JP2009275240A - Lead-free sn-ag based solder alloy or solder alloy powder - Google Patents
Lead-free sn-ag based solder alloy or solder alloy powder Download PDFInfo
- Publication number
- JP2009275240A JP2009275240A JP2008125195A JP2008125195A JP2009275240A JP 2009275240 A JP2009275240 A JP 2009275240A JP 2008125195 A JP2008125195 A JP 2008125195A JP 2008125195 A JP2008125195 A JP 2008125195A JP 2009275240 A JP2009275240 A JP 2009275240A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- solder alloy
- solder
- added
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 113
- 239000000956 alloy Substances 0.000 title claims abstract description 113
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 100
- 239000000843 powder Substances 0.000 title claims abstract description 23
- 229910020836 Sn-Ag Inorganic materials 0.000 claims abstract description 28
- 229910020988 Sn—Ag Inorganic materials 0.000 claims abstract description 28
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 12
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052709 silver Inorganic materials 0.000 abstract description 7
- 238000012360 testing method Methods 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 description 35
- 239000013078 crystal Substances 0.000 description 28
- 239000010949 copper Substances 0.000 description 27
- 230000005496 eutectics Effects 0.000 description 23
- 238000001816 cooling Methods 0.000 description 19
- 229910002056 binary alloy Inorganic materials 0.000 description 18
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 210000001787 dendrite Anatomy 0.000 description 9
- 229910001128 Sn alloy Inorganic materials 0.000 description 8
- 229910020938 Sn-Ni Inorganic materials 0.000 description 8
- 229910008937 Sn—Ni Inorganic materials 0.000 description 8
- 238000010406 interfacial reaction Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 229910000765 intermetallic Inorganic materials 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 238000010828 elution Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910006640 β-Sn Inorganic materials 0.000 description 5
- 229910006632 β—Sn Inorganic materials 0.000 description 5
- 229910020816 Sn Pb Inorganic materials 0.000 description 4
- 229910020830 Sn-Bi Inorganic materials 0.000 description 4
- 229910020922 Sn-Pb Inorganic materials 0.000 description 4
- 229910018728 Sn—Bi Inorganic materials 0.000 description 4
- 229910008783 Sn—Pb Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910017482 Cu 6 Sn 5 Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 229910017937 Ag-Ni Inorganic materials 0.000 description 2
- 229910017984 Ag—Ni Inorganic materials 0.000 description 2
- 229910017980 Ag—Sn Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
本発明は、鉛フリー半田合金又は半田合金粉末に関し、より詳しくは、Sn-Ag合金又は半田合金粉末に関する。 The present invention relates to a lead-free solder alloy or solder alloy powder, and more particularly to a Sn-Ag alloy or solder alloy powder.
鉛(Pb)は、周知のように、人体に悪影響を及ぼすとの懸念から、種々の用途で規制対象となっている。電子機器に用いられるSn-Pb半田も同様であり、Sn-Pb半田は2006年から欧州で全面的に規制され、このことから鉛フリー半田合金及び粉末の開発が急務の課題となっている。 As is well known, lead (Pb) is subject to regulation in various applications because of concern that it may adversely affect the human body. The same applies to Sn-Pb solder used in electronic equipment. Sn-Pb solder has been fully regulated in Europe since 2006, and the development of lead-free solder alloys and powders has become an urgent issue.
現在NEDO(独立行政法人 新エネルギ・産業技術総合開発機構)等が推奨し且つ実用化されている鉛フリー半田合金として、Sn-3Ag-0.5Cu合金やこれにInやBiを添加した合金(特許文献1)及びSn-9Zn合金、Sn-0.7Cu系合金が知られている。鉛フリー半田にあっても、Sn-Pb半田と同様に融点、濡れ性、機械的特性が重要視されるのは言うまでもない。Sn-3Ag-0.5Cu合金は融点及び濡れ性に優れた特性を有している。また、Sn-9Zn合金は、低融点化への可能性を含むため実用化に向けた開発が進行している。 As a lead-free solder alloy currently recommended and put to practical use by NEDO (New Energy and Industrial Technology Development Organization), etc., Sn-3Ag-0.5Cu alloy and alloys with In and Bi added to it (patents) Document 1) and Sn-9Zn alloys and Sn-0.7Cu alloys are known. Needless to say, the melting point, wettability, and mechanical properties are regarded as important in the case of lead-free solder as in the case of Sn-Pb solder. Sn-3Ag-0.5Cu alloy has excellent melting point and wettability. In addition, Sn-9Zn alloys are being developed for practical use because they include the possibility of lowering the melting point.
しかし、基板接合における熱疲労特性や衝撃特性等の機械的特性に関し、鉛フリー半田合金はSn-Pb半田合金に比較して大きく劣ることが重要課題としてクローズアップされている。 However, regarding mechanical characteristics such as thermal fatigue characteristics and impact characteristics in substrate bonding, it is emphasized that lead-free solder alloys are significantly inferior to Sn-Pb solder alloys.
近年、情報通信分野、デジタル家電を始めとする電子機器の小型・軽量化、高速化などの技術革新はめざましく、電子回路の多相回路基板の更なる高密度化、高集積化、多ピン化が進んでいる。それに伴い電子デバイスパッケ−ジはQFP(Quad Flat Package)からBGA(Ball Grid Array)やCSP(Chip Scale Package)に変化しており、半田による接合部も同時に微細化している。 In recent years, technological innovations such as miniaturization, weight reduction, and speeding-up of electronic devices such as information and communication fields and digital home appliances have been remarkable, and higher-density, higher-integration, and higher pin count multi-phase circuit boards for electronic circuits. Is progressing. Along with that, electronic device packages have changed from QFP (Quad Flat Package) to BGA (Ball Grid Array) and CSP (Chip Scale Package), and the joints by solder are also miniaturized at the same time.
QFP接合では、パッケ−ジから延出するリ−ド線とプリント配線基板とを半田で接合するものであることから、パッケ−ジ及びプリント配線基板に加わる力学的及び熱的負荷はリ−ド線の可撓性などによって緩和されていた。他方、リ−ド線無しのBGAやCSPのようなエリアレイパッケ−ジ接合では、負荷が全て半田に加わるので、接合部の微細化とともに接合部に要求される機械的特性は厳しさを増している。特に、熱膨張係数の違う材料を組み合わせた基板、多相集積化、多ピン化の傾向は、基板の反りや半田ボ−ルへの直接的な負荷によって半田が破断してしまう可能性を含んでいる。 In QFP bonding, the lead wire extending from the package and the printed wiring board are joined by soldering, so the mechanical and thermal load applied to the package and the printed wiring board is the lead. It was alleviated by the flexibility of the wire. On the other hand, in area-lay package bonding such as BGA and CSP without lead wire, all the load is applied to the solder, so the mechanical properties required for the joint increase with the miniaturization of the joint. ing. In particular, the trend of board, multiphase integration, and multi-pin combination of materials with different thermal expansion coefficients includes the possibility of solder breakage due to board warpage or direct load on the solder ball. It is out.
