[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009281775A - Radar system and compensation quantity calculation method - Google Patents

Radar system and compensation quantity calculation method Download PDF

Info

Publication number
JP2009281775A
JP2009281775A JP2008132017A JP2008132017A JP2009281775A JP 2009281775 A JP2009281775 A JP 2009281775A JP 2008132017 A JP2008132017 A JP 2008132017A JP 2008132017 A JP2008132017 A JP 2008132017A JP 2009281775 A JP2009281775 A JP 2009281775A
Authority
JP
Japan
Prior art keywords
receiving
channels
transmission
difference value
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008132017A
Other languages
Japanese (ja)
Other versions
JP5062032B2 (en
Inventor
Kazuma Natsume
一馬 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008132017A priority Critical patent/JP5062032B2/en
Publication of JP2009281775A publication Critical patent/JP2009281775A/en
Application granted granted Critical
Publication of JP5062032B2 publication Critical patent/JP5062032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4008Means for monitoring or calibrating of parts of a radar system of transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radar system having a plurality of transmitting channels or receiving channels in which a characteristic difference between the transmitting channels or the receiving channels can be compensated stably over a long period of time without increasing a scale of the system. <P>SOLUTION: The radar system 1 is constituted of a plurality of receiving ICs 42, 43 on which receiving circuits for two channels are integrated. When phase differences Δθ<SB>12</SB>, Δθ<SB>34</SB>between adjacent receiving channels belonging to the same chip (receiving IC) match, it is determined that a reception signal is based on a reflected wave from a single target, and compensation quantity calculation data Δθd are calculated. Here, as data which are not influenced by the characteristic difference between the receiving channels, the phase differences Δθ<SB>12</SB>, Δθ<SB>34</SB>are used, while as data which are influenced by the characteristic difference between the receiving channels, a phase difference Δθ<SB>23</SB>between adjacent receiving channels belonging to difference chips is used. On the basis of these, the compensation quantity calculation data Δθd, and also a compensation quantity Δθh are calculated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の送信チャンネル又は受信チャンネルを有するレーダ装置に関する。   The present invention relates to a radar apparatus having a plurality of transmission channels or reception channels.

従来より、送信したレーダ波の反射波を、受信アンテナを介して受信する複数の受信チャンネルを有し、各受信チャンネルから供給される信号に基づいて、レーダ波を反射した物標に関する情報(距離,方位,速度等)を求めるレーダ装置が知られている。   Conventionally, information (distance) about a target that has a plurality of reception channels that receive reflected waves of transmitted radar waves via a reception antenna and reflects the radar waves based on a signal supplied from each reception channel. , Azimuth, speed, etc.) are known.

この種のレーダ装置では、受信信号を伝送する伝送路や受信信号を処理するアナログ回路の特性の温度変化や経年変化によって、各受信チャンネルの特性(利得や経路長)にばらつきが生じると、方位の検出精度が劣化し、特に、使用電波の周波数が高い場合には、その影響が顕著に現れる。   In this type of radar equipment, if the characteristics (gain and path length) of each reception channel vary due to temperature changes and aging of the characteristics of the transmission path for transmitting the received signal and the analog circuit for processing the received signal, The detection accuracy deteriorates, and particularly when the frequency of the radio wave used is high, the influence appears remarkably.

これに対して、特性が既知の疑似受信信号を、受信アンテナからの受信信号に代えて各受信チャンネルに供給し、その信号処理結果から各受信チャンネルの特性を測定し、その測定結果に基づいて受信チャンネル間の特性差を補償するための補正値を算出し、その補正値を用いて、受信アンテナからの受信信号を各受信チャンネルに供給した時に、各受信チャンネルから出力される出力信号を補正することが行われている(例えば、特許文献1参照)。   In contrast, a pseudo reception signal with a known characteristic is supplied to each reception channel instead of the reception signal from the reception antenna, and the characteristic of each reception channel is measured from the signal processing result. Based on the measurement result, Calculates a correction value to compensate for the characteristic difference between reception channels, and uses the correction value to correct the output signal output from each reception channel when the reception signal from the reception antenna is supplied to each reception channel. (For example, refer to Patent Document 1).

また、疑似受信信号を入力する代わりに、アンテナを保護するレドームからの反射波に基づく受信信号を利用して、補正値を算出することも行われている(例えば、特許文献2参照)。
特開平7−218617号公報 特開2007−93480号公報
Further, instead of inputting a pseudo reception signal, a correction value is calculated using a reception signal based on a reflected wave from a radome protecting the antenna (see, for example, Patent Document 2).
JP 7-218617 A JP 2007-93480 A

しかし、特許文献1に記載の従来装置では、疑似受信信号を発生させるための回路や、受信アンテナからの受信信号と疑似受信信号とを切り替えて各受信チャンネルに供給するためのスイッチ等の新たな構成が必要となり、装置規模やコストが増大するという問題があった。   However, in the conventional apparatus described in Patent Document 1, a new circuit such as a circuit for generating a pseudo reception signal or a switch for switching between a reception signal from the reception antenna and a pseudo reception signal and supplying the reception signal to each reception channel is provided. There is a problem that the configuration is necessary and the scale and cost of the apparatus increase.

また、ミリ波帯を使用する装置では、疑似受信信号を各受信チャンネルに供給するために用いる伝送路も温度変化等によって特性にばらつきが生じてしまい、各受信チャンネルに同一の疑似受信信号を精度良く供給し続けることが困難であり、精度の良い補正値(ひいてはレーダ波を反射した物標に関する情報)を、長期間に渡って安定して得ることができないという問題もあった。   Also, in a device that uses the millimeter wave band, the transmission path used to supply the pseudo reception signal to each reception channel also varies in characteristics due to temperature changes, etc., and the same pseudo reception signal is accurately received in each reception channel. There is also a problem that it is difficult to keep supplying well, and it is not possible to stably obtain an accurate correction value (and information on a target reflecting a radar wave) over a long period of time.

また、特許文献2に記載の従来装置では、補正値を求めるために新たな回路を設ける必要はないものの、温度変化等による構造物の変形により、送信アンテナ,レドーム,受信アンテナ間の経路長が変化したり、飛石による傷や雪・雨・泥等による汚れにより、レドームでの反射特性が変化したりすると、レドームからの反射波の特性が受信アンテナ(受信チャンネル)毎にばらつくことになるため、特許文献1に記載の従来装置と同様に、精度の良い補正値を長期間に渡って安定して得ることができないという問題があった。   In addition, in the conventional device described in Patent Document 2, it is not necessary to provide a new circuit for obtaining the correction value, but the path length between the transmitting antenna, the radome, and the receiving antenna is reduced due to deformation of the structure due to a temperature change or the like. If the reflection characteristics of the radome change due to changes or scratches caused by stepping stones or dirt due to snow, rain, mud, etc., the characteristics of the reflected wave from the radome will vary for each receiving antenna (receiving channel). As with the conventional device described in Patent Document 1, there is a problem that a highly accurate correction value cannot be obtained stably over a long period of time.

なお、このような問題は、上述したように受信チャンネルを複数有している場合に限らず、送信チャンネルを複数有している場合も同様に生じる。
本発明は、上記問題点を解決するために、複数の送信チャンネル又は受信チャンネルを有するレーダ装置において、装置規模を増大させることなく、送信チャンネル又は受信チャンネル間の特性差を、長期間に渡って安定して補償できるようにすることを目的とする。
Such a problem occurs not only when there are a plurality of reception channels as described above, but also when there are a plurality of transmission channels.
In order to solve the above-described problems, the present invention provides a radar apparatus having a plurality of transmission channels or reception channels, in which a characteristic difference between the transmission channels or the reception channels is increased over a long period of time without increasing the apparatus scale. The purpose is to enable stable compensation.

上記目的を達成するためになされた発明である請求項1に記載のレーダ装置では、送信手段が送信アンテナを介してレーダ波を送信し、受信手段を構成する複数の受信チャンネルが、送信手段から送信されたレーダ波の反射波を受信アンテナを介して受信する。なお、受信手段は、複数の受信チャンネルを1チップに集積した集積回路を複数個用いて構成されている。   In the radar apparatus according to claim 1, which is an invention made to achieve the above object, the transmission means transmits a radar wave via the transmission antenna, and a plurality of reception channels constituting the reception means are transmitted from the transmission means. The reflected wave of the transmitted radar wave is received via the receiving antenna. The receiving means is configured by using a plurality of integrated circuits in which a plurality of receiving channels are integrated on one chip.

そして、補正手段が、受信手段からの出力信号を、受信チャンネル間の特性差によって生じる該受信チャンネル間の差分値が補償されるように補正し、信号処理手段が、その補正された出力信号に基づいて、レーダ波を反射した物体に関する情報を求める。なお、受信チャンネル間の特性差とは、具体的には、利得差や経路差のことであり、また、受信チャンネル間の差分値とは、具体的には、振幅差や位相差のことである。   Then, the correcting means corrects the output signal from the receiving means so that the difference value between the receiving channels caused by the characteristic difference between the receiving channels is compensated, and the signal processing means converts the output signal to the corrected output signal. Based on this, information on the object reflecting the radar wave is obtained. The characteristic difference between the reception channels is specifically a gain difference or a path difference, and the difference value between the reception channels is specifically an amplitude difference or a phase difference. is there.

