[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009273304A - Rotor of rotating electric machine, and rotating electric machine - Google Patents

Rotor of rotating electric machine, and rotating electric machine Download PDF

Info

Publication number
JP2009273304A
JP2009273304A JP2008123468A JP2008123468A JP2009273304A JP 2009273304 A JP2009273304 A JP 2009273304A JP 2008123468 A JP2008123468 A JP 2008123468A JP 2008123468 A JP2008123468 A JP 2008123468A JP 2009273304 A JP2009273304 A JP 2009273304A
Authority
JP
Japan
Prior art keywords
magnet
magnets
rotor
radially oriented
radially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008123468A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nagao
喜信 長尾
Mikitsugu Suzuki
幹紹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2008123468A priority Critical patent/JP2009273304A/en
Publication of JP2009273304A publication Critical patent/JP2009273304A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor of a rotating electric machine which improves torque efficiently and reduces torque ripple. <P>SOLUTION: Radially oriented magnets 8a and 8b are arranged on the outer periphery of a rotor core 7, and obliquely oriented magnets 9a-9d are arranged on the outside of the radially oriented magnets 8a and 8b. The obliquely oriented magnets 9a and 9b are arranged on both sides across the magnetic pole center line LN in the radially oriented magnet 8a to generate a magnetic flux inclined outward in the radial direction and toward the magnetic pole center line LN and constitute an N magnetic pole together with the radially oriented magnet 8a. The obliquely oriented magnets 9c and 9d are arranged on both sides across the magnetic pole center line LS in the radially oriented magnet 8b to generate a magnetic flux inclined inward in the radial direction and in a direction away from the magnetic pole center line LS and constitute an S magnetic pole together with the radially oriented magnet 8b. The radial thickness (D2) of the obliquely oriented magnets 9a-9d is made relatively larger than the radial thickness (D1) of the radially oriented magnets 8a and 8b. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、径方向配向磁石とそれ以外の配向磁石とを組み合わせてなる回転電機のロータ及び回転電機に関する。   The present invention relates to a rotor of a rotating electrical machine and a rotating electrical machine that are a combination of a radially oriented magnet and other oriented magnets.

従来、回転電機のロータには、回転電機の高トルク化を図るべく、径方向に配向され周方向に交互に異なる磁極を有する径方向配向磁石と、周方向に配向された複数の周方向配向磁石とを備えたものがある(例えば、特許文献1参照)。複数の周方向配向磁石は、径方向配向磁石の外周に該周方向配向磁石間の空隙が径方向配向磁石の磁極中心位置に合わせて配置されるとともに空隙を挟んで互いに反発するように着磁されており、隣り合う周方向配向磁石と径方向配向磁石とで囲まれたその空隙部分に強磁場を発生させて高トルクが得られる構成となっている。
特開2006−217771号公報
Conventionally, a rotor of a rotating electrical machine has a radially oriented magnet having magnetic poles that are radially oriented and alternately different in the circumferential direction, and a plurality of circumferentially oriented circumferentially oriented rotors in order to increase the torque of the rotating electrical machine. Some have a magnet (for example, see Patent Document 1). The plurality of circumferentially oriented magnets are magnetized so that the gap between the circumferentially oriented magnets is arranged on the outer periphery of the radially oriented magnet in accordance with the magnetic pole center position of the radially oriented magnet and repels each other across the gap. In this configuration, a high magnetic field is generated by generating a strong magnetic field in the space surrounded by the circumferentially oriented magnets and the radially oriented magnets adjacent to each other.
JP 2006-217771 A

しかしながら、上記構成の回転電機では、各周方向配向磁石間の空隙部分において、前記径方向配向磁石に生じる磁束に沿った高トルク化に貢献する磁束の他に、径方向配向磁石に生じる磁束を相殺してしまう磁束も比較的多く発生し、これが径方向配向磁石に生じる磁束の流れを阻害する。これにより、効率よく高トルク化できず、また回転時の振動に繋がるトルクリップルの改善も要求されており、これらについてまだまだ改良の余地があった。   However, in the rotating electric machine configured as described above, in the gap portion between the circumferentially oriented magnets, in addition to the magnetic flux that contributes to high torque along the magnetic flux generated in the radially oriented magnet, the magnetic flux generated in the radially oriented magnet A relatively large amount of magnetic flux that cancels out is also generated, which impedes the flow of magnetic flux generated in the radially oriented magnet. As a result, it is not possible to efficiently increase the torque, and it is also required to improve the torque ripple that leads to vibration during rotation, and there is still room for improvement.

本発明は、こうした実情に鑑みてなされたものであって、その目的は、効率よく高トルク化を図るとともに、トルクリップルの低減を図ることが可能な回転電機のロータ、及びこのロータを備えた回転電機を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a rotor for a rotating electrical machine capable of efficiently increasing torque and reducing torque ripple, and the rotor. It is to provide a rotating electrical machine.

上記課題を解決するために、請求項1に記載の発明は、径方向配向の磁極を有し周方向に交互に異なる磁極配置とする径方向配向磁石と、前記径方向配向磁石の外周に配置され、前記径方向配向磁石の各磁極中心線を挟んだ両側に径方向に対して斜め配向の磁極を有する斜め配向磁石と、を備え、前記斜め配向磁石は、前記径方向配向磁石のN極に対応するN極領域では、径方向外側かつ前記磁極中心線側に向かって傾斜する磁束が生じる構成とするとともに、前記径方向配向磁石のS極に対応するS極領域では、径方向内側かつ前記磁極中心線とは反対側に向かって傾斜する磁束が生じる構成とし、前記斜め配向磁石の径方向厚さを、前記径方向配向磁石の径方向厚さよりも相対的に厚くした。   In order to solve the above-mentioned problems, the invention according to claim 1 includes a radially oriented magnet having radially oriented magnetic poles and different magnetic poles arranged alternately in the circumferential direction, and disposed on the outer periphery of the radially oriented magnet. An obliquely oriented magnet having magnetic poles obliquely oriented with respect to the radial direction on both sides of each magnetic pole center line of the radially oriented magnet, wherein the obliquely oriented magnet has N poles of the radially oriented magnet. In the N-pole region corresponding to, a magnetic flux that is inclined radially outward and toward the magnetic pole center line side is generated, and in the S-pole region corresponding to the S-pole of the radially oriented magnet, The magnetic flux inclined toward the side opposite to the magnetic pole center line is generated, and the radial thickness of the obliquely oriented magnet is relatively thicker than the radial thickness of the radially oriented magnet.

同構成によれば、斜め配向磁石を、N極領域では、径方向外側かつ磁極中心線側に向かって傾斜する磁束が生じる構成とするとともに、S極領域では、径方向内側かつ磁極中心線とは反対側に向かって傾斜する磁束が生じる構成としたため、径方向配向磁石に生じる磁束を相殺してしまう磁束を少なくすることができる。よって、径方向配向磁石に生じる磁束に沿った磁束を多くして強磁場を発生させることが可能となり、効率よく回転電機の高トルク化を図ることが可能なロータを得ることができる。また、斜め配向磁石の径方向厚さが径方向配向磁石の径方向厚さよりも相対的に厚くされることで、斜め配向磁石と径方向配向磁石との径方向厚さが同じ場合と比べて、高トルクかつ低トルクリップルとすることができる(図5参照)。   According to this configuration, the obliquely oriented magnet has a configuration in which a magnetic flux that is inclined radially outward and toward the magnetic pole center line is generated in the N pole region, and in the S pole region, Since the magnetic flux which inclines toward the opposite side is generated, the magnetic flux which cancels out the magnetic flux generated in the radially oriented magnet can be reduced. Therefore, it is possible to increase the magnetic flux along the magnetic flux generated in the radially oriented magnet to generate a strong magnetic field, and it is possible to obtain a rotor capable of efficiently increasing the torque of the rotating electrical machine. In addition, by making the radial thickness of the obliquely oriented magnet relatively thicker than the radial thickness of the radially oriented magnet, compared to the case where the radial thickness of the obliquely oriented magnet and the radially oriented magnet is the same, High torque and low torque ripple can be obtained (see FIG. 5).

