JP2009266816A - Negative electrode active material for secondary battery, electrode for secondary battery containing the same, secondary battery and method of manufacturing them - Google Patents
Negative electrode active material for secondary battery, electrode for secondary battery containing the same, secondary battery and method of manufacturing them Download PDFInfo
- Publication number
- JP2009266816A JP2009266816A JP2009100812A JP2009100812A JP2009266816A JP 2009266816 A JP2009266816 A JP 2009266816A JP 2009100812 A JP2009100812 A JP 2009100812A JP 2009100812 A JP2009100812 A JP 2009100812A JP 2009266816 A JP2009266816 A JP 2009266816A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- secondary battery
- electrode active
- active material
- carbon material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、二次電池用負極活物質に関する。より詳しくは、エッジの一部または全部が炭化物層によって被覆された芯材炭素材料からなる二次電池用負極活物質、これを含む二次電池用電極、二次電池及びその製造方法に関する。 The present invention relates to a negative electrode active material for a secondary battery. More specifically, the present invention relates to a secondary battery negative electrode active material made of a core carbon material in which a part or all of edges are covered with a carbide layer, a secondary battery electrode including the secondary battery, a secondary battery, and a method for manufacturing the same.
最近、携帯電話、ノートPC、電気自動車など電池を用いる電子機器の急速な普及に伴って、小型で軽量でありながらも相対的に高容量である二次電池の需要が急速に増大している。特にリチウム二次電池は、軽量で高いエネルギー密度を持っているので、携帯器機の駆動源として脚光を浴びている。従って、リチウム二次電池の性能向上のための研究開発が活発に行われている。 Recently, with the rapid spread of electronic devices using batteries such as mobile phones, notebook PCs, and electric vehicles, the demand for secondary batteries that are small and light but have a relatively high capacity is rapidly increasing. . In particular, lithium secondary batteries are light and have a high energy density, and thus are attracting attention as driving sources for portable devices. Therefore, research and development for improving the performance of the lithium secondary battery is being actively conducted.
リチウム二次電池は、リチウムイオンの挿入(intercalations)及び脱離(deintercalation)が可能な活物質からなる負極と正極との間に有機電解液またはポリマー電解液を充填した状態でリチウムイオンが正極及び負極で挿入/脱離されるときの酸化・還元反応によって電気エネルギーを生産する。 In the lithium secondary battery, the lithium ion is filled with an organic electrolyte or a polymer electrolyte between a negative electrode and a positive electrode made of an active material capable of intercalation and deintercalation of lithium ions. Electric energy is produced by oxidation / reduction reactions when inserted / desorbed at the negative electrode.
リチウム二次電池の正極活物質として、リチウムコバルトオキシド(LiCoO2)、リチウムニッケルオキシド(LiNiO2)、リチウムマンガンオキシド(LiMnO2)などのような遷移金属化合物が主に用いられる。 Transition metal compounds such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMnO 2 ) are mainly used as the positive electrode active material of the lithium secondary battery.
そして、負極活物質として、一般に軟化程度の大きい天然黒鉛や人造黒鉛などの結晶質系炭素材料、または1000〜1500℃の低い温度で炭化水素や高分子などを炭化して得られた擬似黒鉛(pseudo‐graphite)構造または乱層構造(turbostratic structure)を有する非晶質系(low crystalline)炭素材料が用いられる。 And, as the negative electrode active material, generally, a crystalline carbon material such as natural graphite or artificial graphite with a large degree of softening, or pseudo graphite obtained by carbonizing a hydrocarbon or a polymer at a low temperature of 1000 to 1500 ° C. ( A low crystalline carbon material having a pseudo-graphite structure or a turbostructural structure is used.
結晶質系炭素材料は、真密度(true density)が高いので活物質をパッキングするのに有利であり、電位平坦性、初期容量及び充放電可逆性に優れているという長所があるが、この結晶質系炭素材料を含む電池を用いれば用いるほど、その電池の充放電効率およびサイクル容量が低下する問題がある。このような問題は電池の充放電サイクルの増加につれて、結晶質系炭素材料のエッジ部分で電解液の分解反応が誘発されるからであると分析している。 A crystalline carbon material is advantageous in packing an active material because of its high true density, and has advantages such as excellent potential flatness, initial capacity, and charge / discharge reversibility. As the battery containing the carbonaceous material is used, the charge / discharge efficiency and cycle capacity of the battery are reduced. It is analyzed that such a problem is caused by the decomposition reaction of the electrolytic solution being induced at the edge portion of the crystalline carbon material as the charge / discharge cycle of the battery increases.
特開第2002-348109号公報(特許文献1)は、結晶質系炭素材料のエッジ部分で電解液の分解反応が誘発されることを防止するために、炭化物層をコーティングした炭素材料系負極活物質を開示している。上記炭素材料系負極活物質において、炭化物層は炭素材料の表面にピッチをコーティングした後1000℃以上で熱処理を行って形成する。炭素材料に炭化物層をコーティングすれば、二次電池の初期容量は少々減少するが、充放電効率と長期サイクルの容量特性とが改善する効果を奏する。特に、高温熱処理で被覆材コーティング層を人造黒鉛化する場合、初期容量の減少量を削減しつつ電解液の分解反応を効率よく抑制することができる。 Japanese Patent Application Laid-Open No. 2002-348109 (Patent Document 1) discloses a carbon material-based negative electrode active coated with a carbide layer in order to prevent an electrolyte decomposition reaction from being induced at an edge portion of a crystalline carbon material. The substance is disclosed. In the carbon material-based negative electrode active material, the carbide layer is formed by coating the surface of the carbon material with pitch and then performing a heat treatment at 1000 ° C. or higher. If the carbide layer is coated on the carbon material, the initial capacity of the secondary battery is slightly reduced, but the effect of improving the charge / discharge efficiency and the long-term capacity characteristics is achieved. In particular, when the coating material coating layer is artificially graphitized by high-temperature heat treatment, the decomposition reaction of the electrolytic solution can be efficiently suppressed while reducing the amount of decrease in the initial capacity.