また、補償量算出手段は、同一の集積回路に属する隣接した受信チャンネル間の差分値である回路内差分値と、互いに異なる集積回路に属し且つ隣接した受信チャンネル間の差分値である回路間差分値との差を、補正手段にて補償すべき補償量として求める。   Further, the compensation amount calculating means includes an in-circuit difference value that is a difference value between adjacent reception channels belonging to the same integrated circuit, and an inter-circuit difference that is a difference value between adjacent reception channels belonging to different integrated circuits. The difference from the value is obtained as a compensation amount to be compensated by the correcting means.

つまり、温度変化等に基づいて集積回路の特性が変化したとしても、同一集積回路に属する受信チャンネルの特性変化はいずれも同様なものとなるため、これらの間に特性差が生じることがない。その結果、回路内差分値は、受信チャンネル間の特性差の影響を受けていないものとなる。一方、異なる集積回路に属する受信チャンネルは、互いに異なった特性変化を生じるため、これらの間には特性差が生じることになる。その結果、回路間差分値は、受信チャンネル間の特性差の影響を受けたものとなる。従って、回路内差分値と回路間差分値との差が、補償すべき補償量となるのである。   In other words, even if the characteristics of the integrated circuit change based on a temperature change or the like, the characteristic changes of the reception channels belonging to the same integrated circuit are all the same, so that there is no characteristic difference between them. As a result, the in-circuit difference value is not affected by the characteristic difference between the reception channels. On the other hand, since reception channels belonging to different integrated circuits cause different characteristic changes, there is a characteristic difference between them. As a result, the inter-circuit difference value is influenced by the characteristic difference between the reception channels. Therefore, the difference between the in-circuit difference value and the inter-circuit difference value is a compensation amount to be compensated.

このように構成された本発明のレーダ装置によれば、回路内差分値や回路間差分値の算出のために特別な疑似受信信号等を必要とせず、通常の反射波を用いることができるため、装置規模を増大させることがなく、しかも、引用文献2に記載の従来装置とは異なり、受信チャンネル以外の構成部分の変化の影響を受けることもないため、受信チャンネル間の特性差を長期間に渡って安定して補償することができる。   According to the radar apparatus of the present invention configured as described above, a normal reflected wave can be used without requiring a special pseudo reception signal or the like for calculation of the in-circuit difference value and the inter-circuit difference value. The apparatus scale is not increased, and unlike the conventional apparatus described in the cited document 2, it is not affected by changes in the components other than the reception channel, so that the characteristic difference between the reception channels is increased for a long time. It is possible to compensate stably over the range.

ところで、本発明のレーダ装置は、請求項2に記載のように、判定手段が、受信手段からの出力信号が単一物標からの反射波に基づくものであるか否かを判定し、補償量算出手段は、判定手段にて肯定判定された場合に補償量を求めることが望ましい。   By the way, in the radar apparatus of the present invention, as described in claim 2, the determination unit determines whether the output signal from the reception unit is based on a reflected wave from a single target, and compensates for it. The amount calculation means desirably obtains the compensation amount when the determination means makes an affirmative determination.

これは、複数物標からの反射波が混在している場合には、差分値を正確に求めることができない可能性があるためである。
そして、この場合、判定手段は、例えば、請求項3に記載のように、集積回路毎に回路内差分値を求め、該回路内差分値のばらつきが、予め設定された判定閾値以下である場合に単一物標であると判定するように構成されていてもよいし、請求項4に記載のように、集積回路のいずれか一つに属する各受信チャンネルから得られる出力信号を用いてデジタルビームフォーミングを行い、予め設定された電力閾値より大きいビームの数を物標の数として求めるように構成されていてもよいし、請求項5に記載のように、集積回路のいずれか一つに属する各受信チャンネルから得られる出力信号の自己相関行列を求め、該自己相関行列の固有値の大きさから物標の数を求めるように構成されていてもよい。
This is because there is a possibility that the difference value cannot be obtained accurately when the reflected waves from a plurality of targets are mixed.
In this case, for example, as described in claim 3, the determination unit obtains an in-circuit difference value for each integrated circuit, and variation in the in-circuit difference value is equal to or less than a predetermined determination threshold value. The digital signal may be configured to be determined as a single target, or digitally output using an output signal obtained from each reception channel belonging to any one of the integrated circuits as claimed in claim 4. The beam forming may be performed so that the number of beams larger than a preset power threshold value is obtained as the number of targets, or as any one of the integrated circuits according to claim 5, An autocorrelation matrix of an output signal obtained from each receiving channel to which the signal belongs may be obtained, and the number of targets may be obtained from the magnitude of the eigenvalue of the autocorrelation matrix.

次に、本発明のレーダ装置は、請求項6記載のように、受信チャンネル毎に、受信アンテナからの受信信号とローカル信号とを混合するミキサが設けられている場合、集積回路には、その集積回路に属する各受信チャンネルのミキサにローカル信号を分配する分配回路も集積されていることが望ましい。   Next, according to the radar device of the present invention, when a mixer for mixing a reception signal from a reception antenna and a local signal is provided for each reception channel, the integrated circuit includes It is desirable that a distribution circuit for distributing the local signal to the mixer of each reception channel belonging to the integrated circuit is also integrated.

また、本発明のレーダ装置は、請求項7記載のように、同一の集積回路に属する各受信チャンネルは、共通のミキサを時分割で使用するように構成されている場合、集積回路には、その集積回路に属する受信チャンネルからの出力信号のいずれかを選択して出力する選択回路が集積されていることが望ましい。   The radar apparatus according to the present invention, as described in claim 7, when each reception channel belonging to the same integrated circuit is configured to use a common mixer in a time division manner, the integrated circuit includes: It is desirable that a selection circuit that selects and outputs one of the output signals from the reception channel belonging to the integrated circuit is integrated.

このように分配回路や選択回路も集積回路に集積することによって、同一の集積回路に属する受信チャンネルの特性を、より精度よく均一なものとすることができる。
なお、上述の説明は、受信手段が、複数の受信チャンネルを1チップに集積した集積回路を複数個用いて構成されている場合についてのものであるが、送信手段が、複数の送信チャンネルを1チップに集積した集積回路を複数個用いて構成されているものについても同様のことが言える。
As described above, by integrating the distribution circuit and the selection circuit in the integrated circuit, the characteristics of the reception channels belonging to the same integrated circuit can be made uniform with higher accuracy.
The above description is for the case where the receiving means is configured by using a plurality of integrated circuits in which a plurality of receiving channels are integrated on a single chip. The same can be said for a configuration constituted by using a plurality of integrated circuits integrated on a chip.

この場合、請求項8に記載のように、補償量算出手段は、同一の集積回路に属する隣接した送信チャンネル間の差分値である回路内差分値と、互いに異なる集積回路に属し且つ隣接した送信チャンネル間の差分値である回路間差分値との差を、補正手段にて補償すべき補償量として求める。   In this case, as described in claim 8, the compensation amount calculating means includes an in-circuit difference value that is a difference value between adjacent transmission channels belonging to the same integrated circuit, and an adjacent transmission that belongs to different integrated circuits. A difference from the inter-circuit difference value, which is a difference value between channels, is obtained as a compensation amount to be compensated by the correcting means.

このように構成された本発明のレーダ装置によれば、請求項1に記載のレーダ装置と同様に、装置規模を増大させることがなく、受信チャンネル間の特性差を長期間に渡って安定して補償することができる。   According to the radar apparatus of the present invention configured as described above, similarly to the radar apparatus according to claim 1, the characteristic difference between the reception channels is stabilized over a long period of time without increasing the apparatus scale. Can be compensated.

そして、請求項9に記載のように、送信チャンネルが、いずれも同一の信号発生源から送信信号の供給を受けるように構成されている場合、集積回路には、その集積回路に属する各送信チャンネルに送信信号を分配する分配回路が集積されていることが望ましい。   When the transmission channels are all configured to receive a transmission signal from the same signal generation source as described in claim 9, the integrated circuit includes each transmission channel belonging to the integrated circuit. It is desirable that a distribution circuit for distributing the transmission signal is integrated.

このように構成された本発明のレーダ装置によれば、同一の集積回路に属する送信チャンネルの特性を、より精度よく均一なものとすることができる。
次に、請求項10に記載の発明は、送信アンテナを介してレーダ波を送信する送信手段と、送信手段から送信されたレーダ波の反射波を受信アンテナを介して受信する複数の受信チャンネルを有し、且つ複数の受信チャンネルを1チップに集積した集積回路を複数個用いて構成された受信手段とを備えたレーダ装置において、受信手段からの出力信号を、受信チャンネル間の特性差によって生じる該受信チャンネル間の差分値が補償されるように補正する際に用いる補償量を算出する補償量算出方法であって、同一の集積回路に属する隣接した受信チャンネル間の差分値である回路内差分値と、互いに異なる集積回路に属し且つ隣接した受信チャンネル間の差分値である回路間差分値との差を補償量として求めることを特徴とする。
According to the radar apparatus of the present invention configured as described above, the characteristics of the transmission channels belonging to the same integrated circuit can be made uniform with higher accuracy.
Next, the invention according to claim 10 includes a transmission means for transmitting a radar wave via a transmission antenna, and a plurality of reception channels for receiving a reflected wave of the radar wave transmitted from the transmission means via a reception antenna. And a receiving device configured by using a plurality of integrated circuits each having a plurality of receiving channels integrated on one chip, an output signal from the receiving device is generated due to a characteristic difference between the receiving channels. A compensation amount calculation method for calculating a compensation amount used for correction so that a difference value between the reception channels is compensated, wherein the in-circuit difference is a difference value between adjacent reception channels belonging to the same integrated circuit. The difference between the value and the inter-circuit difference value that is a difference value between adjacent reception channels belonging to different integrated circuits is obtained as a compensation amount.