自動車業界では、近い将来、熱伝導性、耐熱性、耐電圧性に優れるアルミニウム/セラミックス基板などの金属/セラミックス基板の採用が一般化すると予測されている。事実、高出力が要求される基板において金属/セラミックス基板が採用され、一部の車両に搭載され始めている。自動車に搭載される電子基板は、温度差の大きい環境下に晒されるだけでなく、機器のON/OFFによる熱サイクル負荷も大きい、というように非常に過酷な環境下に置かれる。このことから、振動及び熱に関して過酷な環境下で用いられる金属/セラミックス基板での接合に適用可能な、応力負荷による熱疲労特性を含む機械的特性に優れた鉛フリー半田合金及び半田合金粉末の出現が待たれている。 In the automotive industry, it is predicted that the use of metal / ceramic substrates such as aluminum / ceramic substrates having excellent thermal conductivity, heat resistance, and voltage resistance will be generalized in the near future. In fact, metal / ceramic substrates have been adopted as substrates that require high output, and are beginning to be mounted on some vehicles. Electronic boards mounted on automobiles are not only exposed to an environment with a large temperature difference, but also placed in a very harsh environment such as a large thermal cycle load due to ON / OFF of the equipment. Therefore, lead-free solder alloys and solder alloy powders with excellent mechanical properties, including thermal fatigue properties due to stress loading, that can be applied to metal / ceramic substrates used in harsh environments with regard to vibration and heat. The appearance is awaited.
本願の発明者は、特許文献2において、一般的な鉛フリー半田として実用化されているSn-3Ag-0.5Cu合金の問題点である、特に熱サイクル負荷によるクラック発生及びクラックの伝播に関して、その原因を明らかにした。 The inventor of the present application, in Patent Document 2, is a problem of Sn-3Ag-0.5Cu alloy that is put to practical use as a general lead-free solder, particularly regarding crack generation and crack propagation due to thermal cycle load. The cause was clarified.
具体的に説明すると、Sn-3Ag-0.5Cu合金は、Sn-0.7Cu合金と同様に、共晶組織が得られるように組成が決定されており、マトリックスSn中に金属間化合物相のAg3SnやCu6Sn5相が微細分散し、均一な硬さの組織構造を備えているものの、基板に接合したときの急速な冷却によって、凝固後の組織は全共晶組織とならず、柔らかい粗大な初晶β-Sn相と、硬い共晶相との二相混合組織を呈し、このような組織構造がSn-3Ag-0.5Cu合金の機械的特性の劣化を促進する要因となっていることを明らかにした。 Specifically, the composition of the Sn-3Ag-0.5Cu alloy is determined so that a eutectic structure can be obtained, as in the case of the Sn-0.7Cu alloy, and Ag 3 of the intermetallic compound phase in the matrix Sn. Although Sn and Cu 6 Sn 5 phases are finely dispersed and have a uniform hardness structure, the structure after solidification does not become a total eutectic structure due to rapid cooling when bonded to the substrate, and is soft. It exhibits a two-phase mixed structure of coarse primary β-Sn phase and hard eutectic phase, and this structure is a factor that promotes deterioration of mechanical properties of Sn-3Ag-0.5Cu alloy. It revealed that.
粗大な初晶β-Sn相の結晶を微細化することを目的として鋭意研究した結果、特許文献2に記載の通り、本願発明者は、微量のAlをSn-Ag二元合金に添加することで初晶β-Sn相内に微細な亜結晶組織(sub-grain)を形成できることを見出した。そして、β-Sn相内に晶出した亜結晶組織の結晶粒径は5μm程度であったことから、微量のAlをSn-Ag二元合金に添加することによって、電子部品を接合した後のSn-3Ag-0.5Cu半田合金における初晶β-Sn相の結晶粒径を約1/6まで小さくできることが分かった。 As a result of diligent research aimed at refining coarse primary crystal β-Sn phase crystals, as described in Patent Document 2, the present inventor added a small amount of Al to the Sn-Ag binary alloy. And found that a fine sub-grain structure can be formed in the primary β-Sn phase. And since the crystal grain size of the subcrystalline structure crystallized in the β-Sn phase was about 5 μm, by adding a small amount of Al to the Sn-Ag binary alloy, It was found that the grain size of the primary β-Sn phase in Sn-3Ag-0.5Cu solder alloy can be reduced to about 1/6.
特許文献2で開示した、Sn-Ag二元合金に微量のAlを含有する鉛フリー半田合金は、大型のパワーモジュール基板の接合においては大きな改善効果が得られたものの、小型の金属/セラミックス基板での接合においては、実用上、更なる改善が必要であることが分かった。 The lead-free solder alloy containing a small amount of Al in the Sn-Ag binary alloy disclosed in Patent Document 2 has a large improvement effect in joining large power module substrates, but is a small metal / ceramic substrate. It has been found that further improvement is necessary for practical use in the joining.
本発明の目的は、熱疲労特性の改善、特に振動及び熱に関して過酷な環境下に適用可能な鉛フリーSn-Ag系半田合金及び半田合金粉末を提供することにある。 An object of the present invention is to provide a lead-free Sn-Ag solder alloy and a solder alloy powder that can be applied in a severe environment with respect to improvement of thermal fatigue characteristics, particularly vibration and heat.
本発明の更なる目的は、微量のAlを含有し且つ機械的特性を向上することのできる鉛フリーSn-Ag系半田合金及び半田合金粉末を提供することにある。 It is a further object of the present invention to provide a lead-free Sn-Ag solder alloy and solder alloy powder that contain a small amount of Al and can improve mechanical properties.
本発明の更なる目的は、フレックスリジッド基板(FR基板)での接合に適合可能な鉛フリーSn-Ag系半田合金及び半田合金粉末を提供することにある。 It is a further object of the present invention to provide a lead-free Sn-Ag solder alloy and solder alloy powder that can be adapted for bonding on a flex-rigid substrate (FR substrate).