請求項2に記載の発明は、請求項1に記載の回転電機のロータにおいて、前記斜め配向磁石の径方向厚さは、更に、前記径方向配向磁石の径方向厚さの2倍以下に設定されている。   According to a second aspect of the present invention, in the rotor of the rotating electrical machine according to the first aspect, the radial thickness of the obliquely oriented magnet is further set to be twice or less the radial thickness of the radially oriented magnet. Has been.

同構成によれば、斜め配向磁石の径方向厚さを径方向配向磁石の径方向厚さの2倍以下に設定し、トルク及びトルクリップルの変化幅が一層緩やかとなる2倍を超えないように設定したため(図5参照)、無駄な厚み設定となることを防止できる。よって、磁石の無駄な大型化を防止でき、ロータの小型化に寄与できる。   According to this configuration, the radial thickness of the obliquely oriented magnet is set to be twice or less the radial thickness of the radially oriented magnet so that the change width of the torque and the torque ripple does not exceed twice, which is more gradual. (See FIG. 5), it is possible to prevent useless thickness setting. Therefore, useless enlargement of the magnet can be prevented, and the rotor can be reduced in size.

請求項3に記載の発明は、請求項1又は2に記載のロータと、前記ロータの回転のための磁界を発生させる巻線が巻回されてなるステータとを備えた。
同構成によれば、効率よく高トルク化され、トルクリップルが低減された回転電機を得ることができる。
According to a third aspect of the present invention, the rotor according to the first or second aspect and a stator formed by winding a winding for generating a magnetic field for rotating the rotor.
According to this configuration, it is possible to obtain a rotating electrical machine that can efficiently increase torque and reduce torque ripple.

本発明によれば、効率よく高トルク化を図るとともに、トルクリップルの低減を図ることが可能な回転電機のロータ、及びこのロータを備えた回転電機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while aiming at high torque efficiently, the rotor of the rotary electric machine which can aim at reduction of a torque ripple, and the rotary electric machine provided with this rotor can be provided.

(第1の実施の形態)
以下、本発明を具体化した第1の実施の形態を図面に従って説明する。
図1に示すように、回転電機としてのブラシレスモータ(以下、モータという)1は、ステータ2とロータ3とを備える。ステータ2は、略円筒状に形成され、径方向内側に延びる12個のティース4と、それらティース4にそれぞれ巻回された巻線5とを備える。ステータ2は、その巻線5に図示しない電源装置からの電源が供給されるとロータ3を回転させるための回転磁界を発生するように構成される。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a brushless motor (hereinafter referred to as a motor) 1 as a rotating electrical machine includes a stator 2 and a rotor 3. The stator 2 is formed in a substantially cylindrical shape, and includes twelve teeth 4 extending radially inward, and windings 5 wound around the teeth 4. The stator 2 is configured to generate a rotating magnetic field for rotating the rotor 3 when power from a power supply device (not shown) is supplied to the winding 5.

ロータ3は、ステータ2の内側に回転可能に支持される。ロータ3は、回転軸6と、回転軸6に固着された略円筒状のロータコア7と、ロータコア7の外周に配置された10個の径方向配向磁石8a,8bと、該径方向配向磁石8a,8bの外周に配置された20個の斜め配向磁石9a〜9dとを備えている。   The rotor 3 is rotatably supported inside the stator 2. The rotor 3 includes a rotating shaft 6, a substantially cylindrical rotor core 7 fixed to the rotating shaft 6, ten radially oriented magnets 8a and 8b disposed on the outer periphery of the rotor core 7, and the radially oriented magnet 8a. , 8b and 20 obliquely oriented magnets 9a to 9d arranged on the outer periphery.

各径方向配向磁石8a,8bは、円弧状をなし同一形状に形成されるとともに、隣り合う径方向配向磁石8a,8b同士が周方向に当接するようにロータコア7の外周面に固定されている。各径方向配向磁石8a,8bは、径方向に沿った磁束が生じる径方向配向型の磁石であり、10個の径方向配向磁石8a,8bの内5個の径方向配向磁石8aはその外周面がN極、他の5個の径方向配向磁石8bはその外周面がS極となっており、周方向に交互に磁極が異なるように配置されている。   Each of the radially oriented magnets 8a and 8b has an arc shape and is formed in the same shape, and is fixed to the outer peripheral surface of the rotor core 7 so that the adjacent radially oriented magnets 8a and 8b abut against each other in the circumferential direction. . Each of the radially oriented magnets 8a and 8b is a radially oriented magnet that generates a magnetic flux along the radial direction. Of the 10 radially oriented magnets 8a and 8b, five radially oriented magnets 8a have outer circumferences. The surface is N-pole and the other five radially oriented magnets 8b have S-poles on the outer peripheral surface, and are arranged so that the magnetic poles are alternately different in the circumferential direction.

各斜め配向磁石9a〜9dは、円弧状をなし同一形状に形成されるとともに、N極の径方向配向磁石8aの外周面に斜め配向磁石9a,9bが、S極の径方向配向磁石8bの外周面に斜め配向磁石9c,9dがそれぞれ周方向に当接するように固定されている。斜め配向磁石9a,9bは、N極の径方向配向磁石8aに対応するN極領域を構成すべくその径方向配向磁石8aの磁極中心線LNを挟んだ両側に配置され、径方向外側かつ磁極中心線LNに向かって傾斜する磁束が生じる構成としている。斜め配向磁石9c,9dは、S極の径方向配向磁石8bに対応するS極領域を構成すべくその径方向配向磁石8bの磁極中心線LSを挟んだ両側に配置され、径方向内側かつ磁極中心線LSとは反対側に向かって傾斜する磁束が生じる構成としている。斜め配向磁石9a〜9dは、本実施の形態では、図2に示すように径方向に延びる磁極中心線LN,LSに対する磁束の配向方向(磁極方向)の傾斜角度θが30°に設定されている。即ち、斜め配向磁石9a〜9dは、径方向寄りに傾斜した配向をなしている。   Each of the obliquely oriented magnets 9a to 9d has an arc shape and is formed in the same shape, and the obliquely oriented magnets 9a and 9b are arranged on the outer peripheral surface of the N-pole radially oriented magnet 8a. The obliquely oriented magnets 9c and 9d are fixed to the outer peripheral surface so as to contact each other in the circumferential direction. The obliquely oriented magnets 9a, 9b are arranged on both sides of the magnetic pole center line LN of the radially oriented magnet 8a so as to form an N pole region corresponding to the radially oriented magnet 8a having N poles, and are radially outward and magnetic poles. A magnetic flux that is inclined toward the center line LN is generated. The obliquely oriented magnets 9c and 9d are arranged on both sides of the magnetic pole center line LS of the radially oriented magnet 8b so as to form the south pole region corresponding to the radially oriented magnet 8b of the south pole, and are radially inward and magnetic poles. A magnetic flux that is inclined toward the side opposite to the center line LS is generated. In the present embodiment, the obliquely oriented magnets 9a to 9d have an inclination angle θ of 30 ° in the orientation direction (magnetic pole direction) of the magnetic flux with respect to the magnetic pole centerlines LN and LS extending in the radial direction as shown in FIG. Yes. That is, the obliquely oriented magnets 9a to 9d are oriented so as to be inclined toward the radial direction.