また、請求項11に記載の発明は、送信アンテナを介してレーダ波を送信する複数の送信チャンネルを有し、且つ 複数の送信チャンネルを1チップに集積した集積回路を複数個用いて構成された送信手段と、送信手段から送信されたレーダ波の反射波を受信アンテナを介して受信する受信手段とを備えたレーダ装置において、出力手段からの出力信号を、送信チャンネル間の特性差によって生じる該受信チャンネル間の差分値が補償されるように補正する際に用いる補償量を算出する補償量算出方法であって、同一の集積回路に属する隣接した送信チャンネル間の差分値である回路内差分値と、互いに異なる集積回路に属し且つ隣接した送信チャンネル間の差分値である回路間差分値との差を補償量として求めることを特徴とする。   The invention according to claim 11 is configured by using a plurality of integrated circuits having a plurality of transmission channels for transmitting radar waves via a transmission antenna and integrating a plurality of transmission channels on one chip. In a radar apparatus including a transmission unit and a reception unit that receives a reflected wave of a radar wave transmitted from the transmission unit via a reception antenna, an output signal from the output unit is generated due to a characteristic difference between transmission channels. A compensation amount calculation method for calculating a compensation amount used for correction so that a difference value between reception channels is compensated, wherein the in-circuit difference value is a difference value between adjacent transmission channels belonging to the same integrated circuit. And a difference between inter-circuit difference values, which are difference values between adjacent transmission channels belonging to different integrated circuits, as a compensation amount.

これら本発明の補償量算出方法によれば、特別な疑似受信信号等を用いることなく、レーダ装置から送出されたレーダ波の反射波に基づく受信信号から補償量を求めることができる。しかも、本発明の補償量算出方法によれば、求められた補償量は、受信チャンネルや送信チャンネル以外の部分の特性変化の影響を受けることがないため、チャンネル間の特性差を精度よく補償することができる。   According to these compensation amount calculation methods of the present invention, the compensation amount can be obtained from the received signal based on the reflected wave of the radar wave transmitted from the radar apparatus without using a special pseudo received signal or the like. In addition, according to the compensation amount calculation method of the present invention, the obtained compensation amount is not affected by the characteristic change of the portions other than the reception channel and the transmission channel, so that the characteristic difference between the channels is accurately compensated. be able to.

以下に本発明の実施形態を図面と共に説明する。
[第1実施形態]
図1は、本発明が適用された車載用のレーダ装置1の全体構成を示すブロック図である。
<全体構成>
図1に示すように、レーダ装置1は、レーダ波を送信する単一の送信アンテナAS及びレーダ波の反射波を受信する受信アンテナAR1〜AR4からなるアンテナ部2と、送信アンテナASに送信信号を供給すると共に、各受信アンテナAR1〜AR4からの受信信号を処理する信号処理モジュール4と、アンテナ部2と信号処理モジュール4との間で送信信号や受信信号を伝送するための伝送路(導波管)を形成するIF部3とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a block diagram showing the overall configuration of an in-vehicle radar device 1 to which the present invention is applied.
<Overall configuration>
As shown in FIG. 1, the radar apparatus 1 includes a single transmission antenna AS that transmits a radar wave, an antenna unit 2 that includes reception antennas AR1 to AR4 that receive a reflected wave of the radar wave, and a transmission signal to the transmission antenna AS. And a signal processing module 4 for processing received signals from the respective receiving antennas AR1 to AR4, and a transmission path (guide for transmitting transmission signals and received signals between the antenna unit 2 and the signal processing module 4). IF section 3 forming a wave tube).

なお、信号処理モジュール4では、受信アンテナARi(i=1〜4)からの受信信号をそれぞれ個別に処理するように構成されており、以下では、受信アンテナARiからの受信信号を処理する回路を総称して受信チャンネルCHiともいう。   The signal processing module 4 is configured to individually process the reception signals from the reception antennas ARi (i = 1 to 4). Hereinafter, a circuit for processing the reception signals from the reception antennas ARi will be described. It is also collectively referred to as a reception channel CHi.

また、レーダ装置1は、信号処理モジュール4から受信チャンネルCH1〜CH4毎に出力される出力信号をデジタルデータに変換するA/D変換部5と、A/D変換部5で変換されたデジタルデータに基づいて各種処理を実行する演算処理部6とを備えている。
<信号処理モジュール>
信号処理モジュール4は、送信信号及びローカル信号を生成する送信回路を集積した送信用集積回路(以下、送信用ICという)41と、受信信号及びローカル信号に基づいてビート信号を生成する受信回路(受信チャンネル)を、2チャンネル分ずつ集積した受信用集積回路(以下、受信用ICという)42,43とによって構成されている。
The radar apparatus 1 also includes an A / D conversion unit 5 that converts an output signal output from the signal processing module 4 for each of the reception channels CH1 to CH4 into digital data, and digital data converted by the A / D conversion unit 5. And an arithmetic processing unit 6 that executes various processes based on the above.
<Signal processing module>
The signal processing module 4 includes a transmission integrated circuit (hereinafter referred to as a transmission IC) 41 in which a transmission circuit that generates a transmission signal and a local signal is integrated, and a reception circuit that generates a beat signal based on the reception signal and the local signal ( The receiving channel is composed of receiving integrated circuits (hereinafter referred to as receiving ICs) 42 and 43 each having two channels.

なお、送信用IC41は、演算処理部6からの指令に従って、ミリ波帯の高周波信号を発生させる発振器OSC、発振器OSCの出力を電力分配して送信信号及びローカル信号を生成する分配器DV、送信信号を増幅する増幅器A1、ローカル信号を増幅する増幅器A2を備えた周知の回路構成を有する。   The transmission IC 41, in accordance with a command from the arithmetic processing unit 6, generates an oscillator OSC that generates a millimeter-wave band high-frequency signal, a distributor DV that generates a transmission signal and a local signal by distributing the output of the oscillator OSC, and a transmission It has a known circuit configuration including an amplifier A1 for amplifying a signal and an amplifier A2 for amplifying a local signal.

一方、受信用IC42(受信用IC43も全く同様)において、入力される受信信号のそれぞれに対応して設けられた受信回路は、受信信号を増幅する増幅器A3,増幅器A3の出力とローカル信号とを混合してビート信号を生成するミキサMIX,ミキサMIXの出力(ビート信号)を増幅する増幅器A4からなる周知の回路構成を有している。   On the other hand, in the reception IC 42 (the reception IC 43 is exactly the same), the reception circuit provided corresponding to each input reception signal outputs the output of the amplifier A3 and the amplifier A3 that amplifies the reception signal and the local signal. It has a known circuit configuration comprising a mixer MIX that generates a beat signal by mixing, and an amplifier A4 that amplifies the output (beat signal) of the mixer MIX.

また、受信用IC42は、ローカル信号を入力端に設けた入力バッファBFと、入力バッファBFを介して取り込んだローカル信号を2分岐して各受信回路に供給する分岐回路BLとを備えている。   Further, the reception IC 42 includes an input buffer BF provided with a local signal at an input terminal, and a branch circuit BL which branches the local signal taken in via the input buffer BF into two receiving circuits.

なお、受信用IC42内において、2系統の受信回路(特にミキサMIX)は、分岐回路BLから受信回路に至るローカル信号の伝送路長が等しくなるように、分岐回路BLに対して対称な位置に配置されている。   In the receiving IC 42, the two receiving circuits (especially the mixer MIX) are positioned symmetrically with respect to the branch circuit BL so that the transmission path lengths of the local signals from the branch circuit BL to the receiving circuit are equal. Has been placed.

更に、信号処理モジュール4の各部(送信用IC41、受信用IC42,43、ローカル信号供給用の伝送路等)は、送信用IC41から各受信用IC42,43に至るローカル信号供給用の伝送路長が等しくなるようにレイアウトされている。
<A/D変換部>
A/D変換部5は、受信チャンネルCHiのそれぞれについて、信号処理モジュール4にて生成されたビート信号から不要なノイズ成分を除去するバンドパスフィルタBPFi、バンドパスフィルタBPFiの出力をA/D変換するA/D変換器ADiを備えている。
<演算処理部>
演算処理部6は、CPU,ROM,RAMからなるマイクロコンピュータを中心に構成され、送信用IC41に送信信号を発生させる指令を出力すると共に、A/D変換部5を介して取得したデジタルデータに基づいて、レーダ波を反射した物標に関する情報(相対速度、距離、方位等)を求める物標検出処理や、受信チャンネルCH1〜CH4間の特性差を補償するための補正を行う際に用いる補償量を求める補償量出処理を少なくとも実行する。
<<物標検出処理>>
ここで演算処理部6が実行する物標検出処理の詳細を、図2に示すフローチャートに沿って説明する。
Further, each part of the signal processing module 4 (transmission IC 41, reception ICs 42, 43, local signal supply transmission path, etc.) is a local signal supply transmission path length from the transmission IC 41 to each reception IC 42, 43. Are laid out to be equal.
<A/D converter>
The A / D converter 5 performs A / D conversion on the outputs of the bandpass filter BPFi and the bandpass filter BPFi that remove unnecessary noise components from the beat signal generated by the signal processing module 4 for each of the reception channels CHi. An A / D converter ADi is provided.
<Operation processing unit>
The arithmetic processing unit 6 is mainly configured by a microcomputer including a CPU, a ROM, and a RAM. The arithmetic processing unit 6 outputs a command for generating a transmission signal to the transmission IC 41 and converts the digital data acquired via the A / D conversion unit 5 into the digital data. Compensation used when performing target detection processing for obtaining information (relative speed, distance, azimuth, etc.) related to a target reflected from a radar wave, or correction for compensating for a characteristic difference between the receiving channels CH1 to CH4. At least compensation amount calculation processing for obtaining the amount is executed.
<< Target detection process >>
Details of the target detection process executed by the arithmetic processing unit 6 will be described with reference to the flowchart shown in FIG.

本処理は、レーダ装置1に電源供給が開始されると、電源供給が停止するまでの間、周期的に起動する。
本処理が起動すると、まずS110では、レーダ装置1がFMCWレーダとして動作するように、送信用IC41に対して、周波数が三角波状に変化するように変調された高周波信号を生成するように指令を出力し、A/D変換部5を介して、ビート信号をA/D変換したデータを、全ての受信チャンネルCH1〜CH4について取得する。
This process starts periodically when power supply to the radar apparatus 1 is started until the power supply stops.
When this processing is started, first, in S110, a command is issued to the transmission IC 41 so that the radar apparatus 1 operates as an FMCW radar so as to generate a high-frequency signal modulated so that the frequency changes in a triangular wave shape. The data obtained by A / D conversion of the beat signal is obtained for all reception channels CH1 to CH4 via the A / D conversion unit 5.

以下では、送信信号の周波数が増加する区間を上り変調区間、周波数が減少する区間を下り変調区間とよぶ。
S120では、後述する補償量算出処理によって算出された補償量Δθhにより、受信チャンネル間の特性差が補償されるようにデジタルデータを補正するデータ補正処理を実行し、続くS130では、その補正されたデジタルデータを用いて、受信チャンネル毎かつ変調区間毎に高速フーリエ変換(FFT)処理を実行する。
Hereinafter, a section in which the frequency of the transmission signal increases is referred to as an uplink modulation section, and a section in which the frequency decreases is referred to as a downlink modulation section.
In S120, a data correction process for correcting the digital data is performed so that the characteristic difference between the reception channels is compensated by the compensation amount Δθh calculated by the compensation amount calculation process described later. In S130, the correction is performed. Using digital data, a fast Fourier transform (FFT) process is executed for each reception channel and each modulation section.

S140では、変調区間毎、且つFFT処理によってピークが検出された周波数(ピーク周波数)毎にデジタルビームフォーミング(DBF)を行うことで反射波の到来方向を求め、S150では、DBFによって検出された方位や過去の検出結果から、上り変調区間と下り変調区間とで、同じ物標からの反射波に基づくピーク周波数を組み合わせるペアマッチ処理を実行する。   In S140, the arrival direction of the reflected wave is obtained by performing digital beam forming (DBF) for each modulation section and for each frequency (peak frequency) at which a peak is detected by FFT processing. In S150, the direction detected by the DBF In addition, based on the past detection results, pair matching processing is performed in which the peak frequency based on the reflected wave from the same target is combined in the upstream modulation section and the downstream modulation section.

S160では、S150にて組み合わされたピーク周波数対に基づいて、ピーク周波数対を発生させた物標(検出物標)との距離,及び相対速度を算出し、これら距離,相対速度、及びピーク周波数対について先のS140で算出された方位を、検出物標の物標情報(距離,相対速度,方位)として出力して、本処理を終了する。   In S160, based on the peak frequency pair combined in S150, the distance to the target (detected target) that generated the peak frequency pair and the relative speed are calculated, and these distance, relative speed, and peak frequency are calculated. The azimuth | direction calculated by previous S140 about a pair is output as target information (distance, relative speed, azimuth | direction) of a detected target, and this process is complete | finished.

なお、これらの処理はFMCWレーダやDBFレーダにおいて周知の処理である。
<<補償量算出処理>>
次に、演算処理部6が実行する補償量算出処理の詳細を、図3に示すフローチャートに沿って説明する。
These processes are well-known processes in FMCW radar and DBF radar.
<< Compensation amount calculation process >>
Next, details of the compensation amount calculation processing executed by the arithmetic processing unit 6 will be described with reference to the flowchart shown in FIG.

本処理は、予め設定された起動条件を満たす場合に実行される。具体的には、車両のエンジン始動時、又は、ドライバからの指令入力時、周期的(物標検出処理より十分に長い周期)に実行することが考えられる。   This process is executed when a preset activation condition is satisfied. Specifically, it may be executed periodically (a period sufficiently longer than the target detection process) when the engine of the vehicle is started or when a command is input from the driver.

本処理が起動すると、まずS210ではS110の場合と同様に、ビート信号をA/D変換したデータを、全ての受信チャンネルCH1〜CH4について取得する。
S220では、受信チャンネル毎かつ変調区間毎にFFT処理を実行し、続くS230では、FFT処理結果から、変調区間毎かつピーク周波数成分毎に受信信号ベクトルX=(X1,X2,X3,X4)を生成する。なお、Xi=Aijθi は、受信チャンネルCHiにおけるピーク周波数成分であり、Aiは振幅、θiは位相を表す。
When this process is started, first, in S210, data obtained by A / D converting the beat signal is acquired for all reception channels CH1 to CH4, as in S110.
In S220, FFT processing is performed for each reception channel and for each modulation section. In subsequent S230, the received signal vector X = (X 1 , X 2 , X 3 , for each modulation section and for each peak frequency component from the FFT processing result. X 4 ) is generated. X i = A i e j θ i is a peak frequency component in the reception channel CH i , A i represents an amplitude, and θ i represents a phase.

S240では、S230にて生成された受信信号ベクトルXの中から未処理のものを処理対象ベクトルとして抽出し、S250では、その抽出した処理対象ベクトルに基づいて、同一チップ内位相差(本発明における回路内差分値に相当)、即ち、受信チャンネルCH1,CH2間の位相差Δθ12((1)式参照)と、受信チャンネルCH3,4間の位相差Δθ34((2)式参照)を算出する。 In S240, an unprocessed signal is extracted from the received signal vectors X generated in S230 as a processing target vector. In S250, based on the extracted processing target vector, the same in-chip phase difference (in the present invention) is extracted. corresponding to the circuit in the differential value), i.e., calculates the phase difference [Delta] [theta] between the reception channels CH1, CH2 12 ((1) see formula), the phase difference [Delta] [theta] 34 between the receiving channel CH3,4 ((2) see formula) To do.

Figure 2009281775
Figure 2009281775

S260では、両位相差Δθ12,Δθ34の差分の絶対値が予め設定された閾値αより小さいか否かを判断する((3)式参照)。 In S260, it is determined whether or not the absolute value of the difference between both phase differences Δθ 12 and Δθ 34 is smaller than a preset threshold value α (see equation (3)).

Figure 2009281775
Figure 2009281775

S260にて肯定判断された場合、即ち、両位相差Δθ12,Δθ34が一致している場合は、処理対象ベクトルに対応するピーク周波数成分が単一物標からの反射波に基づくものであるとして、S270に進む。 When an affirmative determination is made in S260, that is, when both phase differences Δθ 12 and Δθ 34 match, the peak frequency component corresponding to the processing target vector is based on a reflected wave from a single target. Then, the process proceeds to S270.

S270では、処理対象ベクトルに基づいて異チップ間位相差(本発明における回路間差分値に相当)、即ち、受信チャンネルCH2,CH3間の位相差Δθ23を算出する((4)式参照)。 In S270, based on the processing target vector different inter-chip phase difference (equivalent to the circuit between the difference value in the present invention), i.e., it calculates the phase difference [Delta] [theta] 23 between the reception channels CH2, CH3 ((4) see formula).

Figure 2009281775
Figure 2009281775

S280では、(5)式に従って補償量算出用データΔθdを求め、これを蓄積して、S290に進む。   In S280, the compensation amount calculation data Δθd is obtained according to the equation (5), accumulated, and the process proceeds to S290.

Figure 2009281775
Figure 2009281775

一方、先のS260にて否定判断された場合、即ち、両位相差Δθ12,Δθ34が不一致している場合は、処理対象ベクトルに対応するピーク周波数成分が複数物標からの反射波に基づくものであるものとして、そのままS290に進む。 On the other hand, when a negative determination is made in the previous S260, that is, when both the phase differences Δθ 12 and Δθ 34 do not match, the peak frequency component corresponding to the processing target vector is based on the reflected wave from the plurality of targets. As it is, the process proceeds to S290 as it is.

S290では、未処理の受信信号ベクトルXがあるか否かを判断し、未処理の受信信号ベクトルXがあればS240に戻って、S240〜S280の処理を繰り返す。
S290にて、未処理の受信信号ベクトルXはないと判断された場合は、S300に進み、S280にて蓄積された補償量算出用データΔθdの蓄積数が、予め設定された必要蓄積数に達したか否かを判断し、必要蓄積数に達していなければ、S210に戻ってS210〜S290の処理を繰り返し、必要蓄積数に達していれば、S310に進む。
In S290, it is determined whether or not there is an unprocessed received signal vector X. If there is an unprocessed received signal vector X, the process returns to S240, and the processes in S240 to S280 are repeated.
If it is determined in S290 that there is no unprocessed received signal vector X, the process proceeds to S300, in which the accumulated number of compensation amount calculation data Δθd accumulated in S280 reaches a preset necessary accumulated number. If the required accumulation number has not been reached, the process returns to S210 and the processes of S210 to S290 are repeated. If the required accumulation number has been reached, the process proceeds to S310.