本発明の更なる目的は、基板自体が優れた耐熱性を備えている金属/セラミックス基板での接合に適合可能な鉛フリーSn-Ag系半田合金及び半田合金粉末を提供することにある。 It is a further object of the present invention to provide a lead-free Sn-Ag solder alloy and solder alloy powder that can be adapted for bonding with a metal / ceramic substrate having excellent heat resistance.
如上の考察から、上記の技術的課題は、本発明によれば、強度及び組織のバランスの観点から、
Agの含有量が0.1以上0.5未満であることを特徴とする鉛フリーSn-Ag系半田合金又は半田合金粉末を提供することにより達成される。Agの含有量が0.1wt%を下回ったときには、Agを添加したことによる強度向上効果が希薄化してしまう。
From the above considerations, the above technical problem is according to the present invention from the viewpoint of balance of strength and structure.
This is achieved by providing a lead-free Sn-Ag solder alloy or solder alloy powder characterized in that the Ag content is 0.1 or more and less than 0.5. When the Ag content is less than 0.1 wt%, the strength improvement effect due to the addition of Ag is diluted.
前述したように、従来の鉛フリー半田合金の設計は、Sn-3Ag-0.5Cu半田合金やSn-0.7Cu半田合金に見られるように、Snに添加する第二元素または第三元素を共晶組成量まで添加して、半田合金の融点を降下させ、組織特性を微細分散させることにあるが、半田接合の際の冷却速度の影響を受けて組織が変化し、過酷な環境下に耐え得る機械的特性が得られないという実情があった。これを改善するためには、次の視点に立脚した合金設計が必要であると考えられる。つまり、基板と半田との接合界面における応力集中を緩和するには、半田合金自体の延性が重要であり、また、硬い相と柔らかい相の領域が混在しない均一な半田組織を形成する必要がある。 As mentioned above, conventional lead-free solder alloy designs are eutectic with the second or third element added to Sn, as seen in Sn-3Ag-0.5Cu solder alloys and Sn-0.7Cu solder alloys. It is added to the composition amount to lower the melting point of the solder alloy and finely disperse the structure characteristics, but the structure changes under the influence of the cooling rate at the time of soldering and can withstand harsh environments There was a fact that mechanical properties could not be obtained. In order to improve this, it is considered that an alloy design based on the following viewpoint is necessary. In other words, in order to alleviate the stress concentration at the bonding interface between the substrate and the solder, the ductility of the solder alloy itself is important, and it is necessary to form a uniform solder structure in which hard and soft phase regions are not mixed. .
ところで、純Snは延性に優れた金属であるが、Snの最大の欠点はSnの結晶粒が脆性破壊し易い点にあり、これを解決するために他の元素を添加して粒界を強化する必要がある。このことから、延性に富むSnを主体とした鉛フリー半田の開発においては、第1に、金属間化合物相を極力少なくすることが必要であり、第2に、硬化する元素を多量に添加しないことが必要であると考えられる。つまり、組織特性や材料特性に悪影響を及ぼさない程度の微量の元素をSnに添加することが重要であると考えられる。 By the way, pure Sn is a metal with excellent ductility, but the biggest drawback of Sn is that the Sn crystal grains are susceptible to brittle fracture, and to solve this, other elements are added to strengthen the grain boundaries. There is a need to. Therefore, in the development of lead-free solder mainly composed of Sn, which is rich in ductility, firstly, it is necessary to reduce the intermetallic compound phase as much as possible, and secondly, a large amount of hardening element is not added. It is considered necessary. In other words, it is considered important to add a small amount of element to Sn that does not adversely affect the structure characteristics and material characteristics.
そこで本願発明者は、機械的強度を向上させる効果がある銀(Ag)において、その添加量に注目した。例えば特許文献1に開示の鉛フリーSn-Ag系半田合金では、2〜3wt%のAgを添加するものであるが、Agを2〜3wt%添加すると、図1に見られるように、柔らかい粗大な初晶Sn相と、相対的に硬い共晶との二相混合組織を呈しているのが確認できる。 Therefore, the inventor of the present application paid attention to the addition amount of silver (Ag) that has an effect of improving the mechanical strength. For example, in the lead-free Sn-Ag solder alloy disclosed in Patent Document 1, 2 to 3 wt% of Ag is added, but when Ag is added to 2 to 3 wt%, as shown in FIG. It can be confirmed that it exhibits a two-phase mixed structure of a primary Sn phase and a relatively hard eutectic.
Agの添加量を減少させたSn-1Ag-0.5Cu半田合金(Ag: 1wt%)を作り、基板上で凝固させたときの組織を図2に示す。基板での接合の際の凝固過程の温度差によって、粗大なSn初晶相に囲まれて互いに連続したエリアに最終凝固(共晶)が晶出しているが、この互いに連続した共晶エリアではデンドライトの間隙に共晶が形成されている。このことに注目すると、Agの添加量を低下させることにより、デンドライトの間隙つまり狭い領域に共晶の晶出を限定させることができる。つまり、デンドライトを含む共晶エリアを連続させない程度までAgの添加量を微量にすることで、クラックを助長する要因を排除できる。 Fig. 2 shows the structure of Sn-1Ag-0.5Cu solder alloy (Ag: 1wt%) with reduced Ag addition and solidified on the substrate. Due to the temperature difference in the solidification process at the time of bonding on the substrate, the final solidification (eutectic) is crystallized in the continuous area surrounded by the coarse Sn primary crystal phase. In this continuous eutectic area, Eutectic is formed in the gap between dendrites. When attention is paid to this, by reducing the amount of Ag added, eutectic crystallization can be limited to the gap of dendrites, that is, a narrow region. In other words, by making the addition amount of Ag so small that the eutectic area containing dendrites is not continuous, the factor that promotes cracks can be eliminated.
図3〜図6は、鉛フリーSn-Ag二元合金におけるAg添加量の変化に伴う組織形態の変化を示すものであり、図3はAg添加量が0.4wt%の結晶組織を示し、図4はAg添加量が0.8wt%の結晶組織を示し、図5はAg添加量が1.0wt%の結晶組織を示し、図6はAg添加量が2.0wt%の結晶組織を示す。 3 to 6 show changes in the structure of the lead-free Sn-Ag binary alloy with changes in the amount of Ag added, and FIG. 3 shows a crystal structure in which the amount of Ag added is 0.4 wt%. 4 shows a crystal structure with an Ag addition amount of 0.8 wt%, FIG. 5 shows a crystal structure with an Ag addition amount of 1.0 wt%, and FIG. 6 shows a crystal structure with an Ag addition amount of 2.0 wt%.
