を形成する工程
タンパク質分解酵素固定化用の支持体201として、ProteoChipTM (TypeA、Proteogen)を用いた。支持体201にはあらかじめPDMS製の反応槽シート202を貼付した。反応槽シート202は、お面のように形状しており、お面側の中央部に反応槽を形成する楕円状の窪みを設けている。そこで、反応槽シート202を支持体に密着させるとその空間に溶液を導入できる固定化反応槽203が形成される。支持体201とシート202とを密着させるために専用ホルダ205によって両者を固定する。これを固定化支持体220という。本実施例における固定化反応槽の容量は40μLである。
Hereinafter, each step will be described in detail.
(1) Process of forming an immobilization reaction tank for immobilizing multiple types of proteolytic enzymes on a flat support ProteoChip TM (Type A, Proteogen) was used as a support 201 for proteolytic enzyme immobilization . A reaction vessel sheet 202 made of PDMS was attached to the support 201 in advance. The reaction tank sheet 202 is shaped like a mask, and is provided with an elliptical depression that forms a reaction tank at the center of the mask. Therefore, when the reaction vessel sheet 202 is brought into close contact with the support, an immobilized reaction vessel 203 capable of introducing the solution into the space is formed. In order to bring the support 201 and the sheet 202 into close contact with each other, the dedicated holder 205 fixes the both. This is called an immobilization support 220. The capacity of the immobilized reaction tank in this example is 40 μL.

(2)複数種類のタンパク質分解酵素を支持体上の固定化反応槽内部に添加する工程
タンパク質分解酵素としてトリプシン、エンドプロテイナーゼLysC(以下LysC)、エンドプロテイナーゼGluC(以下V8)を用いた。各タンパク質分解酵素の特性を図4に示す。トリプシン(T8802、SIGMA)はPBS(pH 7.4)を用いて1 mg/mLに調製した。LysC(1047825、Roche)およびV8(1047817、Roche)は滅菌水によってそれぞれ20μg/mLおよび10μg/mLに調製した。反応槽シート202に設けられた溶液注入口204より形成されたそれぞれの反応槽203に、3種類のタンパク質分解酵素溶液206、 207、 208をマイクロピペッター209を用いて40μL注入した。
(2) Step of adding plural types of proteolytic enzymes to the inside of the immobilization reaction vessel on the support. Trypsin, endoproteinase LysC (hereinafter LysC), and endoproteinase GluC (hereinafter V8) were used as proteolytic enzymes. The characteristics of each proteolytic enzyme are shown in FIG. Trypsin (T8802, SIGMA) was adjusted to 1 mg / mL using PBS (pH 7.4). LysC (1047825, Roche) and V8 (1047817, Roche) were prepared with sterile water to 20 μg / mL and 10 μg / mL, respectively. 40 μL of three types of proteolytic enzyme solutions 206, 207, and 208 were injected into each reaction tank 203 formed from the solution injection port 204 provided in the reaction tank sheet 202 using a micropipettor 209.

(3)タンパク質分解酵素を支持体に固定化する工程
固定化支持体220を密封容器210中に置き、密封容器210中の4隅に滅菌水211を200μLずつ添加して蓋をし、湿度を保った状態で4℃の恒温槽212内部で一晩静置した。
(3) Process of immobilizing the proteolytic enzyme on the support The immobilized support 220 is placed in the sealed container 210, and 200 μL of sterilized water 211 is added to each of the four corners of the sealed container 210 to cover the humidity. In the state kept, it was allowed to stand overnight in a constant temperature bath 212 at 4 ° C.

(4)支持体を洗浄して固定化されなかったタンパク質分解酵素を除去する工程
固定化支持体220から反応槽シート202を剥がした支持体201を洗浄溶液213(PBS(pH 7.4))を満たした容器中に浸漬し、シェーカーで10分間振盪して洗浄する操作を2回行った後、50 mM(M:mol/L) 重炭酸アンモニウムを用いて2回すすいだ。濾紙により、支持体201上の水分を除去した。
(4) Step of washing the support to remove the non-immobilized proteolytic enzyme
The support 201 from which the reaction vessel sheet 202 was peeled off from the immobilized support 220 was immersed in a container filled with a cleaning solution 213 (PBS (pH 7.4)), and washed by shaking for 10 minutes with a shaker. After that, it was rinsed twice with 50 mM (M: mol / L) ammonium bicarbonate. Water on the support 201 was removed with a filter paper.