S310では、蓄積された補償量算出用データΔθdに基づいて、補償量Δθhを算出して本処理を終了する。
なお、補償量Δθhとしては、例えば、補償量算出用データΔθdの平均値を用いることができる。
In S310, the compensation amount Δθh is calculated based on the accumulated compensation amount calculation data Δθd, and the process is terminated.
As the compensation amount Δθh, for example, an average value of compensation amount calculation data Δθd can be used.

なお、この補償量θhは、互いに異なる受信用IC42,43間の特性差を表すものであるため、S120での補正は、受信用IC42,43のうち、いずれか一方に属する二つの受信チャンネルで取得された全てのデジタルデータを、この補償量Δθhが補償されるように補正すればよい。
<効果>
以上説明したように、レーダ装置1においては、受信チャンネル間の特性差の影響を受けないデータとして、同一チップ(受信用IC)に属する隣接した受信チャンネル間の位相差Δθ12,Δθ34を用い、受信チャンネル間の特性差の影響を受けるデータとして、互いに異なるチップに属する隣接した受信チャンネル間の位相差Δθ23を用い、これらに基づいて補償量算出用データΔθd、ひいては補償量Δθhを求めている。
The compensation amount θh represents a characteristic difference between the receiving ICs 42 and 43 that are different from each other. Therefore, the correction in S120 is performed for two receiving channels belonging to one of the receiving ICs 42 and 43. All the acquired digital data may be corrected so that the compensation amount Δθh is compensated.
<Effect>
As described above, the radar apparatus 1 uses the phase differences Δθ 12 and Δθ 34 between adjacent reception channels belonging to the same chip (reception IC) as data that is not affected by the characteristic difference between the reception channels. As the data affected by the characteristic difference between the receiving channels, the phase difference Δθ 23 between adjacent receiving channels belonging to different chips is used, and based on these, the compensation amount calculation data Δθd and thus the compensation amount Δθh are obtained. Yes.

従って、レーダ装置1によれば、補償量Δθhの算出のために特別な疑似受信信号を必要とせず、通常の反射波に基づく受信信号を用いることができるため、装置規模を増大させることがなく、しかも、補償量Δθhは、受信チャンネル以外の構成部分の変化の影響を受けることがないため、受信チャンネル間の特性差を長期間に渡って安定して補償することができる。   Therefore, according to the radar apparatus 1, a special pseudo reception signal is not required for calculating the compensation amount Δθh, and a reception signal based on a normal reflected wave can be used, so that the apparatus scale is not increased. In addition, since the compensation amount Δθh is not affected by changes in components other than the reception channel, the characteristic difference between the reception channels can be stably compensated for a long period of time.

また、レーダ装置1においては、単一物標からの反射波に基づく受信信号である場合にのみ補償量算出用データΔθdを求めると共に、単一物標からの反射波に基づく受信信号であるか否かを、補償量算出用データΔθdの算出に用いる位相差Δθ12,Δθ34に基づいて判断するようにされている。 Further, in the radar apparatus 1, the compensation amount calculation data Δθd is obtained only when the received signal is based on the reflected wave from the single target, and is the received signal based on the reflected wave from the single target. Is determined based on the phase differences Δθ 12 and Δθ 34 used for calculating the compensation amount calculation data Δθd.

従って、レーダ装置1によれば、少ない処理量によって補償量Δθhの精度を向上させることができる。
[第2実施形態]
次に、第2実施形態について説明する。
<全体構成>
図4は、第2実施形態のレーダ装置1aの全体構成を示すブロック図である。
Therefore, according to the radar apparatus 1, the accuracy of the compensation amount Δθh can be improved with a small amount of processing.
[Second Embodiment]
Next, a second embodiment will be described.
<Overall configuration>
FIG. 4 is a block diagram showing the overall configuration of the radar apparatus 1a according to the second embodiment.

図4に示すように、レーダ装置1aは、レーダ波を送信する複数の送信アンテナAS1〜AS4及びレーダ波の反射波を受信する単一の受信アンテナARからなるアンテナ部2aと、各送信アンテナAS1〜ASに送信信号を供給すると共に、受信アンテナARからの受信信号を処理する信号処理モジュール4aと、アンテナ部2aと信号処理モジュール4aとの間で送信信号や受信信号を伝送するための伝送路(導波管)を形成するIF部3aとを備えている。   As shown in FIG. 4, the radar apparatus 1a includes a plurality of transmission antennas AS1 to AS4 that transmit radar waves, an antenna unit 2a that includes a single reception antenna AR that receives a reflected wave of the radar wave, and each transmission antenna AS1. A signal processing module 4a for supplying a transmission signal to the AS and processing a reception signal from the reception antenna AR, and a transmission path for transmitting the transmission signal and the reception signal between the antenna unit 2a and the signal processing module 4a IF section 3a forming (waveguide).

なお、信号処理モジュール4aでは、送信アンテナASi(i=1〜4)に送信信号をそれぞれ個別に供給するように構成されており、以下では、送信アンテナASiに送信信号を供給する回路を送信チャンネルCHiともいう。   The signal processing module 4a is configured to individually supply transmission signals to the transmission antennas ASi (i = 1 to 4), and hereinafter, a circuit for supplying transmission signals to the transmission antennas ASi is referred to as a transmission channel. Also called CHi.

また、レーダ装置1aは、信号処理モジュール4から出力される出力信号をデジタルデータに変換するA/D変換部5aと、A/D変換部5aで変換されたデジタルデータに基づいて各種処理を実行する演算処理部6aとを備えている。
<信号処理モジュール>
信号処理モジュール4aは、送信信号及びローカル信号を生成する送信回路を集積した送信用集積回路(以下、送信用ICという)45と、送信信号の出力先を切り替える1入力2出力のスイッチング用集積回路(以下、スイッチング用ICという)46,47,48と、受信アンテナARからの受信信号、送信用IC45からのローカル信号に基づいてビート信号を生成する受信用集積回路(以下、受信用ICという)49とによって構成されている。
Further, the radar apparatus 1a executes an A / D conversion unit 5a that converts an output signal output from the signal processing module 4 into digital data, and various processes based on the digital data converted by the A / D conversion unit 5a. And an arithmetic processing unit 6a.
<Signal processing module>
The signal processing module 4a includes a transmission integrated circuit (hereinafter referred to as a transmission IC) 45 in which a transmission circuit that generates a transmission signal and a local signal is integrated, and a 1-input 2-output switching integrated circuit that switches an output destination of the transmission signal. (Hereinafter referred to as a switching IC) 46, 47, 48, a reception integrated circuit (hereinafter referred to as a reception IC) that generates a beat signal based on a reception signal from the reception antenna AR and a local signal from the transmission IC 45 49.

なお、送信用IC45は、演算処理部6からの指令に従って、ミリ波帯の高周波信号を発生させる発振器OSC、発振器OSCの出力を電力分配して送信信号及びローカル信号を生成する分配器DV、送信信号を増幅する増幅器A1、ローカル信号を増幅する増幅器A2を備えた周知の回路構成を有する。   The transmission IC 45, in accordance with a command from the arithmetic processing unit 6, generates an oscillator OSC that generates a millimeter-wave band high-frequency signal, a distributor DV that generates a transmission signal and a local signal by distributing the output of the oscillator OSC, and a transmission It has a known circuit configuration including an amplifier A1 for amplifying a signal and an amplifier A2 for amplifying a local signal.

また、スイッチング用IC46の入力端は、送信用IC45の送信信号出力用の出力端に接続され、スイッチング用IC47,48の各入力端は、スイッチング用IC46の二つの出力端のいずれかにそれぞれ接続され、スイッチング用IC47,48の出力端は、それぞれ送信アンテナAS1〜AS4に至る伝送路に接続されている。   The input terminal of the switching IC 46 is connected to the output terminal for transmitting signal output of the transmitting IC 45, and the input terminals of the switching ICs 47 and 48 are connected to one of the two output terminals of the switching IC 46, respectively. The output terminals of the switching ICs 47 and 48 are connected to transmission lines that reach the transmission antennas AS1 to AS4, respectively.

更に、スイッチング用IC47,48には、各出力端に至るIC内の個別線路に、それぞれ増幅器A5が設けられている。但し、スイッチングのための具体的な構成については、周知技術でもあるため、図面を見やすくするために図示を省略している。また、スイッチング用IC46,47,48は、送信用IC45の送信信号用出力端からスイッチング用IC46,47の各入力端に至る伝送路長が等しくなるようにレイアウトされている。   Further, the switching ICs 47 and 48 are each provided with an amplifier A5 on an individual line in the IC reaching each output terminal. However, since a specific configuration for switching is a well-known technique, illustration is omitted for easy understanding of the drawing. The switching ICs 46, 47, 48 are laid out so that the transmission path lengths from the transmission signal output end of the transmission IC 45 to the input ends of the switching ICs 46, 47 are equal.