図3〜図6を観察すると分かるように、0.4wt%Ag添加ではデンドライトの間隙に共晶が針状に成長し、共晶エリアが連続していない(図3)。これに対して、0.8wt%Ag添加では、共晶エリアが鎖状に近づくが完全に連結するには至っていない(図4)。1.0wt%Ag添加では、共晶量も増加しており、部分的に初晶が浮島のように独立した形態となっているのが分かる(図5)。2.0wt%Ag添加では、初晶が共晶に完全に取り囲まれて完全に浮島の形態となっているのが分かる(図6)。 As can be seen from observation of FIGS. 3 to 6, when 0.4 wt% Ag is added, eutectics grow in the shape of needles in the gaps of the dendrites, and the eutectic areas are not continuous (FIG. 3). On the other hand, when 0.8 wt% Ag is added, the eutectic area approaches a chain shape but is not completely connected (FIG. 4). When 1.0 wt% Ag is added, the amount of eutectic increases, and it can be seen that the primary crystals are partially independent like floating islands (Fig. 5). It can be seen that when 2.0 wt% Ag is added, the primary crystal is completely surrounded by the eutectic and is completely in the form of floating islands (Fig. 6).
このようにAgの含有量に注目したときに、その含有量を制限して上限値を規定するのが重要であり、本発明の趣旨、つまりデンドライトを含む共晶エリアを連続させない程度までAgの添加量を微量にする従って上限値として0.4以上0.5wt%未満の範囲に設定することにより、デンドライトを含む共晶エリアを互いに連続しない状態、つまり、共晶エリアがSn相の中に点在する浮島の状態にすることができる。なお、Agの添加量を制限すると、半田合金の融点が上昇する傾向になるが、基板自体の耐熱性が優れている例えば金属/セラミックス基板に適用するのであれば、Ag含有量を制限することに伴う融点の上昇は許容される。 Thus, when paying attention to the content of Ag, it is important to limit the content and define the upper limit, and the gist of the present invention, that is, to the extent that the eutectic area containing dendrites is not continuous. By setting the addition amount to a very small amount and setting the upper limit to be in the range of 0.4 to less than 0.5 wt%, the eutectic areas containing dendrites are not continuous with each other, that is, the eutectic areas are scattered in the Sn phase. It can be in a floating island state. Note that if the amount of Ag added is limited, the melting point of the solder alloy tends to increase, but the Ag content should be limited if it is applied to, for example, a metal / ceramic substrate where the substrate itself has excellent heat resistance. An increase in melting point with is allowed.
熱サイクルに関して優れた特性を備えた鉛フリー半田は、基板に接合したときに、延性が均一な凝固組織であるのが望ましいことは言うまでもない。そのためには、凝固した組織中に粗大な金属間化合物相が存在しないことが望ましく、最も好ましくは、相対的に硬い共晶組織のエリアが存在しないのがよい。 It goes without saying that a lead-free solder having excellent thermal cycle characteristics is desirably a solidified structure having a uniform ductility when bonded to a substrate. For this purpose, it is desirable that there is no coarse intermetallic phase in the solidified structure, and most preferably, there is no area of relatively hard eutectic structure.
この観点から、Sn合金において添加元素が少量で共晶が得られるNiに着目した。このNiは、基板にメタライズしたCuが半田の中に溶解するのを抑制する効果がある。また、Niを添加することにより、延性及び濡れ性、界面反応に効果的である。 From this point of view, we focused on Ni, which can obtain eutectic with a small amount of additive elements in Sn alloys. This Ni has an effect of suppressing dissolution of Cu metallized on the substrate into the solder. Further, the addition of Ni is effective for ductility, wettability, and interface reaction.
図7はNi添加無しの鉛フリーSn-Ag二元合金(1wt%Ag添加)とCu基板との界面反応相と半田組織を示し、図8は、0.1wt%Ni添加した場合のCu基板との界面反応相と半田組織を示し、図9は、0.5wt%Ni添加した場合のCu基板との界面反応相と半田組織を示す。接合条件は250℃で60秒であった。 Fig. 7 shows the interfacial reaction phase and solder structure between a lead-free Sn-Ag binary alloy (1 wt% Ag added) without addition of Ni and a Cu substrate, and Fig. 8 shows the Cu substrate with 0.1 wt% Ni added. FIG. 9 shows the interfacial reaction phase and the solder structure with the Cu substrate when 0.5 wt% Ni is added. The bonding conditions were 60 ° C. and 60 seconds.
図7を参照して、Ni無添加のSn-Ag合金ではCu基板のCuが半田合金内に溶出して半田合金内にCu6Sn5が晶出しているのが分かる。図8を参照して、0.1wt%Ni添加のSn-Ag合金では、半田合金内へのCuの溶出するのが抑えられ、半田合金内におけるCu6Sn5の組織形成が観察されてない。図9を参照して、0.5wt%Ni添加のSn-Ag合金では、界面反応相が厚く成長しており、基板と半田との間の接合強度を損なう虞があることが分かる。 Referring to FIG. 7, it can be seen that in the Sn-Ag alloy without addition of Ni, Cu on the Cu substrate is eluted in the solder alloy and Cu 6 Sn 5 is crystallized in the solder alloy. Referring to FIG. 8, in the 0.1 wt% Ni-added Sn—Ag alloy, the elution of Cu into the solder alloy is suppressed, and the formation of Cu 6 Sn 5 structure in the solder alloy is not observed. Referring to FIG. 9, in the Sn-Ag alloy with 0.5 wt% Ni added, the interface reaction phase grows thick, which may impair the bonding strength between the substrate and the solder.
以上の観察から、Niを添加することにより半田内へのCuの溶出を抑制できるものの、Niの添加量を0.5wt%まで増量すると界面反応相が成長して厚い界面反応相が生成されてしまい、基板と半田との間の強度を損ねてしまう。 From the above observations, it is possible to suppress the elution of Cu into the solder by adding Ni, but when the Ni addition amount is increased to 0.5 wt%, the interface reaction phase grows and a thick interface reaction phase is generated. The strength between the substrate and the solder is impaired.