(5)固定化タンパク質分解酵素と試料を反応させるための試料反応槽を形成する工程
洗浄済みの支持体201上に工程(1)で使用した同形状のPDMS製の反応槽シート202を貼付し、専用ホルダ205によって固定し、試料反応槽231を持つ反応用支持体230を作成する。
(5) Step of forming a sample reaction vessel for reacting the immobilized proteolytic enzyme with the sample The PDMS reaction vessel sheet 202 of the same shape used in step (1) is pasted on the washed support 201. Then, the reaction support 230 having the sample reaction tank 231 is prepared by fixing with the dedicated holder 205.

(6)試料反応槽内部に試料を添加する工程
あらかじめ0.1 mg/mLに希釈した試料214(還元アルキル化済みBSAまたは還元アルキル化済みオボアルブミンまたはβカゼイン)を各試料反応槽231内部に溶液注入口204から30μL注入し、封入シールを流入口204に貼って塞ぎ、各試料反応槽231を密封状態にした。
(6) Step of adding sample into sample reaction vessel Sample 214 (reduced alkylated BSA or reduced alkylated ovalbumin or β-casein) diluted to 0.1 mg / mL in advance is poured into each sample reaction vessel 231 as a solution. 30 μL was injected from the inlet 204, and a sealed seal was stuck on the inlet 204 to close each sample reaction vessel 231.

(7)試料を添加した反応槽に振動を加えることで撹拌してタンパク質分解反応を行う工程
試料反応槽内部の試料を効率的に分解するためには試料を撹拌することが望ましい。そこで、試料反応槽231上部に振動モーター215を設置して作動させ、37℃の恒温槽212内部で試料溶液を撹拌しながら一晩反応した。他の攪拌方法としては超音波を加える手法が考えられる。
(7) Step of performing a proteolytic reaction by stirring by applying vibration to the reaction tank to which the sample has been added In order to efficiently decompose the sample in the sample reaction tank, it is desirable to stir the sample. Therefore, the vibration motor 215 was installed on the upper part of the sample reaction tank 231 and operated, and the sample solution was reacted overnight in the constant temperature bath 212 at 37 ° C. with stirring. As another stirring method, a method of applying ultrasonic waves can be considered.

(8)生成したタンパク質分解物を回収する工程
振動モーター215を停止して溶液流入口204に貼り付けたシールを剥がし、マイクロピペッター209を用いて試料溶液を回収した。
(8) Process for recovering the produced protein degradation product The vibration motor 215 was stopped, the seal attached to the solution inlet 204 was peeled off, and the sample solution was recovered using the micropipette 209.

(9)回収したタンパク質分解物をLC-MS解析する工程
回収したタンパク質分解物をLC-MS216(NanoFrontierLD、日立ハイテクノロジーズ)によりMS/MS測定した。得られた質量データをもとに、解析用ソフトウエアであるMASCOT(Matrix Science)を用いたMS/MSイオンサーチにより、タンパク質データベースNCBIspを検索してタンパク質を同定した。測定ならびにデータベース検索の条件は以下の通りである。
(9) Step of LC-MS analysis of recovered protein degradation product The recovered protein degradation product was subjected to MS / MS measurement by LC-MS216 (NanoFrontierLD, Hitachi High-Technologies). Based on the obtained mass data, the protein database NCBIsp was searched by MS / MS ion search using MASCOT (Matrix Science) which is analysis software, and the protein was identified. The conditions for measurement and database search are as follows.

LC部:
カラム:Monocap for Fast 50um x 150mmL、 tip10um、 GL Science
移動相A液:0.1%ギ酸を含む2%アセトニトリル
移動相B液:0.1%ギ酸を含む98%アセトニトリル
グラジエント:測定開始後60分間でA液比率100%→60%(B液比率0%→40%)のリニアグラジエント
流速:0.1μL/min
MS部:
Ion source:electrospray
Polarity:positive ion mode
Mass scan range: 200-2000
Database: NCBIsp
Taxonomy: Mammalia (BSA、βカゼインの場合) 、 Metazoa (オボアルブミンの場合)
Enzyme: Trypsin or LysC or V8
Missed cleavages: 1
Fixed modifications: Carbamidomethyl (C) (BSA、オボアルブミンの場合)
Variable modifications: Oxydation (HMW)、 Phospho (STY)
Peptide tol:± 0.3 Da
MS/MS tol:± 0.1 Da
Instrument: ESI-TRAP
LC section:
Column: Monocap for Fast 50um x 150mmL, tip10um, GL Science
Mobile phase A solution: 2% acetonitrile containing 0.1% formic acid
Mobile phase B liquid: 98% acetonitrile gradient containing 0.1% formic acid: Linear gradient flow rate of liquid A ratio 100% → 60% (liquid B ratio 0% → 40%) 60 minutes after the start of measurement: 0.1 μL / min
MS part:
Ion source: electrospray
Polarity: positive ion mode
Mass scan range: 200-2000
Database: NCBIsp
Taxonomy: Mammalia (for BSA, β-casein), Metazoa (for ovalbumin)
Enzyme: Trypsin or LysC or V8
Missed cleavages: 1
Fixed modifications: Carbamidomethyl (C) (BSA, ovalbumin)
Variable modifications: Oxydation (HMW), Phospho (STY)
Peptide tol: ± 0.3 Da
MS / MS tol: ± 0.1 Da
Instrument: ESI-TRAP