一方、上記炭素材料系負極活物質を用いて二次電池用電極を製造するときには、負極活物質を金属集電体にコーティングした後圧着することが一般的である。ところが、このとき負極活物質どうしがぶつかり合って炭化物層が破砕されることで、電解液と反応する炭素材料のエッジが露出する問題が発生する。このような炭素材料のエッジの露出は、二次電池の効率と長期サイクル特性低下の要因になる。したがって、炭素材料系負極活物質を製造するときには、電極圧着工程による炭化物層の破砕の影響を最小化することができる負極活物質の物性条件を探さなければならない。 On the other hand, when manufacturing an electrode for a secondary battery using the above-mentioned carbon material-based negative electrode active material, it is common to apply pressure bonding after coating the negative electrode active material on a metal current collector. However, at this time, the negative electrode active materials collide with each other and the carbide layer is crushed, thereby causing a problem that the edge of the carbon material that reacts with the electrolytic solution is exposed. Such exposure of the edge of the carbon material causes a reduction in efficiency and long-term cycle characteristics of the secondary battery. Therefore, when manufacturing a carbon material-based negative electrode active material, the physical property conditions of the negative electrode active material capable of minimizing the influence of the crushing of the carbide layer due to the electrode crimping process must be sought.
したがって、本発明者は、炭素材料系負極活物質を用いた二次電池の製造時、電池の性能と相関関係がある負極活物質の物性パラメータを明らかにし、同時に炭化物層の破砕による二次電池の性能低下を防止することができる負極活物質の物性条件を提示しようとする技術的背景の下で本発明を創案した。 Therefore, the present inventor has clarified the physical property parameters of the negative electrode active material having a correlation with the performance of the battery during the production of the secondary battery using the carbon material-based negative electrode active material, and at the same time, the secondary battery by crushing the carbide layer. The present invention was devised under the technical background of attempting to present physical property conditions of a negative electrode active material that can prevent the performance degradation of the negative electrode.
本発明は、上述した従来技術の問題点を解決するために案出されたものであり、二次電池用負極活物質の物性パラメータを新たに定義し、定義された物性パラメータと二次電池の電気化学的特性との間の相関関係を把握することで、二次電池用電極の製造のために圧着工程を行っても二次電池の電気化学的特性が劣化しない物性パラメータ値を持つ炭素材料系負極活物質とその製造方法を提供することを目的とする。 The present invention has been devised to solve the above-described problems of the prior art, and newly defines physical property parameters of a negative electrode active material for a secondary battery. A carbon material with physical property parameter values that does not deteriorate the electrochemical characteristics of the secondary battery even if the crimping process is performed for the production of the secondary battery electrode by grasping the correlation between the electrochemical characteristics An object of the present invention is to provide a negative electrode active material and a method for producing the same.
本発明の他の目的は、新たに定義された物性パラメータ値を最適化した炭素材料系負極活物質を用いて製造された二次電池用電極及びこれを含む二次電池を提供することにある。 Another object of the present invention is to provide an electrode for a secondary battery manufactured using a carbon material-based negative electrode active material in which newly defined physical property parameter values are optimized, and a secondary battery including the same. .
上記技術的課題を解決するための本発明による二次電池用負極活物質は、
エッジの一部または全部が炭化物層によって被覆された芯材炭素材料を含み、
CuKα線をX線源とするXRD測定データで、(002)面のピークが始まる前、回折角2θが25.5〜26.3度の区間についての放物線の接線の傾きが30〜43度である
ことを特徴とする。
The negative electrode active material for a secondary battery according to the present invention for solving the above technical problem is
Including a core carbon material in which part or all of the edge is covered with a carbide layer;
XRD measurement data using CuKα ray as an X-ray source. Before the peak of the (002) plane starts, the inclination of the tangent of the parabola in the section where the diffraction angle 2θ is 25.5 to 26.3 degrees is 30 to 43 degrees. It is characterized by being.
ここで、上記放物線の接線の傾きは、上記区間、すなわち、上記XRD測定データで回折角2θが25.5〜26.3度の区間を多項式近似法(Polynomial approximation technique)に従って放物線の関数y=ax2+bx+cでマッピングしたときに、該放物線の関数の焦点に最も近接する点における接線の傾きである。 Here, the slope of the tangent of the parabola is the function of the parabola y = It is the slope of the tangent at the point closest to the focal point of the parabola function when mapped with ax 2 + bx + c.
望ましくは、上記負極活物質のタップ密度は、1.0g/cm3以上であり、比表面積は5m2/g以下である。
望ましくは、上記芯材炭素材料は、高結晶性天然黒鉛、さらに望ましくは、球状の高結晶性天然黒鉛である。
Desirably, the negative electrode active material has a tap density of 1.0 g / cm 3 or more and a specific surface area of 5 m 2 / g or less.
Desirably, the core carbon material is highly crystalline natural graphite, and more desirably spherical highly crystalline natural graphite.
あるいは、上記芯材炭素材料は、楕円形状、破砕状、鱗状またはウィスカー状の形状を有する天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ(mesocarbon microbead;MCMB)、メソフェーズピッチ(mesophase pitch)の微粉、等方性ピッチの微粉、樹脂炭、及び擬似黒鉛(pseudo‐graphite)構造または乱層構造(turbostratic structure)を有する非晶質系(low crystalline)炭素の微粉からなる群より選択された何れか一つ、またはこれらの混合物である。 Alternatively, the core carbon material may be oval, crushed, scaled or whisker-shaped natural graphite, artificial graphite, mesocarbon microbead (MCMB), mesophase pitch fine powder, etc. Any one selected from the group consisting of fine powder of isotropic pitch, resin charcoal, and amorphous powder having pseudo-graphite structure or turbostratic structure (low crystalline line). Or a mixture thereof.
望ましくは、上記炭化物層は、上記芯材炭素材料に石炭系または石油系の、ピッチ、タールまたはこれらの混合物をコーティングした後炭化焼成して形成した低結晶性炭化物層である。 Preferably, the carbide layer is a low crystalline carbide layer formed by coating the core carbon material with a coal-based or petroleum-based pitch, tar, or a mixture thereof and then carbonizing and firing.
本発明の技術的課題は、上述した負極活物質がコーティングされた金属集電体からなる二次電池用電極とこれを含む二次電池によっても解決できる。
ここで、この二次電池は、負極活物質がコーティングされた負極集電体、正極活物質がコーティングされた正極集電体、上記負極集電体と正極集電体との間に介在するセパレーター、及びこのセパレーターに含浸された二次電池用電解液を含む。
The technical problem of the present invention can also be solved by a secondary battery electrode comprising a metal current collector coated with the above-described negative electrode active material and a secondary battery including the same.