図10〜図12を参照して、Niの添加量について更に検討を加える。図10は、0.1wt%のNiを添加したSn合金の組織状態を示す図であり、図11は、0.5wt%のNiを添加したSn合金の組織状態を示す図であり、図12は、1wt%のNiを添加したSn合金の組織状態を示す図である。この実験は、添加量に応じた二元合金の融点よりも高い温度で試料を完全に溶解した後に冷却凝固させて、これを母材とした。この試料から100μm厚さの板材を作りリフロー条件として240〜250℃で300secを設定してCu基板に接合させた。この断面観察写真が図10〜図12である。 With reference to FIGS. 10 to 12, further study will be made regarding the amount of Ni added. FIG. 10 is a view showing a structure state of a Sn alloy to which 0.1 wt% of Ni is added, FIG. 11 is a view showing a structure state of a Sn alloy to which 0.5 wt% of Ni is added, and FIG. It is a figure which shows the structure | tissue state of Sn alloy which added 1 wt% Ni. In this experiment, the sample was completely melted at a temperature higher than the melting point of the binary alloy according to the added amount, and then cooled and solidified, and this was used as a base material. A plate material having a thickness of 100 μm was prepared from this sample and bonded to a Cu substrate by setting 300 seconds at 240 to 250 ° C. as reflow conditions. This cross-sectional observation photograph is FIGS.
Sn−Ni合金は平衡二元状態図よりNiはSnに固溶せず金属間化合物相を形成する。また、共晶が高Sn側(0.14wt%)に存在し過共晶域では急激に融点温度が上昇するのが特徴である。また、図11、図12から分かるように、過共晶側の添加量では、粗大なNi3Sn4相が晶出してしまう。このNi3Sn4相は、凝固する鋳壁側に集中して晶出する傾向がある。このことから、共晶と金属間化合物相の分離を抑制して、共晶と金属間化合物相とを均一に分布させるには合金組成の融点まで温度を上昇させる必要がある。しかし、過共晶側の添加量では上述したように急激に融点が上昇するため基板接合に用いられるリフロー温度(一般的に250℃)では金属間化合物相が溶けずに母材中に形成された状態で金属間化合物相が晶出する傾向になる。以上の考察により、Niの含有量は0.14wt%以下であるのが望ましい。 From the equilibrium binary phase diagram, Sn-Ni alloy does not dissolve in Sn but forms an intermetallic compound phase. In addition, the eutectic is present on the high Sn side (0.14 wt%), and the melting point temperature is rapidly increased in the hypereutectic region. Further, as can be seen from FIGS. 11 and 12, a coarse Ni 3 Sn 4 phase is crystallized with the added amount on the hypereutectic side. This Ni 3 Sn 4 phase tends to concentrate and crystallize on the solidified cast wall side. From this, it is necessary to raise the temperature to the melting point of the alloy composition in order to suppress the separation of the eutectic and intermetallic compound phases and to uniformly distribute the eutectic and intermetallic compound phases. However, since the melting point rapidly increases as described above with the addition amount on the hypereutectic side, the intermetallic compound phase is not melted and formed in the base material at the reflow temperature (generally 250 ° C.) used for substrate bonding. In this state, the intermetallic compound phase tends to crystallize. From the above consideration, the Ni content is preferably 0.14 wt% or less.
Niを添加する一つの意図として、基板からのCuの溶出を抑制する効果にあるが、このCu溶出抑制効果は、0.07wt%以下になると、その効果が希薄化し、0.05wt%以下では殆どCu溶出抑制効果を期待することができない。したがって、Niの含有量は0.07wt%以上であるのが望ましい。 One intent of adding Ni is to suppress Cu elution from the substrate, but this Cu elution suppression effect dilutes when it is 0.07 wt% or less, and almost 0.05 wt% or less is Cu. The elution suppression effect cannot be expected. Therefore, the Ni content is desirably 0.07 wt% or more.
本願発明者は、更に、Snの結晶粒の脆性破壊を抑えるために、Sn相に晶出する亜結晶組織(sub-grain)に注目し、この亜結晶組織を微細化することに考察を加えた。 The present inventor further paid attention to the sub-grain structure crystallized in the Sn phase in order to suppress the brittle fracture of the Sn crystal grains, and considered the refinement of the sub-crystal structure. It was.
図13は、0.1wt%のNiを添加したSn-Ni二元半田合金を実装冷却速度で凝固させたときの組織状態を示す図である。この図13からsub-grain結晶粒径は40μmであるが、これにAlを添加したNi(0.1wt%)-Al(0.08wt%)-残部Snからなる半田合金の結晶組織を図14に示し、更にBiを添加したNi(0.1wt%)-Al(0.08wt%)-Bi(0.5wt%)-残部Snからなる半田合金の結晶組織を図15に示す。図14からAlを添加することで結晶粒径を10μm以下に微細化できるものの結晶粒径の大きさが不均一である。これに対して、図15から、Al及びBiを添加すると粒径は均一であり且つ更に微細化できていることが分かる。 FIG. 13 is a view showing a structure state when a Sn—Ni binary solder alloy added with 0.1 wt% of Ni is solidified at a mounting cooling rate. FIG. 14 shows the crystal structure of a solder alloy composed of Ni (0.1 wt%)-Al (0.08 wt%)-remaining Sn to which Al is added, although the sub-grain crystal grain size is 40 μm. Further, FIG. 15 shows the crystal structure of a solder alloy composed of Ni (0.1 wt%)-Al (0.08 wt%)-Bi (0.5 wt%)-remaining Sn to which Bi is further added. Although the crystal grain size can be refined to 10 μm or less by adding Al from FIG. 14, the crystal grain size is not uniform. On the other hand, FIG. 15 shows that when Al and Bi are added, the particle size is uniform and further refined.
図16は、Alの含有量とSn合金の硬さの関係を示す図である。同図から、Alの添加量が0.12wt%を超えると合金の硬さが急激に上昇することが分かる。また、同図から.Alの添加量を増やすほど合金の硬さが上昇するが、約0.10wt%に屈曲点があり、約0.10wt%を超えると合金の硬さの上昇度合いが高くなる。したがって、Alの含有量は0.12wt%以下であるのが好ましく、更に好ましくは0.10wt%以下であるのがよい。 FIG. 16 is a diagram showing the relationship between the Al content and the hardness of the Sn alloy. From the figure, it can be seen that the hardness of the alloy rapidly increases when the amount of Al exceeds 0.12 wt%. In addition, from the same figure, the hardness of the alloy increases as the amount of Al added increases, but there is a bending point at about 0.10 wt%, and when the amount exceeds about 0.10 wt%, the degree of increase in the hardness of the alloy increases. Accordingly, the Al content is preferably 0.12 wt% or less, more preferably 0.10 wt% or less.