上記の工程で得れた実験結果を以下に示す。
タンパク質同定結果を図5に示す。配列中灰色で表示した部分が、MSによって検出されたペプチドに相当し、囲み線で表示した部分が検出されたリン酸化ペプチドに相当する。また、各タンパク質の同定ペプチド数、スコア、シーケンスカバー率を図6に示す。各酵素処理によってタンパク質中の異なる部分が同定され、3種類のデータを組み合わせることで、全体のカバー率が向上(BSA:56~76% →89%、βカゼイン:16~21% →32%、 オボアルブミン:14~51% → 65%)可能であった。また、βカゼインのLysC分解産物およびオボアルブミンのV8分解産物において、各タンパク質由来のリン酸化ペプチドが確認された。各リン酸化ペプチドのMS/MS測定結果を図7(A)(B)にそれぞれ示す。
The experimental results obtained in the above steps are shown below.
The protein identification results are shown in FIG. The portion indicated in gray in the sequence corresponds to the peptide detected by MS, and the portion indicated by a box corresponds to the phosphorylated peptide detected. In addition, FIG. 6 shows the number of identified peptides, scores, and sequence coverage of each protein. Different parts of the protein are identified by each enzyme treatment, and the overall coverage is improved by combining three types of data (BSA: 56-76% → 89%, β-casein: 16-21% → 32%, Ovalbumin: 14-51% → 65%). In addition, phosphorylated peptides derived from each protein were confirmed in the LysC degradation product of β-casein and the V8 degradation product of ovalbumin. The MS / MS measurement results of each phosphorylated peptide are shown in FIGS. 7 (A) and 7 (B), respectively.

上記結果から、複数種類のタンパク質分解酵素を用いた解析結果を組み合わせることで、タンパク質のシーケンスカバー率を向上させることが可能であり、また、リン酸化のような修飾ペプチドの検出は、使用するタンパク質分解酵素の種類によって影響され、βカゼインのリン酸化解析にはLysC、オボアルブミンのリン酸化解析にはV8の使用が最適であることが分かった。   From the above results, it is possible to improve the sequence coverage of the protein by combining the analysis results using multiple types of proteolytic enzymes, and the detection of modified peptides such as phosphorylation is the protein used It was found that the use of LysC for the analysis of β-casein phosphorylation and V8 for the analysis of phosphorylation of ovalbumin were optimally affected by the type of degrading enzyme.

以上のように、本実施形態によれば、複数酵素固定化デバイスは上記のような最適なタンパク質分解酵素の選択を一回の実験で実施可能であることから、精度の優れたタンパク質解析システム、解析手法及び解析に必要な前処理装置を提供することができる。   As described above, according to the present embodiment, the multiple enzyme immobilization device can perform the selection of the optimal proteolytic enzyme as described above in a single experiment, so that the protein analysis system with excellent accuracy, An analysis method and a preprocessing device necessary for the analysis can be provided.

第2の実施形態を図8を用いて説明する。図8は、複数種類の酵素と一種類の試料の反応を別々反応槽として液体クロマトグラム用カラムを用いた解析システムを示す。   A second embodiment will be described with reference to FIG. FIG. 8 shows an analysis system using a liquid chromatogram column with separate reactions of a plurality of types of enzymes and one type of sample.