The secondary battery includes a negative electrode current collector coated with a negative electrode active material, a positive electrode current collector coated with a positive electrode active material, and a separator interposed between the negative electrode current collector and the positive electrode current collector. And an electrolyte for a secondary battery impregnated in the separator.
上記技術的課題を解決するための本発明による二次電池用炭素材料系負極活物質の製造方法は、
高結晶性芯材炭素材料、好ましくはタップ密度が1.0g/cm3以上である高結晶性芯材炭素材料と、軟化点が100℃以上である石炭系または石油系の被覆炭素材料とを混合して混合物を得る段階;及び
上記混合物を焼成して上記被覆炭素材料を炭化させることで芯材炭素材料のエッジの一部または全部に炭化物層、特に低結晶性炭化物層を形成する段階を含む。
A method for producing a carbon material-based negative electrode active material for a secondary battery according to the present invention for solving the above technical problem,
A highly crystalline core carbon material, preferably a high crystalline core carbon material having a tap density of 1.0 g / cm 3 or more, and a coal-based or petroleum-based coated carbon material having a softening point of 100 ° C. or more. Mixing to obtain a mixture; and firing the mixture to carbonize the coated carbon material to form a carbide layer, particularly a low crystalline carbide layer, on part or all of the edge of the core carbon material. Including.
ここで、本発明に従って製造された負極活物質、すなわち上記炭化物層が形成された芯材炭素材料からなる負極活物質についてのCuKα線をX線源とするXRD測定データで、(002)面ピークが始まる前、回折角2θが25.5〜26.3度の区間についての放物線の接線の傾きは30〜43度である。この放物線の接線の傾きは、前記二次電池用負極活物質における放物線の接線の傾きと同様、上記区間を多項式近似法に従って放物線の関数y=ax2+bx+cでマッピングしたときに、該放物線の関数の焦点に最も近接する点における接線の傾きである。 Here, XRD measurement data using a CuKα ray as an X-ray source for a negative electrode active material manufactured according to the present invention, that is, a negative electrode active material composed of a core carbon material on which the carbide layer is formed, is a (002) plane peak. Before the start of the parabola, the slope of the tangent of the parabola for the section with the diffraction angle 2θ of 25.5 to 26.3 degrees is 30 to 43 degrees. The slope of the parabola tangent is similar to the slope of the parabola tangent in the negative electrode active material for a secondary battery, and the parabola function when the above section is mapped by a parabolic function y = ax 2 + bx + c according to a polynomial approximation method. Is the slope of the tangent at the point closest to the focal point.
本発明において、上記混合物の焼成温度を、1000〜2500℃とすることができる。
望ましくは、上記混合物の焼成を、互いに異なる温度条件で2回以上行う。このような場合、後続の焼成工程の焼成温度は、先行して行われた焼成工程の焼成温度より高い。
In this invention, the calcination temperature of the said mixture can be 1000-2500 degreeC.
Desirably, the mixture is fired twice or more under different temperature conditions. In such a case, the firing temperature in the subsequent firing step is higher than the firing temperature in the preceding firing step.
本発明によれば、二次電池用炭素材料系負極活物質の物性の中で、電解液の分解反応と密接な関連がある結晶性条件と比表面積の条件、そして電極圧着工程の工程性と関連があるタップ密度の条件を最適化することで、二次電池の放電容量、効率及び長期サイクルでの容量維持率を向上させることができる。 According to the present invention, among the physical properties of the carbon material-based negative electrode active material for a secondary battery, the crystallinity condition and the specific surface area condition closely related to the decomposition reaction of the electrolytic solution, and the processability of the electrode pressing process By optimizing the related tap density conditions, the discharge capacity and efficiency of the secondary battery and the capacity maintenance rate in the long-term cycle can be improved.
以下、本発明の望ましい実施例を詳しく説明する。これに先立って、本明細書及び特許請求の範囲に使われた用語や単語を通常の意味または辞書的な意味に限定して解釈してはならず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則して、本発明の技術的思想に符合する意味と概念とによって解釈しなければならない。従って、本明細書に記載された実施例は本発明の最も望ましい一実施例に過ぎず、本発明の技術的思想の全てを代表するものではないため、本出願時点においてこれらに代替できる多様な均等物と変形例があり得ることを理解しなければならない。 Hereinafter, preferred embodiments of the present invention will be described in detail. Prior to this, the terms and words used in this specification and claims should not be construed to be limited to ordinary or lexicographic meanings, and the inventor shall make his invention the best way. In accordance with the principle that the concept of terms can be appropriately defined for the purpose of explanation, the meaning and concept consistent with the technical idea of the present invention should be interpreted. Therefore, the embodiment described in the present specification is only the most preferred embodiment of the present invention, and does not represent all of the technical idea of the present invention. It should be understood that there can be equivalents and variations.
図1は、後述する実施例1及び比較例1に従って製造された二次電池用負極活物質のXRD測定データのうち、回折角2θ(θはブラッグ角を表す。)が24.5〜26.5度の区間を拡大して示したグラフである。 FIG. 1 shows that the diffraction angle 2θ (θ represents the Bragg angle) is 24.5 to 26. XRD measurement data of the negative electrode active material for a secondary battery manufactured according to Example 1 and Comparative Example 1 described later. It is the graph which expanded and showed the area of 5 degree | times.
図面を参照すると、本発明による二次電池用負極活物質(実施例1)は、エッジの一部または全部が炭化物層によって被覆された芯材炭素材料を含み、CuKα線をX線源とするXRD測定データで、(002)面ピークが始まる前、回折角2θが25.5〜26.3度の区間についての放物線の接線の傾きが30〜43度であることを特徴とする。実施例1と比較して比較例1の放物線の接線の傾きは約45度に近い。 Referring to the drawings, a negative electrode active material for a secondary battery (Example 1) according to the present invention includes a core carbon material in which part or all of the edge is covered with a carbide layer, and uses CuKα rays as an X-ray source. In the XRD measurement data, before the (002) plane peak starts, the parabolic tangent slope for the section where the diffraction angle 2θ is 25.5 to 26.3 degrees is 30 to 43 degrees. Compared with Example 1, the inclination of the tangent of the parabola of Comparative Example 1 is close to about 45 degrees.