図17はAlを添加しない場合の結晶組織を示し、図18は0.02wt%のAlを添加したSn合金を示し、図19は0.08wt%のAlを添加したSn合金を示す。図16〜図19から分かるように、微量のAlを添加することにより結晶粒径を微細化でき、また、Alを0.02wt%添加した場合よりもAlを0.08wt%添加した場合の方が微細化できることがわかる。 FIG. 17 shows the crystal structure when Al is not added, FIG. 18 shows the Sn alloy with 0.02 wt% Al added, and FIG. 19 shows the Sn alloy with 0.08 wt% Al added. As can be seen from FIG. 16 to FIG. 19, the crystal grain size can be refined by adding a small amount of Al, and it is finer when 0.08 wt% Al is added than when 0.02 wt% Al is added. It can be seen that
Al添加に関する如上の観察により、Alの添加は0.02〜1.2wt%であるのがよく、好ましくは0.02〜1.0wt%、更に好ましくは0.02〜0.08wt%であるのがよい。Alを添加することにより、結晶粒の微細化の他に、合金の強度、延性に効果的である。 According to the above observation regarding the addition of Al, the addition of Al should be 0.02 to 1.2 wt%, preferably 0.02 to 1.0 wt%, more preferably 0.02 to 0.08 wt%. Addition of Al is effective for the strength and ductility of the alloy in addition to the refinement of crystal grains.
上述したようにBi添加は結晶粒の微細化に効果的であるが、他に合金の強度においても効果的である。図20〜図22はSn-Bi二元合金においてBiの添加量と結晶構造との関係を示す。図20は、0.5wt%のBiを添加したSn-0.5Bi合金を示し、図21は、1.0wt%のBiを添加したSn-0.5Bi合金を示し、図22は、2.0wt%のBiを添加したSn-0.5Bi合金を示す。図20〜図22を参照すると、Biの添加量1.0wt%を境に結晶構造が大きく変化することが分かる。すなわち、Sn-0.5Bi合金では、Sn中にBiが均一に分散し且つデンドライトも明確ではない。しかし、Biの添加量を1.0wt%にすると、デンドライトの間隙にBiリッチ相が形成されることが分かる(図21)。更に、Biの添加量を2.0wt%に増やすと、Biリッチ相の他に粗大な単体のBiが析出することが分かる(図22)。他方、デンドライト内に晶出するsub-grain結晶粒はBiが0.5wt%以上では微細に形成され、この結晶粒はBiの添加量によって大きく変化しない。したがって、Biの最大添加量は、Biの偏在した析出を抑制しつつ均一な組織を作る上で1.0wt%であることが分かる。 As described above, the addition of Bi is effective for refining crystal grains, but is also effective for the strength of the alloy. 20 to 22 show the relationship between the amount of Bi added and the crystal structure in the Sn—Bi binary alloy. FIG. 20 shows a Sn-0.5Bi alloy with 0.5 wt% Bi added, FIG. 21 shows a Sn-0.5Bi alloy with 1.0 wt% Bi added, and FIG. 22 shows 2.0 wt% Bi added. The added Sn-0.5Bi alloy is shown. Referring to FIGS. 20 to 22, it can be seen that the crystal structure changes greatly with the Bi addition amount of 1.0 wt% as a boundary. That is, in the Sn-0.5Bi alloy, Bi is uniformly dispersed in Sn and the dendrite is not clear. However, it can be seen that when the amount of Bi added is 1.0 wt%, a Bi-rich phase is formed in the gap between the dendrites (FIG. 21). Furthermore, it can be seen that when the amount of Bi added is increased to 2.0 wt%, coarse single Bi precipitates in addition to the Bi-rich phase (FIG. 22). On the other hand, the sub-grain crystal grains crystallized in the dendrite are finely formed when Bi is 0.5 wt% or more, and these crystal grains do not change greatly depending on the amount of Bi added. Therefore, it can be seen that the maximum addition amount of Bi is 1.0 wt% in order to make a uniform structure while suppressing uneven precipitation of Bi.
また、Biの添加によるsub-grainの微細化は、Biを添加することによりSnの結晶粒径よりも微細することにあるが、0.2wt%Bi添加では、sub-grainがSnの粒径である10μm以下まで微細化できないため、Biの添加は0.4wt%以上であるのが望ましい。 Sub-grain refinement by adding Bi is to make the grain size of Sn smaller by adding Bi. However, when 0.2 wt% Bi is added, sub-grain is Sn grain size. Since it cannot be refined to a certain size of 10 μm or less, it is desirable that the addition of Bi is 0.4 wt% or more.
本発明のAg-Sn半田合金及び半田合金粉末は、他の微量元素としてGeを含んでいてもよい。Bi及びAlを添加することにより微細なsub-grainを形成した組成にGeを添加しても、この添加量が微量であれば、Bi及びAlの添加による微細化に悪影響を及ぼすことはないことが分かっている。また、Sn-Ge二元合金自体もSnのsub-grain結晶粒を一層微細化することが分かっている。特にGeを添加することで基板の濡れ性を向上させることができる。 The Ag—Sn solder alloy and solder alloy powder of the present invention may contain Ge as another trace element. Even if Ge is added to a composition in which fine sub-grains are formed by adding Bi and Al, the addition of Bi and Al will not adversely affect the miniaturization as long as the addition amount is small. I know. It has also been found that the Sn—Ge binary alloy itself further refines the Sn sub-grain crystal grains. In particular, the wettability of the substrate can be improved by adding Ge.
本発明のAg-Sn半田合金及びその粉末は、不可避の不純物としてPb、Cu、Sb、As、Fe、Zn、Cd、Au、Inを含んでいてもよい。これら不純物の混入量は以下の範囲に制限するのが好ましい。 The Ag—Sn solder alloy and powder thereof of the present invention may contain Pb, Cu, Sb, As, Fe, Zn, Cd, Au, and In as inevitable impurities. The mixing amount of these impurities is preferably limited to the following range.