液体クロマトグラム用カラム503は、液体クロマトグラムを送液系に複数並列に配置さていおり、そのそれぞれのカラムには複数種類の酵素をそれぞれ別に固定化したビーズが酵素の種類毎に予め充填されている。ここで、ビーズに酵素固定する方法は、実施形態1で示した固定化反応槽にビーズを入れて作成してもよいし、従来の他の方法用いて作成してもよい。ここで、ポンプ501を用い、タンパク質などの試料をオートサンプラ502から切換えバルブ505を経由して各カラムに導入して反応させ、再び切換えバルブ506を経た後,オンラインでLC-MS504に導入して解析する。上記液体クロマトグラムを送液系に複数直接接続し、試料を挿入してもよい。   The liquid chromatogram column 503 has a plurality of liquid chromatograms arranged in parallel in the liquid feeding system, and each column is pre-filled with beads, each of which is immobilized with a plurality of types of enzymes, for each type of enzyme. ing. Here, the method of immobilizing the enzyme on the beads may be prepared by putting the beads in the immobilization reaction tank shown in the first embodiment, or by using other conventional methods. Here, using a pump 501, a sample such as protein is introduced into each column via the switching valve 505 from the autosampler 502 and reacted, and after passing through the switching valve 506 again, it is introduced online into the LC-MS 504. To analyze. A plurality of the liquid chromatograms may be directly connected to the liquid feeding system, and a sample may be inserted.

本実施形態においても、反応槽としてカラムを用いて試料を個々に複数種類の酵素と独立して反応させることができるので、生体試料の解析システム、解析手法及び解析に必要な前処理装置を提供することができる。   Also in this embodiment, since a sample can be reacted independently with a plurality of types of enzymes using a column as a reaction tank, a biological sample analysis system, an analysis technique, and a pretreatment device necessary for analysis are provided. can do.

第3の実施形態として、健康診断の疾患一次スクリーニング検査における、本手法の適用例について図9に示す。疾患マーカータンパク質を用いた検査では、マーカータンパク質をタンパク質分解酵素処理して得られる特定のペプチドを定量する手法が有効となる。各受診者601から採取した検体602を、タンパク質分解酵素固定化デバイス603を第1の実施形態又は第2の実施形態にした方法にて個別の反応槽内部に導入し、多検体を同時並行で分解した後、LC-MS604に導入する。特定の分子量を持つペプチドを、LC-MSにおけるシグナル強度から定量解析した結果605に基づき、疾患の診断606を行う。   As a third embodiment, FIG. 9 shows an application example of the present technique in a disease primary screening test for medical examination. In a test using a disease marker protein, a technique for quantifying a specific peptide obtained by treating a marker protein with a proteolytic enzyme is effective. A sample 602 collected from each patient 601 is introduced into the individual reaction tank by the method according to the first embodiment or the second embodiment, and the multiple samples are simultaneously prepared. After decomposing, it is introduced into LC-MS604. Diagnosis 606 of a disease is performed based on the result 605 of quantitative analysis of a peptide having a specific molecular weight from the signal intensity in LC-MS.

本実施形態に示すように、本発明を健康診断の疾患一次スクリーニング検査にも適用可能である。   As shown in this embodiment, the present invention can also be applied to a disease primary screening test for health examination.

本発明は、疾患マーカー探索や創薬開発、タンパク質機能解析を行っている病院、製薬会社、大学等の研究を対象とし、生体試料、特にタンパク質に適した解析装システム、解析手法及び解析に必要な前処理装置を提供できる。また、今後疾患マーカータンパク質を検査・検診において実用化するに当たり、多数の試料を同時にハイスループットで処理するための消耗品としての提供が考えられる。   The present invention is intended for research in hospitals, pharmaceutical companies, universities, etc. where disease marker search, drug discovery development, protein function analysis is performed, and is required for analysis systems, analysis methods and analyzes suitable for biological samples, particularly proteins Can be provided. In the future, when the disease marker protein is put to practical use in examinations and screenings, it can be provided as a consumable for simultaneously processing a large number of samples with high throughput.