ここで、上記放物線の接線の傾きは、上記区間、すなわち、上記XRD測定データで回折角2θが25.5〜26.3度の区間を多項式近似法に従って放物線の関数y=ax2+bx+cでマッピングしたときに、放物線の関数の焦点に最も近接する点における接線の傾きである。 Here, the gradient of the tangent of the parabola is mapped by the parabolic function y = ax 2 + bx + c according to the polynomial approximation method in the interval, that is, the interval where the diffraction angle 2θ is 25.5 to 26.3 degrees in the XRD measurement data. Is the slope of the tangent at the point closest to the focal point of the parabolic function.
望ましくは、上記芯材炭素材料は、球状の高結晶性天然黒鉛である。あるいは、上記芯材炭素材料は、楕円形状、破砕状、鱗状またはウィスカー状などの形状を有する天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ、メソフェーズピッチの微粉、等方性ピッチの微粉、樹脂炭、及び擬似黒鉛構造または乱層構造を有する非晶質系炭素の微粉からなる群より選択された何れか一つ、またはこれらの混合物である。 Desirably, the core carbon material is spherical highly crystalline natural graphite. Alternatively, the core carbon material is natural graphite having an elliptical shape, crushed shape, scale shape or whisker shape, artificial graphite, mesocarbon microbeads, fine powder of mesophase pitch, fine powder of isotropic pitch, resin charcoal, And any one selected from the group consisting of fine powders of amorphous carbon having a pseudo graphite structure or a turbulent layer structure, or a mixture thereof.
望ましくは、上記炭化物層は、芯材炭素材料に石炭系または石油系の、ピッチ、タールまたはこれらの混合物をコーティングした後炭化焼成して形成した低結晶性炭化物層である。ここで、低結晶性とは、芯材炭素材料に比べて炭化物層の結晶化度が低いということを意味する。つまり、芯材炭素材料として上記非晶質系炭素のように結晶性の低い炭素が用いられる場合であっても、上記炭化物層は、その芯材炭素材料よりもさらに結晶化度が低いことを意味する。 Preferably, the carbide layer is a low crystalline carbide layer formed by coating a core carbon material with a coal-based or petroleum-based pitch, tar, or a mixture thereof and then carbonizing and firing. Here, low crystallinity means that the crystallinity of the carbide layer is lower than that of the core carbon material. In other words, even when carbon having low crystallinity such as amorphous carbon is used as the core carbon material, the carbide layer has a lower crystallinity than the core carbon material. means.
上記炭化物層は、芯材炭素材料の細孔を埋めて比表面積を減少させ、電解液の分解反応サイトを減少させる機能を発揮する。また、上記炭化物層は、電極圧着工程において負極活物質を圧着するとき、負極活物質粒子間の衝突をバッファリングすることで、負極活物質粒子の形態における変形を防止し圧着密度を増加させるのに寄与する。 The carbide layer exhibits the function of filling the pores of the core carbon material, reducing the specific surface area, and reducing the decomposition reaction sites of the electrolytic solution. Further, the carbide layer prevents deformation in the form of the negative electrode active material particles and increases the pressure bonding density by buffering collision between the negative electrode active material particles when the negative electrode active material is pressure bonded in the electrode pressure bonding process. Contribute to.
上記XRD測定データは、CuKα線をX線源として、X線回折分析器(Philips 社の「X’pert Pro MPD」)を用いて得る。このとき、上記X‐Ray回折分析器のジェネレーターは40KV及び30mAに設定し、スキャン範囲は20〜80度、ステップサイズは0.02度、スキャン速度は0.1s/stepに設定し、標準物質としては325番メッシュで分級した純度99%のシリコン粉末を用いる。 The XRD measurement data is obtained using an X-ray diffraction analyzer (“X'pert Pro MPD” from Philips) using CuKα rays as an X-ray source. At this time, the generator of the X-Ray diffraction analyzer is set to 40 KV and 30 mA, the scan range is set to 20 to 80 degrees, the step size is set to 0.02 degrees, the scan speed is set to 0.1 s / step, and the standard substance In this case, 99% pure silicon powder classified by 325 mesh is used.
本発明において、上記放物線の接線の傾きは、XRD測定データで回折角2θが25.5〜26.3度の区間(以下、「結晶性評価区間」と称する)を多項式近似法に従って放物線の関数y=ax2+bx+cでマッピングしたときに、放物線の関数の焦点に最も近接する点における接線の傾きを意味する。上記多項式近似法を用いた結晶性評価区間のマッピングは、本発明が属する技術分野において公知のプログラムである「Microcal(米国)」社の「Microcal Origin 6.0」を用いて行うことができる。但し、本発明がプログラムの種類によって限定されるのではない。ここで、この放物線の接線の傾きを表す角度は、具体的には、XRDチャートにおいて、回折角およびピークの高さ(強度)をそれぞれ0.1度/cmおよび250intensity/cmを基準として計算することにより求めることができる。このとき、接線が回折角1度当たりGintensity増加するような傾きを有しているときの、接線の傾きを表す角度をA度とすると、このAとGとは、tan(A×π/180)=G/2500の関係にある。 In the present invention, the inclination of the tangent of the parabola is a function of a parabola according to a polynomial approximation method in an XRD measurement data in which a diffraction angle 2θ is 25.5 to 26.3 degrees (hereinafter referred to as “crystallinity evaluation interval”). When mapping with y = ax 2 + bx + c, it means the slope of the tangent at the point closest to the focal point of the parabolic function. The mapping of the crystallinity evaluation section using the above polynomial approximation method can be performed using “Microcal Origin 6.0” of “Microcal (USA)” which is a known program in the technical field to which the present invention belongs. However, the present invention is not limited by the type of program. Here, the angle representing the inclination of the tangent of the parabola is specifically calculated based on the diffraction angle and the peak height (intensity) of 0.1 degree / cm and 250 intensity / cm, respectively, in the XRD chart. Can be obtained. At this time, when the tangent has an inclination that increases Gintensity per 1 degree of diffraction angle and the angle representing the inclination of the tangent is A degree, A and G are tan (A × π / 180 ) = G / 2500.
