[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009275190A - Flame retardant resin composition, insulated wire and wire harness - Google Patents

Flame retardant resin composition, insulated wire and wire harness Download PDF

Info

Publication number
JP2009275190A
JP2009275190A JP2008130219A JP2008130219A JP2009275190A JP 2009275190 A JP2009275190 A JP 2009275190A JP 2008130219 A JP2008130219 A JP 2008130219A JP 2008130219 A JP2008130219 A JP 2008130219A JP 2009275190 A JP2009275190 A JP 2009275190A
Authority
JP
Japan
Prior art keywords
mass
insulated wire
resin composition
flame retardant
retardant resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008130219A
Other languages
Japanese (ja)
Inventor
Masayuki Iwata
誠之 岩田
Katsuyoshi Ishida
克義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008130219A priority Critical patent/JP2009275190A/en
Publication of JP2009275190A publication Critical patent/JP2009275190A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame retardant resin composition capable of realizing insulated wire having not only flame retardance, abrasion resistance and scratch resistance, but also heat resistance, the insulated wire and a wire harness. <P>SOLUTION: This flame retardant resin composition is provided by containing an EPDM containing a ≥70 mass% structural unit originated from ethylene, an ethylene-vinyl acetate copolymer containing a ≥20 mass% structural unit originated from the vinyl acetate and metal hydroxide particles, having the 50 to 200 pts.mass ratio of the metal hydroxide particles based on the 100 pts.mass mixed resin of the ethylene-propylene-diene rubber with the ethylene-vinyl acetate copolymer, and making the above mixed resin in direct contact with the surface of the metal hydroxide particles. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、難燃性樹脂組成物、絶縁電線及びワイヤーハーネスに関する。   The present invention relates to a flame retardant resin composition, an insulated wire, and a wire harness.

自動車や電子機器においては、部品間の電気的接続のために絶縁電線が用いられる。このような絶縁電線は、導体と、導体を被覆する絶縁層とを備えており、絶縁層を構成する絶縁材料としては、難燃性、耐油性、耐水性、絶縁性等に優れた特性を有することから、ポリ塩化ビニル樹脂が最も一般的に用いられている。近年では、環境や人体への影響の懸念から安定剤として鉛を使用しない非鉛ポリ塩化ビニル樹脂が主流となっている。   In automobiles and electronic devices, insulated wires are used for electrical connection between components. Such an insulated wire includes a conductor and an insulating layer covering the conductor, and the insulating material constituting the insulating layer has excellent properties such as flame resistance, oil resistance, water resistance, and insulation. Polyvinyl chloride resin is most commonly used because of having it. In recent years, lead-free polyvinyl chloride resins that do not use lead as a stabilizer have become the mainstream because of concerns about the impact on the environment and the human body.

しかしながら、上記絶縁材料は、分子構造中にハロゲンである塩素原子を含有し、焼却時に有毒、有害な塩素ガスを発生する。そのため、より安全性の高いいわゆるエコマテリアルを使用した塩化ビニル電線代替品が検討されている。   However, the insulating material contains a chlorine atom which is a halogen in the molecular structure, and generates toxic and harmful chlorine gas at the time of incineration. Therefore, a vinyl chloride electric wire substitute using a so-called eco-material with higher safety is being studied.

このようなエコマテリアルとして、ポリエチレン(PE)、エチレン酢酸ビニル共重合体(EVA)及びエチレンアクリル酸エチル共重合体(EEA)などのエチレン系材料や、それらとポリプロピレン(PP)、エチレンプロピレンゴム(EPゴム)、スチレン系エラストマなどのポリオレフィンをブレンドした複合樹脂をベースに、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物を多量に添加してなるものが挙げられる(例えば特許文献1参照)。
特許第3358228号公報
Examples of such eco-materials include ethylene materials such as polyethylene (PE), ethylene vinyl acetate copolymer (EVA), and ethylene ethyl acrylate copolymer (EEA), polypropylene (PP), and ethylene propylene rubber ( EP rubber), and those obtained by adding a large amount of metal hydroxides such as magnesium hydroxide and aluminum hydroxide based on a composite resin blended with polyolefin such as styrene elastomer (see, for example, Patent Document 1). .
Japanese Patent No. 3358228

ところで、絶縁電線は、難燃性、耐摩耗性、耐外傷性及び耐熱性に優れることが望ましい。   By the way, it is desirable that the insulated wire is excellent in flame retardancy, wear resistance, trauma resistance and heat resistance.

しかし、上記特許文献1に記載の絶縁材料においては、難燃剤である金属水酸化物が多量に含まれている。このため、その絶縁材料を用いて得られる絶縁電線については、高い難燃性を実現することが可能であるものの、機械的強度の低下が誘起されるために十分な耐摩耗性が得られず、また、外的要因によって電線被覆材表面に外傷が発生することがある。   However, the insulating material described in Patent Document 1 contains a large amount of metal hydroxide that is a flame retardant. For this reason, an insulated wire obtained using the insulating material can achieve high flame retardancy, but a sufficient wear resistance cannot be obtained because a decrease in mechanical strength is induced. In addition, external factors may cause damage on the surface of the wire covering material.

ここで、十分な耐摩耗性を有する絶縁電線を実現するためには、絶縁電線の絶縁材料の硬度を増加させる、即ち、結晶化度を増加させる必要があるが、絶縁材料の硬度を増加させると耐熱性が低下する。即ち、耐摩耗性と耐熱性とはトレードオフの関係にある。従って、難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性にも優れた絶縁電線を実現することは困難とされていた。なお、本明細書において、「耐熱性」とは、「加熱変形性」を意味し、絶縁電線が外圧によって凹まされた状態で耐電圧性を有することを意味する。   Here, in order to realize an insulated wire having sufficient wear resistance, it is necessary to increase the hardness of the insulating material of the insulated wire, that is, to increase the crystallinity, but to increase the hardness of the insulating material. And heat resistance decreases. That is, wear resistance and heat resistance are in a trade-off relationship. Therefore, it has been difficult to realize an insulated wire that is excellent not only in flame retardancy, wear resistance and trauma resistance but also in heat resistance. In this specification, “heat resistance” means “heat deformation” and means that the insulated wire has voltage resistance in a state where it is recessed by external pressure.