複数のタンパク質解析システムの本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention of a some protein analysis system. 本実施形態のタンパク質解析をする工程を示す図である。It is a figure which shows the process of performing the protein analysis of this embodiment. 図2に示す工程にそって主に試料酵素反応消化部702の構成、プロセスを示す図である。It is a figure which shows the structure and process of the sample enzyme reaction digestion part 702 mainly along the process shown in FIG. 各タンパク質分解酵素の特性を示す表である。It is a table | surface which shows the characteristic of each proteolytic enzyme. LC-MSによるタンパク質同定結果を示す図である。It is a figure which shows the protein identification result by LC-MS. LC-MSによるタンパク質同定結果を示す表である。It is a table | surface which shows the protein identification result by LC-MS. LC-MSによるリン酸化ペプチドMS/MS解析結果を示す図である。(A)βカゼインのLysC分解産物由来リン酸化ペプチド解析結果、(B)オボアルブミンのV8分解産物由来リン酸化ペプチド解析結果。It is a figure which shows the phosphorylated peptide MS / MS analysis result by LC-MS. (A) LysC degradation product-derived phosphorylated peptide analysis result of β casein, (B) V8 degradation product-derived phosphorylated peptide analysis result of ovalbumin. タンパク質分解酵素を固定化した液体クロマトグラム用カラムによるオンライン解析技術に適用した本発明の他の実施形態を示す図である。It is a figure which shows other embodiment of this invention applied to the online analysis technique by the column for liquid chromatograms which fix | immobilized the proteolytic enzyme. 健康診断での疾患一次スクリーニング検査に適用した本発明の他の実施形態を示す図である。It is a figure which shows other embodiment of this invention applied to the disease primary screening test | inspection in a medical examination.

符号の説明Explanation of symbols

201:固定化支持体
202:(PDMS製の)反応槽シート
203:固定化反応槽
204:溶液流入口
205:ホルダ
206:タンパク質分解酵素A
207:タンパク質分解酵素B
208:タンパク質分解酵素C
209:マイクロピペッター
210:密封容器
211:水滴
212:恒温槽
213:洗浄溶液
214:試料
215:振動モーター
216:LC-MS
220:固定化支持体
230:反応用支持体
231:試料反応槽
501:ポンプ
502:オートサンプラ
503:タンパク質分解酵素固定化カラム
504:LC-MS
505:切り替えバルブ
601:健康診断受診者
602:健康診断受診者より採取した検体
603:タンパク質分解酵素固定化デバイス
604:LC-MS
605:LC-MSデータ
606:診断結果
701:酵素反応前試料保管部
702:試料酵素反応部
703:酵素反応後試料保管部
704:LC-MS装置
705:試料導入部
706:試料回収部
707:試料移動部。
201: Immobilization support
202: Reaction tank sheet (manufactured by PDMS)
203: Immobilized reaction tank
204: Solution inlet
205: Holder
206: Proteolytic enzyme A
207: Proteolytic enzyme B
208: Proteolytic enzyme C
209: Micro pipettor
210: Sealed container
211: Water drops
212: Thermostatic bath
213: Cleaning solution
214: Sample
215: Vibration motor
216: LC-MS
220: Immobilization support
230: Reaction support
231: Sample reaction tank
501: Pump
502: Autosampler
503: Proteolytic enzyme immobilization column
504: LC-MS
505: Switching valve
601: Health checkup recipient
602: Specimen collected from a health checkup
603: Proteolytic enzyme immobilization device
604: LC-MS
605: LC-MS data
606: Diagnosis result
701: Sample storage before enzyme reaction
702: Sample enzyme reaction section
703: Sample storage after enzyme reaction
704: LC-MS system
705: Sample introduction part
706: Sample collection unit
707: Sample moving part.

Claims (21)