一方、受信用IC49は、受信信号を増幅する増幅器A3,増幅器A3の出力とローカル信号とを混合してビート信号を生成するミキサMIX,ミキサMIXの出力(ビート信号)を増幅する増幅器A4からなる周知の回路構成を有している。
<A/D変換部>
A/D変換部5aは、信号処理モジュール4にて生成されたビート信号から不要なノイズ成分を除去するバンドパスフィルタBPF、バンドパスフィルタBPFの出力をA/D変換するA/D変換器ADを備えている。
<演算処理部>
演算処理部6aでは、スイッチング用IC46,47,48を操作することによって、送信アンテナAS1〜AS4に順番にレーダ波を送信(時分割動作)させ、A/D変換によって得られたデジタルデータを、送信チャンネルCH1〜CH4毎に分離する以外は、レーダ装置1における演算処理部6と同様の処理を実行する。
<効果>
このように構成されたレーダ装置1aによれば、送信チャンネルと受信チャンネルとの違いがあるだけで、レーダ装置1と同様の効果を得ることができる。
[他の実施形態]
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、様々な態様にて実施可能である。
On the other hand, the receiving IC 49 includes an amplifier A3 that amplifies the received signal, a mixer MIX that generates a beat signal by mixing the output of the amplifier A3 and the local signal, and an amplifier A4 that amplifies the output (beat signal) of the mixer MIX. It has a well-known circuit configuration.
<A/D converter>
The A / D converter 5a is a bandpass filter BPF that removes unnecessary noise components from the beat signal generated by the signal processing module 4, and an A / D converter AD that A / D converts the output of the bandpass filter BPF. It has.
<Operation processing unit>
In the arithmetic processing unit 6a, by operating the switching ICs 46, 47 and 48, the transmission antennas AS1 to AS4 are sequentially transmitted with radar waves (time division operation), and digital data obtained by A / D conversion is obtained. Except for separation for each of the transmission channels CH1 to CH4, the same processing as the arithmetic processing unit 6 in the radar apparatus 1 is executed.
<Effect>
According to the radar apparatus 1a configured as described above, the same effect as that of the radar apparatus 1 can be obtained only by the difference between the transmission channel and the reception channel.
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can implement in various aspects.

上記実施形態では、A/D変換によって得られたデジタルデータを補正しているが、FFT処理の結果を補正してもよい。
上記実施形態では、補償量算出処理において、物標検出処理とは別にデータ収集を行っているが、物標検出処理で収集したデータを利用して、補償量Δθhを求めるようにしてもよい。
In the above embodiment, digital data obtained by A / D conversion is corrected, but the result of the FFT processing may be corrected.
In the above embodiment, the compensation amount calculation process collects data separately from the target detection process. However, the compensation amount Δθh may be obtained using the data collected in the target detection process.

上記実施形態では、補償量算出用データΔθdが必要蓄積数だけ蓄積されてから補償量Δθhを算出しているが、補償量算出用データΔθdが算出される毎に、補償量Δθhを更新するように構成してもよい。この場合、具体的には、荷重平均や移動平均の手法を用いて補償量算出用データΔθdから補償量Δθhを求めればよい。   In the above-described embodiment, the compensation amount Δθh is calculated after the necessary amount of compensation amount data Δθd is accumulated. However, every time the compensation amount calculation data Δθd is calculated, the compensation amount Δθh is updated. You may comprise. In this case, specifically, the compensation amount Δθh may be obtained from the compensation amount calculation data Δθd using a load average or moving average method.

上記実施形態では、受信チャンネル間の差分値として位相差を用いる場合について説明したが、位相差の代わりに、或いは位相差と共に、振幅差を用いてもよい。
上記実施形態では、受信用ICやスイッチング用ICに、2チャンネルを集積しているが、特性が均一なチャンネルを構成できるのであれば3チャンネル以上集積したものを用いてもよい。また、受信用ICやスイッチング用IC自体の数も、3個以上で構成してもよい。
In the above embodiment, the case where the phase difference is used as the difference value between the reception channels has been described. However, the amplitude difference may be used instead of or together with the phase difference.
In the above embodiment, two channels are integrated in the receiving IC and the switching IC. However, as long as a channel with uniform characteristics can be formed, an integrated circuit of three or more channels may be used. Further, the number of receiving ICs or switching ICs themselves may be three or more.

上記実施形態では、単一物標からの反射波に基づく受信信号であるか否かを、同一チップに属する隣接したチャンネル間の位相差Δθ12,Δθ34が一致しているか否かによって判断しているが、これに限らず、例えば、同一チップに属する各チャンネルについての受信信号を用いてデジタルビームフォーミングを行い、予め設定された電力閾値より大きいビームの数を物標の数として求めることで判断してもよい。 In the above embodiment, whether the received signal based on the reflected waves from a single target object, the phase difference between adjacent channels belonging to the same chip [Delta] [theta] 12, it is determined by whether or not [Delta] [theta] 34 is coincident However, the present invention is not limited to this. For example, digital beam forming is performed using received signals for the respective channels belonging to the same chip, and the number of beams larger than a preset power threshold is obtained as the number of targets. You may judge.

また、例えば、同一チップに属する各チャンネルについての受信信号から、その受信信号の自己相関行列を求め、該自己相関行列の固有値の大きさから物標の数を求めることで判断してもよい。   Further, for example, the determination may be made by obtaining the autocorrelation matrix of the received signal from the received signal for each channel belonging to the same chip and obtaining the number of targets from the magnitude of the eigenvalue of the autocorrelation matrix.

また、第1実施形態では、受信チャンネルCH1〜CH4がそれぞれミキサMIXを備えているが、同一チップに属する受信チャンネルについては、チップ外に設けられた共通のミキサを時分割で使用するように構成してもよい。但し、この場合、各チップ(受信用IC)には、両受信チャンネルからの出力信号のいずれかを選択してミキサに出力する選択回路まで集積されていることが望ましい。   In the first embodiment, each of the reception channels CH1 to CH4 includes the mixer MIX. However, for the reception channels belonging to the same chip, a configuration is adopted in which a common mixer provided outside the chip is used in a time-sharing manner. May be. In this case, however, it is desirable that each chip (receiving IC) is integrated with a selection circuit that selects one of the output signals from both reception channels and outputs the selected signal to the mixer.

第1実施形態のレーダ装置の構成を示すブロック図。1 is a block diagram showing a configuration of a radar apparatus according to a first embodiment. 物標検出処理の内容を示すフローチャート。The flowchart which shows the content of the target detection process. 補償量算出処理の内容を示すフローチャート。The flowchart which shows the content of the compensation amount calculation process. 第2実施形態のレーダ装置の構成を示すブロック図。The block diagram which shows the structure of the radar apparatus of 2nd Embodiment.

符号の説明Explanation of symbols

1,1a…レーダ装置 2,2a…アンテナ部 3,3a…IF部 4,4a…信号処理モジュール 5,5a…A/D変換部 6,6a…演算処理部 41,45…送信用集積回路 42,43,49…受信用集積回路 46〜48…スイッチング用集積回路 A1〜A5…増幅器 AD1〜AD5,AD…A/D変換器 AD1〜AD4,AD…A/D変換器 AR1〜AR4,AR…受信アンテナ AS,AS1〜AS4…送信アンテナ BF…入力バッファ BL…分岐回路 BPF1〜BPF4,BPF…バンドパスフィルタ DV…分配器 MIX…ミキサ OSC…発振器   DESCRIPTION OF SYMBOLS 1, 1a ... Radar apparatus 2, 2a ... Antenna part 3, 3a ... IF part 4, 4a ... Signal processing module 5, 5a ... A / D conversion part 6, 6a ... Arithmetic processing part 41, 45 ... Integrated circuit for transmission 42 , 43, 49... Receiving integrated circuits 46 to 48... Switching integrated circuits A1 to A5... Amplifiers AD1 to AD5, AD... A / D converters AD1 to AD4, AD ... A / D converters AR1 to AR4, AR. Reception antenna AS, AS1 to AS4 ... Transmission antenna BF ... Input buffer BL ... Branch circuit BPF1 to BPF4, BPF ... Bandpass filter DV ... Distributor MIX ... Mixer OSC ... Oscillator

Claims (11)

送信アンテナを介してレーダ波を送信する送信手段と、
前記送信手段から送信されたレーダ波の反射波を受信アンテナを介して受信する複数の受信チャンネルを有した受信手段と、
前記受信手段からの出力信号を、前記受信チャンネル間の特性差によって生じる該受信チャンネル間の差分値が補償されるように補正する補正手段と、
前記補正手段によって補正された出力信号に基づいて、前記レーダ波を反射した物体に関する情報を求める信号処理手段と、
を備えたレーダ装置において、
前記受信手段を、複数の前記受信チャンネルを1チップに集積した集積回路を複数個用いて構成すると共に、
同一の集積回路に属する隣接した受信チャンネル間の差分値である回路内差分値と、互いに異なる集積回路に属し且つ隣接した受信チャンネル間の差分値である回路間差分値との差を、前記補正手段にて補償すべき補償量として求める補償量算出手段を備えることを特徴とするレーダ装置。
A transmission means for transmitting a radar wave via a transmission antenna;
Receiving means having a plurality of receiving channels for receiving the reflected wave of the radar wave transmitted from the transmitting means via a receiving antenna;
Correcting means for correcting the output signal from the receiving means so that a difference value between the receiving channels caused by a characteristic difference between the receiving channels is compensated;
Based on the output signal corrected by the correction means, signal processing means for obtaining information on the object reflected from the radar wave;
In a radar apparatus equipped with
The receiving means is constituted by using a plurality of integrated circuits in which a plurality of the receiving channels are integrated on one chip, and
The difference between an in-circuit difference value that is a difference value between adjacent reception channels belonging to the same integrated circuit and an inter-circuit difference value that is a difference value between adjacent reception channels that belong to different integrated circuits is corrected. A radar apparatus comprising: a compensation amount calculating means for obtaining a compensation amount to be compensated by the means.
前記受信手段からの出力信号が単一物標からの反射波に基づくものであるか否かを判定する判定手段を備え、
前記補償量算出手段は、前記判定手段にて肯定判定された場合に前記補償量を求めることを特徴とする請求項1に記載のレーダ装置。
Determining means for determining whether an output signal from the receiving means is based on a reflected wave from a single target;
The radar apparatus according to claim 1, wherein the compensation amount calculation unit obtains the compensation amount when an affirmative determination is made by the determination unit.
前記判定手段は、前記集積回路毎に前記回路内差分値を求め、該回路内差分値のばらつきが、予め設定された判定閾値以下である場合に単一物標であると判定することを特徴とする請求項2に記載のレーダ装置。   The determination means determines the in-circuit difference value for each integrated circuit, and determines that the difference is not more than a predetermined determination threshold value and is a single target. The radar apparatus according to claim 2. 前記判定手段は、前記集積回路のいずれか一つに属する各受信チャンネルから得られる前記出力信号を用いてデジタルビームフォーミングを行い、予め設定された電力閾値より大きいビームの数を物標の数として求めることを特徴とする請求項2に記載のレーダ装置。   The determination means performs digital beam forming using the output signal obtained from each reception channel belonging to any one of the integrated circuits, and sets the number of beams larger than a preset power threshold as the number of targets. The radar apparatus according to claim 2, wherein the radar apparatus is obtained. 前記判定手段は、前記集積回路のいずれか一つに属する各受信チャンネルから得られる前記出力信号の自己相関行列を求め、該自己相関行列の固有値の大きさから物標の数を求めることを特徴とする請求項2に記載のレーダ装置。   The determining means obtains an autocorrelation matrix of the output signal obtained from each reception channel belonging to any one of the integrated circuits, and obtains the number of targets from the magnitude of the eigenvalue of the autocorrelation matrix. The radar apparatus according to claim 2. 前記受信チャンネル毎に、前記受信アンテナからの受信信号とローカル信号とを混合するミキサを備え、
前記集積回路には、該集積回路に属する各受信チャンネルのミキサに前記ローカル信号を分配する分配回路が集積されていることを特徴とする請求項1乃至請求項5のいずれかに記載のレーダ装置。
For each reception channel, a mixer for mixing a reception signal from the reception antenna and a local signal is provided,
6. The radar apparatus according to claim 1, wherein a distribution circuit that distributes the local signal to a mixer of each reception channel belonging to the integrated circuit is integrated in the integrated circuit. .
同一の前記集積回路に属する各受信チャンネルは、共通のミキサを時分割で使用するように構成されると共に、
前記集積回路には、該集積回路に属する受信チャンネルからの出力信号のいずれかを選択して出力する選択回路が集積されていることを特徴とする請求項1乃至請求項5のいずれかに記載のレーダ装置。
Each receiving channel belonging to the same integrated circuit is configured to use a common mixer in a time division manner, and
6. The integrated circuit according to claim 1, wherein a selection circuit that selects and outputs one of output signals from a reception channel belonging to the integrated circuit is integrated in the integrated circuit. Radar equipment.
送信アンテナを介してレーダ波を送信する複数の送信チャンネルを有する送信手段と、
前記送信手段から送信されたレーダ波の反射波を受信アンテナを介して受信する受信手段と、
前記受信手段からの出力信号を、前記送信チャンネル間の特性差によって生じる該送信チャンネル間の差分値が補償されるように補正する補正手段と、
前記補正手段にて補正された出力信号に基づいて、前記レーダ波を反射した物体に関する情報を求める信号処理手段と、
を備えたレーダ装置において、
前記送信手段を、複数の前記送信チャンネルを1チップに集積した集積回路を複数個用いて構成すると共に、
同一の集積回路に属する隣接した送信チャンネル間の差分値である回路内差分値と、互いに異なる集積回路に属し且つ隣接した送信チャンネル間の差分値である回路間差分値との差を、前記補正手段にて補償すべき補償量として求める補償量算出手段を備えることを特徴とするレーダ装置。
A transmission means having a plurality of transmission channels for transmitting radar waves via a transmission antenna;
Receiving means for receiving the reflected wave of the radar wave transmitted from the transmitting means via a receiving antenna;
Correcting means for correcting the output signal from the receiving means so that a difference value between the transmission channels caused by a characteristic difference between the transmission channels is compensated;
Based on the output signal corrected by the correction means, signal processing means for obtaining information on the object that has reflected the radar wave;
In a radar apparatus equipped with
The transmission means is configured using a plurality of integrated circuits in which a plurality of the transmission channels are integrated on one chip, and
The difference between the in-circuit difference value, which is a difference value between adjacent transmission channels belonging to the same integrated circuit, and the inter-circuit difference value, which is a difference value between adjacent transmission channels belonging to different integrated circuits, is corrected. A radar apparatus comprising: a compensation amount calculating means for obtaining a compensation amount to be compensated by the means.
前記送信チャンネルは、いずれも同一の信号発生源から送信信号の供給を受けるように構成されると共に、
前記集積回路には、該集積回路に属する各送信チャンネルに前記送信信号を分配する分配回路が集積されていることを特徴とする請求項8に記載のレーダ装置。
The transmission channels are all configured to receive a transmission signal from the same signal generation source,
9. The radar apparatus according to claim 8, wherein a distribution circuit that distributes the transmission signal to each transmission channel belonging to the integrated circuit is integrated in the integrated circuit.
送信アンテナを介してレーダ波を送信する送信手段と、前記送信手段から送信されたレーダ波の反射波を受信アンテナを介して受信する複数の受信チャンネルを有し、且つ複数の前記受信チャンネルを1チップに集積した集積回路を複数個用いて構成された受信手段とを備えたレーダ装置において、前記受信手段からの出力信号を、前記受信チャンネル間の特性差によって生じる該受信チャンネル間の差分値が補償されるように補正する際に用いる補償量を算出する補償量算出方法であって、
同一の集積回路に属する隣接した受信チャンネル間の差分値である回路内差分値と、互いに異なる集積回路に属し且つ隣接した受信チャンネル間の差分値である回路間差分値との差を、前記補償量として求めることを特徴とする補償量算出方法。
Transmitting means for transmitting a radar wave via a transmitting antenna, and a plurality of receiving channels for receiving a reflected wave of the radar wave transmitted from the transmitting means via a receiving antenna. And a receiving device configured using a plurality of integrated circuits integrated on a chip, a difference value between the receiving channels generated by a difference in characteristics between the receiving channels is obtained from an output signal from the receiving device. A compensation amount calculating method for calculating a compensation amount used when correcting so as to be compensated,
The difference between an in-circuit difference value that is a difference value between adjacent receiving channels belonging to the same integrated circuit and an inter-circuit difference value that is a difference value between adjacent receiving channels belonging to different integrated circuits is compensated for A compensation amount calculation method characterized in that the compensation amount is obtained as an amount.
送信アンテナを介してレーダ波を送信する複数の送信チャンネルを有し、且つ 複数の前記送信チャンネルを1チップに集積した集積回路を複数個用いて構成された送信手段と、前記送信手段から送信されたレーダ波の反射波を受信アンテナを介して受信する受信手段とを備えたレーダ装置において、前記出力手段からの出力信号を、前記送信チャンネル間の特性差によって生じる該受信チャンネル間の差分値が補償されるように補正する際に用いる補償量を算出する補償量算出方法であって、
同一の集積回路に属する隣接した送信チャンネル間の差分値である回路内差分値と、互いに異なる集積回路に属し且つ隣接した送信チャンネル間の差分値である回路間差分値との差を、前記補償量として求めることを特徴とする補償量算出方法。
A transmission means having a plurality of transmission channels for transmitting radar waves via a transmission antenna, and comprising a plurality of integrated circuits in which the plurality of transmission channels are integrated on one chip; And a receiving means for receiving a reflected wave of the radar wave via a receiving antenna, the output signal from the output means has a difference value between the receiving channels caused by a characteristic difference between the transmitting channels. A compensation amount calculation method for calculating a compensation amount used when correcting so as to be compensated,
Compensating for a difference between an in-circuit difference value which is a difference value between adjacent transmission channels belonging to the same integrated circuit and an inter-circuit difference value which is a difference value between adjacent transmission channels belonging to different integrated circuits A compensation amount calculation method characterized in that it is obtained as a quantity.
JP2008132017A 2008-05-20 2008-05-20 Radar device and compensation amount calculation method Active JP5062032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008132017A JP5062032B2 (en) 2008-05-20 2008-05-20 Radar device and compensation amount calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008132017A JP5062032B2 (en) 2008-05-20 2008-05-20 Radar device and compensation amount calculation method

Publications (2)

Publication Number Publication Date
JP2009281775A true JP2009281775A (en) 2009-12-03
JP5062032B2 JP5062032B2 (en) 2012-10-31

Family

ID=41452391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008132017A Active JP5062032B2 (en) 2008-05-20 2008-05-20 Radar device and compensation amount calculation method

Country Status (1)

Country Link
JP (1) JP5062032B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238462A (en) * 2012-05-15 2013-11-28 Toshiba Corp Antenna device
KR20140083708A (en) * 2012-12-26 2014-07-04 현대모비스 주식회사 Rader device and method for compansating phase differece applying the same
WO2014136718A1 (en) * 2013-03-04 2014-09-12 株式会社デンソー Object recognition device
KR20160043379A (en) * 2014-10-13 2016-04-21 현대모비스 주식회사 Apparatus and method for determining state of vehicle radar
KR101807522B1 (en) * 2016-06-29 2017-12-12 재단법인대구경북과학기술원 Apparatus for compensating receiving channel of radar using self-interference and method thereof
EP3508871A1 (en) 2017-12-26 2019-07-10 Panasonic Intellectual Property Management Co., Ltd. Estimation method, estimation device, and program
WO2019219263A1 (en) * 2018-05-17 2019-11-21 Robert Bosch Gmbh Method for phase calibration of high-frequency components of a radar sensor
WO2020059767A1 (en) * 2018-09-20 2020-03-26 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
KR20210044751A (en) * 2014-10-13 2021-04-23 현대모비스 주식회사 Method and apparatus for processing radar signal of vehicle
CN113015921A (en) * 2019-05-06 2021-06-22 S.M.S.斯玛特微波传感器有限公司 Method for detecting a traffic participant
US11047968B2 (en) 2018-12-28 2021-06-29 Panasonic Intellectual Property Management Co., Ltd. Estimating method and estimating device
JP2021148733A (en) * 2020-03-23 2021-09-27 パナソニックIpマネジメント株式会社 Radar system
KR20220003573A (en) * 2019-04-26 2022-01-10 무로 랩스 에스. 엘. Apparatus and method for managing coherence detection from multiple apertures in a LIDAR system
US11255955B2 (en) 2018-12-28 2022-02-22 Panasonic Intellectual Property Management Co., Ltd. Estimation method, estimation device, and recording medium
WO2022107532A1 (en) * 2020-11-17 2022-05-27 ソニーグループ株式会社 Information processing device, information processing method, and program
US12025695B2 (en) 2018-09-20 2024-07-02 Kyocera Corporation Electronic device, method for controlling electronic device, and electronic device control program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166029A (en) * 1999-12-10 2001-06-22 Toyota Motor Corp Dbf radar device
JP2002162460A (en) * 2000-11-24 2002-06-07 Toyota Motor Corp Dbf radar device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166029A (en) * 1999-12-10 2001-06-22 Toyota Motor Corp Dbf radar device
JP2002162460A (en) * 2000-11-24 2002-06-07 Toyota Motor Corp Dbf radar device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238462A (en) * 2012-05-15 2013-11-28 Toshiba Corp Antenna device
KR20140083708A (en) * 2012-12-26 2014-07-04 현대모비스 주식회사 Rader device and method for compansating phase differece applying the same
KR102126754B1 (en) * 2012-12-26 2020-06-25 현대모비스(주) Rader device and method for compansating phase differece applying the same
JP2014169922A (en) * 2013-03-04 2014-09-18 Denso Corp Object recognition device
US10061017B2 (en) 2013-03-04 2018-08-28 Denso Corporation Target recognition apparatus
WO2014136718A1 (en) * 2013-03-04 2014-09-12 株式会社デンソー Object recognition device
KR20160043379A (en) * 2014-10-13 2016-04-21 현대모비스 주식회사 Apparatus and method for determining state of vehicle radar
KR102240244B1 (en) * 2014-10-13 2021-04-14 현대모비스 주식회사 Apparatus and method for determining state of vehicle radar
KR102264985B1 (en) 2014-10-13 2021-06-15 현대모비스 주식회사 Method and apparatus for processing radar signal of vehicle
KR20210044751A (en) * 2014-10-13 2021-04-23 현대모비스 주식회사 Method and apparatus for processing radar signal of vehicle
KR101807522B1 (en) * 2016-06-29 2017-12-12 재단법인대구경북과학기술원 Apparatus for compensating receiving channel of radar using self-interference and method thereof
EP3508871A1 (en) 2017-12-26 2019-07-10 Panasonic Intellectual Property Management Co., Ltd. Estimation method, estimation device, and program
US11630195B2 (en) 2017-12-26 2023-04-18 Panasonic Intellectual Property Management Co., Ltd. Estimation method, estimation device, and program
JP2022106947A (en) * 2018-05-17 2022-07-20 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method for calibrating phase of high-frequency module of radar sensor
JP7230262B2 (en) 2018-05-17 2023-02-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング How to Calibrate the Phase of a Radar Sensor's High-Frequency Module
CN112136059A (en) * 2018-05-17 2020-12-25 罗伯特·博世有限公司 Method for phase calibration of a high-frequency module of a radar sensor
CN112136059B (en) * 2018-05-17 2024-09-17 罗伯特·博世有限公司 Method for phase calibration of a high-frequency module of a radar sensor
US11500061B2 (en) 2018-05-17 2022-11-15 Robert Bosch Gmbh Method for the phase calibration of high-frequency components of a radar sensor
JP7080997B2 (en) 2018-05-17 2022-06-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング How to calibrate the phase of the high frequency module of the radar sensor
JP2021524036A (en) * 2018-05-17 2021-09-09 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh How to calibrate the phase of the high frequency module of a radar sensor
WO2019219263A1 (en) * 2018-05-17 2019-11-21 Robert Bosch Gmbh Method for phase calibration of high-frequency components of a radar sensor
CN112654882A (en) * 2018-09-20 2021-04-13 京瓷株式会社 Electronic device, control method for electronic device, and control program for electronic device
US12025695B2 (en) 2018-09-20 2024-07-02 Kyocera Corporation Electronic device, method for controlling electronic device, and electronic device control program
JP7032556B2 (en) 2018-09-20 2022-03-08 京セラ株式会社 Electronic devices, control methods for electronic devices, and control programs for electronic devices
JP2022065171A (en) * 2018-09-20 2022-04-26 京セラ株式会社 Electronic apparatus, control method for electronic apparatus, and control program for electronic apparatus
JP7161076B2 (en) 2018-09-20 2022-10-25 京セラ株式会社 ELECTRONIC DEVICE, ELECTRONIC DEVICE CONTROL METHOD, AND PROGRAM
JPWO2020059767A1 (en) * 2018-09-20 2021-08-30 京セラ株式会社 Electronic devices, control methods for electronic devices, and control programs for electronic devices
JP7097519B2 (en) 2018-09-20 2022-07-07 京セラ株式会社 Electronic devices, control methods for electronic devices, and control programs for electronic devices
WO2020059767A1 (en) * 2018-09-20 2020-03-26 京セラ株式会社 Electronic device, electronic device control method, and electronic device control program
JP2022118273A (en) * 2018-09-20 2022-08-12 京セラ株式会社 Electronic device, electronic device control method, and program
US11255955B2 (en) 2018-12-28 2022-02-22 Panasonic Intellectual Property Management Co., Ltd. Estimation method, estimation device, and recording medium
US11047968B2 (en) 2018-12-28 2021-06-29 Panasonic Intellectual Property Management Co., Ltd. Estimating method and estimating device
KR20220003573A (en) * 2019-04-26 2022-01-10 무로 랩스 에스. 엘. Apparatus and method for managing coherence detection from multiple apertures in a LIDAR system
JP2022530881A (en) * 2019-04-26 2022-07-04 モウロ ラブス、エス.エル. Devices and methods for managing coherent detection from multiple openings in a rider system
KR102572056B1 (en) 2019-04-26 2023-08-28 무로 랩스 에스. 엘. Apparatus and method for managing coherent detection from multiple apertures in a LIDAR system
JP7451867B2 (en) 2019-04-26 2024-03-19 モウロ ラブス、エス.エル. Apparatus and method for managing coherent detection from multiple apertures in a lidar system
JP2022504685A (en) * 2019-05-06 2022-01-13 エス・エム・エス・スマート・マイクロウェーブ・センサーズ・ゲーエムベーハー How to detect road users
JP7382659B2 (en) 2019-05-06 2023-11-17 エス・エム・エス・スマート・マイクロウェーブ・センサーズ・ゲーエムベーハー How to detect road users
CN113015921A (en) * 2019-05-06 2021-06-22 S.M.S.斯玛特微波传感器有限公司 Method for detecting a traffic participant
JP7308454B2 (en) 2020-03-23 2023-07-14 パナソニックIpマネジメント株式会社 radar equipment
US11874391B2 (en) 2020-03-23 2024-01-16 Panasonic Intellectual Property Management Co., Ltd. Radar apparatus
JP2021148733A (en) * 2020-03-23 2021-09-27 パナソニックIpマネジメント株式会社 Radar system
WO2022107532A1 (en) * 2020-11-17 2022-05-27 ソニーグループ株式会社 Information processing device, information processing method, and program

Also Published As

Publication number Publication date
JP5062032B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5062032B2 (en) Radar device and compensation amount calculation method
JP3988653B2 (en) Antenna arrangement method and radar apparatus
JP3622565B2 (en) Radar equipment
JP4232570B2 (en) Radar equipment for vehicles
JP3498624B2 (en) Radar equipment
JP5062225B2 (en) Target detection device
US20110109495A1 (en) Radar apparatus
EP2423704B1 (en) Radar apparatus and antenna device
US7688255B2 (en) Electronic scanning radar apparatus
US8941533B2 (en) Method and device for detecting azimuth
US6859168B2 (en) Radar apparatus
JP5102165B2 (en) Radar equipment
US7495604B2 (en) Electronic scanning radar apparatus
US20070052581A1 (en) Radar apparatus
US20100073260A1 (en) Antenna device with lens or passive element acting as lens
KR100642001B1 (en) Radar
CN108140956B (en) Antenna device and target object detection device
JPH1130663A (en) Radar device
JP4082442B2 (en) Direction detection device
US8174434B2 (en) Method and device for determining a distance to a target object
US20120119940A1 (en) Radar apparatus with multi-receiver channel
US20110001656A1 (en) Radar system and signal processing method for radar system
JP2016045176A (en) Received signal processing device, radar device, and target detection method
JP2015001429A (en) Delay time difference measuring apparatus, phased array antenna device, and delay time difference measuring method
JP2000147101A (en) Radar signal processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R151 Written notification of patent or utility model registration

Ref document number: 5062032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250