ここで、斜め配向磁石9a〜9dの配向方向(径方向に対する傾斜角度θ)に対するトルク特性を図3に示す。尚、傾斜角度θが0°の場合、即ち径方向に配向した場合のトルクを「1」としている。   Here, the torque characteristic with respect to the orientation direction (inclination angle θ with respect to the radial direction) of the obliquely oriented magnets 9a to 9d is shown in FIG. The torque when the tilt angle θ is 0 °, that is, when oriented in the radial direction, is “1”.

図3に示すように、傾斜角度θを30°に設定した本実施の形態の場合では、トルクがほぼ最大になる。因みに、傾斜角度θが30°前後の22.5°<θ<45°の範囲では十分なトルクが得られて高トルク化できる好ましい範囲であり、傾斜角度θが0°<θ<80°の範囲では高トルク化が見込める範囲である。これに対し、傾斜角度θが80°<θ<90°の範囲、即ち配向方向を周方向に沿わせるほど、傾斜角度θを0°とした場合のトルクより小さくなってしまい、高トルク化ができない範囲である。   As shown in FIG. 3, in the case of the present embodiment in which the inclination angle θ is set to 30 °, the torque is almost maximized. Incidentally, when the inclination angle θ is in the range of 22.5 ° <θ <45 °, which is around 30 °, it is a preferable range where a sufficient torque can be obtained and the torque can be increased, and the inclination angle θ is 0 ° <θ <80 °. In the range, high torque can be expected. On the other hand, as the inclination angle θ is in the range of 80 ° <θ <90 °, that is, the alignment direction is along the circumferential direction, the torque becomes smaller than the torque when the inclination angle θ is 0 °, and the torque is increased. It is a range that cannot be done.

また、図4には、傾斜角度θを30°とした場合のロータ3の表面磁束密度(図4中、実線で示す)と、傾斜角度θを0°とした場合のロータの表面磁束密度(図4中、一点鎖線で示す)とを比較して示す。   FIG. 4 shows the surface magnetic flux density of the rotor 3 when the inclination angle θ is 30 ° (shown by a solid line in FIG. 4) and the surface magnetic flux density of the rotor when the inclination angle θ is 0 ° ( FIG. 4 shows a comparison with (shown by a one-dot chain line).

図4に示すように、傾斜角度θを30°とした場合のロータ3の表面磁束密度は、傾斜角度θを0°とした場合のロータ3の表面磁束密度と比較して高くなっている。また、傾斜角度θを30°とした場合のロータ3の表面磁束密度は、各径方向配向磁石8a,8bの磁極中心に向かうほど増加幅が大きくなっており、磁極中心付近に特に強磁場が発生していることがわかる。   As shown in FIG. 4, the surface magnetic flux density of the rotor 3 when the inclination angle θ is 30 ° is higher than the surface magnetic flux density of the rotor 3 when the inclination angle θ is 0 °. Further, the surface magnetic flux density of the rotor 3 when the inclination angle θ is set to 30 ° increases as it approaches the magnetic pole center of each of the radially oriented magnets 8a and 8b, and a particularly strong magnetic field is present near the magnetic pole center. You can see that it has occurred.

つまり、斜め配向磁石9a〜9dの配向方向を径方向に対して上記のように傾斜させることで、斜め配向磁石9a〜9dが径方向配向磁石8a,8bと協働して強磁場を発生させることに加え、その斜め配向磁石9a〜9dが径方向配向磁石8a,8bの磁束の流れを阻害しないような角度に設定されていると考えられる。これにより、本実施の形態のモータ1の高トルク化が図られている。   That is, by tilting the orientation direction of the obliquely oriented magnets 9a to 9d as described above with respect to the radial direction, the obliquely oriented magnets 9a to 9d cooperate with the radially oriented magnets 8a and 8b to generate a strong magnetic field. In addition, it is considered that the obliquely oriented magnets 9a to 9d are set to an angle that does not hinder the flow of magnetic flux of the radially oriented magnets 8a and 8b. Thereby, the high torque of the motor 1 of this Embodiment is achieved.

また、図2に示すように、外側の斜め配向磁石9a〜9dの径方向厚さD2と、内側の径方向配向磁石8a,8bの径方向厚さD1との厚さ比の値(D2/D1)は、「1.5」に設定されている。   In addition, as shown in FIG. 2, the thickness ratio value D2 between the radial thickness D2 of the outer obliquely oriented magnets 9a to 9d and the radial thickness D1 of the inner radially oriented magnets 8a and 8b (D2 / D1) is set to “1.5”.

図5に示すように、磁石厚さ比の値(D2/D1)を「1.5」に設定した本実施形態の場合では、磁石厚さ比の値(D2/D1)を「1」、即ち斜め配向磁石9a〜9dと径方向配向磁石8a,8bとの厚さが同じ場合と比べて、高トルクかつ低トルクリップルとそれぞれ良好な値となる。また、磁石厚さ比の値(D2/D1)が「2」を超えると、トルク及びトルクリップルの変化幅が一層緩やかとなるため無駄な厚み設定であることがわかるが、本実施形態ではその磁石厚さ比の値(D2/D1)を「1.5」に設定していることで、無駄な厚み設定となることを防止している。   As shown in FIG. 5, in the case of the present embodiment in which the magnet thickness ratio value (D2 / D1) is set to “1.5”, the magnet thickness ratio value (D2 / D1) is set to “1”, That is, compared to the case where the thicknesses of the obliquely oriented magnets 9a to 9d and the radially oriented magnets 8a and 8b are the same, the high torque and the low torque ripple are respectively good values. Further, when the value of the magnet thickness ratio (D2 / D1) exceeds “2”, it can be seen that the change width of the torque and the torque ripple becomes more gradual, which is a useless thickness setting. By setting the value (D2 / D1) of the magnet thickness ratio to “1.5”, it is possible to prevent unnecessary thickness setting.

次に、上記実施の形態の作用効果を以下に記載する。
(1)斜め配向磁石9a〜9dを、径方向配向磁石8aのN極に対応するN極領域では、径方向外側かつ磁極中心線LN側に向かって傾斜する磁束が生じる構成とするとともに、径方向配向磁石8bのS極に対応するS極領域では、径方向内側かつ磁極中心線LSとは反対側に向かって傾斜する磁束が生じる構成とした。そのため、径方向配向磁石8a,8bに生じる磁束を相殺してしまう磁束を少なくすることができる。よって、径方向配向磁石8a,8bに生じる磁束に沿った磁束を多くして強磁場を発生させることが可能となり、効率よくモータ1の高トルク化を図ることが可能なロータ3を得ることができる。
Next, the operational effects of the above embodiment will be described below.
(1) The obliquely oriented magnets 9a to 9d are configured to generate a magnetic flux that is inclined radially outward and toward the magnetic pole center line LN in the north pole region corresponding to the north pole of the radially oriented magnet 8a. In the south pole region corresponding to the south pole of the directionally oriented magnet 8b, a magnetic flux that is inclined radially inward and opposite to the magnetic pole center line LS is generated. Therefore, it is possible to reduce the magnetic flux that cancels out the magnetic flux generated in the radially oriented magnets 8a and 8b. Therefore, it is possible to increase the magnetic flux along the magnetic flux generated in the radially oriented magnets 8a and 8b to generate a strong magnetic field, and to obtain the rotor 3 capable of efficiently increasing the torque of the motor 1. it can.

(2)斜め配向磁石9a〜9dの径方向厚さD2が径方向配向磁石8a,8bの径方向厚さD1よりも相対的に厚くされているため、斜め配向磁石9a〜9dと径方向配向磁石8a,8bとの径方向厚さD2,D1が同じ場合と比べて、高トルクかつ低トルクリップルとすることができる。しかも、斜め配向磁石9a〜9dの径方向厚さD2を径方向配向磁石8a,8bの径方向厚さD1の2倍以下に設定し、トルク及びトルクリップルの変化幅が一層緩やかとなる2倍を超えないように設定しているため、磁石9a〜9d及び磁石8a,8bの無駄な厚み設定となることを防止できる。よって、特に斜め配向磁石9a〜9dの無駄な大型化を防止でき、ロータ3の小型化に寄与できる。   (2) Since the radial thickness D2 of the obliquely oriented magnets 9a to 9d is relatively larger than the radial thickness D1 of the radially oriented magnets 8a and 8b, the obliquely oriented magnets 9a to 9d and the radially oriented magnet are aligned. Compared with the case where radial thickness D2 and D1 with magnet 8a, 8b are the same, it can be set as a high torque and a low torque ripple. In addition, the radial thickness D2 of the obliquely oriented magnets 9a to 9d is set to be twice or less the radial thickness D1 of the radially oriented magnets 8a and 8b, and the change width of the torque and torque ripple becomes twice more moderate. Therefore, it is possible to prevent the magnets 9a to 9d and the magnets 8a and 8b from being uselessly set. Therefore, the useless enlargement of the obliquely oriented magnets 9a to 9d can be prevented, and the rotor 3 can be reduced in size.

(3)斜め配向磁石9a〜9dの磁極方向の傾斜角度θが0°<θ<80°の範囲に設定されていることで、より確実に高トルク化を図ることができる。その中でも22.5°<θ<45°の範囲であるためより一層確実であり、特に「30°」としたことで、極めて効率よく高トルク化を図ることができる。   (3) Since the inclination angle θ in the magnetic pole direction of the obliquely oriented magnets 9a to 9d is set in the range of 0 ° <θ <80 °, higher torque can be achieved more reliably. Among them, the range of 22.5 ° <θ <45 ° is further ensured, and in particular, by setting “30 °”, the torque can be increased extremely efficiently.

(第2の実施の形態)
以下、本発明を具体化した第2の実施の形態を図面に従って説明する。尚、第2の実施の形態は、第1の実施の形態の斜め配向磁石の磁極の配向態様を変更したのみの構成であるため、同様の部分についてはその詳細な説明は省略する。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. The second embodiment has a configuration in which only the magnetic pole orientation of the obliquely oriented magnet of the first embodiment is changed, and therefore, detailed description of the same parts is omitted.

図6及び図7に示すように、本実施の形態のロータ10は、前記径方向配向磁石8a,8bの外周に配置された20個の斜め配向磁石11a〜11dを備えている。
各斜め配向磁石11a〜11dは、円弧状をなし同一形状に形成されるとともに、N極の径方向配向磁石8aの外周面に斜め配向磁石11a,11bが、S極の径方向配向磁石8bの外周面に斜め配向磁石11c,11dがそれぞれ周方向に当接するように固定されている。斜め配向磁石11a,11bは、N極の径方向配向磁石8aに対応するN極領域を構成すべくその径方向配向磁石8aの磁極中心線(径方向配向磁石8aを周方向で2等分する直線)LNを挟んだ両側に配置され、径方向外側かつ磁極中心線LNに向かって傾斜する磁束が生じる構成としている。
As shown in FIGS. 6 and 7, the rotor 10 of the present embodiment includes 20 obliquely oriented magnets 11a to 11d arranged on the outer periphery of the radially oriented magnets 8a and 8b.
Each of the obliquely oriented magnets 11a to 11d has an arc shape and is formed in the same shape, and the obliquely oriented magnets 11a and 11b are arranged on the outer peripheral surface of the N-pole radial oriented magnet 8a. The obliquely oriented magnets 11c and 11d are fixed to the outer peripheral surface so as to contact each other in the circumferential direction. The obliquely oriented magnets 11a and 11b divide the magnetic pole center line (the radially oriented magnet 8a into two equal parts in the circumferential direction) of the radially oriented magnet 8a so as to form an N pole region corresponding to the radially oriented magnet 8a having N poles. (Straight line) LN is arranged on both sides of the LN, and a magnetic flux that is inclined radially outward and toward the magnetic pole center line LN is generated.

より具体的には、斜め配向磁石11a,11bは、その外側に設定した前記磁極中心線LN上の一点PNを通る放射状の磁束が生じる、いわゆるラジアル配向の構成としている。尚、本実施の形態では、両斜め配向磁石11a,11bは一体化されて1つの磁石11Aを構成するとともに、両斜め配向磁石11a,11bの境界位置においてロータ10の径方向(磁極中心線LN)に沿う磁束を生じる。   More specifically, the obliquely oriented magnets 11a and 11b have a so-called radial orientation configuration in which a radial magnetic flux passing through one point PN on the magnetic pole center line LN set outside thereof is generated. In the present embodiment, the two obliquely oriented magnets 11a and 11b are integrated to form one magnet 11A, and the radial direction of the rotor 10 (magnetic pole center line LN) at the boundary position between the obliquely oriented magnets 11a and 11b. ) Is generated.

一方、斜め配向磁石11c,11dは、S極の径方向配向磁石8bに対応するS極領域を構成すべくその径方向配向磁石8bの磁極中心線(径方向配向磁石8bを周方向で2等分する直線)LSを挟んだ両側に配置され、径方向内側かつ磁極中心線LSとは反対側に向かって傾斜する磁束が生じる構成としている。   On the other hand, the obliquely oriented magnets 11c and 11d are arranged so as to form a south pole region corresponding to the south pole radially oriented magnet 8b, so that the magnetic pole center line of the radially oriented magnet 8b (the radially oriented magnet 8b is equal to 2 in the circumferential direction). A straight line to be divided) is arranged on both sides of the LS, and a magnetic flux that is inclined radially inward and opposite to the magnetic pole center line LS is generated.

より具体的には、斜め配向磁石11c,11dは、その外側に設定した前記磁極中心線LS上の一点PSを通る放射状の磁束が生じる、いわゆるラジアル配向の構成としている。尚、本実施の形態では、両斜め配向磁石11c,11dは一体化されて1つの磁石11Bを構成するとともに、両斜め配向磁石11c,11dの境界位置においてロータ10の径方向(磁極中心線LS)に沿う磁束を生じる。   More specifically, the obliquely oriented magnets 11c and 11d have a so-called radial orientation configuration in which a radial magnetic flux passing through one point PS on the magnetic pole center line LS set outside thereof is generated. In the present embodiment, the two obliquely oriented magnets 11c and 11d are integrated to form one magnet 11B, and the radial direction of the rotor 10 (magnetic pole center line LS) at the boundary position between the obliquely oriented magnets 11c and 11d. ) Is generated.

また、図7に示すように、前記ロータ10の回転軸中心Oから前記磁極中心線LN,LS上の一点PN,PSまでの距離を距離R、前記回転軸中心Oから前記磁石11A,11B(斜め配向磁石11a〜11d)の外側の表面(外周面)までの距離を距離rとすると、磁石11A,11Bのラジアル配向中心位置(点PN,PS)を表すこれら距離R,rの比の値(R/r)は、「1.125」に設定されている。   Further, as shown in FIG. 7, the distance from the rotation axis center O of the rotor 10 to one point PN, PS on the magnetic pole center lines LN, LS is a distance R, and the magnets 11A, 11B ( If the distance to the outer surface (outer peripheral surface) of the obliquely oriented magnets 11a to 11d) is a distance r, the value of the ratio of the distances R and r representing the radial orientation center positions (points PN and PS) of the magnets 11A and 11B. (R / r) is set to “1.125”.

図8は、距離R,rの比の値(R/r)に対するトルク特性を示す。尚、磁石11A,11Bを径方向に配向した場合のトルクを「1」としている。
図8に示すように、距離R,rの比の値(R/r)を「1.125」に設定した本実施の形態の場合では、トルクがほぼ最大になる。因みに、距離R,rの比の値(R/r)が「2」以下の範囲(距離Rが距離rの2倍以下の範囲)にあれば、高トルク化が見込めることが確認される。
FIG. 8 shows torque characteristics with respect to the ratio value (R / r) of the distances R and r. The torque when the magnets 11A and 11B are oriented in the radial direction is “1”.
As shown in FIG. 8, in the case of the present embodiment in which the ratio value (R / r) of the distances R and r is set to “1.125”, the torque is almost maximized. Incidentally, if the ratio value (R / r) of the distances R and r is within a range of “2” or less (a range where the distance R is not more than twice the distance r), it is confirmed that a high torque can be expected.

また、図9には、距離R,rの比の値(R/r)を「1.125」とした場合のロータ10の表面磁束密度(図9中、実線で示す)と、磁石11A,11Bを径方向に配向した場合のロータの表面磁束密度(図9中、一点鎖線で示す)とを比較して示す。   Further, FIG. 9 shows the surface magnetic flux density of the rotor 10 (indicated by the solid line in FIG. 9) when the ratio value (R / r) of the distances R and r is “1.125”, and the magnets 11A and 11A. The surface magnetic flux density of the rotor when 11B is oriented in the radial direction (shown by a one-dot chain line in FIG. 9) is shown in comparison.

図9に示すように、距離R,rの比の値(R/r)を「1.125」とした場合のロータ10の表面磁束密度は、磁石11A,11Bを径方向に配向した場合のロータの表面磁束密度と比較して高くなっている。また、距離R,rの比の値(R/r)を「1.125」とした場合のロータ10の表面磁束密度は、各径方向配向磁石8a,8bの磁極中心に向かうほど増加幅が大きくなっており、磁極中心付近に特に強磁場が発生していることがわかる。   As shown in FIG. 9, the surface magnetic flux density of the rotor 10 when the ratio value (R / r) of the distances R and r is “1.125” is obtained when the magnets 11A and 11B are oriented in the radial direction. It is higher than the surface magnetic flux density of the rotor. Further, when the ratio value (R / r) of the distances R and r is “1.125”, the surface magnetic flux density of the rotor 10 increases as it goes toward the magnetic pole center of each of the radially oriented magnets 8a and 8b. It can be seen that a particularly strong magnetic field is generated near the center of the magnetic pole.

これは、斜め配向磁石11a〜11dの配向方向を径方向に対して上記のように傾斜させることで、斜め配向磁石11a〜11dが径方向配向磁石8a,8bと協働して強磁場を発生させるためと考えられる。これにより、本実施の形態のモータ1の高トルク化が図られている。   This is because the obliquely oriented magnets 11a to 11d cooperate with the radially oriented magnets 8a and 8b to generate a strong magnetic field by inclining the orientation direction of the obliquely oriented magnets 11a to 11d as described above with respect to the radial direction. It is thought to make it. Thereby, the high torque of the motor 1 of this Embodiment is achieved.

また本実施形態においても、図7に示すように、外側の斜め配向磁石11a〜11dの径方向厚さD2と、内側の径方向配向磁石8a,8bの径方向厚さD1との厚さ比の値(D2/D1)が「1.5」に設定されており、高トルクかつ低トルクリップル化が図られている。   Also in this embodiment, as shown in FIG. 7, the thickness ratio between the radial thickness D2 of the outer obliquely oriented magnets 11a to 11d and the radial thickness D1 of the inner radially oriented magnets 8a and 8b. (D2 / D1) is set to “1.5”, and high torque and low torque ripple are achieved.

次に、前記径方向配向磁石8a,8b及び磁石11A,11B(斜め配向磁石11a〜11d)の製造態様について説明する。
図10(a)に示すように、径方向配向磁石8aは、その製造に際しいわゆる着磁器の一対の鉄芯21,22に挟まれる。一方の鉄芯21は、径方向配向磁石8aの内周面全面に当接する円弧状の外周面21aを有するとともに、該径方向配向磁石8aの周方向各側面に連続する側面21bを有する。また、他方の鉄芯22は、径方向配向磁石8aの外周面全面に当接する円弧状の内周面22aを有するとともに、該径方向配向磁石8aの周方向各側面に連続する側面22bを有する。尚、鉄芯21,22には、それぞれコイル(図示略)が巻回されている。
Next, a manufacturing mode of the radially oriented magnets 8a and 8b and the magnets 11A and 11B (obliquely oriented magnets 11a to 11d) will be described.
As shown in FIG. 10 (a), the radially oriented magnet 8a is sandwiched between a pair of iron cores 21 and 22 of a so-called magnetizer during the manufacture thereof. One iron core 21 has an arcuate outer peripheral surface 21a that abuts the entire inner peripheral surface of the radially oriented magnet 8a, and has side surfaces 21b that are continuous with each circumferential side surface of the radially oriented magnet 8a. The other iron core 22 has an arcuate inner peripheral surface 22a that abuts the entire outer peripheral surface of the radially oriented magnet 8a, and has side surfaces 22b that are continuous with each circumferential side surface of the radially oriented magnet 8a. . A coil (not shown) is wound around each of the iron cores 21 and 22.

このような構成において、鉄芯21に巻回されたコイルへの通電により該鉄芯21に径方向配向磁石8aの極性に一致する径方向に沿った磁束を生じさせるとともに、鉄芯22に巻回されたコイルへの通電により該鉄芯22に径方向配向磁石8aの極性に一致する径方向に沿った磁束を生じさせることで、径方向配向磁石8aは、前述の特性を有するように着磁される。尚、径方向配向磁石8bの着磁は、鉄芯21,22に生じさせる磁束の極性を反転させることを除き、概ね同様に行われるためその説明を割愛する。   In such a configuration, by energizing the coil wound around the iron core 21, the iron core 21 generates a magnetic flux along the radial direction that matches the polarity of the radially oriented magnet 8 a and is wound around the iron core 22. By energizing the rotated coil, a magnetic flux is generated in the iron core 22 along the radial direction that matches the polarity of the radially oriented magnet 8a, so that the radially oriented magnet 8a has the above-mentioned characteristics. Magnetized. The magnetization of the radially oriented magnet 8b is performed in substantially the same manner except that the polarity of the magnetic flux generated in the iron cores 21 and 22 is reversed.

図10(b)に示すように、磁石11A(斜め配向磁石11a,11b)は、その製造に際しいわゆる着磁器の一対の鉄芯23,24に挟まれる。一方の鉄芯23は、磁石11Aの内周面全面に当接する円弧状の外周面23aを有する。また、他方の鉄芯24は、磁石11Aの外側でその周方向を2等分する直線(磁極中心線LNに一致)に沿って延出成形されている。尚、鉄芯23,24には、それぞれコイル(図示略)が巻回されている。   As shown in FIG. 10 (b), the magnet 11A (obliquely oriented magnets 11a and 11b) is sandwiched between a pair of iron cores 23 and 24 of a so-called magnetizer in the production thereof. One iron core 23 has an arcuate outer peripheral surface 23a that contacts the entire inner peripheral surface of the magnet 11A. The other iron core 24 is extended and formed along a straight line (coinciding with the magnetic pole center line LN) that bisects the circumferential direction of the outer side of the magnet 11A. A coil (not shown) is wound around each of the iron cores 23 and 24.

このような構成において、鉄芯23に巻回されたコイルへの通電により該鉄芯23に磁石11Aの外側に設定した前記直線(LN)上の一点(点PNに一致)を通る放射状の磁束を生じさせるとともに、鉄芯24に巻回されたコイルへの通電により該鉄芯24に前記直線(LN)上の一点に収束する放射状の磁束を生じさせることで、磁石11A(斜め配向磁石11a,11b)は、前述の特性を有するように着磁される。尚、磁石11B(斜め配向磁石11c,11d)の着磁は、鉄芯23,24に生じさせる磁束の極性を反転させることを除き、概ね同様に行われるためその説明を割愛する。   In such a configuration, a radial magnetic flux passing through one point (coincident with the point PN) on the straight line (LN) set on the iron core 23 outside the magnet 11A by energization of the coil wound around the iron core 23. And a radial magnetic flux that converges on one point on the straight line (LN) is generated in the iron core 24 by energization of the coil wound around the iron core 24, thereby causing the magnet 11A (the obliquely oriented magnet 11a). , 11b) is magnetized to have the aforementioned characteristics. Magnetization of the magnet 11B (the obliquely oriented magnets 11c and 11d) is performed in substantially the same manner except that the polarity of the magnetic flux generated in the iron cores 23 and 24 is reversed, and thus the description thereof is omitted.

以上詳述したように上記実施の形態によれば、以下に示す効果が得られるようになる。
(1)前記一点PN,PSを通る放射状の磁束が生じる構成の斜め配向磁石11a〜11dを用いても、前記第1の実施の形態と同様に、効率よくモータ1の高トルク化を図ることが可能なロータ10を得ることができる。
As described above in detail, according to the above embodiment, the following effects can be obtained.
(1) Even if the obliquely oriented magnets 11a to 11d having a configuration in which a radial magnetic flux passing through the one point PN, PS is used, the torque of the motor 1 can be efficiently increased as in the first embodiment. Thus, the rotor 10 capable of achieving the above can be obtained.

(2)斜め配向磁石11a〜11dの径方向厚さD2が本実施形態においても径方向配向磁石8a,8bの径方向厚さD1よりも相対的に厚くされ、しかもその厚さD2が厚さD1の2倍以下に設定されている。そのため、前記第1の実施の形態と同様に、高トルクかつ低トルクリップルとすることができ、磁石11a〜11d及び磁石8a,8bの無駄な厚み設定となることを防止することができる。   (2) The radial thickness D2 of the obliquely oriented magnets 11a to 11d is made relatively thicker than the radial thickness D1 of the radially oriented magnets 8a and 8b in this embodiment, and the thickness D2 is thick. It is set to 2 times or less of D1. Therefore, similarly to the first embodiment, high torque and low torque ripple can be obtained, and useless thickness setting of the magnets 11a to 11d and the magnets 8a and 8b can be prevented.

(3)ロータ10の回転軸中心から前記一点PN,PSまでの距離Rが距離rの2倍以下に設定されていることで、より確実に高トルク化を図ることができる。特に、距離R,rの比の値(R/r)を「1.125」としたことで、極めて効率よく高トルク化を図ることができる。   (3) Since the distance R from the rotation axis center of the rotor 10 to the one point PN, PS is set to not more than twice the distance r, higher torque can be achieved more reliably. Particularly, by setting the ratio value (R / r) of the distances R and r to “1.125”, it is possible to increase the torque extremely efficiently.

尚、本発明の実施の形態は、以下のように変更してもよい。
・上記第1の実施の形態では、斜め配向磁石9a〜9dの配向方向の径方向に対する傾斜角度θを30°に設定したが、適宜変更可能である。尚、傾斜角度θは、0°<θ<80°の範囲が好ましく、特にその範囲内において、傾斜角度θが22.5°<θ<45°であることがより好ましい。
The embodiment of the present invention may be modified as follows.
In the first embodiment, the inclination angle θ with respect to the radial direction of the orientation direction of the obliquely oriented magnets 9a to 9d is set to 30 °, but can be changed as appropriate. The inclination angle θ is preferably in the range of 0 ° <θ <80 °, and more preferably in the range, the inclination angle θ is 22.5 ° <θ <45 °.

・上記第1の実施の形態では、1つの磁極を個別に設けた複数の磁石(斜め配向磁石9a〜9d)を用いたが、例えば径方向に対して傾斜する磁極をそれぞれ複数設けた複数の磁石を用いる分割数を減らした構成としてもよく、略環状の1つの磁石を用いる構成としてもよい。尚、1つの磁石に周方向配向の磁極を複数設ける場合と比較して、1つの磁石に径方向に対して斜め配向の磁極を複数設けることは容易である。このように、1つの磁石から斜め配向磁石を構成すれば、ロータコア7に対する斜め配向磁石の組み付けが容易となる。   In the first embodiment, a plurality of magnets (obliquely oriented magnets 9a to 9d) each provided with one magnetic pole are used. For example, a plurality of magnetic poles each inclined with respect to the radial direction are provided. It is good also as a structure which reduced the division | segmentation number using a magnet, and is good also as a structure using one substantially cyclic | annular magnet. Note that it is easier to provide a plurality of magnetic poles obliquely oriented in the radial direction in one magnet as compared with a case in which a plurality of circumferentially oriented magnetic poles are provided in one magnet. In this manner, if the obliquely oriented magnet is constituted by one magnet, the obliquely oriented magnet can be easily assembled to the rotor core 7.

・上記第1の実施の形態では、各斜め配向磁石9a〜9dを、周方向に隣り合う斜め配向磁石9a〜9d同士が周方向に当接するようにしたが、斜め配向磁石9a〜9dの間に適宜隙間を設けてもよく、例えば周方向に隣り合う斜め配向磁石9a〜9dが、径方向配向磁石8a,8bの磁極中心線LN,LSを挟んで離間するようにしてもよい。   In the first embodiment, the obliquely oriented magnets 9a to 9d are arranged such that the obliquely oriented magnets 9a to 9d adjacent to each other in the circumferential direction are in contact with each other in the circumferential direction, but between the obliquely oriented magnets 9a to 9d. For example, the circumferentially oriented obliquely oriented magnets 9a to 9d may be separated with the magnetic pole center lines LN and LS of the radially oriented magnets 8a and 8b interposed therebetween.

・上記第2の実施の形態では、距離R,rの比の値(R/r)を「1.125」に設定したが、適宜変更可能である。尚、距離Rが距離rの2倍以下での変更が好ましい。
・上記第2の実施の形態では、一対の磁極を個別に設けた複数の磁石(磁石11A,11B)を用いたが、例えば径方向に対して傾斜する磁極をそれぞれ1つ又は複数設けた複数の磁石を用いた構成としてもよく、略環状の1つの磁石を用いる構成としてもよい。このように、1つの磁石から斜め配向磁石を構成すれば、ロータコア7に対する斜め配向磁石の組み付けが容易となる。
In the second embodiment, the ratio value (R / r) of the distances R and r is set to “1.125”, but can be changed as appropriate. It is preferable to change the distance R so that it is not more than twice the distance r.
In the second embodiment, a plurality of magnets (magnets 11A and 11B) each having a pair of magnetic poles are used. For example, a plurality of magnets each having one or more magnetic poles inclined with respect to the radial direction are used. It is good also as a structure using one magnet, and it is good also as a structure using one substantially cyclic | annular magnet. In this manner, if the obliquely oriented magnet is constituted by one magnet, the obliquely oriented magnet can be easily assembled to the rotor core 7.

・上記各実施の形態では、斜め配向磁石9a〜9d,11a〜11dの径方向厚さD2と径方向配向磁石8a,8bの径方向厚さD1との厚さ比の値(D2/D1)を「1.5」に設定したが、適宜変更可能である。尚、厚さD2が厚さD1の2倍以下での変更が好ましい。   In each of the above embodiments, the value of the thickness ratio (D2 / D1) between the radial thickness D2 of the obliquely oriented magnets 9a to 9d and 11a to 11d and the radial thickness D1 of the radially oriented magnets 8a and 8b Is set to “1.5”, but can be changed as appropriate. It is preferable to change the thickness D2 so that it is not more than twice the thickness D1.

・上記各実施の形態では、1つの磁極を個別に設けた複数の磁石(径方向配向磁石8a,8b)を用いたが、例えば径方向の磁極をそれぞれ複数設けた複数の磁石を用いる分割数を減らした構成としてもよく、略環状の1つの磁石を用いる構成としてもよい。このように、1つの磁石から径方向配向磁石を構成すれば、ロータコア7に対する径方向配向磁石の組み付けが容易となる。   In each of the above embodiments, a plurality of magnets (radially oriented magnets 8a and 8b) each provided with one magnetic pole are used. For example, the number of divisions using a plurality of magnets each provided with a plurality of radial magnetic poles. It is good also as a structure which reduced this, and it is good also as a structure using one substantially cyclic | annular magnet. As described above, if the radially oriented magnet is configured from one magnet, the assembly of the radially oriented magnet to the rotor core 7 is facilitated.

・上記各実施の形態では、ステータ2の極数を12とし、ロータ3,10の極数を10としたが、ステータ2及びロータ3,10の極数は適宜変更可能である。
・上記各実施の形態では、ブラシレスモータ1に具体化したが、例えばブラシ付モータ等の他のモータに具体化してもよい。
In each of the above embodiments, the number of poles of the stator 2 is 12 and the number of poles of the rotors 3 and 10 is 10. However, the number of poles of the stator 2 and the rotors 3 and 10 can be appropriately changed.
In each of the above embodiments, the brushless motor 1 is embodied. However, the present invention may be embodied in another motor such as a motor with a brush.

次に、上記実施形態及び別例から把握できる技術的思想を以下に追記する。
(イ) 請求項1又は2に記載の回転電機のロータにおいて、前記斜め配向磁石は、その配向方向の径方向に対する傾斜角度θが、0°<θ<80°を満たすように配向された。
Next, a technical idea that can be grasped from the above embodiment and another example will be added below.
(A) In the rotor of the rotating electrical machine according to claim 1 or 2, the obliquely oriented magnet is oriented so that an inclination angle θ with respect to a radial direction of the orientation direction satisfies 0 ° <θ <80 °.

同構成によれば、斜め配向磁石を、その配向方向の径方向に対する傾斜角度θが0°<θ<80°を満たすように配向させることで、より確実に高トルク化を図ることができる(図3参照)。   According to this configuration, it is possible to increase the torque more reliably by orienting the obliquely oriented magnet so that the inclination angle θ with respect to the radial direction of the orientation direction satisfies 0 ° <θ <80 ° ( (See FIG. 3).

(ロ) 請求項1又は2に記載の回転電機のロータにおいて、前記斜め配向磁石は、その配向方向の径方向に対する傾斜角度θが、22.5°<θ<45°を満たすように配向された。   (B) In the rotor of the rotating electrical machine according to claim 1 or 2, the obliquely oriented magnet is oriented so that an inclination angle θ with respect to a radial direction of the orientation direction satisfies 22.5 ° <θ <45 °. It was.

同構成によれば、斜め配向磁石を、その配向方向の径方向に対する傾斜角度θが22.5°<θ<45°を満たすように配向させることで、より一層確実に高トルク化を図ることができる(図3参照)。   According to this configuration, the obliquely oriented magnet is oriented so that the inclination angle θ of the orientation direction with respect to the radial direction satisfies 22.5 ° <θ <45 °, so that the torque can be increased more reliably. (See FIG. 3).

(ハ) 請求項1又は2に記載の回転電機のロータにおいて、前記斜め配向磁石は、該斜め配向磁石の外側に設定した前記磁極中心線上の一点を通る放射状の磁束が生じる構成とした。   (C) In the rotor of the rotating electrical machine according to claim 1 or 2, the obliquely oriented magnet is configured to generate a radial magnetic flux passing through a point on the magnetic pole center line set outside the obliquely oriented magnet.

同構成によれば、前記斜め配向磁石の外側に設定した前記磁極中心線上の一点を通る放射状の磁束が生じる構成の斜め配向磁石にて、効率よく高トルク化を図ることが可能なロータを得ることができる。   According to this configuration, a rotor capable of efficiently increasing torque is obtained with a diagonally oriented magnet having a configuration in which a radial magnetic flux passing through one point on the magnetic pole center line set outside the diagonally oriented magnet is generated. be able to.

(ニ) 上記(ハ)に記載の回転電機のロータにおいて、前記ロータの回転軸中心から前記磁極中心線上の一点までの距離Rは、前記回転軸中心から前記斜め配向磁石の表面までの距離rの2倍以下に設定されている。   (D) In the rotor of the rotating electrical machine described in (c) above, a distance R from the rotation axis center of the rotor to a point on the magnetic pole center line is a distance r from the rotation axis center to the surface of the obliquely oriented magnet. Is set to 2 times or less.

同構成によれば、前記ロータの回転軸中心から前記磁極中心線上の一点までの距離Rは、前記回転軸中心から前記斜め配向磁石の表面までの距離rの2倍以下に設定されることで、より確実に高トルク化を図ることができる(図8参照)。   According to this configuration, the distance R from the rotation axis center of the rotor to one point on the magnetic pole center line is set to be not more than twice the distance r from the rotation axis center to the surface of the obliquely oriented magnet. Thus, the torque can be increased more reliably (see FIG. 8).

第1の実施の形態のモータの平面図。The top view of the motor of a 1st embodiment. 同実施の形態のロータの拡大図。The enlarged view of the rotor of the embodiment. 傾斜角度とトルクとの相関を示す相関図。The correlation diagram which shows the correlation with an inclination angle and a torque. ロータの表面磁束密度分布図。The surface magnetic flux density distribution figure of a rotor. 外側の斜め方向磁石と内側の径方向配向磁石との厚さ比に対するトルク及びトルクリップルの相関を示す相関図。The correlation diagram which shows the correlation of the torque and torque ripple with respect to the thickness ratio of an outer side diagonal direction magnet and an inner radial direction magnet. 第2の実施の形態のモータの平面図。The top view of the motor of 2nd Embodiment. 同実施の形態のロータの拡大図。The enlarged view of the rotor of the embodiment. ラジアル配向中心位置とトルクとの相関を示す相関図。The correlation diagram which shows the correlation with radial orientation center position and torque. ロータの表面磁束密度分布図。The surface magnetic flux density distribution figure of a rotor. (a)(b)は、同実施の形態の製造態様を示す模式図。(A) (b) is a schematic diagram which shows the manufacture aspect of the embodiment.

符号の説明Explanation of symbols

1…回転電機としてのモータ、2…ステータ、3,10…ロータ、5…巻線、8a,8b…径方向配向磁石、9a〜9d,11a〜11d…斜め配向磁石、D1,D2…径方向厚さ、LN,LS…磁極中心線、PN、PS…磁極中心線上の一点、θ…傾斜角度。   DESCRIPTION OF SYMBOLS 1 ... Motor as a rotary electric machine, 2 ... Stator, 3, 10 ... Rotor, 5 ... Winding, 8a, 8b ... Radially oriented magnet, 9a-9d, 11a-11d ... Diagonally oriented magnet, D1, D2 ... Radial direction Thickness, LN, LS: magnetic pole center line, PN, PS: one point on the magnetic pole center line, θ: inclination angle.

Claims (3)

径方向配向の磁極を有し周方向に交互に異なる磁極配置とする径方向配向磁石と、
前記径方向配向磁石の外周に配置され、前記径方向配向磁石の各磁極中心線を挟んだ両側に径方向に対して斜め配向の磁極を有する斜め配向磁石と、を備え、
前記斜め配向磁石は、前記径方向配向磁石のN極に対応するN極領域では、径方向外側かつ前記磁極中心線側に向かって傾斜する磁束が生じる構成とするとともに、前記径方向配向磁石のS極に対応するS極領域では、径方向内側かつ前記磁極中心線とは反対側に向かって傾斜する磁束が生じる構成とし、
前記斜め配向磁石の径方向厚さを、前記径方向配向磁石の径方向厚さよりも相対的に厚くしたことを特徴とする回転電機のロータ。
A radially oriented magnet having radially oriented magnetic poles and alternating magnetic poles in the circumferential direction; and
An obliquely oriented magnet that is disposed on the outer periphery of the radially oriented magnet and has magnetic poles obliquely oriented with respect to the radial direction on both sides of each magnetic pole center line of the radially oriented magnet,
In the N pole region corresponding to the N pole of the radially oriented magnet, the obliquely oriented magnet has a configuration in which a magnetic flux that is inclined radially outward and toward the magnetic pole center line is generated. In the S pole region corresponding to the S pole, a magnetic flux that is inclined radially inward and opposite to the magnetic pole center line is generated.
A rotor of a rotating electric machine, wherein a radial thickness of the obliquely oriented magnet is relatively thicker than a radial thickness of the radially oriented magnet.
請求項1に記載の回転電機のロータにおいて、
前記斜め配向磁石の径方向厚さは、更に、前記径方向配向磁石の径方向厚さの2倍以下に設定されていることを特徴とする回転電機のロータ。
The rotor of the rotating electrical machine according to claim 1,
The rotor of a rotating electrical machine, wherein a radial thickness of the obliquely oriented magnet is further set to be not more than twice a radial thickness of the radially oriented magnet.
請求項1又は2に記載のロータと、
前記ロータの回転のための磁界を発生させる巻線が巻回されてなるステータと
を備えたことを特徴とする回転電機。
The rotor according to claim 1 or 2,
A rotating electric machine comprising: a stator around which a winding for generating a magnetic field for rotating the rotor is wound.
JP2008123468A 2008-05-09 2008-05-09 Rotor of rotating electric machine, and rotating electric machine Pending JP2009273304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123468A JP2009273304A (en) 2008-05-09 2008-05-09 Rotor of rotating electric machine, and rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123468A JP2009273304A (en) 2008-05-09 2008-05-09 Rotor of rotating electric machine, and rotating electric machine

Publications (1)

Publication Number Publication Date
JP2009273304A true JP2009273304A (en) 2009-11-19

Family

ID=41439354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123468A Pending JP2009273304A (en) 2008-05-09 2008-05-09 Rotor of rotating electric machine, and rotating electric machine

Country Status (1)

Country Link
JP (1) JP2009273304A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225935A (en) * 2013-05-15 2014-12-04 三菱電機株式会社 Permanent magnet type rotary electric machine
US20200395878A1 (en) 2017-12-28 2020-12-17 Denso Corporation Rotating electrical machine
WO2021117831A1 (en) * 2019-12-13 2021-06-17 株式会社デンソー Rotating electric machine
WO2023124072A1 (en) * 2021-12-31 2023-07-06 浙江联宜电机有限公司 Electric motor having adjustable skewed poles
WO2023199709A1 (en) * 2022-04-14 2023-10-19 株式会社デンソー Rotary electric machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
US12074477B2 (en) 2017-12-28 2024-08-27 Denso Corporation Rotating electrical machine system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225935A (en) * 2013-05-15 2014-12-04 三菱電機株式会社 Permanent magnet type rotary electric machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11984795B2 (en) 2017-07-21 2024-05-14 Denso Corporation Rotating electrical machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
US20200395878A1 (en) 2017-12-28 2020-12-17 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US12028004B2 (en) 2017-12-28 2024-07-02 Denso Corporation Rotating electrical machine
US12074477B2 (en) 2017-12-28 2024-08-27 Denso Corporation Rotating electrical machine system
WO2021117831A1 (en) * 2019-12-13 2021-06-17 株式会社デンソー Rotating electric machine
JP7404841B2 (en) 2019-12-13 2023-12-26 株式会社デンソー rotating electric machine
JP2021097438A (en) * 2019-12-13 2021-06-24 株式会社デンソー Rotary electric machine
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
WO2023124072A1 (en) * 2021-12-31 2023-07-06 浙江联宜电机有限公司 Electric motor having adjustable skewed poles
WO2023199709A1 (en) * 2022-04-14 2023-10-19 株式会社デンソー Rotary electric machine

Similar Documents

Publication Publication Date Title
JP2009273304A (en) Rotor of rotating electric machine, and rotating electric machine
US9071118B2 (en) Axial motor
JP2007014110A (en) Rotary electric machine
JP2017077044A (en) Rotating electric machine and manufacturing method of rotor core
WO2013098940A1 (en) Electric motor
JP2009142144A (en) Anisotropic permanent magnet motor
JP5616835B2 (en) Brushless motor
JP2015115985A (en) Rotary electric machine
JP2010098937A (en) Brushless motor
KR20170039606A (en) Brushless motor
JP2008029078A (en) Permanent magnet type synchronous motor
JP2008104353A (en) Permanent magnet type motor
US20170077773A1 (en) Permanent magnet motor and power tool using same
JP2015070721A (en) Permanent magnet rotary electric machine
JP6627082B2 (en) Electric motor
JP2007074870A (en) Rotor embedded with permanent magnet and motor embedded with permanent magnet
JP6530956B2 (en) Electric motor
JPWO2020194390A1 (en) Rotating machine
JP2010035375A (en) Motor
KR20170039605A (en) Brushless motor
JP2007028734A (en) Dynamo-electric machine
JP2005328588A (en) Permanent magnet motor
JP2008220143A (en) Rotor of rotary electric machine and rotary electric machine
JP2009284716A (en) Outer rotor type brushless motor
JP2007159241A (en) Rotor and motor