生体試料の分解酵素を支持体上に固定化された複数の固定化酵素をそれぞれ別の反応部で前記生体試料と反応させる前処理装置と、前記前処理から得られる反応物をそれぞれMS/MS解析するLC-MS装置からなることを特徴とする生体試料解析システム。 A pretreatment device for reacting a plurality of immobilized enzymes, on which a degrading enzyme of a biological sample is immobilized on a support, with the biological sample in a separate reaction unit, and a reaction product obtained from the pretreatment, respectively, MS / MS A biological sample analysis system comprising an LC-MS device for analysis. 前記生体試料がタンパク質であること特徴とする請求項1に記載の生体試料解析システム。 2. The biological sample analysis system according to claim 1, wherein the biological sample is a protein. 前記前処理装置は、前記複数の固定化酵素が同一の支持体に設けられており、前記固定化酵素がそれぞれ個別に内在するように前記支持体と前記反応部を形成する部材を有すること特徴とする請求項2に記載の生体試料解析システム。 The pretreatment apparatus has a member that forms the reaction part with the support so that the plurality of immobilized enzymes are provided on the same support, and the immobilized enzymes are individually contained therein. The biological sample analysis system according to claim 2. 前記支持体が平面基板であり、前記部材は凹部を有するシートであり、前記凹部と前記支持体と反応槽を形成していることを特徴とする請求項3に記載の生体試料解析システム。 The biological sample analysis system according to claim 3, wherein the support is a flat substrate, the member is a sheet having a recess, and forms a reaction tank with the recess and the support. 前記反応部は複数個設けられたLC用カラムであり、前記LCカラムには前記固定化酸素がそれぞれ別途に内在していることを特徴とする請求項2に記載の生体試料解析システム。   The biological sample analysis system according to claim 2, wherein the reaction unit is a plurality of LC columns, and the immobilized oxygen is separately contained in the LC column. 前記支持体はビーズであることを特徴とする請求項5に記載の生体試料解析システム。   The biological sample analysis system according to claim 5, wherein the support is a bead. 前記MS/MS解析結果に基づいて診断材料を提供することを特徴とする請求項1に記載の生体試料解析システム。   The biological sample analysis system according to claim 1, wherein a diagnostic material is provided based on the MS / MS analysis result. 生体試料の分解酵素を支持体上に固定化された複数の固定化酵素とそれぞれ別の反応部で前記生体試料と反応させる前処理工程と、前記工程で得られた反応物をそれぞれLC-MS装置によるMS/MS解析する分析工程を有することを特徴とする生体試料解析方法。 LC-MS is a pretreatment step in which a biological enzyme degrading enzyme is immobilized on a support and a plurality of immobilized enzymes are reacted with the biological sample in separate reaction units, and the reaction product obtained in the step is LC-MS A biological sample analysis method comprising an analysis step of performing MS / MS analysis by an apparatus. 前処理工程は、前記複数の固定化酵素が同一の支持体に設けられる工程と、前記固定化酵素がそれぞれ個別に内在するように前記支持体と前記反応部を形成する反応部形成工程と有すること特徴とする請求項8に記載の生体試料解析方法。 The pretreatment step includes a step in which the plurality of immobilized enzymes are provided on the same support, and a reaction portion forming step in which the support and the reaction portion are formed so that each of the immobilized enzymes is individually present. The biological sample analysis method according to claim 8. 前記支持体が平面基板であり、前記反応部形成工程は前記反応部を凹部を有するシートと前記支持体とで形成する反応槽を有する反応槽工程を有することを特徴とする請求項9に記載の生体試料解析方法。 The said support body is a plane substrate, The said reaction part formation process has a reaction tank process which has a reaction tank which forms the said reaction part with the sheet | seat which has a recessed part, and the said support body, The said reaction body formation process has a reaction tank process. Biological sample analysis method. 前記固定酵素は凹部を有するシートと前記支持体とで形成された固定化反応槽を形成し、前記固定化反応槽内で形成される工程を有することを特徴とする請求項11に記載の生体試料解析方法。   The living body according to claim 11, wherein the immobilized enzyme has a step of forming an immobilization reaction tank formed of a sheet having a recess and the support, and forming the immobilization enzyme in the immobilization reaction tank. Sample analysis method. 前記反応部は複数個設けられたLC用カラムであり、前記反応部形成工程は前記固定化酵素がそれぞれが個別にLC用カラム内在するように形成する工程と、前記前処理工程は前期LC用カラムに前記試料を導入する工程を有することを特徴とする請求項8に記載の生体試料解析方法。   