すなわち、Pbは0.10wt%以下であるのがよく、好ましくは、Pbは0.05wt%以下であるのがよい。Cuは0.05wt%以下であるのがよい。また、Sbは0.10wt%以下であるのがよく、好ましくは、0.05wt%以下であるのがよい。Asは0.03wt%以下であるのがよい。また、Feは0.02wt%以下であるのがよい。更に、Znは0.001wt%以下であるのがよい。また、Cdは0.002wt%以下であるのがよく、好ましくは、0.001wt%以下であるのがよい。Auは0.05wt%以下であるのがよい。Inは0.10wt%以下であるのがよい。 That is, Pb is preferably 0.10 wt% or less, and preferably Pb is 0.05 wt% or less. Cu should be 0.05 wt% or less. Further, Sb is preferably 0.10 wt% or less, and preferably 0.05 wt% or less. As should be 0.03 wt% or less. Fe is preferably 0.02 wt% or less. Furthermore, Zn is preferably 0.001 wt% or less. Cd is preferably 0.002 wt% or less, and preferably 0.001 wt% or less. Au should be 0.05 wt% or less. In should be 0.10 wt% or less.
第1実施例(図23):
半田合金の組成が、Ni:0.10wt%; Al:0.08wt%; Ge:0.05wt%; Bi:0.5wt%; Ag:0.3wt%; 残部Snの組織状態を図23に示す。なお、この第1実施例の半田合金又は半田合金粉末は不可避不純物を含むことは言うまでもない。
First Example (FIG. 23) :
The composition of the solder alloy is as follows: Ni: 0.10 wt%; Al: 0.08 wt%; Ge: 0.05 wt%; Bi: 0.5 wt%; Ag: 0.3 wt%; Needless to say, the solder alloy or solder alloy powder of the first embodiment contains inevitable impurities.
第2実施例(図24):
半田合金の組成が、Ni:0.10wt%; Al:0.08wt%; Ge:0.05wt%; Bi:0.5wt%; Ag:0.45wt%; 残部Snの組織状態を図24に示す。なお、この第2実施例の半田合金又は半田合金粉末は不可避不純物を含むことは言うまでもない。
Second Example (FIG. 24) :
The composition of the solder alloy is as follows: Ni: 0.10 wt%; Al: 0.08 wt%; Ge: 0.05 wt%; Bi: 0.5 wt%; Ag: 0.45 wt%; Needless to say, the solder alloy or solder alloy powder of the second embodiment contains inevitable impurities.
第1実施例及び第2実施例と対比するために参考例(図25)を作製した。参考例は、半田合金の組成が、(Ni:0.10wt%; Al:0.08wt%; Ge:0.05wt%; Bi:0.5wt%; Ag:0.8wt%; 残部Sn)の組織状態を図25に示す。 A reference example (FIG. 25) was prepared for comparison with the first and second examples. In the reference example, the composition of the solder alloy is (Ni: 0.10 wt%; Al: 0.08 wt%; Ge: 0.05 wt%; Bi: 0.5 wt%; Ag: 0.8 wt%; balance Sn). Shown in
すなわち、下記の表1に示すように、第1実施例ではAgが0.3wt%であり(図23)、第2実施例ではAgが0.5wt%であり(図24)、参考例ではAgが0.8wt%であり(図25)、他の元素は共通である。 That is, as shown in Table 1 below, Ag is 0.3 wt% in the first embodiment (FIG. 23), Ag is 0.5 wt% in the second embodiment (FIG. 24), and Ag is 0.5 in the reference example. It is 0.8 wt% (FIG. 25), and other elements are common.
第3実施例(図26):
半田合金の組成が、Ni:0.10wt%; Al:0.08wt%; Ge:0.06wt%; Bi:0.2wt%; Ag:0.2wt%; 残部Snの組織状態を図26に示す。なお、この第3実施例の半田合金又は半田合金粉末は不可避不純物を含むことは言うまでもない。図26から、第3実施例の試料全体に均一且つ微細な結晶粒が存在していることが分かるであろう。
Third Example (FIG. 26) :
The composition of the solder alloy is as follows: Ni: 0.10 wt%; Al: 0.08 wt%; Ge: 0.06 wt%; Bi: 0.2 wt%; Ag: 0.2 wt%; Needless to say, the solder alloy or solder alloy powder of the third embodiment contains inevitable impurities. It will be understood from FIG. 26 that uniform and fine crystal grains are present in the entire sample of the third example.
第3実施例の半田合金の引張り試験を行ったところ、次の表3の結果を得た。比較例は、従来から知られているSn-3Ag-0.5Cu合金(SAC)及び純Snを採用した。 When a tensile test of the solder alloy of the third example was conducted, the results shown in Table 3 below were obtained. As a comparative example, a conventionally known Sn-3Ag-0.5Cu alloy (SAC) and pure Sn were adopted.
熱サイクル特性の向上に寄与する半田の延性は、純Snに比較して伸びは大きくなり、且つ靱性の評価となる最大点歪みも純Snよりも大きくなっていることを確認できた。 It has been confirmed that the ductility of the solder that contributes to the improvement of the thermal cycle characteristics is larger than that of pure Sn, and that the maximum point strain for evaluating toughness is also larger than that of pure Sn.
また、熱サイクル加速試験を行ったところ、Sn-3Ag-0.5Cu合金(SAC)では、サイクル回数500回で、測定個数20個に対して破断した個数は18個であったのに対して、第3実施例では、サイクル回数1000回で、測定個数40個に対して破断した個数は15個であった。このことから、第3実施例の熱サイクル特性は、従来のSn-3Ag-0.5Cu合金(SAC)と比較して大きく改善できることが確認できた。 In addition, when a thermal cycle acceleration test was performed, in the Sn-3Ag-0.5Cu alloy (SAC), the number of fractures was 18 with respect to 20 measured numbers at 500 cycles, whereas In the third example, the number of cycles was 1000, and the number of fractures was 15 for 40 measured. From this, it was confirmed that the thermal cycle characteristics of the third example can be greatly improved as compared with the conventional Sn-3Ag-0.5Cu alloy (SAC).