上記放物線の接線の傾きは、負極活物質の結晶性を評価する尺度として活用できる。すなわち、比較例1のように放物線の接線の傾きが45度に近いほど負極活物質の結晶化度が高いと解釈できる。ところで、負極活物質の結晶化度が大きくなると、電解液の分解反応が誘発される結晶表面(特に、エッジ)が発達するようになる。そして、負極活物質の硬度が増加するので、電極圧着工程で負極活物質を圧着するとき芯材炭素材料を被覆している炭化物層が破砕されて電解液の分解反応が誘発されるエッジの表面が新しく露出する可能性が増加する。その結果、二次電池の使用期間が増加するにつれて電解液の分解反応の発生程度が多くなり、二次電池の安定性、充放電効率及び長期サイクル特性が低下する。しかし、実施例1のように、負極活物質の結晶性評価区間の接線の傾きを30〜43度の範囲内に制御すれば、電解液の分解反応が誘発される結晶表面の露出を最大限に抑制することで、二次電池の安定性、充放電効率及び長期サイクル特性を向上させることができる。 The inclination of the tangent of the parabola can be used as a scale for evaluating the crystallinity of the negative electrode active material. That is, it can be interpreted that the crystallization degree of the negative electrode active material is higher as the inclination of the tangent of the parabola is closer to 45 degrees as in Comparative Example 1. By the way, when the degree of crystallinity of the negative electrode active material increases, a crystal surface (in particular, an edge) on which a decomposition reaction of the electrolytic solution is induced develops. And since the hardness of the negative electrode active material is increased, the carbide layer covering the core carbon material is crushed when the negative electrode active material is crimped in the electrode crimping step, and the decomposition of the electrolyte is induced on the surface of the edge Increases the possibility of new exposure. As a result, as the usage period of the secondary battery increases, the degree of occurrence of the decomposition reaction of the electrolytic solution increases, and the stability, charge / discharge efficiency, and long-term cycle characteristics of the secondary battery deteriorate. However, as in Example 1, if the slope of the tangential line in the crystallinity evaluation section of the negative electrode active material is controlled within a range of 30 to 43 degrees, the exposure of the crystal surface that induces the decomposition reaction of the electrolyte is maximized. By suppressing to the above, the stability, charge / discharge efficiency and long-term cycle characteristics of the secondary battery can be improved.
本発明による負極活物質は、1.0g/cm3以上のタップ密度と5m2/g以下の比表面積を有することがさらに望ましい。
ここで、タップ密度はJIS‐K5101に準するものであって、ホソカワミクロン社製の「パウダーテスターPT‐R」を用いて測定する。すなわち、本発明による負極活物質の粉末を目盛間隔が200μmのふるいを通じて20cc容量のタッピングセルに落下させ、タッピングセルを完全に充填した後、1秒当たり1回でストローク長さ18mmのタッピングを3000回行った後、タッピングされた負極活物質の密度を測定してタップ密度を測定する。
More preferably, the negative electrode active material according to the present invention has a tap density of 1.0 g / cm 3 or more and a specific surface area of 5 m 2 / g or less.
Here, the tap density conforms to JIS-K5101 and is measured using “Powder Tester PT-R” manufactured by Hosokawa Micron. That is, the negative electrode active material powder according to the present invention is dropped into a tapping cell having a capacity of 20 cc through a sieve having a graduation interval of 200 μm, and after the tapping cell is completely filled, tapping with a stroke length of 18 mm is performed once per second to 3000 After tapping, the tap density is measured by measuring the density of the tapped negative electrode active material.
タップ密度は、負極活物質の粉末の直径、断面形状、表面形状などによって影響を受ける。すなわち、タップ密度は、負極活物質粒子の平均粒径が同一であっても粒度分布に応じてその値が異なる。例えば、負極活物質に微粉が多く含まれていれば、微粉間の凝集現象によってタップ密度が低下する。また、負極活物質に球形ではない粒子が多ければ、負極活物質の圧着時に圧着効率が低下してタップ密度が低下する。一方、タップ密度は、芯材炭素材料の被覆によって増加する。特に、本発明の望ましい実施例による負極活物質は、低結晶性炭化物層で被覆されている。したがって、負極活物質を圧着するとき炭化物層が上述のようにバッファーの役割をすることで、圧着密度を向上させるのに寄与する。本発明による負極活物質は、球状の芯材炭素材料が低結晶性炭化物層によって被覆されているので、1.0g/cm3以上の比較的高いタップ密度を有する。負極活物質のタップ密度が上記条件を満足すれば、電解液が負極活物質に浸透することを妨害することなく、集電体金属に負極活物質を圧着するときの圧着密度を増加させることができる。 The tap density is affected by the diameter, cross-sectional shape, surface shape, etc. of the negative electrode active material powder. That is, the tap density varies depending on the particle size distribution even if the average particle diameter of the negative electrode active material particles is the same. For example, if the negative electrode active material contains a large amount of fine powder, the tap density decreases due to an agglomeration phenomenon between the fine powders. Moreover, if there are many non-spherical particles in the negative electrode active material, the compression efficiency is reduced when the negative electrode active material is bonded, and the tap density is decreased. On the other hand, the tap density increases due to the coating of the core carbon material. In particular, the negative electrode active material according to a preferred embodiment of the present invention is coated with a low crystalline carbide layer. Therefore, when the negative electrode active material is pressure-bonded, the carbide layer serves as a buffer as described above, which contributes to improving the pressure-bonding density. The negative electrode active material according to the present invention has a relatively high tap density of 1.0 g / cm 3 or more because the spherical core carbon material is covered with the low crystalline carbide layer. If the tap density of the negative electrode active material satisfies the above conditions, the pressure density when the negative electrode active material is pressure bonded to the current collector metal can be increased without hindering the electrolyte from penetrating into the negative electrode active material. it can.
本発明による負極活物質の比表面積は、Micromeritics社製の「窒素吸着BET比表面積測定装置ASAP2400」を用いて測定する。本発明による負極活物質は、芯材炭素材料の細孔が石炭系または石油系重質油に由来する炭素の付着または被覆によって埋められているので5m2/g以下の低い比表面積を持つ。このように比表面積が小さいと、電解液の分解反応が起こり得るサイトが減少するので、電解液の分解反応による二次電池の性能低下を防止することができる。 The specific surface area of the negative electrode active material according to the present invention is measured using a “nitrogen adsorption BET specific surface area measuring apparatus ASAP2400” manufactured by Micromeritics. The negative electrode active material according to the present invention has a specific surface area as low as 5 m 2 / g or less because the pores of the core carbon material are filled with carbon adhering or coating derived from coal-based or petroleum heavy oil. When the specific surface area is small as described above, the number of sites where the decomposition reaction of the electrolytic solution can occur is reduced, so that the performance degradation of the secondary battery due to the decomposition reaction of the electrolytic solution can be prevented.
上述した本発明による二次電池用負極活物質の製造方法を説明する。
まず、粒子形態を有する芯材炭素材料と石炭系または石油系の炭素材料とを湿式または乾式で混合して芯材炭素材料の表面に炭素材料コーティング層を形成する。
The manufacturing method of the negative electrode active material for secondary batteries according to the present invention described above will be described.
First, a core material carbon material having a particle form and a coal-based or petroleum-based carbon material are mixed in a wet or dry manner to form a carbon material coating layer on the surface of the core material carbon material.
ここで、芯材炭素材料に石炭系または石油系の炭素材料を芯材炭素材料の重量に対して0.1〜25重量%で混合する。
望ましくは、上記芯材炭素材料としては、高結晶性天然黒鉛、さらに望ましくは、タップ密度が1.0g/cm3以上である球状の高結晶性天然黒鉛を用いる。
Here, coal-based or petroleum-based carbon material is mixed with the core carbon material at 0.1 to 25% by weight with respect to the weight of the core carbon material.
Desirably, the core carbon material is highly crystalline natural graphite, and more desirably spherical highly crystalline natural graphite having a tap density of 1.0 g / cm 3 or more.
あるいは、楕円形状、破砕状、鱗状またはウィスカー状などの形状を有する天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ、メソフェーズピッチの微粉、等方性ピッチの微粉、樹脂炭、及び擬似黒鉛構造または乱層構造を有する非晶質系炭素の微粉からなる群より選択された何れか一つまたはこれらの混合物を芯材炭素材料として用いることができる。 Or natural graphite, artificial graphite, mesocarbon microbeads, fine particles of mesophase pitch, fine powder of isotropic pitch, resin charcoal, and pseudo-graphite structure or turbulent layer having an elliptical shape, crushed shape, scale shape or whisker shape Any one selected from the group consisting of fine powders of amorphous carbon having a structure or a mixture thereof can be used as the core carbon material.
望ましくは、上記石炭系または石油系の炭素材料としては、軟化点が100℃以上であるピッチ、タールまたはこれらの混合物を用いる。
次いで、上記炭素材料コーティング層が形成された芯材炭素材料を焼成して被覆炭素材料を炭化させることで、芯材炭素材料のエッジの一部または全部に炭化物層を形成する。
Desirably, pitch, tar or a mixture thereof having a softening point of 100 ° C. or higher is used as the coal-based or petroleum-based carbon material.
Next, the core carbon material on which the carbon material coating layer is formed is baked to carbonize the coated carbon material, thereby forming a carbide layer on part or all of the edge of the core carbon material.
ここで、炭化物層の形成のための焼成温度を1000〜2500℃に、焼成昇温速度を0.01〜20℃/minに設定することができる。望ましくは、焼成工程は焼成温度を変えて2回以上行い、先行して行った焼成工程の焼成温度より後続の焼成工程の焼成温度を高く制御する。一例として、2回にかけて焼成工程を行い、1次焼成工程は1100℃で1時間、2次焼成工程は2200℃で1時間行うことができる。 Here, the firing temperature for forming the carbide layer can be set to 1000 to 2500 ° C., and the firing temperature increase rate can be set to 0.01 to 20 ° C./min. Desirably, the firing step is performed twice or more at different firing temperatures, and the firing temperature of the subsequent firing step is controlled to be higher than the firing temperature of the preceding firing step. As an example, the firing process can be performed twice, the primary firing process can be performed at 1100 ° C. for 1 hour, and the secondary firing process can be performed at 2200 ° C. for 1 hour.
上述した段階を経て製造された負極活物質は、CuKα線をX線源とするXRD測定データで、(002)面ピークが始まる前、回折角2θが25.5〜26.3度の区間についての放物線の接線の傾きが30〜43度であり、1.0g/cm3以上のタップ密度と5m2/g以下の比表面積を有する。 The negative electrode active material manufactured through the above-described steps is XRD measurement data using CuKα rays as an X-ray source. Before the (002) plane peak starts, the diffraction angle 2θ is about 25.5 to 26.3 degrees. The parabola has a tangential slope of 30 to 43 degrees, a tap density of 1.0 g / cm 3 or more and a specific surface area of 5 m 2 / g or less.
上述した方法に従って製造された二次電池用負極活物質を、導電材、バインダー及び有機溶媒と混合して活物質ペーストを製造することができる。それから、活物質ペーストを銅ホイルのような金属集電体に塗布した後乾燥、熱処理及び圧着して二次電池用電極(負極)を製造することができる。 The active material paste can be manufactured by mixing the negative electrode active material for a secondary battery manufactured according to the above-described method with a conductive material, a binder, and an organic solvent. Then, the active material paste is applied to a metal current collector such as a copper foil, followed by drying, heat treatment and pressure bonding to produce a secondary battery electrode (negative electrode).
また、このように製造された二次電池用電極は、リチウム二次電池を製造するために用いることができる。すなわち、本発明による負極活物質を所定の厚さで結着した金属集電体とLi系遷移金属化合物を所定の厚さで結着した金属集電体とをセパレーターを挟んで対向させた後、セパレーターにリチウム二次電池用電解液を含浸させれば、繰り返して充放電が可能なリチウム二次電池の製造も可能である。このような二次電池用電極及び二次電池製造方法は、本発明が属する技術分野において通常の知識を有する者に広く知られているので詳細な説明は省略する。 Moreover, the electrode for secondary batteries manufactured in this way can be used in order to manufacture a lithium secondary battery. That is, after the metal current collector obtained by binding the negative electrode active material according to the present invention at a predetermined thickness and the metal current collector obtained by binding the Li-based transition metal compound at a predetermined thickness are opposed to each other with the separator interposed therebetween. If a separator is impregnated with an electrolytic solution for a lithium secondary battery, it is possible to produce a lithium secondary battery that can be repeatedly charged and discharged. Such an electrode for a secondary battery and a method for manufacturing the secondary battery are widely known to those having ordinary knowledge in the technical field to which the present invention belongs, and thus detailed description thereof is omitted.
なお、本発明は二次電池用負極活物質の物性に特徴がある。したがって、本発明による負極活物質を用いて二次電池用電極とこれを含む二次電池を製造するときには、本発明が属する技術分野において公知の多様な方式を適用することができる。また、本発明による負極活物質が活用できる二次電池の種類は、リチウム二次電池のみに限定されないことは自明である。 In addition, this invention has the characteristics in the physical property of the negative electrode active material for secondary batteries. Therefore, when manufacturing a secondary battery electrode and a secondary battery including the same using the negative electrode active material according to the present invention, various methods known in the technical field to which the present invention belongs can be applied. Further, it is obvious that the types of secondary batteries that can utilize the negative electrode active material according to the present invention are not limited to lithium secondary batteries.
<実施例及び比較例>
[実施例1]
高結晶性の球状天然黒鉛に低結晶性炭素材料であるピッチを天然黒鉛の重量に対して20重量%の割合で混ぜ、10分間高速で乾式混合して混合物を得た。それから、混合物を焼成チャンバーに引き込んで昇温速度17℃/分で1,100℃まで昇温させた後1,100℃で1時間焼成し、また昇温速度17℃/分で2,200℃まで昇温させた後1時間焼成し、分級及び微粉除去工程を行って負極活物質を製造した。このように製造された負極活物質に対するXRDデータ上の結晶性評価区間の放物線の接線の傾き、比表面積及びタップ密度を測定した結果、その値はそれぞれ39度、0.65m2/g及び1.12g/cm3であった。
<Examples and Comparative Examples>
[Example 1]
Pitch, which is a low crystalline carbon material, was mixed with high crystalline spherical natural graphite at a ratio of 20% by weight with respect to the weight of natural graphite, and dry mixed at high speed for 10 minutes to obtain a mixture. Then, the mixture was drawn into the firing chamber, heated to 1,100 ° C. at a temperature rising rate of 17 ° C./min, fired at 1,100 ° C. for 1 hour, and 2,200 ° C. at a heating rate of 17 ° C./min. Then, the mixture was baked for 1 hour and subjected to a classification and fine powder removal step to produce a negative electrode active material. As a result of measuring the inclination, specific surface area and tap density of the parabola in the crystallinity evaluation section on the XRD data for the negative electrode active material thus produced, the values were 39 degrees, 0.65 m 2 / g and 1 respectively. It was .12 g / cm 3 .
[実施例2]
天然黒鉛に対するピッチの混合比を天然黒鉛の重量に対して10重量%に調節したことを除いては、上記実施例1と同一の方法で負極活物質を製造した。このように製造された負極活物質に対するXRDデータ上の結晶性評価区間の放物線の接線の傾き、比表面積及びタップ密度を測定した結果、その値はそれぞれ40.2度、1.28m2/g及び1.1g/cm3であった。
[Example 2]
A negative electrode active material was produced in the same manner as in Example 1 except that the mixing ratio of pitch to natural graphite was adjusted to 10% by weight with respect to the weight of natural graphite. As a result of measuring the tangential slope, specific surface area, and tap density of the parabola in the crystallinity evaluation section on the XRD data for the negative electrode active material thus produced, the values were 40.2 degrees and 1.28 m 2 / g, respectively. And 1.1 g / cm 3 .
[実施例3]
天然黒鉛に対するピッチの混合比を天然黒鉛の重量に対して5重量%に調節したことを除いては、上記実施例1と同一の方法で負極活物質を製造した。このように製造された負極活物質に対するXRDデータ上の結晶性評価区間の放物線の接線の傾き、比表面積及びタップ密度を測定した結果、その値はそれぞれ40.9度、1.5m2/g及び1.09g/cm3であった。
[Example 3]
A negative electrode active material was produced in the same manner as in Example 1 except that the mixing ratio of pitch to natural graphite was adjusted to 5% by weight with respect to the weight of natural graphite. As a result of measuring the inclination, specific surface area and tap density of the parabola in the crystallinity evaluation section on the XRD data for the negative electrode active material thus produced, the values were 40.9 degrees and 1.5 m 2 / g, respectively. And 1.09 g / cm 3 .
[実施例4]
天然黒鉛に対するピッチの混合比を天然黒鉛の重量に対して1重量%に調節したことを除いては、上記実施例1と同一の方法で負極活物質を製造した。このように製造された負極活物質に対するXRDデータ上の結晶性評価区間の放物線の接線の傾き、比表面積及びタップ密度を測定した結果、その値はそれぞれ41.2度、2.1m2/g及び1.06g/cm3であった。
[Example 4]
A negative electrode active material was produced in the same manner as in Example 1 except that the mixing ratio of pitch to natural graphite was adjusted to 1% by weight with respect to the weight of natural graphite. As a result of measuring the inclination, specific surface area and tap density of the parabola in the crystallinity evaluation section on the XRD data for the negative electrode active material thus produced, the values were 41.2 degrees and 2.1 m 2 / g, respectively. And 1.06 g / cm 3 .
[実施例5]
焼成時の昇温速度を10℃/minに調節したことを除いては、 実施例3と同一の方法で負極活物質を製造した。このように製造された負極活物質に対するXRDデータ上の結晶性評価区間の放物線の接線の傾き、比表面積及びタップ密度を測定した結果、その値はそれぞれ41.4度、1.94m2/g及び1.09g/cm3であった。
[Example 5]
A negative electrode active material was produced in the same manner as in Example 3 except that the heating rate during firing was adjusted to 10 ° C./min. As a result of measuring the inclination, specific surface area and tap density of the parabola in the crystallinity evaluation section on the XRD data for the negative electrode active material thus produced, the values were 41.4 degrees and 1.94 m 2 / g, respectively. And 1.09 g / cm 3 .
[実施例6]
焼成時昇温速度を3℃/minに調節したことを除いては、実施例3と同一の方法で負極活物質を製造した。このように製造された負極活物質に対するXRDデータ上の結晶性評価区間の放物線の接線の傾き、比表面積及びタップ密度を測定した結果、その値はそれぞれ41.9度、1.87m2/g及び1.11g/cm3であった。
[Example 6]
A negative electrode active material was produced in the same manner as in Example 3 except that the heating rate during firing was adjusted to 3 ° C./min. As a result of measuring the slope of the tangent of the parabola, the specific surface area and the tap density in the crystallinity evaluation section on the XRD data for the negative electrode active material thus produced, the values were 41.9 degrees and 1.87 m 2 / g, respectively. And 1.11 g / cm 3 .