The reaction section is a plurality of LC columns, and the reaction section forming step includes a step of forming the immobilized enzymes individually in the LC column, and the pretreatment step is for the previous LC. The biological sample analysis method according to claim 8, further comprising a step of introducing the sample into a column. 生体試料の分解酵素を支持体上に固定化された複数の固定化酵素と前記生体試料と反応させる前処理装置であって、前記複数の固定化酵素はそれぞれ別の反応部で反応させることを特徴とする生体試料前処理装置。 A pretreatment device for reacting a biological sample with a plurality of immobilized enzymes immobilized on a support and a biological sample, wherein the plurality of immobilized enzymes are reacted in separate reaction sections. A biological sample pretreatment apparatus. 前記複数の固定化酵素が同一の支持体に設けられており、前記固定化酵素がそれぞれ個別に内在するように前記支持体と前記反応部を形成する部材を有すること特徴とする請求項13に記載の生体試料前処理装置。 The plurality of immobilized enzymes are provided on the same support, and have a member that forms the reaction part with the support so that each of the immobilized enzymes is individually present. The biological sample pretreatment apparatus as described. 前記支持体が平面基板であり、前記部材は凹部を有するシートであり、前記凹部と前記支持体と反応槽を形成していることを特徴とする請求項14に記載の生体試料前処理装置。 The biological sample pretreatment device according to claim 14, wherein the support is a flat substrate, the member is a sheet having a recess, and forms a reaction tank with the recess, the support, and the like. 前記それぞれの別の反応部が同一基板上に設けられたことを特徴とする請求項13に記載の生体試料前処理装置。 14. The biological sample pretreatment apparatus according to claim 13, wherein each of the different reaction units is provided on the same substrate. 前記反応部は複数個設けられたLC用カラムであり、前記LCカラムには前記固定化酸素がそれぞれ別途に内在していることを特徴とする請求項13に記載の生体試料前処理装置。   The biological sample pretreatment device according to claim 13, wherein the reaction unit is a plurality of LC columns, and the immobilized oxygen is separately contained in the LC column. 生体試料の分解酵素を支持体上に固定化された複数の固定化酵素と前記生体試料と反応させる前処理方法であって、前記複数の固定化酵素はそれぞれ別の反応部で反応させることを特徴とする生体試料前処理方法。 A pretreatment method for reacting a biological sample with a plurality of immobilized enzymes immobilized on a support and a biological sample, wherein the plurality of immobilized enzymes are reacted in separate reaction sections. A biological sample pretreatment method. 前記複数の固定化酵素が同一の支持体に設けられており、前記固定化酵素がそれぞれ個別に内在するように前記支持体と前記反応部を形成すること特徴とする請求項18に記載の生体試料前処理方法。 19. The living body according to claim 18, wherein the plurality of immobilized enzymes are provided on the same support, and the support and the reaction part are formed so that the immobilized enzymes are individually contained therein. Sample pretreatment method. 前記支持体が平面基板であり、前記部材は凹部を有するシートであり、前記凹部と前記支持体と反応槽を形成していることを特徴とする請求項19に記載の生体試料前処理方法。 The biological sample pretreatment method according to claim 19, wherein the support is a flat substrate, the member is a sheet having a recess, and forms a reaction tank with the recess and the support. 生体試料の分解酵素を支持体上に固定化された複数の固定化酵素と前記生体試料と反応させる前処理方法であって、複数個設けられたLC用カラム設け、前記LCカラムには前記固定化酸素がそれぞれ別途に内在していることを特徴とする生体試料前処理方法。 A pretreatment method for reacting a biological sample with a plurality of immobilized enzymes immobilized on a support and a biological sample, comprising a plurality of LC columns, wherein the LC column is provided with the immobilized enzyme A biological sample pretreatment method characterized by comprising oxygenated oxygen separately.
JP2008142884A 2008-05-30 2008-05-30 Biosample analysis system, biosample analysis method, biosample pretreatment device, and biosample pretreatment method Pending JP2009288160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008142884A JP2009288160A (en) 2008-05-30 2008-05-30 Biosample analysis system, biosample analysis method, biosample pretreatment device, and biosample pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008142884A JP2009288160A (en) 2008-05-30 2008-05-30 Biosample analysis system, biosample analysis method, biosample pretreatment device, and biosample pretreatment method