上記の第1〜第3の実施例において、不可避の不純物として、0.10wt%以下のPb、0.05wt%以下のCu、0.10wt%以下のSb、0.03%以下のAs、0.02wt%以下のFe、0.001wt%以下のZn、0.002wt%以下のCd、0.05wt%以下のAu、0.10wt%以下のInを含んでいてもよい。 In the above first to third embodiments, unavoidable impurities of Pb of 0.10 wt% or less, Cu of 0.05 wt% or less, Sb of 0.10 wt% or less, As of 0.03% or less, Fe of 0.02 wt% or less are inevitable impurities. 0.001 wt% or less of Zn, 0.002 wt% or less of Cd, 0.05 wt% or less of Au, or 0.10 wt% or less of In.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008125195A JP5379402B2 (en) | 2008-05-12 | 2008-05-12 | Lead-free Sn-Ag solder alloy and solder alloy powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008125195A JP5379402B2 (en) | 2008-05-12 | 2008-05-12 | Lead-free Sn-Ag solder alloy and solder alloy powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009275240A true JP2009275240A (en) | 2009-11-26 |
JP5379402B2 JP5379402B2 (en) | 2013-12-25 |
Family
ID=41440939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008125195A Active JP5379402B2 (en) | 2008-05-12 | 2008-05-12 | Lead-free Sn-Ag solder alloy and solder alloy powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5379402B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102642099A (en) * | 2012-05-05 | 2012-08-22 | 大连理工大学 | Sn-Zn-based lead-free solder alloy for aluminum bronze soldering and method for preparing same |
JP2013215758A (en) * | 2012-04-06 | 2013-10-24 | Panasonic Corp | Lead-free solder alloy |
WO2016031067A1 (en) * | 2014-08-29 | 2016-03-03 | 千住金属工業株式会社 | Solder material, solder joint, and production method for solder material |
CN114559179A (en) * | 2022-03-31 | 2022-05-31 | 昆明理工大学 | Sn-Ag-Cu low-melting-point lead-free solder and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102460042B1 (en) * | 2020-05-14 | 2022-10-28 | 엠케이전자 주식회사 | Lead-free solder alloy, solder ball, solder paste, and semiconductor device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001071173A (en) * | 1999-09-06 | 2001-03-21 | Ishikawa Kinzoku Kk | Non-leaded solder |
JP2005066699A (en) * | 2004-10-05 | 2005-03-17 | Hitachi Metals Ltd | Method for producing solder ball |
JP2005334955A (en) * | 2004-05-28 | 2005-12-08 | Hitachi Metals Ltd | Solder alloy and solder ball |
WO2006059115A1 (en) * | 2004-12-01 | 2006-06-08 | Alpha Fry Limited | Solder alloy |
-
2008
- 2008-05-12 JP JP2008125195A patent/JP5379402B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001071173A (en) * | 1999-09-06 | 2001-03-21 | Ishikawa Kinzoku Kk | Non-leaded solder |
JP2005334955A (en) * | 2004-05-28 | 2005-12-08 | Hitachi Metals Ltd | Solder alloy and solder ball |
JP2005066699A (en) * | 2004-10-05 | 2005-03-17 | Hitachi Metals Ltd | Method for producing solder ball |
WO2006059115A1 (en) * | 2004-12-01 | 2006-06-08 | Alpha Fry Limited | Solder alloy |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013215758A (en) * | 2012-04-06 | 2013-10-24 | Panasonic Corp | Lead-free solder alloy |
CN102642099A (en) * | 2012-05-05 | 2012-08-22 | 大连理工大学 | Sn-Zn-based lead-free solder alloy for aluminum bronze soldering and method for preparing same |
WO2016031067A1 (en) * | 2014-08-29 | 2016-03-03 | 千住金属工業株式会社 | Solder material, solder joint, and production method for solder material |
CN106536124A (en) * | 2014-08-29 | 2017-03-22 | 千住金属工业株式会社 | Solder material, solder joint, and production method for solder material |
KR101781777B1 (en) | 2014-08-29 | 2017-09-25 | 센주긴조쿠고교 가부시키가이샤 | Solder material, solder joint, and production method for solder material |
CN106536124B (en) * | 2014-08-29 | 2018-03-20 | 千住金属工业株式会社 | The manufacture method of solder material, solder joints and solder material |
US10173287B2 (en) | 2014-08-29 | 2019-01-08 | Senju Metal Industry Co., Ltd. | Solder material, solder joint, and method of manufacturing the solder material |
CN114559179A (en) * | 2022-03-31 | 2022-05-31 | 昆明理工大学 | Sn-Ag-Cu low-melting-point lead-free solder and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5379402B2 (en) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5585746B2 (en) | High temperature lead-free solder alloy | |
KR102153273B1 (en) | Solder alloy, solder paste, solder ball, resin-embedded solder and solder joint | |
JP2020157349A (en) | Solder alloy, solder ball, solder preform, solder paste and solder joint | |
JP6418349B1 (en) | Solder alloy, solder paste, solder ball, flux cored solder and solder joint | |
EP1924394A2 (en) | Solder alloy | |
TW201213552A (en) | Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY | |
JP5379402B2 (en) | Lead-free Sn-Ag solder alloy and solder alloy powder | |
JP5973992B2 (en) | Solder alloy | |
JP4770733B2 (en) | Solder and mounted products using it | |
WO2024177065A1 (en) | Solder alloy, solder ball, solder paste, and soldered joint | |
KR102672970B1 (en) | Solder alloy, solder ball, solder paste and solder joint | |
WO2023054630A1 (en) | Solder alloy, solder ball, solder preform, solder paste, and solder joint | |
JP2008221330A (en) | Solder alloy | |
JP7025208B2 (en) | Solder alloy | |
JP5379403B2 (en) | Lead-free Sn-Ni solder alloy and solder alloy powder | |
JP4425738B2 (en) | Lead-free solder alloy, lead-free solder alloy manufacturing method, mounting structure, mounting method, lead-free fuse alloy, lead-free fuse alloy manufacturing method, plate-shaped fuse, lead-free alloy and lead-free alloy manufacturing method | |
JP6370458B1 (en) | Lead-free solder alloy and electronic circuit board | |
JP5861526B2 (en) | Ge-Al solder alloy not containing Pb | |
JP2015020189A (en) | Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY MAINLY CONTAINING Au | |
JP2018149554A (en) | Pb-FREE Bi SOLDER ALLOY, ELECTRONIC COMPONENT PREPARED WITH THE SAME, AND ELECTRONIC COMPONENT-MOUNTING SUBSTRATE | |
JP2017029996A (en) | LEAD-FREE Ag-Sb BASED SOLDER ALLOY | |
JP2015098048A (en) | Zn-Ge-BASED SOLDER ALLOY WITHOUT Pb, AND ELECTRONIC COMPONENT USING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130918 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5379402 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |