JP2009273989A - Exhaust gas cleaning device - Google Patents
Exhaust gas cleaning device Download PDFInfo
- Publication number
- JP2009273989A JP2009273989A JP2008126260A JP2008126260A JP2009273989A JP 2009273989 A JP2009273989 A JP 2009273989A JP 2008126260 A JP2008126260 A JP 2008126260A JP 2008126260 A JP2008126260 A JP 2008126260A JP 2009273989 A JP2009273989 A JP 2009273989A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- oxidation
- zeolite
- noble metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0835—Hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/103—Oxidation catalysts for HC and CO only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/108—Auxiliary reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2250/00—Combinations of different methods of purification
- F01N2250/02—Combinations of different methods of purification filtering and catalytic conversion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
- F01N2370/04—Zeolitic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/22—Selection of materials for exhaust purification used in non-catalytic purification apparatus
- F01N2370/24—Zeolitic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
- F01N2510/0682—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
本発明は、低温域におけるHC及びNOx の浄化性能に優れた排ガス浄化装置に関する。本発明の排ガス浄化装置は、ディーゼルエンジンからの排ガスの浄化に好適に用いることができる。 The present invention relates to an exhaust gas purifying apparatus excellent in HC and NO x purification performance in a low temperature range. The exhaust gas purification apparatus of the present invention can be suitably used for purification of exhaust gas from a diesel engine.
近年、燃費の向上とCO2 排出量の削減の効果を有するために、リーンバーンエンジンが広く普及している。その代表的なものとして、ディーゼルエンジンがある。現在までに開発されているディーゼルエンジン用排ガス浄化装置としては、大きく分けてトラップ型の排ガス浄化装置(ウォールフロー)と、オープン型の排ガス浄化装置(ストレートフロー)とが知られている。 In recent years, lean burn engines have become widespread in order to improve fuel efficiency and reduce CO 2 emissions. A typical example is a diesel engine. As exhaust gas purification devices for diesel engines that have been developed so far, a trap type exhaust gas purification device (wall flow) and an open type exhaust gas purification device (straight flow) are known.
このうちトラップ型の排ガス浄化装置としては、セラミック製の目封じタイプのハニカム体(パティキュレートフィルタ(以下 DPFという))が知られている。この DPFは、セラミックハニカム構造体のセルの開口部の両端を例えば交互に市松状に目封じしてなるものであり、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画するセル隔壁とよりなり、セル隔壁の細孔で排ガスを濾過してPMを捕集することで排出を抑制するものである。 Among these, as a trap type exhaust gas purification device, a ceramic plug-type honeycomb body (particulate filter (hereinafter referred to as DPF)) is known. This DPF is formed by alternately sealing both ends of the openings of the cells of the ceramic honeycomb structure, for example, in a checkered pattern, and is adjacent to the inflow side cells and the inflow side cells clogged on the exhaust gas downstream side. It consists of an outflow side cell clogged upstream of the exhaust gas and a cell partition partitioning the inflow side cell and the outflow side cell. The exhaust gas is filtered through the pores of the cell partition wall to collect PM, thereby suppressing emissions. To do.
ところがリーンバーンエンジンからの排ガスは酸素過剰のリ−ン雰囲気であるために、通常の三元触媒などを用いたのではNOx を還元浄化することが困難である。さらにディーゼルエンジンからの排ガスは、ガソリンエンジンからの排ガスと比較すると50〜 100℃も低温であり、かつパティキュレート(PM)も含むため、排ガス浄化が難しいという問題がある。 However, since the exhaust gas from the lean burn engine has a lean atmosphere with an excess of oxygen, it is difficult to reduce and purify NO x by using an ordinary three-way catalyst or the like. Further, exhaust gas from a diesel engine has a problem that it is difficult to purify exhaust gas because it is as low as 50 to 100 ° C. compared to exhaust gas from a gasoline engine and also contains particulates (PM).
そこで近年では、特開平09−173866号公報などに記載されているように、DPFのセル隔壁及び細孔の表面にアルミナなどからコート層を形成し、そのコート層にPtなどを担持したフィルタ触媒が開発されている。また特開平06−159037号公報には、コート層にさらにNOx 吸蔵材を担持したフィルタ触媒が記載されている。このようにすればNOx 吸蔵材にNOx を吸蔵することができ、排ガス中に軽油などの還元剤を添加した還元雰囲気とすることで、吸蔵されたNOx を還元して浄化することが可能となる。 Therefore, in recent years, as described in JP-A No. 09-173866 and the like, a filter catalyst in which a coating layer is formed from alumina or the like on the surface of the DPF cell partition walls and pores, and the coating layer carries Pt or the like. Has been developed. Japanese Patent Application Laid-Open No. 06-159037 describes a filter catalyst in which a NO x storage material is further supported on a coat layer. Thus them can occlude NO x in the NO x storage material if, by a reducing atmosphere with the addition of a reducing agent such as light oil into the exhaust gas, to purify by reduction the occluded NO x It becomes possible.
ところが触媒金属とNOx 吸蔵材とを担持したコート層をもつフィルタ触媒では、圧損との兼ね合いからコート層の形成量には限界がある。そのため触媒金属を高分散で担持して高温時の粒成長を抑制するためには、触媒金属の担持量を少なくせざるを得ず、PM及びNOx の浄化性能が不足するという問題があった。また低温域の排ガスの流入が連続した場合などには、PM酸化活性が低いためにPMの堆積量が多く目詰まりによって圧損が上昇するという問題がある。 However, in the case of a filter catalyst having a coat layer carrying a catalyst metal and an NO x storage material, the amount of coat layer formed is limited in view of pressure loss. Therefore, in order to support the catalyst metal with high dispersion and suppress grain growth at high temperature, there is a problem that the amount of catalyst metal supported must be reduced, and the PM and NO x purification performance is insufficient. . In addition, when the inflow of exhaust gas in a low temperature region is continuous, there is a problem that the pressure loss increases due to clogging due to a large amount of PM accumulated due to low PM oxidation activity.
そこで例えば特開2002−021544号公報には、フィルタ触媒の前段に酸化触媒あるいはNOx 吸蔵還元触媒を配置し、燃焼室へ燃料を噴射するポスト噴射あるいは排ガス中に燃料を添加することによって排ガス中にHCを供給して、酸化触媒あるいはNOx 吸蔵還元触媒における反応熱で DPFあるいはフィルタ触媒に堆積したPMを燃焼させるとともに、NOx を還元して浄化する技術が開示されている。 Therefore, for example, in Japanese Patent Application Laid-Open No. 2002-021544, an oxidation catalyst or a NO x storage reduction catalyst is disposed in front of a filter catalyst, and post-injection for injecting fuel into a combustion chamber or adding fuel to exhaust gas is performed. HC is supplied to the catalyst, and PM deposited on the DPF or filter catalyst is burned by the heat of reaction in the oxidation catalyst or NO x storage reduction catalyst, and NO x is reduced and purified.
このように排ガス中に軽油などの還元剤を添加する場合には、NOx 吸蔵還元触媒のNOx 吸蔵能が飽和状態となる前に還元剤を添加してNOx 吸蔵能力を回復させる必要がある。そのため低速での加減速時においても、還元剤を比較的短い間隔で添加する必要がある。しかしながら、このような場合は排ガス温度が比較的低温であり、還元剤の添加によって排ガス温度がさらに低下するため、還元剤とNOx との反応が起こりにくい。そのため添加された還元剤が未反応のままフィルタ触媒に付着し、担持されている触媒金属が被毒して活性が低下する。また付着した還元剤にPMが付着し、セルの前端面が閉塞するという問題がある。さらに軽油などの還元剤は高分子HCであるために、NOx との反応活性に乏しくNOx 吸蔵還元触媒の特性が十分に引き出せないという不具合もある。 When adding a reducing agent such as light oil in this manner in the exhaust gas, it is necessary to the NO x storage capacity of the NO x storage reduction catalyst to recover the NO x storage capacity by adding a reducing agent before the saturated is there. Therefore, it is necessary to add the reducing agent at relatively short intervals even during acceleration / deceleration at low speed. However, in such a case, the exhaust gas temperature is relatively low, and the exhaust gas temperature is further lowered by the addition of the reducing agent, so that the reaction between the reducing agent and NO x hardly occurs. Therefore, the added reducing agent adheres to the filter catalyst in an unreacted state, and the supported catalytic metal is poisoned, resulting in a decrease in activity. Further, there is a problem that PM adheres to the attached reducing agent and the front end face of the cell is blocked. Further reducing agents, such as light oil for a polymer HC, characteristic of poor NO x storage-and-reduction catalyst in the reaction activity of the NO x is also a problem that not enough brought out.
また排ガス中に添加された還元剤を改質し、改質されたHCによってNOx を還元浄化することも提案されている。例えば特開2002−295244号公報には、NOx 触媒として機能する銅−ゼオライト触媒と、酸化触媒として機能する白金系触媒と、 DPFとを、排ガス上流側から下流側にこの順で配置した排ガス浄化装置が開示されている。この排ガス浄化装置によれば、銅−ゼオライト触媒上に吸着した還元剤が改質されて活性の高いHCとなり、白金系触媒上でHCとNOとが反応する。これによりNOx が低減されるとともにHCが酸化除去される。そしてこの時の反応熱によって昇温された排ガスが DPFに流入するので、 DPFに堆積したPMが徐々に燃焼除去される。 It has also been proposed to reform the reducing agent added to the exhaust gas and reduce and purify NO x by the modified HC. For example, JP 2002-295244 A discloses an exhaust gas in which a copper-zeolite catalyst that functions as an NO x catalyst, a platinum-based catalyst that functions as an oxidation catalyst, and a DPF are arranged in this order from the exhaust gas upstream side to the downstream side. A purification device is disclosed. According to this exhaust gas purification apparatus, the reducing agent adsorbed on the copper-zeolite catalyst is reformed to become highly active HC, and HC and NO react on the platinum-based catalyst. This reduces NO x and oxidizes and removes HC. Since the exhaust gas heated by the reaction heat at this time flows into the DPF, the PM accumulated on the DPF is gradually burned and removed.
しかしこのような排ガス浄化装置を用いても、始動時あるいは低速での加減速時など排ガス温度が低温域にある場合には、還元剤の改質が十分に行われず所望の性能が得られないという問題があった。 However, even if such an exhaust gas purification device is used, when the exhaust gas temperature is in a low temperature range such as at the time of start-up or acceleration / deceleration at a low speed, the reducing agent is not sufficiently reformed and desired performance cannot be obtained. There was a problem.
そこで特開2005−264868号公報には、フィルタ触媒の排ガス上流側にHCを吸着するHC吸着触媒を配置し、HC吸着触媒の排ガス上流側にさらに酸化触媒を配置した排ガス浄化装置が提案されている。この排ガス浄化装置によれば、低温域の排ガスであっても酸化触媒によって還元剤が部分酸化されて改質される。また改質されなかったとしても、還元剤はHC吸着触媒に吸着されるので、フィルタ触媒に還元剤が液体状態あるいは高分子状態で直接流入するのが防止され、前端面に還元剤が付着するのが防止される。したがってフィルタ触媒の端面閉塞を防止することができる。そして、昇温時にHC吸着触媒から放出された活性の高いHCによって、フィルタ触媒におけるNOx の還元が効率よく起きるので、NOx 浄化率が向上する。
DPF あるいはフィルタ触媒において、PMを低温域から酸化するには、酸化活性の高いNO2 を供給するのが有効であることが知られている。またNOx 吸蔵還元触媒では、排ガス中のNOは酸化によってNO2 となることでNOx 吸蔵材に吸蔵される。そしてNOx 選択還元触媒では、尿素などから生成するNH3 がNO2 を還元する。 In order to oxidize PM from a low temperature range in DPF or a filter catalyst, it is known that it is effective to supply NO 2 having high oxidation activity. Further, in the NO x storage reduction catalyst, NO in the exhaust gas becomes NO 2 by oxidation and is stored in the NO x storage material. In the NO x selective reduction catalyst, NH 3 generated from urea or the like reduces NO 2 .
したがって排ガス中のNOx を低温域から効率良く浄化するためには、先ず排ガス中のNO2 量を増すことが重要である。自動車エンジンからの排ガスにおいては、 200℃程度の低温域ではNOに対するNO2 の比率が熱平衡的に高い。すなわち理論上では、多く存在するNO2 によって上記反応が生じ易いので、低温域においてPM又はNOx を効率良く浄化できる筈である。 Therefore, in order to efficiently purify NO x in the exhaust gas from a low temperature range, it is important to first increase the amount of NO 2 in the exhaust gas. In the exhaust gas from automobile engines, the ratio of NO 2 to NO is high in terms of thermal equilibrium in the low temperature range of about 200 ° C. That is, in theory, the above reaction is likely to occur due to a large amount of NO 2 , so PM or NO x should be efficiently purified at low temperatures.
ところが特許文献3に記載された排ガス浄化装置の現状においては、 200℃程度の低温域におけるPM、HC及びNOx の浄化性能が低く、さらなる低温浄化性能の向上が求められている。 However, in the current state of the exhaust gas purifying apparatus described in Patent Document 3, PM, HC and NO x purification performance in a low temperature range of about 200 ° C. is low, and further improvement in low temperature purification performance is required.
本発明は上記事情に鑑みてなされたものであり、下流側のDPF 、フィルタ触媒、NOx 吸蔵還元触媒、あるいはNOx 選択還元触媒に多くのNO2 を供給することで、PM、HC及びNOx の低温浄化性能を向上させることを解決すべき課題とする。 The present invention has been made in view of the above circumstances, and by supplying a large amount of NO 2 to the downstream DPF, filter catalyst, NO x storage reduction catalyst, or NO x selective reduction catalyst, PM, HC and NO Improving the low-temperature purification performance of x is a problem to be solved.
上記課題を解決する本発明の排ガス浄化装置の特徴は、自動車の排ガス流路に配置され排ガス中のHCを吸着可能な細孔をもつ多孔体を含まない第1酸化物担体と第1酸化物担体に担持された貴金属とからなり酸化活性を有する第1触媒と、
排ガス中のHCを吸着可能な細孔をもつ多孔体を含む第2酸化物担体を含み、第1触媒の排ガス下流側に配置された第2触媒と、
第3酸化物担体と第3酸化物担体に担持された貴金属とからなり第2触媒の排ガス下流側に配置された酸化活性を有する第3触媒と、
第3触媒の排ガス下流側に配置され、NOx 吸蔵還元触媒、NOx 選択還元触媒、パティキュレートフィルタ及びフィルタ触媒から選ばれる少なくとも一つと、を備えたことにある。
A feature of the exhaust gas purifying apparatus of the present invention that solves the above problems is that the first oxide support and the first oxide that are arranged in an exhaust gas flow path of an automobile and do not include a porous body having pores that can adsorb HC in the exhaust gas. A first catalyst comprising a noble metal supported on a carrier and having an oxidation activity;
A second catalyst including a second oxide support including a porous body having pores capable of adsorbing HC in the exhaust gas, and disposed on the exhaust gas downstream side of the first catalyst;
A third catalyst having an oxidation activity, which is composed of a third oxide support and a noble metal supported on the third oxide support and is disposed on the exhaust gas downstream side of the second catalyst;
Disposed in the exhaust gas downstream side of the third catalyst, NO x storage-reduction catalyst, NO x selective reduction catalyst, in that it comprises at least one and a is selected from the particulate filter, and the filter catalyst.
本願発明者らは、HC吸着触媒をDPF 、フィルタ触媒、NOx 吸蔵還元触媒、あるいはNOx 選択還元触媒の上流側に配置した排ガス浄化装置において、 200℃程度の低温域におけるPMあるいはNOx の浄化性能が理論と現状とで異なる原因を鋭意調査した。その結果、HC吸着触媒においてNO2 が還元されてNOとなる反応が生じ、酸化活性の高いNO2 量が減少するという事実が明らかとなった。 In the exhaust gas purifying apparatus in which the HC adsorption catalyst is disposed upstream of the DPF, filter catalyst, NO x storage reduction catalyst, or NO x selective reduction catalyst, the inventors of the present application use a PM or NO x in a low temperature range of about 200 ° C. The cause of the difference in purification performance between the theory and the current situation was investigated. As a result, it became clear that NO 2 was reduced to HC in the HC adsorption catalyst, resulting in a reaction that resulted in NO, and the amount of NO 2 with high oxidation activity decreased.
そこで本発明の排ガス浄化装置では、多孔体(HC吸着材)を含まない酸化触媒である第1触媒と、多孔体(HC吸着材)を含む第2触媒と、酸化活性を有する第3触媒とを、排ガス上流側から下流側に向かってこの順で配置している。第1触媒では、多孔体(HC吸着材)を含んでいないため、NO2 がNOに還元される反応が生じにくく、NOがNO2 に酸化される反応が進行する。 Therefore, in the exhaust gas purification apparatus of the present invention, a first catalyst that is an oxidation catalyst that does not include a porous body (HC adsorbent), a second catalyst that includes a porous body (HC adsorbent), and a third catalyst that has oxidation activity, Are arranged in this order from the exhaust gas upstream side to the downstream side. Since the first catalyst does not include a porous body (HC adsorbent), a reaction in which NO 2 is reduced to NO hardly occurs, and a reaction in which NO is oxidized to NO 2 proceeds.
第2触媒では、HCが多孔体(HC吸着材)に吸着され、排ガスの雰囲気が酸化雰囲気となる。したがってNO2 がNOに還元される反応が生じにくい。 In the second catalyst, HC is adsorbed by the porous body (HC adsorbent), and the atmosphere of the exhaust gas becomes an oxidizing atmosphere. Therefore, a reaction in which NO 2 is reduced to NO hardly occurs.
そしてHCが第2触媒に吸着されることで還元雰囲気が緩和された、あるいは酸化雰囲気となった排ガスが第3触媒に流入するため、第3触媒ではNOの酸化反応がさらに進行する。また第2触媒においてNO2 が還元されたとしても、生成したNOは第3触媒で再び酸化されてNO2 となる。したがって酸化活性が高い多量のNO2 がNOx 吸蔵還元触媒、NOx 選択還元触媒、DPF 及びフィルタ触媒から選ばれる少なくとも一つに流入する。 Since the reducing atmosphere is relaxed by the adsorption of HC to the second catalyst or the exhaust gas that has become an oxidizing atmosphere flows into the third catalyst, the oxidation reaction of NO further proceeds in the third catalyst. Even if NO 2 is reduced in the second catalyst, the produced NO is oxidized again in the third catalyst to become NO 2 . Therefore, a large amount of NO 2 having high oxidation activity flows into at least one selected from NO x storage reduction catalyst, NO x selective reduction catalyst, DPF and filter catalyst.
最下流にDPF 又はフィルタ触媒を配置した場合には、酸化活性の高いNO2 が多量に流入するため、低温域からPMを浄化することができる。さらに排ガス中に液体還元剤が添加された場合には、第1触媒によって還元剤が部分酸化されて改質される。また改質されなかったとしても、還元剤は第2触媒の多孔体(HC吸着材)に吸着されるので、DPF 又はフィルタ触媒に還元剤が液体状態あるいは高分子状態で直接流入するのが防止され、前端面に還元剤が付着するのが防止される。したがってDPF 又はフィルタ触媒の端面閉塞を防止することができる。そして改質されて生成した活性の高いHCがNOx の還元に消費されるので、HCの浄化性能も向上する。 When a DPF or a filter catalyst is arranged on the most downstream side, a large amount of NO 2 with high oxidation activity flows in, so PM can be purified from a low temperature range. Further, when a liquid reducing agent is added to the exhaust gas, the reducing agent is partially oxidized and reformed by the first catalyst. Even if it is not modified, the reducing agent is adsorbed to the porous body (HC adsorbent) of the second catalyst, preventing the reducing agent from flowing directly into the DPF or filter catalyst in the liquid state or polymer state. Thus, the reducing agent is prevented from adhering to the front end face. Therefore, the end face of the DPF or the filter catalyst can be prevented from being blocked. And since high reformed by the generated active HC is consumed in the reduction of NO x, also improves purification performance of HC.
また最下流にNOx 吸蔵還元触媒を配置した場合には、多量に流入したNO2 がNOx 吸蔵材に吸蔵されるため、低温域から効率よくNOx を吸蔵することができる。最下流にNOx 選択還元触媒を配置した場合には、多量に流入したNO2 がNH3 によって還元されるため、低温域から効率よくNOx を浄化することができる。 Further, when the NO x storage reduction catalyst is arranged on the most downstream side, NO 2 that has flowed in a large amount is stored in the NO x storage material, so that NO x can be stored efficiently from a low temperature range. When the NO x selective reduction catalyst is arranged on the most downstream side, NO 2 that has flowed in a large amount is reduced by NH 3 , so that NO x can be efficiently purified from a low temperature range.
本発明の排ガス浄化装置は、第1触媒、第2触媒、第3触媒が排ガス上流側から下流側に向かってこの順に配置され、第3触媒の下流側には、NOx 吸蔵還元触媒、NOx 選択還元触媒、DPF 及びフィルタ触媒から選ばれる少なくとも一つが配置されてなる。 In the exhaust gas purification apparatus of the present invention, the first catalyst, the second catalyst, and the third catalyst are arranged in this order from the exhaust gas upstream side to the downstream side, and on the downstream side of the third catalyst, the NO x storage reduction catalyst, NO x selective reduction catalyst, DPF, and at least one selected from filter catalysts are arranged.
第1触媒は、第1酸化物担体と、第1酸化物担体に担持された貴金属と、からなり、酸化活性を有する酸化触媒である。第1酸化物担体としては、アルミナ、ジルコニア、チタニア、セリア、シリカなどの単品あるいは混合物を用いることができる。これらの複数種からなる複合酸化物を用いることもできる。また貴金属としては、Pt、Pd、Rhなどから選択して用いることができるが、酸化活性の高いPt、Pdが特に望ましい。 The first catalyst is an oxidation catalyst that includes a first oxide support and a noble metal supported on the first oxide support and has an oxidation activity. As the first oxide carrier, a single product or a mixture of alumina, zirconia, titania, ceria, silica and the like can be used. A composite oxide composed of a plurality of these can also be used. The noble metal can be selected from Pt, Pd, Rh and the like, but Pt and Pd having high oxidation activity are particularly desirable.
第1触媒では、第1酸化物担体に排ガス中のHCを吸着可能な細孔をもつ多孔体を含まない。この多孔体としては、ゼオライトが代表的に例示される。ゼオライトとしては、例えばフェリエライト、ZSM-5、モルデナイト、Y型ゼオライト、β型ゼオライト、X型ゼオライト、L型ゼオライト、シリカライト、シリカゾルにテンプレート材を加えてゲルを形成し水熱合成した後焼成することで製造された合成ゼオライトなどの、ゼオライトを用いることができる。中でも、モルデナイト、β型ゼオライトなどが好ましい。またこれらのゼオライトを脱Al処理した改質ゼオライトを用いることもできる。脱Al処理としては、酸処理、沸騰水処理、スチーム処理などが知られている。また、Fe、Ag、Cu、Mnなどをイオン交換担持したゼオライトを用いることも可能である。 In the first catalyst, the first oxide support does not include a porous body having pores capable of adsorbing HC in the exhaust gas. A typical example of the porous body is zeolite. Examples of zeolites include ferrierite, ZSM-5, mordenite, Y-type zeolite, β-type zeolite, X-type zeolite, L-type zeolite, silicalite, silica sol, a template material added to form a gel, hydrothermal synthesis, and firing. Thus, zeolite such as synthetic zeolite produced can be used. Of these, mordenite, β-type zeolite and the like are preferable. Further, modified zeolite obtained by removing Al from these zeolites can also be used. As de-Al treatment, acid treatment, boiling water treatment, steam treatment and the like are known. Moreover, it is also possible to use zeolite carrying ion exchange on Fe, Ag, Cu, Mn or the like.
第1触媒では、第1酸化物担体に多孔体を含まないことで、NOの酸化が効率よく進行しNOの大部分をNO2 とすることができる。もし第1酸化物担体に多孔体が含まれていると、後述の試験例で示すように、NO2 の還元反応が生じてNOが生成してしまう。また多孔体はHCを吸着するので、もし第1酸化物担体に多孔体が含まれていると、HCコーキング(HC被毒)によって貴金属の酸化活性が低下してしまう。しかし第1酸化物担体に多孔体を含まないことで、HCコーキングが抑制され、NOの酸化反応をより進行させることができる。 In the first catalyst, since the first oxide support does not contain a porous body, the oxidation of NO efficiently proceeds and most of NO can be converted to NO 2 . If the first oxide support contains a porous material, as shown in a test example described later, a reduction reaction of NO 2 occurs and NO is generated. Moreover, since the porous body adsorbs HC, if the porous body is contained in the first oxide carrier, the oxidation activity of the noble metal is reduced by HC coking (HC poisoning). However, by not including a porous material in the first oxide carrier, HC coking is suppressed and the oxidation reaction of NO can be further advanced.
第2触媒は、排ガス中のHCを吸着可能な細孔をもつ多孔体を含む第2酸化物担体を含んでいる。この多孔体としては、上記したゼオライト、改質ゼオライト、イオン交換ゼオライトなどを用いることができる。第2酸化物担体は、多孔体のみから構成してもよいし、アルミナ、ジルコニア、チタニア、セリア、シリカなどの酸化物担体と多孔体との混合物を用いることもできる。 The 2nd catalyst contains the 2nd oxide support | carrier containing the porous body which has the pore which can adsorb | suck HC in waste gas. As this porous body, the above-mentioned zeolite, modified zeolite, ion-exchanged zeolite or the like can be used. The second oxide support may be composed only of a porous body, or a mixture of an oxide support such as alumina, zirconia, titania, ceria, silica, and the porous body may be used.
第2触媒は、主としてHCを吸着することで排ガス中の還元成分量を低減し、NO2 がNOに還元されるのを抑制する。この機能は貴金属を必要としない。したがって第2触媒は、貴金属を含まないことが望ましい。このようにすれば、その分第1触媒あるいは第3触媒の貴金属量を増加することができ、NOの酸化活性がさらに向上する。また第2触媒は、第2酸化物担体に担持した形態で貴金属を含んでもよい。しかしこの場合は、後述の試験例で示すように、ゼオライトの特性と貴金属によってNO2 の還元反応が生じやすくなるため、第1触媒における貴金属の担持濃度より低い担持濃度とすることが望ましい。なお貴金属の種類は、特に制限されない。 The second catalyst mainly reduces the amount of reducing components in the exhaust gas by adsorbing HC and suppresses NO 2 from being reduced to NO. This function does not require precious metals. Therefore, it is desirable that the second catalyst does not contain a noble metal. By doing so, the amount of the noble metal of the first catalyst or the third catalyst can be increased correspondingly, and the oxidation activity of NO is further improved. The second catalyst may contain a noble metal in a form supported on the second oxide support. However, in this case, as shown in a test example to be described later, since the NO 2 reduction reaction is likely to occur due to the characteristics of the zeolite and the noble metal, it is desirable to set the loading concentration lower than the loading concentration of the noble metal in the first catalyst. The type of noble metal is not particularly limited.
第3触媒は、第3酸化物担体と、第3酸化物担体に担持された貴金属と、からなる。第3酸化物担体としては、アルミナ、ジルコニア、チタニア、セリア、シリカ、ゼオライトなどの単品あるいは混合物を用いることができる。これらの複数種からなる複合酸化物を用いることもできる。第2触媒でHCが吸着されたことで、酸化性雰囲気あるいは低次の還元性雰囲気となった排ガスが第3触媒に流入するので、NO2 が還元されるのが防止される。したがって第3酸化物担体には、ゼオライトを用いることもできる。 The third catalyst includes a third oxide support and a noble metal supported on the third oxide support. As the third oxide carrier, a single product or a mixture of alumina, zirconia, titania, ceria, silica, zeolite and the like can be used. A composite oxide composed of a plurality of these can also be used. Since HC is adsorbed by the second catalyst, the exhaust gas that has become an oxidizing atmosphere or a low-order reducing atmosphere flows into the third catalyst, so that NO 2 is prevented from being reduced. Therefore, zeolite can also be used for the third oxide support.
また貴金属としては、Pt、Pd、Rhなどから選択して用いることができるが、酸化活性の高いPt、Pdが特に望ましい。 The noble metal can be selected from Pt, Pd, Rh and the like, but Pt and Pd having high oxidation activity are particularly desirable.
第1触媒、第2触媒及び第3触媒は、それぞれ独立した触媒を用いてもよいが、一つの担体基材を用い、その触媒層として各触媒を形成することが望ましい。すなわち、ストレートフロー構造のハニカム基材の排ガス流入側端面から所定長さ範囲に第1触媒からなる第1触媒層を形成し、第1触媒層の下流側に第1触媒からなる第2触媒層を所定長さで形成し、第2触媒層の下流側端部から排ガス流出側端面までの範囲に第3触媒からなる第3触媒層を形成する。このようにすれば、ハニカム基材の個数が低減され、組付工数も低減される。 As the first catalyst, the second catalyst, and the third catalyst, independent catalysts may be used, but it is preferable to use a single carrier substrate and form each catalyst as a catalyst layer. That is, the first catalyst layer made of the first catalyst is formed within a predetermined length range from the exhaust gas inflow side end face of the honeycomb base material having the straight flow structure, and the second catalyst layer made of the first catalyst is formed downstream of the first catalyst layer. Is formed with a predetermined length, and a third catalyst layer made of the third catalyst is formed in a range from the downstream end of the second catalyst layer to the exhaust gas outflow side end face. If it does in this way, the number of honeycomb base materials will be reduced and the assembly man-hour will also be reduced.
ハニカム基材としては、コージェライト、SiC メタルなどから形成された従来と同様のものを用いることができる。また各触媒層の形成には、従来から行われているウォッシュコート法を利用することができる。 As the honeycomb substrate, the same material as that formed from cordierite, SiC metal or the like can be used. For forming each catalyst layer, a conventional washcoat method can be used.
第1触媒層、第2触媒層、第3触媒層の形成範囲は、ハニカム基材の全長に対して、第1触媒層は1/4〜1/2の範囲に、第2触媒層は1/4〜1/2の範囲に、第3触媒層は1/4〜1/2の範囲に形成することが好ましい。各触媒層の形成範囲がそれぞれの下限値より短いと、各触媒層の機能が十分に発現されなくなり、第3触媒層から流出する排ガス中のNO2 量が少なくなる。 The formation range of the first catalyst layer, the second catalyst layer, and the third catalyst layer is 1/4 to 1/2 of the first catalyst layer and 1 is the second catalyst layer with respect to the total length of the honeycomb substrate. The third catalyst layer is preferably formed in the range of 1/4 to 1/2 in the range of / 4 to 1/2. When the formation range of each catalyst layer is shorter than the respective lower limit value, the function of each catalyst layer is not sufficiently exhibited, and the amount of NO 2 in the exhaust gas flowing out from the third catalyst layer is reduced.
なお第1触媒、第2触媒、第3触媒を各々個別に製造した場合には、各触媒の容量(嵩容積)が上記比率となるようにすればよい。 When the first catalyst, the second catalyst, and the third catalyst are individually manufactured, the capacity (bulk volume) of each catalyst may be set to the above ratio.
第3触媒の排ガス下流側には、NOx 吸蔵還元触媒、NOx 選択還元触媒、DPF 及びフィルタ触媒から選ばれる少なくとも一つが配置されている。NOx 吸蔵還元触媒は、アルミナなどの酸化物担体に、アルカリ金属及びアルカリ土類金属などから選ばれるNOx 吸蔵材とPtなどの貴金属とを担持してなるものであり、排ガスがリーン雰囲気でNOx 吸蔵材にNOx を吸蔵し、間欠的にリッチ雰囲気とすることでNOx 吸蔵材からNOx を放出させるとともに、放出されたNOx を還元浄化する。NOはNO2 となって初めてNOx 吸蔵材に吸蔵されるので、流入する排ガス中のNO2 /NO比が高いほどNOx 吸蔵量が多くなる。 At least one selected from a NO x storage reduction catalyst, a NO x selective reduction catalyst, a DPF, and a filter catalyst is disposed on the exhaust gas downstream side of the third catalyst. The NO x storage reduction catalyst is formed by supporting an NO x storage material selected from alkali metals and alkaline earth metals and a noble metal such as Pt on an oxide carrier such as alumina, and the exhaust gas in a lean atmosphere. occluding NO x in the NO x storage material, along with the release of NO x from the NO x storage material in an intermittent manner to a rich atmosphere to reduce and purify the released NO x. Since NO becomes NO 2 and is stored in the NO x storage material for the first time, the higher the NO 2 / NO ratio in the inflowing exhaust gas, the greater the NO x storage amount.
NOx 選択還元触媒としては、排ガス中に尿素水などを添加し生成するNH3 によってNOx を還元するNH3 脱硝触媒が代表的に例示される。このNH3 脱硝触媒では、NO2 /NOの比が1以上でNH3とより反応しやすいので、流入する排ガス中のNO2 /NO比が高いほどNOx の還元効率が向上する。 A typical example of the NO x selective reduction catalyst is an NH 3 denitration catalyst that reduces NO x by NH 3 produced by adding urea water or the like to exhaust gas. In this NH 3 denitration catalyst, the NO 2 / NO ratio is 1 or more and it is more likely to react with NH 3. Therefore, the higher the NO 2 / NO ratio in the inflowing exhaust gas, the better the NO x reduction efficiency.
DPF 及びフィルタ触媒は、排ガス下流側で目詰めされた流入側セルと、流入側セルに隣接し排ガス上流側で目詰めされた流出側セルと、流入側セルと流出側セルを区画し多数の細孔を有する多孔質のセル隔壁と、を有するウォールフロー構造をなし、セル隔壁表面及びその細孔にPMを捕集する。捕集されたPMは、酸化活性の高いNO2 によって低温域でも酸化可能である。したがって流入する排ガス中のNO2 /NO比が高いほどPMの浄化性能が向上する。 The DPF and the filter catalyst are divided into an inflow side cell clogged on the exhaust gas downstream side, an outflow side cell adjacent to the inflow side cell and clogged on the exhaust gas upstream side, and an inflow side cell and an outflow side cell. A wall flow structure having a porous cell partition wall having pores is formed, and PM is collected on the surface of the cell partition wall and the pores. The collected PM can be oxidized even at a low temperature by NO 2 having high oxidation activity. Therefore, the higher the NO 2 / NO ratio in the inflowing exhaust gas, the better the PM purification performance.
以下、実施例及び比較例と試験例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples, Comparative Examples, and Test Examples.
(実施例1)
図1に本実施例の排ガス浄化装置を示す。この排ガス浄化装置は2Lのディーゼルエンジン 100の排気管に装着されてなり、酸化触媒1と、NH3 脱硝触媒2とが排ガス上流側から下流側に向かってこの順に配置されている。酸化触媒1とNH3 脱硝触媒2の間には、排ガス中に尿素水を添加する尿素インジェクタ 101が配置されている。なおNH3 脱硝触媒2の下流には、図示しないフィルタ触媒が配置されてPMを浄化可能となっている。
Example 1
FIG. 1 shows an exhaust gas purification apparatus of this embodiment. This exhaust gas purification device is mounted on the exhaust pipe of a 2L diesel engine 100, and an oxidation catalyst 1 and an NH 3 denitration catalyst 2 are arranged in this order from the exhaust gas upstream side to the downstream side. Between the oxidation catalyst 1 and the NH 3 denitration catalyst 2, a urea injector 101 for adding urea water to the exhaust gas is disposed. A filter catalyst (not shown) is disposed downstream of the NH 3 denitration catalyst 2 so that PM can be purified.
酸化触媒1は、図2に拡大して示すように、ハニカム基材10を基材とし、その排ガス流入側端面から50mmの範囲に第1触媒層11が形成され、第1触媒層10の下流側端部から50mmの範囲に第2触媒層12が形成され、第2触媒層12の下流側端部から排ガス流出側端面までの50mmの範囲に第3触媒層13が形成されている。 As shown in an enlarged view in FIG. 2, the oxidation catalyst 1 has a honeycomb base material 10 as a base material, a first catalyst layer 11 is formed in a range of 50 mm from the exhaust gas inflow side end face, and the downstream side of the first catalyst layer 10. The second catalyst layer 12 is formed in the range of 50 mm from the side end, and the third catalyst layer 13 is formed in the range of 50 mm from the downstream end of the second catalyst layer 12 to the exhaust gas outflow end surface.
以下、酸化触媒1の製造方法を説明し、構成の詳細な説明に代える。 Hereafter, the manufacturing method of the oxidation catalyst 1 is demonstrated and it replaces with the detailed description of a structure.
先ず、コージェライト製のハニカム基材10(直径 129mm、長さ 150mm、セル数 400/in2 、セル壁厚さ 0.1mm、2リットル)を用意した。 First, a cordierite honeycomb substrate 10 (diameter 129 mm, length 150 mm, number of cells 400 / in 2 , cell wall thickness 0.1 mm, 2 liters) was prepared.
次にγ-Al2O3粉末とアルミナゾルを含むスラリーを調製し、上記ハニカム基材10の排ガス流入側端面から50mmの範囲をスラリーに浸漬した後に引き上げ、乾燥後に焼成して第1触媒層11に対応するアルミナコート層を形成した。アルミナコート層は、ハニカム基材10の1リットルあたり75g形成された。 Next, a slurry containing γ-Al 2 O 3 powder and alumina sol was prepared, and a range of 50 mm from the end face on the exhaust gas inflow side of the honeycomb base material 10 was immersed in the slurry, then pulled up, dried and fired after drying. An alumina coat layer corresponding to was formed. The alumina coat layer was formed in an amount of 75 g per liter of the honeycomb substrate 10.
次にγ-Al2O3粉末 100質量部と、βゼオライト粉末 100質量部と、アルミナゾルを含むスラリーを調製し、ハニカム基材10の排ガス流出側端面から 100mmの範囲をスラリーに浸漬した後に引き上げ、乾燥後に焼成して、第2触媒層12及び第3触媒層13に対応するアルミナ・ゼオライトコート層を形成した。アルミナ・ゼオライトコート層は、ハニカム基材10の1リットルあたり 150g形成された。 Next, a slurry containing 100 parts by mass of γ-Al 2 O 3 powder, 100 parts by mass of β zeolite powder, and alumina sol was prepared, and a range of 100 mm from the exhaust gas outlet side end face of the honeycomb substrate 10 was immersed in the slurry and then pulled up Then, after baking, firing was performed to form an alumina / zeolite coat layer corresponding to the second catalyst layer 12 and the third catalyst layer 13. The alumina / zeolite coat layer was formed in an amount of 150 g per liter of the honeycomb substrate 10.
続いて所定濃度のジニトロジアンミン白金薬液を用意し、アルミナコート層が形成されている範囲を浸漬後に引き上げ乾燥後に焼成してPtを担持し、第1触媒層11を形成した。第1触媒層11におけるPtの担持量は、ハニカム基材10の1リットルあたり 2.5gである。 Subsequently, a dinitrodiammine platinum chemical solution having a predetermined concentration was prepared, the range in which the alumina coat layer was formed was dipped, pulled up, dried and fired to carry Pt, thereby forming the first catalyst layer 11. The amount of Pt supported in the first catalyst layer 11 is 2.5 g per liter of the honeycomb substrate 10.
さらに所定濃度のジニトロジアンミン白金薬液を用意し、ハニカム基材10の排ガス流出側端面から50mmの範囲を浸漬した後に引き上げ乾燥後に焼成してPtを担持し、第3触媒層13を形成した。第3触媒層13におけるPtの担持量は、ハニカム基材10の1リットルあたり 2.5gである。 Further, a dinitrodiammine platinum chemical solution having a predetermined concentration was prepared, immersed in a range of 50 mm from the exhaust gas outflow side end face of the honeycomb base material 10, and then dried and fired to carry Pt to form the third catalyst layer 13. The amount of Pt supported in the third catalyst layer 13 is 2.5 g per liter of the honeycomb substrate 10.
したがって第2触媒層12には、Ptが担持されていない。なお酸化触媒1の全体としては、Ptは4g担持されている。 Therefore, Pt is not supported on the second catalyst layer 12. As a whole, the oxidation catalyst 1 carries 4 g of Pt.
次にNH3 脱硝触媒2の製造方法を説明し、構成の詳細な説明に代える。 Next, a method for producing the NH 3 denitration catalyst 2 will be described, and a detailed description of the configuration will be used.
酸化触媒1で用いたものと同じハニカム基材10に、ゼオライトを主体としたスラリーを用いて触媒コート層を形成した。触媒コート層の形成量は、ハニカム基材10の1リットルあたり 150gである。次に、硝酸鉄水溶液を用いて触媒コート層全体にFeを均一に担持した。Feの担持量は、Feとしてハニカム基材10の1リットルあたり2gである。 A catalyst coating layer was formed on the same honeycomb substrate 10 as that used in the oxidation catalyst 1 by using a slurry mainly composed of zeolite. The formation amount of the catalyst coat layer is 150 g per liter of the honeycomb substrate 10. Next, Fe was uniformly supported on the entire catalyst coat layer using an aqueous iron nitrate solution. The amount of Fe supported is 2 g per liter of the honeycomb substrate 10 as Fe.
(実施例2)
図3に示すように、NH3 脱硝触媒2に代えて、NOx 吸蔵還元触媒3を用いたこと以外は実施例1と同様である。なお酸化触媒1の排ガス上流側には、排ガス中に軽油を添加する軽油インジェクタ102 が配置され、尿素インジェクタ 101は配置されていない。
(Example 2)
As shown in FIG. 3, it is the same as that of Example 1 except that a NO x storage reduction catalyst 3 was used in place of the NH 3 denitration catalyst 2. Note that a light oil injector 102 for adding light oil to the exhaust gas is disposed on the upstream side of the exhaust gas of the oxidation catalyst 1, and the urea injector 101 is not disposed.
NOx 吸蔵還元触媒は、ハニカム基材10の1リットルあたり 270g形成された、アルミナ、チタニア、ジルコニア、セリアの混合物からなるコート層と、コート層に均一に担持されたPt、Li、Ba、Kからなる。各触媒金属のハニカム基材10の1リットルあたりの担持量は、Ptが2g、Liが 0.2モル、Baが 0.1モル、Kが 0.1モルである。 The NO x storage reduction catalyst is a coating layer made of a mixture of alumina, titania, zirconia, and ceria formed in an amount of 270 g per liter of the honeycomb substrate 10, and Pt, Li, Ba, K uniformly supported on the coating layer. Consists of. The supported amount of each catalyst metal per liter of the honeycomb substrate 10 is 2 g of Pt, 0.2 mol of Li, 0.1 mol of Ba, and 0.1 mol of K.
(比較例1)
酸化触媒1で用いたものと同じハニカム基材10に、γ-Al2O3粉末 100質量部と、βゼオライト粉末 100質量部と、アルミナゾルを含むスラリーを均一にウォッシュコートし、乾燥後に焼成してアルミナ・ゼオライトコート層を形成した。アルミナ・ゼオライトコート層は、ハニカム基材10の1リットルあたり 150g形成された。このアルミナ・ゼオライトコート層に、均一にPtを担持した。Ptの担持量は、ハニカム基材10の1リットルあたり2gであり、実施例1と同様に、全体として4g担持されている。
(Comparative Example 1)
A slurry containing 100 parts by mass of γ-Al 2 O 3 powder, 100 parts by mass of β-zeolite powder and alumina sol is uniformly washed on the same honeycomb substrate 10 used in the oxidation catalyst 1 and fired after drying. Thus, an alumina / zeolite coat layer was formed. The alumina / zeolite coat layer was formed in an amount of 150 g per liter of the honeycomb substrate 10. This alumina / zeolite coat layer was uniformly loaded with Pt. The amount of Pt supported was 2 g per liter of the honeycomb substrate 10, and 4 g as a whole was supported in the same manner as in Example 1.
この酸化触媒を実施例1の酸化触媒1と置き換えたものを比較例1の排ガス浄化装置とした。 An exhaust gas purification apparatus of Comparative Example 1 was obtained by replacing the oxidation catalyst with the oxidation catalyst 1 of Example 1.
(比較例2)
比較例1と同様の酸化触媒を実施例2の酸化触媒1と置き換えたものを比較例2の排ガス浄化装置とした。
(Comparative Example 2)
An exhaust gas purification apparatus of Comparative Example 2 was obtained by replacing the oxidation catalyst similar to that of Comparative Example 1 with the oxidation catalyst 1 of Example 2.
<試験例1>
実施例1における酸化触媒1から、第1触媒層11のみを有する長さ50mmの部分を切り出し、試料1とした。また第3触媒層13のみを有する長さ50mmの部分を切り出し、試料2とした。
<Test Example 1>
A portion having a length of 50 mm having only the first catalyst layer 11 was cut out from the oxidation catalyst 1 in Example 1 to obtain a sample 1. Further, a part having a length of 50 mm having only the third catalyst layer 13 was cut out and used as sample 2.
試料1及び試料2の触媒をそれぞれディーゼルエンジンのエンジンベンチに配置し、入りガス温度 400℃で排ガスを流通させながら、触媒の上流側で排ガス中に所定量の軽油を所定時間添加した。そのときの流入排ガス中のNO濃度(流入NO)と、流出排ガス中のNO濃度(流出NO)を連続的に測定した。試料1の結果を図4に、試料2の結果を図5に示す。なお図4及び図5には、流入排ガス中のHC濃度変化と触媒床温の変化も示している。 The catalysts of Sample 1 and Sample 2 were each placed on the engine bench of a diesel engine, and a predetermined amount of light oil was added to the exhaust gas for a predetermined time on the upstream side of the catalyst while circulating the exhaust gas at an inlet gas temperature of 400 ° C. The NO concentration in the inflowing exhaust gas (inflowing NO) and the NO concentration in the outflowing exhaust gas (outflowing NO) were measured continuously. The result of sample 1 is shown in FIG. 4, and the result of sample 2 is shown in FIG. 4 and 5 also show changes in the HC concentration in the inflowing exhaust gas and changes in the catalyst bed temperature.
図4及び図5において、流出排ガス中のNO濃度と流入排ガス中のNO濃度との差(図の斜線部の面積に相当)に着目すると、軽油添加時には触媒床温度が 200℃以下に低下していること、流出排ガス中のNO濃度が流入排ガス中のNO濃度より高いことがわかる。これは、試料中においてNO2 が還元されたことを意味する。そしてこの差は、試料1より試料2の方が大きいことから、試料1ではNO2 の還元反応が試料2より抑制されていることが明らかであり、ゼオライトを含まないことによって、低温域におけるNO2 の還元反応を抑制できることが明らかである。 4 and 5, paying attention to the difference between the NO concentration in the effluent exhaust gas and the NO concentration in the effluent exhaust gas (corresponding to the area of the shaded area in the figure), the catalyst bed temperature decreases to 200 ° C or less when light oil is added. It can be seen that the NO concentration in the outflowing exhaust gas is higher than the NO concentration in the inflowing exhaust gas. This means that NO 2 has been reduced in the sample. Since this difference is larger in sample 2 than in sample 1, it is clear that in sample 1, the NO 2 reduction reaction is suppressed more than in sample 2, and by not containing zeolite, NO in the low temperature range is clear. It is clear that the reduction reaction of 2 can be suppressed.
<試験例2>
実施例1及び比較例1の排ガス浄化装置において、先ず酸化触媒1を 700℃で20時間保持する熱耐久を行い、熱耐久後の各酸化触媒1をNH3 脱硝触媒2の上流側に配置した。
<Test Example 2>
In the exhaust gas purifying apparatus of Example 1 and Comparative Example 1, first, the oxidation catalyst 1 was subjected to thermal durability for 20 hours at 700 ° C., and each oxidation catalyst 1 after thermal durability was disposed upstream of the NH 3 denitration catalyst 2. .
ディーゼルエンジン 100をエンジン回転数 2000rpmで運転し、入りガス温度 400℃で10分間の前処理を行った後、エンジン回転数 1800rpm定常運転にて、酸化触媒1への入りガス温度 180℃、入りガスのHC濃度 300ppmCに設定し、尿素インジェクタ 101から濃度35%の尿素水を入りガス中のNO2 と当量となるように添加しながら10分間運転した。その際の、酸化触媒1からの出ガスを分析してNO2 /NOx 比を算出した。またNH3 脱硝触媒2からの出ガスを分析し、HC浄化率とNOx 浄化率をそれぞれ測定した。結果を表1に示す。 Diesel engine 100 is operated at an engine speed of 2000 rpm, pre-treated for 10 minutes at an inlet gas temperature of 400 ° C, and then at an engine speed of 1800 rpm at a steady operation, the inlet gas temperature to the oxidation catalyst 1 is 180 ° C and the inlet gas. The HC concentration was set to 300 ppmC, and urea water having a concentration of 35% was added from the urea injector 101 while being added so as to be equivalent to NO 2 in the gas and operated for 10 minutes. At that time, the gas emitted from the oxidation catalyst 1 was analyzed to calculate the NO 2 / NO x ratio. Further, the gas emitted from the NH 3 denitration catalyst 2 was analyzed, and the HC purification rate and the NO x purification rate were measured respectively. The results are shown in Table 1.
<試験例3>
実施例2及び比較例2の排ガス浄化装置において、試験例2と同様に酸化触媒1を熱耐久した。熱耐久後の各酸化触媒1をNOx 吸蔵還元触媒の上流側に配置した。
<Test Example 3>
In the exhaust gas purifying apparatuses of Example 2 and Comparative Example 2, the oxidation catalyst 1 was heat-endured in the same manner as in Test Example 2. Each oxidation catalyst 1 after heat endurance was arranged upstream of the NO x storage reduction catalyst.
ディーゼルエンジン 100をエンジン回転数 2000rpmで運転し、入りガス温度 300℃に設定して、A/F が14になるように軽油インジェクタから軽油を10分間噴射する前処理を行った。その後、エンジン回転数 1800rpm定常運転にて、酸化触媒1への入りガス温度 180℃、入りガスのHC濃度 300ppmCに設定し、軽油を約 0.5cc/分の添加量となるように間欠的に噴射しながら10分間運転した。その際の、酸化触媒1からの出ガスを分析してNO2 /NOx 比を算出した。またNOx 吸蔵還元触媒3からの出ガスを分析し、HC浄化率とNOx 吸蔵量をそれぞれ測定した。結果を表1に示す。 The diesel engine 100 was operated at an engine speed of 2000 rpm, the inlet gas temperature was set to 300 ° C., and a pretreatment was performed to inject light oil from the light oil injector for 10 minutes so that the A / F was 14. After that, at an engine speed of 1800 rpm, the gas entering the oxidation catalyst 1 is set to 180 ° C and the HC concentration of the gas is set to 300 ppmC, and light oil is injected intermittently so that the added amount is about 0.5 cc / min. While driving for 10 minutes. At that time, the gas emitted from the oxidation catalyst 1 was analyzed to calculate the NO 2 / NO x ratio. Further, the gas emitted from the NO x storage reduction catalyst 3 was analyzed, and the HC purification rate and the NO x storage amount were measured. The results are shown in Table 1.
表1から、実施例1及び実施例2に係る酸化触媒1からの出ガスはNO2 /NOx 比が大きく、NO2 がNOに還元される反応が抑制されていることがわかる。これは、試験例1の結果を鑑みると、第1触媒層11、第2触媒層12、第3触媒層をこの順で配置したことによる効果であることが明らかである。 From Table 1, it can be seen that the output gas from the oxidation catalyst 1 according to Example 1 and Example 2 has a large NO 2 / NO x ratio, and the reaction in which NO 2 is reduced to NO is suppressed. In view of the result of Test Example 1, it is clear that this is an effect obtained by arranging the first catalyst layer 11, the second catalyst layer 12, and the third catalyst layer in this order.
そして実施例1及び実施例2の排ガス浄化装置では、低温域からHC及びNOx を効率よく浄化することができ、これは酸化触媒1からの出ガス中のNO2 濃度が高いことに起因していることが明らかである。 In the exhaust gas purification apparatuses of Example 1 and Example 2, HC and NO x can be efficiently purified from a low temperature range, which is caused by the high concentration of NO 2 in the exhaust gas from the oxidation catalyst 1. It is clear that
(実施例3)
図6に本実施例の排ガス浄化装置を示す。本実施例の排ガス浄化装置は、NOx 吸蔵還元触媒2に代えてフィルタ触媒4を用いたこと以外は実施例2と同様である。
(Example 3)
FIG. 6 shows the exhaust gas purifying apparatus of this embodiment. The exhaust gas purification apparatus of this example is the same as that of Example 2 except that the filter catalyst 4 is used in place of the NO x storage reduction catalyst 2.
本実施例の排ガス浄化装置によれば、酸化触媒1からの出ガスはNO2 /NOx 比が大きく、フィルタ触媒4に多量のNO2 が流入される。したがってフィルタ触媒4に堆積したPMを低温域から酸化することができる。 According to the exhaust gas purifying apparatus of the present embodiment, the output gas from the oxidation catalyst 1 has a large NO 2 / NO x ratio, and a large amount of NO 2 flows into the filter catalyst 4. Therefore, PM deposited on the filter catalyst 4 can be oxidized from a low temperature range.
本発明の排ガス浄化装置は、ディーゼルエンジンからの排ガス中で使用できるばかりでなく、ガソリンエンジンからの排ガス中でも使用できる。 The exhaust gas purification apparatus of the present invention can be used not only in exhaust gas from a diesel engine but also in exhaust gas from a gasoline engine.
1:酸化触媒 2:NH3 脱硝触媒 10:ハニカム基材
11:第1触媒層 12:第2触媒層 13:第3触媒層
1: Oxidation catalyst 2: NH 3 denitration catalyst 10: Honeycomb substrate
11: First catalyst layer 12: Second catalyst layer 13: Third catalyst layer
Claims (5)
排ガス中の炭化水素を吸着可能な細孔をもつ多孔体を含む第2酸化物担体を含み、該第1触媒の排ガス下流側に配置された第2触媒と、
第3酸化物担体と該第3酸化物担体に担持された貴金属とからなり該第2触媒の排ガス下流側に配置された酸化活性を有する第3触媒と、
該第3触媒の排ガス下流側に配置され、NOx 吸蔵還元触媒、NOx 選択還元触媒、パティキュレートフィルタ及びフィルタ触媒から選ばれる少なくとも一つと、を備えたことを特徴とする排ガス浄化装置。 The first oxide carrier which is disposed in the exhaust gas flow path of an automobile and does not include a porous body having pores capable of adsorbing hydrocarbons in the exhaust gas and the noble metal supported on the first oxide carrier and has an oxidation activity A first catalyst;
A second catalyst comprising a second oxide support including a porous body having pores capable of adsorbing hydrocarbons in the exhaust gas, and disposed on the exhaust gas downstream side of the first catalyst;
A third catalyst having an oxidation activity, which comprises a third oxide support and a noble metal supported on the third oxide support, and is disposed on the exhaust gas downstream side of the second catalyst;
An exhaust gas purification apparatus, comprising at least one selected from a NO x storage reduction catalyst, a NO x selective reduction catalyst, a particulate filter, and a filter catalyst, disposed on the exhaust gas downstream side of the third catalyst.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008126260A JP2009273989A (en) | 2008-05-13 | 2008-05-13 | Exhaust gas cleaning device |
PCT/IB2009/005557 WO2009138846A1 (en) | 2008-05-13 | 2009-05-12 | Exhaust gas purification apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008126260A JP2009273989A (en) | 2008-05-13 | 2008-05-13 | Exhaust gas cleaning device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009273989A true JP2009273989A (en) | 2009-11-26 |
Family
ID=40933786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008126260A Pending JP2009273989A (en) | 2008-05-13 | 2008-05-13 | Exhaust gas cleaning device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009273989A (en) |
WO (1) | WO2009138846A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014226652A (en) * | 2013-05-27 | 2014-12-08 | マツダ株式会社 | Exhaust gas purification catalyst and manufacturing method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2492175B (en) | 2011-06-21 | 2018-06-27 | Johnson Matthey Plc | Exhaust system for internal combustion engine comprising catalysed filter substrate |
US9604174B2 (en) * | 2012-11-07 | 2017-03-28 | Johnson Matthey Public Limited Company | Exhaust system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0953442A (en) * | 1995-08-14 | 1997-02-25 | Toyota Motor Corp | Exhaust emission control method of diesel engine |
JPH11107744A (en) * | 1997-10-07 | 1999-04-20 | Toyota Motor Corp | Exhaust emission control catalyst device |
JP2001082133A (en) * | 1999-09-16 | 2001-03-27 | Nissan Motor Co Ltd | Exhaust emission control device for diesel engine |
JP2001241321A (en) * | 2000-02-29 | 2001-09-07 | Nissan Motor Co Ltd | Exhaust gas emission control device for internal combustion engine and exhaust gas emission control method |
JP2001263046A (en) * | 2000-03-23 | 2001-09-26 | Nissan Diesel Motor Co Ltd | Exhaust emission control device for diesel engine |
JP2002276422A (en) * | 2001-03-15 | 2002-09-25 | Isuzu Motors Ltd | Exhaust emission control device and its regeneration control method |
JP2003247415A (en) * | 2002-02-22 | 2003-09-05 | Hitachi Ltd | Exhaust gas cleaning device for internal combustion engine |
JP2005264868A (en) * | 2004-03-19 | 2005-09-29 | Toyota Motor Corp | Diesel exhaust gas emission control device |
JP2006289301A (en) * | 2005-04-13 | 2006-10-26 | Toyota Motor Corp | Catalyst for clarifying exhaust gas |
JP2006329020A (en) * | 2005-05-25 | 2006-12-07 | Hino Motors Ltd | Exhaust emission control device for engine |
JP2007505264A (en) * | 2003-05-16 | 2007-03-08 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Exhaust gas purification system having a particulate filter and its operating method for improving regeneration of the particulate filter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080047244A1 (en) * | 2006-08-07 | 2008-02-28 | Wenzhong Zhang | Crack Resistant Substrate for an Exhaust Treatment Device |
-
2008
- 2008-05-13 JP JP2008126260A patent/JP2009273989A/en active Pending
-
2009
- 2009-05-12 WO PCT/IB2009/005557 patent/WO2009138846A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0953442A (en) * | 1995-08-14 | 1997-02-25 | Toyota Motor Corp | Exhaust emission control method of diesel engine |
JPH11107744A (en) * | 1997-10-07 | 1999-04-20 | Toyota Motor Corp | Exhaust emission control catalyst device |
JP2001082133A (en) * | 1999-09-16 | 2001-03-27 | Nissan Motor Co Ltd | Exhaust emission control device for diesel engine |
JP2001241321A (en) * | 2000-02-29 | 2001-09-07 | Nissan Motor Co Ltd | Exhaust gas emission control device for internal combustion engine and exhaust gas emission control method |
JP2001263046A (en) * | 2000-03-23 | 2001-09-26 | Nissan Diesel Motor Co Ltd | Exhaust emission control device for diesel engine |
JP2002276422A (en) * | 2001-03-15 | 2002-09-25 | Isuzu Motors Ltd | Exhaust emission control device and its regeneration control method |
JP2003247415A (en) * | 2002-02-22 | 2003-09-05 | Hitachi Ltd | Exhaust gas cleaning device for internal combustion engine |
JP2007505264A (en) * | 2003-05-16 | 2007-03-08 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Exhaust gas purification system having a particulate filter and its operating method for improving regeneration of the particulate filter |
JP2005264868A (en) * | 2004-03-19 | 2005-09-29 | Toyota Motor Corp | Diesel exhaust gas emission control device |
JP2006289301A (en) * | 2005-04-13 | 2006-10-26 | Toyota Motor Corp | Catalyst for clarifying exhaust gas |
JP2006329020A (en) * | 2005-05-25 | 2006-12-07 | Hino Motors Ltd | Exhaust emission control device for engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014226652A (en) * | 2013-05-27 | 2014-12-08 | マツダ株式会社 | Exhaust gas purification catalyst and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2009138846A1 (en) | 2009-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6450540B2 (en) | Lean burn IC engine exhaust system | |
RU2479341C2 (en) | Device for decreasing diesel engine exhaust toxicity | |
RU2675363C2 (en) | Ammonia slip catalyst | |
RU2577856C2 (en) | Oxidation catalyst for internal combustion engine operating on lean mixture | |
JP5814333B2 (en) | Exhaust treatment method | |
CN101594925B (en) | Thermally regenerable nitric oxide adsorbent | |
US8679412B2 (en) | Exhaust gas-purifying system | |
WO2009087998A1 (en) | Exhaust gas purification catalyst | |
EP1290318B1 (en) | Reactor for treating exhaust gas | |
KR20110025848A (en) | Nox adsorber catalyst with superior low temperature performance | |
KR20130138203A (en) | Catalytic converter for removing nitrogen oxides from the exhaust gas of diesel engines | |
JP2011509826A (en) | Catalyst filter | |
US9630146B2 (en) | Particulate filter containing a nickel-copper catalyst | |
TW200803982A (en) | Method for purification of exhaust gas from internal-combustion engine | |
JP2009285605A (en) | Catalyst for cleaning exhaust gas | |
JP4523911B2 (en) | Exhaust gas purification device | |
JP2008151100A (en) | Exhaust emission control device | |
KR20120095747A (en) | Multi-functional particulate filter and exhaust gas filtering device using this | |
JP5481931B2 (en) | Exhaust purification device and exhaust purification method | |
JP3874246B2 (en) | Filter type catalyst for diesel exhaust gas purification | |
JP4218559B2 (en) | Diesel exhaust gas purification device | |
JP2009273989A (en) | Exhaust gas cleaning device | |
JP2005262144A (en) | Nox occlusion reduction catalyst | |
JP5094199B2 (en) | Exhaust gas purification device | |
KR101488198B1 (en) | Multi-functional particulate filter and exhaust gas filtering device using this |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100914 |