Publications (1)

Publication Number Publication Date
JP2009288160A true JP2009288160A (en) 2009-12-10

Family

ID=41457506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008142884A Pending JP2009288160A (en) 2008-05-30 2008-05-30 Biosample analysis system, biosample analysis method, biosample pretreatment device, and biosample pretreatment method

Country Status (1)

Country Link
JP (1) JP2009288160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160101450A (en) * 2015-02-17 2016-08-25 국방과학연구소 Methods for simultaneous assay using the purification apparatus of metabolite in toxicity blood sample
JP2019105608A (en) * 2017-12-14 2019-06-27 株式会社Lsiメディエンス Protein-containing sample pretreatment method for protein analysis using mass spectrometer
JP7514789B2 (en) 2021-04-08 2024-07-11 日本電子株式会社 Method for detecting virus-derived proteins, mass spectrum processing device, and mass analysis system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149059A (en) * 1999-11-26 2001-06-05 Olympus Optical Co Ltd Reaction apparatus for microvolume liquid
JP2004283083A (en) * 2003-03-24 2004-10-14 Hitachi Ltd On-line chemical reaction unit and analysis system therefor
JP2005513490A (en) * 2001-12-11 2005-05-12 アストラゼネカ アクティエボラーグ Target plate for mass spectrometer and use of the target plate
JP2006262829A (en) * 2005-03-25 2006-10-05 Hitachi High-Technologies Corp Method for pre-treating biological sample, analysis system and element for pre-treating biological sample
JP2007078490A (en) * 2005-09-13 2007-03-29 Canon Inc Biochemical reaction cassette improving liquid filling property
JP2007308506A (en) * 2004-02-12 2007-11-29 Cell Signaling Technology Inc Method for isolating modified peptide from complex mixture using immunoaffinity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149059A (en) * 1999-11-26 2001-06-05 Olympus Optical Co Ltd Reaction apparatus for microvolume liquid
JP2005513490A (en) * 2001-12-11 2005-05-12 アストラゼネカ アクティエボラーグ Target plate for mass spectrometer and use of the target plate
JP2004283083A (en) * 2003-03-24 2004-10-14 Hitachi Ltd On-line chemical reaction unit and analysis system therefor
JP2007308506A (en) * 2004-02-12 2007-11-29 Cell Signaling Technology Inc Method for isolating modified peptide from complex mixture using immunoaffinity
JP2006262829A (en) * 2005-03-25 2006-10-05 Hitachi High-Technologies Corp Method for pre-treating biological sample, analysis system and element for pre-treating biological sample
JP2007078490A (en) * 2005-09-13 2007-03-29 Canon Inc Biochemical reaction cassette improving liquid filling property

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160101450A (en) * 2015-02-17 2016-08-25 국방과학연구소 Methods for simultaneous assay using the purification apparatus of metabolite in toxicity blood sample
KR101691056B1 (en) * 2015-02-17 2016-12-29 국방과학연구소 Methods for simultaneous assay using the purification apparatus of metabolite in toxicity blood sample
JP2019105608A (en) * 2017-12-14 2019-06-27 株式会社Lsiメディエンス Protein-containing sample pretreatment method for protein analysis using mass spectrometer
JP7514789B2 (en) 2021-04-08 2024-07-11 日本電子株式会社 Method for detecting virus-derived proteins, mass spectrum processing device, and mass analysis system

Similar Documents

Publication Publication Date Title
US20230313279A1 (en) Methods of determining the location of an analyte in a biological sample using a plurality of wells
Alexovič et al. Recent advances in robotic protein sample preparation for clinical analysis and other biomedical applications
Silberring et al. Biomarker discovery and clinical proteomics
JP5185335B2 (en) Biochips for archiving biological samples and clinical analysis
Stöckmann et al. Automated, high-throughput serum glycoprofiling platform
US20040081987A1 (en) Methods and arrays for detecting biomolecules
KR20180031612A (en) A Method of Rapid Diagnosis With High Sensitivity By Using Single Diagnosis Chip Comprising Reaction and Analysis Process
JP2011090012A (en) Method of proteome analysis for phosphorylated protein
Guzman et al. An emerging micro-scale immuno-analytical diagnostic tool to see the unseen. Holding promise for precision medicine and P4 medicine
US8709789B2 (en) Methods and devices for rapid and specific detection of multiple proteins
JP2009288160A (en) Biosample analysis system, biosample analysis method, biosample pretreatment device, and biosample pretreatment method
JP3955952B2 (en) Analytical method of specimen by molecular array using micro infrared spectroscopy
Oh et al. Growing trend of CE at the omics level: the frontier of systems biology
US20070141576A1 (en) Biological chip and use thereof
WO2001031347A1 (en) Modular automated sample processing apparatus
US20160258971A1 (en) Improved device and method for reactions between a solid and a liquid phase
KR20170132159A (en) Analysis chip
US20060199279A1 (en) Methods for identifying post-translationally modified polypeptides
JP2009128247A (en) Device for sample pre-treatment, reaction tub sheet, and sample analyzing method
Fernekorn et al. In vitro cultivation of biopsy derived primary hepatocytes leads to a more metabolic genotype in perfused 3D scaffolds than static 3D cell culture
Woo et al. Development of certified reference material for amino acids in dried blood spots and accuracy assessment of disc sampling
Govorun et al. Proteomics and peptidomics in fundamental and applied medical studies
US20060223194A1 (en) Methods of screening for post-translationally modified proteins
Griffiths The way of the array
EP1902784B1 (en) Method of removing air bubbles from hybridization solution of microarray-coverslip assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A977 Report on retrieval

Effective date: 20120702

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113