本発明は、上記事情に鑑みてなされたものであり、難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性にも優れた絶縁電線を実現できる難燃性樹脂組成物、絶縁電線及びワイヤーハーネスを提供することを目的とする。   The present invention has been made in view of the above circumstances, and a flame-retardant resin composition and an insulated wire that can realize an insulated wire excellent not only in flame resistance, wear resistance, and external resistance but also in heat resistance. And it aims at providing a wire harness.

本発明者らは上記課題を解決するため鋭意研究を重ねた結果、金属水酸化物粒子と、エチレン酢酸ビニル共重合体及びエチレンプロピレンジエンゴムの混合樹脂とが直接接触するようにし、この金属水酸化物粒子が上記混合樹脂に対して特定の比率で含まれるようにすることによって、難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性をも効果的に向上させることができることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have made the metal hydroxide particles come into direct contact with the mixed resin of ethylene vinyl acetate copolymer and ethylene propylene diene rubber. By including the oxide particles in a specific ratio with respect to the mixed resin, it is possible to effectively improve not only flame retardancy, wear resistance and trauma resistance, but also heat resistance. The headline and the present invention have been completed.

即ち本発明は、エチレンに由来する構造単位を70質量%以上含むエチレンプロピレンジエンゴム(以下、「EPDM」と呼ぶ)と、酢酸ビニル(以下、「VA」と呼ぶ)に由来する構造単位を20質量%以上含むエチレン酢酸ビニル共重合体(以下、「EVA」と呼ぶ)と、金属水酸化物粒子と、を含有し、EPDM及びEVAの混合樹脂100質量部に対して、前記金属水酸化物粒子が50〜200質量部の割合で含まれており、前記金属水酸化物粒子の表面に、前記混合樹脂が直接接触していること、を特徴とする難燃性樹脂組成物である。   That is, the present invention includes 20 structural units derived from ethylene propylene diene rubber (hereinafter referred to as “EPDM”) containing 70 mass% or more of structural units derived from ethylene and vinyl acetate (hereinafter referred to as “VA”). An ethylene vinyl acetate copolymer (hereinafter referred to as “EVA”) containing at least mass% and metal hydroxide particles, and the metal hydroxide with respect to 100 parts by mass of a mixed resin of EPDM and EVA The flame retardant resin composition is characterized in that particles are contained at a ratio of 50 to 200 parts by mass, and the mixed resin is in direct contact with the surface of the metal hydroxide particles.

この難燃性樹脂組成物によれば、金属水酸化物粒子の表面に上記混合樹脂が直接接触している。加えて、樹脂として、エチレンに由来する構造単位を70質量%以上含むEPDMと、VAに由来する構造単位を20質量%以上含むEVAとの混合樹脂が用いられている。このような構成の難燃性樹脂組成物を用いて絶縁電線を製造することにより、難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性にも優れた絶縁電線を実現することが可能となる。   According to the flame retardant resin composition, the mixed resin is in direct contact with the surface of the metal hydroxide particles. In addition, as the resin, a mixed resin of EPDM containing 70 mass% or more of structural units derived from ethylene and EVA containing 20 mass% or more of structural units derived from VA is used. By producing an insulated wire using the flame retardant resin composition having such a configuration, it is possible to realize an insulated wire that is excellent not only in flame resistance, wear resistance, and scratch resistance but also in heat resistance. It becomes possible.

上記効果が得られる理由はいまだ明らかではないが、本発明者らは、EPDMとEVAと金属水酸化物粒子とをバランスよく配合し、難燃性樹脂組成物中にゴム成分を適切な割合で含有させることが、絶縁電線の難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性をも向上させ得る原因となっているのではないかと推測している。   The reason why the above effect is obtained is not yet clear, but the present inventors blended EPDM, EVA, and metal hydroxide particles in a well-balanced manner so that the rubber component is contained in an appropriate proportion in the flame-retardant resin composition. It is speculated that the inclusion may cause not only the flame resistance, wear resistance, and damage resistance of the insulated wire but also the heat resistance.

なお、金属水酸化物粒子が上記混合樹脂100質量部に対して50質量部未満の割合で含まれていると、その難燃性樹脂組成物を用いて絶縁電線が製造される場合、その絶縁電線の難燃性が著しく低下する。また金属水酸化物粒子がEPDM及びEVAの混合樹脂100質量部に対して200質量部を超える割合で含まれていると、その難燃性樹脂組成物を用いて絶縁電線が製造される場合、得られる絶縁電線の引張破断強度が低下して耐外傷性が顕著に低下するとともに、耐摩耗性も顕著に低下する。   When the metal hydroxide particles are contained in a proportion of less than 50 parts by mass with respect to 100 parts by mass of the mixed resin, when the insulated wire is manufactured using the flame retardant resin composition, the insulation The flame retardancy of the wire is significantly reduced. When the metal hydroxide particles are contained in a proportion exceeding 200 parts by mass with respect to 100 parts by mass of EPDM and EVA mixed resin, when an insulated wire is produced using the flame retardant resin composition, The tensile strength at break of the insulated wire obtained is lowered, the damage resistance is significantly lowered, and the wear resistance is also markedly lowered.

また、EPDM及びEVAの混合樹脂100質量%中のEVAの含有率が70質量%を超えると、EPDMの含有率が30質量%未満となり、その場合には、耐外傷性及び耐熱性が顕著に低下する。また、EPDM及びEVAの混合樹脂100質量%中のEPDMの含有率が70質量%を超えると、EVAの含有率が30質量%未満となり、その場合には、耐熱性及び引張強度が顕著に低下する。さらにEVA中のVAに由来する構造単位の含有率が20質量%未満になると、EVA中のVAに由来する構造単位の含有率が20質量%以上となる場合に比べて、耐摩耗性、耐外傷性及び引張強度が顕著に低下する。さらにまたEPDM中のエチレンに由来する構造単位の含有率が70質量%未満になると、EPDM中のエチレンに由来する構造単位の含有率が70質量%以上となる場合に比べて、耐摩耗性が顕著に低下する。   In addition, when the EVA content in 100% by mass of EPDM and EVA mixed resin exceeds 70% by mass, the content of EPDM becomes less than 30% by mass. descend. In addition, when the content of EPDM in 100% by mass of EPDM and EVA mixed resin exceeds 70% by mass, the content of EVA becomes less than 30% by mass, and in that case, heat resistance and tensile strength are significantly reduced. To do. Furthermore, when the content of structural units derived from VA in EVA is less than 20% by mass, compared to the case where the content of structural units derived from VA in EVA is 20% by mass or more, wear resistance, Trauma and tensile strength are significantly reduced. Furthermore, when the content of structural units derived from ethylene in EPDM is less than 70% by mass, the wear resistance is lower than when the content of structural units derived from ethylene in EPDM is 70% by mass or more. Remarkably reduced.

また本発明は、導体と、前記導体を被覆する絶縁層とを備えており、前記絶縁層が、上述した難燃性樹脂組成物で構成されること、を特徴とする絶縁電線である。また本発明は、導体と、前記導体を被覆する絶縁層とを備えており、前記絶縁層が、上述した難燃性樹脂組成物を電子線照射により架橋処理してなることを特徴とする絶縁電線であってもよい。   Moreover, this invention is equipped with the conductor and the insulating layer which coat | covers the said conductor, The said insulating layer is comprised with the flame-retardant resin composition mentioned above, It is an insulated wire characterized by the above-mentioned. The present invention further comprises a conductor and an insulating layer covering the conductor, and the insulating layer is obtained by crosslinking the flame retardant resin composition described above by electron beam irradiation. It may be an electric wire.

これらの絶縁電線は、難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性にも優れたものとなる。   These insulated wires have excellent heat resistance as well as flame resistance, wear resistance, and damage resistance.

さらに本発明は、上述した絶縁電線を少なくとも1本有すること、を特徴とするワイヤーハーネスである。   Furthermore, this invention is a wire harness characterized by having at least one insulated wire as described above.

自動車や電子機器などの内部空間においてワイヤーハーネスを引き回す場合、自動車や電子機器の内部空間は狭いため、ワイヤーハーネスは自動車や電子機器の内壁と接触しやすい。このような場合でも、ワイヤーハーネスは、上述した絶縁電線を少なくとも1本有しており、上述した絶縁電線は、難燃性、耐摩耗性、耐外傷性及び耐熱性にも優れる。このため、本発明のワイヤーハーネスによれば、自動車や電子機器内での引回し作業に際して、ワイヤーハーネスが自動車や電子機器の内壁に接触することを気にせずに作業を行うことができ、ワイヤーハーネスの引回し作業を効率よく行うことができる。また自動車や電子機器が高温下に置かれた場合には、絶縁電線同士間の短絡を防止することもできる。   When a wire harness is routed in an internal space of an automobile or an electronic device, the internal space of the automobile or electronic device is narrow, and thus the wire harness is likely to come into contact with the inner wall of the automobile or electronic device. Even in such a case, the wire harness includes at least one of the above-described insulated wires, and the above-described insulated wires are excellent in flame retardancy, wear resistance, trauma resistance, and heat resistance. For this reason, according to the wire harness of the present invention, the wiring harness can be operated without worrying about the wire harness coming into contact with the inner wall of the automobile or electronic device during the routing operation in the automobile or electronic device. The harness can be routed efficiently. Moreover, when an automobile or an electronic device is placed at a high temperature, a short circuit between insulated wires can be prevented.

本発明によれば、難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性にも優れた絶縁電線を実現できる難燃性樹脂組成物、絶縁電線及びワイヤーハーネスが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the flame-retardant resin composition, the insulated wire, and wire harness which can implement | achieve the insulated wire excellent not only in a flame retardance, abrasion resistance, and external resistance but also in heat resistance are provided.

以下、本発明の実施形態について図1を用いて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.

(絶縁電線)
図1は、本発明に係る絶縁電線の一実施形態を示す断面図である。図1に示すように、本実施形態の絶縁電線10は、導体1と、導体1を被覆する絶縁層2とを備えている。ここで、絶縁層2は、難燃性樹脂組成物を電子線照射により架橋処理してなるものである。上記難燃性樹脂組成物は、EVAと、EPDMと、金属水酸化物粒子とを含有する。ここで、金属水酸化物粒子の表面にはEVAとEPDMとの混合樹脂が直接接触している。この混合樹脂は、金属水酸化物粒子の全表面に直接接触していることが好ましい。この場合、脂肪酸等が付着した金属水酸化物粒子と比較して金属水酸化物粒子と混合樹脂との相互作用を強めることができる。
(Insulated wire)
FIG. 1 is a cross-sectional view showing an embodiment of an insulated wire according to the present invention. As shown in FIG. 1, the insulated wire 10 of this embodiment includes a conductor 1 and an insulating layer 2 that covers the conductor 1. Here, the insulating layer 2 is formed by crosslinking a flame retardant resin composition by electron beam irradiation. The flame retardant resin composition contains EVA, EPDM, and metal hydroxide particles. Here, a mixed resin of EVA and EPDM is in direct contact with the surface of the metal hydroxide particles. This mixed resin is preferably in direct contact with the entire surface of the metal hydroxide particles. In this case, the interaction between the metal hydroxide particles and the mixed resin can be strengthened as compared with the metal hydroxide particles to which fatty acid or the like is attached.

また上記混合樹脂を100質量部とした場合に、EVAは30〜70質量部の割合で含まれており、EPDMは30〜70質量部の割合で含まれている。例えばEVAが40質量部の割合で含まれている場合、EPDMは60質量部の割合で含まれることになる。   Moreover, when the said mixed resin is 100 mass parts, EVA is contained in the ratio of 30-70 mass parts, and EPDM is contained in the ratio of 30-70 mass parts. For example, when EVA is contained in a proportion of 40 parts by mass, EPDM is contained in a proportion of 60 parts by mass.

またEVAは、VAに由来する構造単位を20質量%以上含有し、EPDMは、エチレンに由来する構造単位を70質量%以上含有する。さらに金属水酸化物粒子は、上記混合樹脂100質量部に対して50〜200質量部の割合で含まれている。そして、絶縁電線10は、上記難燃性樹脂組成物を電子線照射により架橋処理してなるものである。この結果、絶縁電線10は、難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性にも優れたものとなる。   EVA contains 20 mass% or more of structural units derived from VA, and EPDM contains 70 mass% or more of structural units derived from ethylene. Furthermore, the metal hydroxide particles are included at a ratio of 50 to 200 parts by mass with respect to 100 parts by mass of the mixed resin. The insulated wire 10 is obtained by crosslinking the flame retardant resin composition by electron beam irradiation. As a result, the insulated wire 10 has excellent heat resistance as well as flame resistance, wear resistance, and damage resistance.

なお、絶縁電線10において、絶縁層2は、上記混合樹脂の架橋体と、金属水酸化物粒子とを備えたものとなっている。   In addition, in the insulated wire 10, the insulating layer 2 is provided with the crosslinked body of the mixed resin and metal hydroxide particles.

上述した絶縁電線10は以下のようにして製造される。   The insulated wire 10 described above is manufactured as follows.

(導体)
まず導体1を準備する。導体1は、1本の素線のみで構成されてもよく、複数本の素線を束ねて構成されたものであってもよい。また、導体1は、導体径や導体の材質などについて特に限定されるものではなく、用途に応じて適宜定めることができる。
(conductor)
First, the conductor 1 is prepared. The conductor 1 may be configured by only one strand, or may be configured by bundling a plurality of strands. Moreover, the conductor 1 is not specifically limited about a conductor diameter, the material of a conductor, etc., It can determine suitably according to a use.

(難燃性樹脂組成物)
一方、上記難燃性樹脂組成物を準備する。難燃性樹脂組成物は、上述したように、EVAと、EPDMと、金属水酸化物粒子とを含有するものである。
(Flame retardant resin composition)
On the other hand, the flame retardant resin composition is prepared. As described above, the flame retardant resin composition contains EVA, EPDM, and metal hydroxide particles.

(EVA)
EVAは、上述したように、VAに由来する構造単位を20質量%以上含有する。EVA中のVAに由来する構造単位の含有率が20質量%未満になると、EVA中のVAに由来する構造単位の含有率が20質量%以上となる場合に比べて、耐摩耗性、耐外傷性及び引張強度が顕著に低下する。この理由は、EVA中のVAの割合が低下することに伴い、EVA中の酸素原子の比率が小さくなることで、金属水酸化物粒子と、上記混合樹脂とのイオン的な分子間相互作用が弱まるためではないかと本発明者らは推測している。
(EVA)
As described above, EVA contains 20% by mass or more of structural units derived from VA. When the content of structural units derived from VA in EVA is less than 20% by mass, the wear resistance and trauma resistance are higher than when the content of structural units derived from VA in EVA is 20% by mass or more. Properties and tensile strength are significantly reduced. The reason for this is that as the proportion of VA in EVA decreases, the proportion of oxygen atoms in EVA decreases, so that the ionic intermolecular interaction between the metal hydroxide particles and the above mixed resin occurs. The present inventors speculate that it may be weakened.

EVA中のVAに由来する構造単位の含有率は、好ましくは20質量%〜33質量%であり、より好ましくは28質量%〜33質量%である。   The content of the structural unit derived from VA in EVA is preferably 20% by mass to 33% by mass, and more preferably 28% by mass to 33% by mass.

(EPDM)
EPDMは、上述したように、エチレンに由来する構造単位を70質量%以上含有する。EPDM中のエチレンに由来する構造単位の含有率が70質量%未満になると、EPDM中のエチレンに由来する構造単位の含有率が70質量%以上となる場合に比べて、耐摩耗性が顕著に低下する。この理由は、エチレンの比率が低下することによって、EPDMの結晶化度が低下するためではないかと本発明者らは推測している。
(EPDM)
As described above, EPDM contains 70% by mass or more of structural units derived from ethylene. When the content of structural units derived from ethylene in EPDM is less than 70% by mass, the wear resistance is significantly higher than when the content of structural units derived from ethylene in EPDM is 70% by mass or more. descend. The present inventors presume that the reason is that the crystallinity of EPDM decreases as the ethylene ratio decreases.

EPDM中のエチレンに由来する構造単位の含有率は、好ましくは75質量%以上であり、より好ましくは77質量%〜80質量%である。EPDM中のエチレンに由来する構造単位の含有率が75質量%以上であると、含有率が75質量%未満である場合に比べてEPDMのブロッキング特性が大きく改善される。   The content of the structural unit derived from ethylene in EPDM is preferably 75% by mass or more, and more preferably 77% by mass to 80% by mass. When the content of the structural unit derived from ethylene in EPDM is 75% by mass or more, the blocking property of EPDM is greatly improved as compared with the case where the content is less than 75% by mass.

なお、上記難燃性樹脂組成物は、EPDM及びEVAのほか、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)等のポリエチレンや、エチレン−αオレフィン共重合体、アイソタクチックポリプロピレン、アタクチックポリプロピレン等のポリオレフィンを特性に影響の無い範囲で含んでいてもよい。   In addition to EPDM and EVA, the flame retardant resin composition includes polyethylene such as high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and low density polyethylene (LDPE), and ethylene-α olefin co-polymer. Polyolefins such as polymers, isotactic polypropylene, and atactic polypropylene may be included within a range that does not affect the properties.

上記難燃性樹脂組成物中のEVA及びEPDMの混合樹脂の含有率は、特に限定されるものではないが、例えば70〜100質量%であることが好ましい。   Although the content rate of EVA and EPDM mixed resin in the said flame-retardant resin composition is not specifically limited, For example, it is preferable that it is 70-100 mass%.

(金属水酸化物粒子)
金属水酸化物粒子は金属水酸化物で構成されている。金属水酸化物としては、例えば水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどが例示できる。中でも、水酸化マグネシウムが好ましい。これは、導体1を被覆する際の押出加工性や難燃性を向上させることができるためである。
(Metal hydroxide particles)
The metal hydroxide particles are composed of metal hydroxide. Examples of the metal hydroxide include magnesium hydroxide, calcium hydroxide, and aluminum hydroxide. Among these, magnesium hydroxide is preferable. This is because the extrudability and flame retardancy when covering the conductor 1 can be improved.

金属水酸化物粒子は、上記混合樹脂100質量部に対して50〜200質量部の割合で含まれている。金属水酸化物粒子が上記混合樹脂100質量部に対して50質量部未満の割合で含まれていると、絶縁電線10の難燃性が顕著に低下する。また金属水酸化物粒子が上記混合樹脂100質量部に対して200質量部を超える割合で含まれていると、耐摩耗性、耐外傷性、引張破断強度及び引張破断伸びが顕著に低下する。   The metal hydroxide particles are contained at a ratio of 50 to 200 parts by mass with respect to 100 parts by mass of the mixed resin. When the metal hydroxide particles are contained at a ratio of less than 50 parts by mass with respect to 100 parts by mass of the mixed resin, the flame retardancy of the insulated wire 10 is significantly reduced. Further, when the metal hydroxide particles are contained in a proportion exceeding 200 parts by mass with respect to 100 parts by mass of the mixed resin, the wear resistance, the trauma resistance, the tensile rupture strength and the tensile rupture elongation are significantly reduced.

金属水酸化物粒子は、上記混合樹脂100質量部に対して70〜100質量部の割合で含まれることが、耐摩耗性及び耐外傷性をより向上させることから好ましい。   It is preferable that the metal hydroxide particles are contained at a ratio of 70 to 100 parts by mass with respect to 100 parts by mass of the mixed resin because the wear resistance and the damage resistance are further improved.

上記難燃性樹脂組成物は、難燃助剤、酸化防止剤、紫外線吸収剤、紫外線劣化防止剤、帯電防止剤、加工助剤、着色剤、滑剤、架橋助剤、無機充填剤などの充填剤を含んでもよい。   The flame retardant resin composition is filled with a flame retardant aid, an antioxidant, an ultraviolet absorber, an ultraviolet degradation inhibitor, an antistatic agent, a processing aid, a colorant, a lubricant, a crosslinking aid, an inorganic filler, and the like. An agent may be included.

上記難燃性樹脂組成物は必要に応じて上記EVA、EPDM及び金属水酸化物粒子等を混練することにより得ることができる。混練は、例えばバンバリーミキサ、タンブラ、加圧ニーダ、混練押出機、二軸押出機、ロール等の混練機で行うことができる。   The flame retardant resin composition can be obtained by kneading the EVA, EPDM, metal hydroxide particles, and the like as necessary. The kneading can be performed with a kneading machine such as a Banbury mixer, a tumbler, a pressure kneader, a kneading extruder, a twin screw extruder, or a roll.

次に、上記難燃性樹脂組成物で導体1を被覆する。難燃性樹脂組成物の被覆は、例えば難燃性樹脂組成物を押出成形によりチューブ状に押し出して導体1の表面に密着させたり、上記難燃性樹脂組成物を収容したダイスに導体1を通したりすることによって行うことができる。   Next, the conductor 1 is covered with the flame retardant resin composition. The coating of the flame retardant resin composition may be performed by, for example, extruding the flame retardant resin composition into a tube shape by extrusion molding so as to adhere to the surface of the conductor 1, or by placing the conductor 1 in a die containing the flame retardant resin composition. It can be done by passing through.

次に、難燃性樹脂組成物を電子線照射により架橋処理する。この架橋処理により、EVA及びEPDMの混合樹脂は架橋体とされ、導体1を被覆する絶縁層2が得られる。こうして絶縁電線10が得られる。架橋処理時の電子線照射量は、EVA及びEPDMの混合樹脂が架橋される量であれば特に限定されないが、例えば50〜150kGyであると、絶縁層2の硬度がより高められ、耐外傷性及び耐摩耗性をより向上させることができる。   Next, the flame retardant resin composition is crosslinked by electron beam irradiation. By this crosslinking treatment, the mixed resin of EVA and EPDM becomes a crosslinked body, and the insulating layer 2 covering the conductor 1 is obtained. Thus, the insulated wire 10 is obtained. The amount of electron beam irradiation at the time of the crosslinking treatment is not particularly limited as long as the mixed resin of EVA and EPDM is crosslinked, but for example, when it is 50 to 150 kGy, the hardness of the insulating layer 2 is further increased and the damage resistance is increased. In addition, the wear resistance can be further improved.

上述したように、本実施形態に係る絶縁電線10は、難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性にも優れる。このため、絶縁電線10は、ワイヤーハーネスを構成する少なくとも1本の絶縁電線に特に有用である。   As described above, the insulated wire 10 according to the present embodiment is excellent not only in flame retardancy, wear resistance, and trauma resistance, but also in heat resistance. For this reason, the insulated wire 10 is particularly useful for at least one insulated wire constituting the wire harness.

即ち、自動車や電子機器などの内部空間においてワイヤーハーネスを引き回す場合、自動車や電子機器の内部空間は狭いため、ワイヤーハーネスは自動車や電子機器の内壁と接触しやすい。その点、絶縁電線10は、難燃性のみならず、耐摩耗性及び耐外傷性にも優れるため、自動車や電子機器内での引回し作業に際して、絶縁電線10を有するワイヤーハーネスが自動車や電子機器の内壁に接触することを気にせずに作業を行うことができ、ワイヤーハーネスの引回し作業を効率よく行うことができる。また自動車や電子機器が高温下に置かれた場合、絶縁電線同士間の短絡を防止することもできる。   That is, when the wire harness is routed in the internal space of an automobile or an electronic device, the internal space of the automobile or the electronic device is narrow, and thus the wire harness is likely to come into contact with the inner wall of the automobile or the electronic device. In that respect, since the insulated wire 10 is excellent not only in flame retardancy but also in abrasion resistance and damage resistance, the wire harness having the insulated wire 10 is used for automobiles and electronic devices in the routing work in automobiles and electronic devices. Work can be performed without worrying about contacting the inner wall of the device, and the wire harness can be routed efficiently. Moreover, when an automobile or an electronic device is placed at a high temperature, a short circuit between insulated wires can be prevented.

本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、絶縁層2は、難燃性樹脂組成物を電子線照射により架橋処理することによって得られているが、難燃性樹脂組成物に対して、電子線照射による架橋処理は必ずしも必要ではなく、導体1上に難燃性樹脂組成物を被覆した状態で難燃性、耐摩耗性及び耐外傷性が十分に高いならば、難燃性樹脂組成物に対して、電子線照射による架橋処理は行わなくてもよい。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the insulating layer 2 is obtained by crosslinking a flame retardant resin composition by electron beam irradiation. However, the crosslinking treatment by electron beam irradiation is performed on the flame retardant resin composition. If the flame retardancy, wear resistance, and trauma resistance are sufficiently high in a state where the conductor 1 is coated with the flame retardant resin composition, an electron beam is used for the flame retardant resin composition. The crosslinking treatment by irradiation may not be performed.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.

(実施例1〜8及び比較例1〜6)
EVA、EPDM、及び、表面処理した水酸化マグネシウム(以下、「水酸化マグネシウム」を「水酸化Mg」と呼ぶ)粒子又は表面処理していない水酸化Mg粒子を、表1及び表2に示す配合比で配合し、バンバリーミキサによって150℃にて15分間混練し、難燃性樹脂組成物を得た。
(Examples 1-8 and Comparative Examples 1-6)
Formulas shown in Tables 1 and 2 for EVA, EPDM, and surface-treated magnesium hydroxide (hereinafter referred to as “magnesium hydroxide”) or non-surface-treated Mg hydroxide particles The mixture was kneaded at 150 ° C. for 15 minutes using a Banbury mixer to obtain a flame retardant resin composition.

なお、EVA、EPDM及び水酸化Mg粒子としては以下のものを用いた。
EVA(VA含量=33質量%):エバフレックスEV−130(商品名、三井デュポンポリケミカル社製)
EVA(VA含量=45質量%):エバフレックスEV−45LX(商品名、三井デュポンポリケミカル社製)
EVA(VA含量=19質量%):エバフレックスEV−460(商品名、三井デュポンポリケミカル社製)
EPDM(エチレン含量=78質量%):三井EPT X−75(商品名、三井化学社製)
EPDM(エチレン含量=72質量%):三井EPT X−3012P(商品名、三井化学社製)
EPDM(エチレン含量=66質量%):三井EPT X−3095(商品名、三井化学社製)
水酸化Mg粒子(表面無処理):キスマ5(商品名、協和化学社製)
水酸化Mg粒子(ステアリン酸(脂肪酸)1.6質量%表面処理):キスマ5AL(商品名、協和化学社製)
The following were used as EVA, EPDM and Mg hydroxide particles.
EVA (VA content = 33% by mass): EVAFLEX EV-130 (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.)
EVA (VA content = 45% by mass): EVAFLEX EV-45LX (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.)
EVA (VA content = 19% by mass): EVAFLEX EV-460 (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd.)
EPDM (ethylene content = 78% by mass): Mitsui EPT X-75 (trade name, manufactured by Mitsui Chemicals)
EPDM (ethylene content = 72% by mass): Mitsui EPT X-3012P (trade name, manufactured by Mitsui Chemicals)
EPDM (ethylene content = 66 mass%): Mitsui EPT X-3095 (trade name, manufactured by Mitsui Chemicals)
Mg hydroxide particles (surface untreated): Kisuma 5 (trade name, manufactured by Kyowa Chemical Co., Ltd.)
Mg hydroxide particles (stearic acid (fatty acid) 1.6 mass% surface treatment): Kisuma 5AL (trade name, manufactured by Kyowa Chemical Co., Ltd.)

なお、水酸化Mg粒子(ステアリン酸(脂肪酸)1.6質量%表面処理)は、水酸化Mg粒子がステアリン酸で表面処理されたものであり、水酸化Mg粒子及びステアリン酸の合計100質量%中のステアリン酸の含有率が1.6質量%であるものである。   In addition, Mg hydroxide particles (stearic acid (fatty acid) 1.6% by mass surface treatment) are obtained by surface-treating Mg hydroxide particles with stearic acid, and the total of Mg hydroxide particles and stearic acid is 100% by mass. The content of stearic acid is 1.6% by mass.

次いで、この難燃性樹脂組成物をバンバリーミキサによって150℃にて15分間混練した。その後、押出機にて難燃性樹脂組成物をチューブ状に押し出し、導体(素線数58本/素線径0.26mm)上に、厚さ0.7mmとなるように難燃性樹脂組成物を被覆した。そして、難燃性樹脂組成物に対して電子線照射による架橋処理を行った。このときの電子線の照射量は、100kGyとした。こうして外径3.7mmの絶縁電線を得た。

Figure 2009275190
Figure 2009275190
Next, this flame retardant resin composition was kneaded at 150 ° C. for 15 minutes by a Banbury mixer. Thereafter, the flame retardant resin composition is extruded into a tube shape with an extruder, and the flame retardant resin composition is formed on the conductor (58 wires / wire diameter 0.26 mm) to a thickness of 0.7 mm. The object was coated. And the crosslinking process by electron beam irradiation was performed with respect to the flame-retardant resin composition. The electron beam dose at this time was 100 kGy. Thus, an insulated wire having an outer diameter of 3.7 mm was obtained.
Figure 2009275190
Figure 2009275190

上記のようにして得られた実施例1〜8及び比較例1〜6の絶縁電線について、耐摩耗性、耐外傷性、難燃性および耐熱性の評価、並びに引張破断強度及び引張破断伸びの測定を以下のようにして行った。   About the insulated wires of Examples 1 to 8 and Comparative Examples 1 to 6 obtained as described above, the abrasion resistance, the trauma resistance, the flame retardancy and the heat resistance were evaluated, and the tensile breaking strength and the tensile breaking elongation. The measurement was performed as follows.

(耐摩耗性)
耐摩耗性の評価は、スクレープ試験(ISO6722)に基づいて以下の手順で行った。即ち、φ0.45mmのニードルを、荷重7Nで絶縁電線の表面に押し当てながら、その絶縁電線の表面上を往復摩耗させた。そのときニードルが絶縁電線内の導体に接触するまでの往復回数を測定した。そして、絶縁電線をニードルに対して移動させた後、その長手方向を中心軸として90°回転させ、そのときニードルに対向する個所でも上記と同様に往復回数を測定した。この操作を12回繰り返して行い、その平均値を求めた。そして、この測定した往復回数の平均値が1000回以上である絶縁電線を合格とし、1000回未満である絶縁電線を不合格とした。なお、測定は、往復回数が2000回を超えた時点で終了させた。
(Abrasion resistance)
The wear resistance was evaluated according to the following procedure based on a scrape test (ISO 6722). That is, while a needle having a diameter of 0.45 mm was pressed against the surface of the insulated wire with a load of 7 N, the surface of the insulated wire was subjected to reciprocating wear. At that time, the number of reciprocations until the needle contacted the conductor in the insulated wire was measured. Then, after the insulated wire was moved with respect to the needle, it was rotated 90 ° with the longitudinal direction as the central axis, and the number of reciprocations was measured in the same manner as described above at the location facing the needle. This operation was repeated 12 times, and the average value was obtained. And the insulated wire whose average value of the measured number of reciprocations was 1000 times or more was regarded as acceptable, and the insulated wire less than 1000 times was regarded as unacceptable. The measurement was terminated when the number of reciprocations exceeded 2000.

(耐外傷性)
平面上に置かれている絶縁電線に対して、ハーネス用金属端子のエッジを500gの荷重で絶縁電線の表面に押し当てた状態で、絶縁電線を引き抜いたときの絶縁電線表面の傷の具合を観察することによって絶縁電線の耐外傷性を評価した。このとき、削れ屑が発生した絶縁電線は不合格とし、削れ屑が発生しない絶縁電線は合格とした。
(Trauma resistance)
The condition of the surface of the insulated wire when the insulated wire is pulled out with the edge of the metal terminal for harness pressed against the surface of the insulated wire with a load of 500g against the insulated wire placed on a flat surface. By observing, the damage resistance of the insulated wire was evaluated. At this time, the insulated wire in which shavings were generated was rejected, and the insulated wire in which shavings were not generated was accepted.

(引張破断強度)
引張速度200mm/min、標線間距離20mmの試験条件で絶縁電線の引張破断強度を測定した。そして、引張破断強度が10MPa以上である絶縁電線を合格とし、10MPa未満である絶縁電線を不合格とした。
(Tensile strength at break)
The tensile breaking strength of the insulated wire was measured under the test conditions of a tensile speed of 200 mm / min and a distance between marked lines of 20 mm. And the insulated wire whose tensile breaking strength is 10 Mpa or more was made into the pass, and the insulated wire which was less than 10 Mpa was made into the failure.

(引張破断伸び)
引張速度200mm/min、標線間距離20mmの試験条件で絶縁電線の引張破断伸びを測定した。そして、引張破断伸びが150%以上である絶縁電線を合格とし、150%未満である絶縁電線を不合格とした。
(Tensile breaking elongation)
The tensile breaking elongation of the insulated wire was measured under the test conditions of a tensile speed of 200 mm / min and a distance between marked lines of 20 mm. And the insulated wire whose tensile fracture elongation is 150% or more was set as the pass, and the insulated wire which is less than 150% was set as the failure.

(難燃性)
ISO6722の45度傾斜燃焼試験に基づき、以下のようにして絶縁電線の難燃性評価を行った。即ち、70秒以内で消火し、500mm中の上部50mmが残っている絶縁電線を合格とし、そうでない絶縁電線を不合格とした。
(Flame retardance)
Based on the ISO 6722 45 degree inclination combustion test, the flame retardance evaluation of the insulated wire was performed as follows. That is, the fire was extinguished within 70 seconds, and the insulated wire in which the upper 50 mm in 500 mm remained was accepted, and the insulated wire that was not so was rejected.

(耐熱性)
ISO6722に基づいて、以下のようにして絶縁電線の耐熱性を評価した。即ち、125℃のオーブン中に絶縁電線を設置し、4.7Nの荷重で4時間、厚さ0.7mmの金属製ブレードのエッジを押し当てた。そして、エッジを押し当てた部分に耐電圧試験を行った。このとき、絶縁破壊が生じない絶縁電線を合格とし、絶縁破壊が生じる絶縁電線を不合格とした。
(Heat-resistant)
Based on ISO6722, the heat resistance of the insulated wire was evaluated as follows. That is, an insulated wire was installed in an oven at 125 ° C., and an edge of a metal blade having a thickness of 0.7 mm was pressed with a load of 4.7 N for 4 hours. And the withstand voltage test was done to the part which pressed the edge. At this time, the insulated wire in which dielectric breakdown did not occur was accepted, and the insulated wire in which dielectric breakdown occurred was rejected.

なお、耐外傷性、難燃性および耐熱性の評価結果については、表1及び表2中、合格である場合には「○」で表示し、不合格である場合には「×」で表示した。   In Tables 1 and 2, the evaluation results for trauma resistance, flame retardancy and heat resistance are indicated by “◯” if they are acceptable, and “x” if they are not acceptable. did.

表1及び表2に示す結果より、実施例1〜8の絶縁電線は、比較例1〜6の絶縁電線と比較して、難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性についても優れることが分かった。   From the results shown in Tables 1 and 2, the insulated wires of Examples 1 to 8 are not only flame retardant, abrasion resistant and trauma resistant, but also heat resistant compared to the insulated wires of Comparative Examples 1 to 6. It turns out that it is also excellent.

このことから、本発明の難燃性樹脂組成物によれば、難燃性、耐摩耗性及び耐外傷性のみならず、耐熱性にも優れた絶縁電線を実現できることが確認された。   From this, it was confirmed that according to the flame-retardant resin composition of the present invention, it is possible to realize an insulated wire excellent not only in flame retardancy, wear resistance and external resistance but also in heat resistance.

本発明の絶縁電線の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the insulated wire of this invention.

符号の説明Explanation of symbols

1…導体、2…絶縁層、10…絶縁電線。   DESCRIPTION OF SYMBOLS 1 ... Conductor, 2 ... Insulating layer, 10 ... Insulated electric wire.

Claims (4)

エチレンに由来する構造単位を70質量%以上含むエチレンプロピレンジエンゴムと、
酢酸ビニルに由来する構造単位を20質量%以上含むエチレン酢酸ビニル共重合体と、
金属水酸化物粒子と、
を含有し、
前記エチレンプロピレンジエンゴム及び前記エチレン酢酸ビニル共重合体の混合樹脂100質量部に対して、前記金属水酸化物粒子が50〜200質量部の割合で含まれており、
前記金属水酸化物粒子の表面に前記混合樹脂が直接接触していること、
を特徴とする難燃性樹脂組成物。
Ethylene propylene diene rubber containing 70 mass% or more of structural units derived from ethylene;
An ethylene vinyl acetate copolymer containing 20% by mass or more of a structural unit derived from vinyl acetate;
Metal hydroxide particles,
Containing
The metal hydroxide particles are included in a proportion of 50 to 200 parts by mass with respect to 100 parts by mass of the mixed resin of the ethylene propylene diene rubber and the ethylene vinyl acetate copolymer,
The mixed resin is in direct contact with the surface of the metal hydroxide particles;
A flame retardant resin composition.
導体と、
前記導体を被覆する絶縁層と、
を備えており、
前記絶縁層が、請求項1に記載の難燃性樹脂組成物で構成されること、
を特徴とする絶縁電線。
Conductors,
An insulating layer covering the conductor;
With
The insulating layer is composed of the flame retardant resin composition according to claim 1,
Insulated wire characterized by
導体と、
前記導体を被覆する絶縁層と、
を備えており、
前記絶縁層が、請求項1に記載の難燃性樹脂組成物を電子線照射により架橋処理してなること、
を特徴とする絶縁電線。
Conductors,
An insulating layer covering the conductor;
With
The insulating layer is obtained by crosslinking the flame retardant resin composition according to claim 1 by electron beam irradiation,
Insulated wire characterized by
請求項2又は3に記載の絶縁電線を少なくとも1本有すること、
を特徴とするワイヤーハーネス。
Having at least one insulated wire according to claim 2 or 3,
Wire harness characterized by
JP2008130219A 2008-05-16 2008-05-16 Flame retardant resin composition, insulated wire and wire harness Pending JP2009275190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130219A JP2009275190A (en) 2008-05-16 2008-05-16 Flame retardant resin composition, insulated wire and wire harness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130219A JP2009275190A (en) 2008-05-16 2008-05-16 Flame retardant resin composition, insulated wire and wire harness

Publications (1)

Publication Number Publication Date
JP2009275190A true JP2009275190A (en) 2009-11-26

Family

ID=41440903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130219A Pending JP2009275190A (en) 2008-05-16 2008-05-16 Flame retardant resin composition, insulated wire and wire harness

Country Status (1)

Country Link
JP (1) JP2009275190A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617942A (en) * 2012-03-30 2012-08-01 无锡市远登电缆有限公司 Ethylene-propylene-diene monomer rubber used for manufacturing wind energy cable and preparation method thereof
CN102617944A (en) * 2012-03-30 2012-08-01 无锡市远登电缆有限公司 Chlorinated polyethylene rubber for manufacturing wind energy cables and preparation method for chlorinated polyethylene rubber
CN104448664A (en) * 2014-03-26 2015-03-25 江苏荣宜电缆有限公司 Ethylene-propylene-diene monomer material used for electric wire and preparation method of ethylene-propylene-diene monomer material
CN107170522A (en) * 2017-05-22 2017-09-15 江苏华远电缆有限公司 Ethylene propylene rubber insulated elastic body jacket flame retardant cable
JP2020152817A (en) * 2019-03-20 2020-09-24 矢崎総業株式会社 Resin composition, coated electric wire and wire harness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617942A (en) * 2012-03-30 2012-08-01 无锡市远登电缆有限公司 Ethylene-propylene-diene monomer rubber used for manufacturing wind energy cable and preparation method thereof
CN102617944A (en) * 2012-03-30 2012-08-01 无锡市远登电缆有限公司 Chlorinated polyethylene rubber for manufacturing wind energy cables and preparation method for chlorinated polyethylene rubber
CN104448664A (en) * 2014-03-26 2015-03-25 江苏荣宜电缆有限公司 Ethylene-propylene-diene monomer material used for electric wire and preparation method of ethylene-propylene-diene monomer material
CN104448664B (en) * 2014-03-26 2015-11-18 江苏荣宜电缆有限公司 A kind of electric wire ethylene-propylene-diene monomer sizing material and preparation method thereof
CN107170522A (en) * 2017-05-22 2017-09-15 江苏华远电缆有限公司 Ethylene propylene rubber insulated elastic body jacket flame retardant cable
JP2020152817A (en) * 2019-03-20 2020-09-24 矢崎総業株式会社 Resin composition, coated electric wire and wire harness

Similar Documents

Publication Publication Date Title
JP5821827B2 (en) Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition
US7586043B2 (en) Non-halogenous insulated wire and a wiring harness
JP5323332B2 (en) Flame retardant insulated wire
JP5275647B2 (en) Insulated wires with excellent heat resistance
JP5907015B2 (en) Railway vehicle wires and railway vehicle cables
JP6777374B2 (en) Insulated wires and cables
JP2008094977A (en) Resin composition for covering electric cable and insulated electric cable
JP2009054388A (en) Insulated electric cable excellent in weatherability
JP2009275190A (en) Flame retardant resin composition, insulated wire and wire harness
JP4846991B2 (en) Sheathed wire
JP5889252B2 (en) Flame retardant resin composition and flame retardant article including flame retardant resin molded article formed by molding the same
JP5260868B2 (en) Insulating resin composition and insulated wire
JP2008239901A (en) Flame-retardant resin composition and insulated electric wire coated with the resin composition
JP2006179452A (en) Nonhalogen electric wire, electric wire bundle, and automobile wire harness
JP3966632B2 (en) Wire covering resin composition and insulated wire
JP6868420B2 (en) Flame-retardant crosslinked resin composition and wiring material
JP4398552B2 (en) Insulated wire
JP5022300B2 (en) Flame retardant resin composition, insulated wire and wire harness
JP2006348136A (en) Flame-retardant resin composition, insulated wire using the same, and wire harness containing the insulated wire
KR20140049606A (en) Non-halogen flame retardant resin composition and electric wire and cable using same
JP2009275192A (en) Flame-retardant resin composition, insulated wire and wire harness
JP2008037927A (en) Flame-retardant resin composition and insulated wire
EP1956609B1 (en) Cable with improved flame retardancy
JP2011084683A (en) Flame-retardant resin composition, insulated wire and cable
JP4776208B2 (en) Resin composition and insulated wire coated therewith