[比較例1]
高結晶性の球状天然黒鉛のみからなる負極活物質に対するXRDデータ上の結晶性評価区間の放物線の接線の傾き、比表面積及びタップ密度を測定した結果、その値はそれぞれ44.1度、6.24m2/g及び0.93g/cm3であった。
[Comparative Example 1]
As a result of measuring the tangential slope, specific surface area, and tap density of the parabola in the crystallinity evaluation section on the XRD data for the negative electrode active material composed only of highly crystalline spherical natural graphite, the values were 44.1 degrees and 6. 24 m 2 / g and 0.93 g / cm 3 .
<二次電池用負極及びコインセルの製作>
上記実施例1〜6および比較例1で製造したそれぞれの二次電池用負極活物質を原料物質として、二次電池用電極を製作した。まず、負極活物質100gを500mlの反応器に入れ、少量のN‐メチルピロリドン(NMP)と、バインダーとしてポリフッ化ビニリデン(PVDF)とを投入して混合した。次いで、混合物をミキサーを用いて混練した後負極集電体である8μm厚の銅ホイルにコーティングして120℃で乾燥し1.65g/cm3の密度で圧着して二次電池用負極を製作した。それから、負極活物質の充放電特性評価のために各実施例及び比較例ごとにLiを相対電極にする2016規格のコインセルを製作した。
<Production of secondary battery negative electrode and coin cell>
Secondary battery electrodes were manufactured using the secondary battery negative electrode active materials produced in Examples 1 to 6 and Comparative Example 1 as raw materials. First, 100 g of the negative electrode active material was placed in a 500 ml reactor, and a small amount of N-methylpyrrolidone (NMP) and polyvinylidene fluoride (PVDF) as a binder were added and mixed. Next, the mixture was kneaded using a mixer, then coated on an 8 μm thick copper foil as a negative electrode current collector, dried at 120 ° C., and pressed at a density of 1.65 g / cm 3 to produce a negative electrode for a secondary battery. did. Then, in order to evaluate the charge / discharge characteristics of the negative electrode active material, a 2016 standard coin cell using Li as a relative electrode was manufactured for each example and comparative example.
<コインセルの充放電特性評価>
第1サイクルから第35サイクルまで充放電試験を行った。各サイクルの充放電試験は、電位を0.01〜1.5Vの範囲で規制しながら充電電流0.5mA/cm2で0.01Vになるまで充電し、0.01Vの電圧を維持しながら充電電流が0.02mA/cm2になるまで充電し続けた。そして、放電電流は0.5mA/cm2で1.5Vまでの放電を行った。
<Evaluation of charge / discharge characteristics of coin cell>
The charge / discharge test was conducted from the first cycle to the 35th cycle. In each cycle charge / discharge test, the potential is regulated in the range of 0.01 to 1.5V while charging to 0.01V at a charging current of 0.5 mA / cm 2 while maintaining the voltage of 0.01V. The charging was continued until the charging current reached 0.02 mA / cm 2 . A discharge current of 0.5 mA / cm 2 was discharged up to 1.5 V.
下記表1は、実施例1〜6と比較例1に従って製造された各負極活物質に対するXRDデータ上の結晶性評価区間の放物線の接線の傾き、比表面積及びタップ密度とコインセルの充放電特性測定結果を示す。下記表1において、第35サイクルでの放電容量維持率は、第2サイクルでの放電容量を基準にしたものである。ここで、「SSA」および「TD」は、それぞれ比表面積及びタップ密度を指す。 Table 1 below shows the gradient of the parabola tangent, the specific surface area and the tap density, and the charge / discharge characteristics of the coin cell in the crystallinity evaluation section on the XRD data for each negative electrode active material manufactured according to Examples 1 to 6 and Comparative Example 1. Results are shown. In Table 1 below, the discharge capacity maintenance rate in the 35th cycle is based on the discharge capacity in the second cycle. Here, “SSA” and “TD” refer to specific surface area and tap density, respectively.
上記表1を参照すると、負極活物質に対するXRDデータ上の結晶性評価区間の放物線の接線の傾き、タップ密度及び比表面積が二次電池の性能と相関関係があることが確認できる。 Referring to Table 1 above, it can be confirmed that the gradient of the tangent of the parabola, the tap density, and the specific surface area of the crystallinity evaluation section on the XRD data with respect to the negative electrode active material are correlated with the performance of the secondary battery.
すなわち、結晶性評価区間についての放物線の接線の傾きが30〜43度範囲内に含まれる実施例1〜6は、比較例1に比べて第1サイクルでの放電容量と効率、そして第35サイクルでの放電容量維持率に優れている。 That is, in Examples 1 to 6 in which the inclination of the parabola tangent to the crystallinity evaluation section is included in the range of 30 to 43 degrees, the discharge capacity and efficiency in the first cycle compared to Comparative Example 1, and the 35th cycle It has excellent discharge capacity maintenance rate.
また、タップ密度および比表面積がそれぞれ1.0g/cm3以上および5m2/g以下である実施例1〜6は、比較例1に比べて第1サイクルでの放電容量と効率、そして第35サイクルでの放電容量維持率に優れている。 Further, in Examples 1 to 6 in which the tap density and specific surface area are 1.0 g / cm 3 or more and 5 m 2 / g or less, respectively, the discharge capacity and efficiency in the first cycle as compared with Comparative Example 1, and the 35th Excellent discharge capacity maintenance rate in cycle.
上記のような結果から、優れた性能の二次電池を製造するためには、少なくとも負極活物質の結晶性評価区間についての放物線の接線の傾きが30〜43度の範囲内にあることが望ましく、タップ密度と比表面積とがそれぞれ1.0g/cm3以上と5m2/g以下であることがさらに望ましいということが確認できる。 From the above results, in order to manufacture a secondary battery with excellent performance, it is desirable that the inclination of the tangent of the parabola in at least the crystallinity evaluation section of the negative electrode active material is in the range of 30 to 43 degrees. It can be confirmed that the tap density and the specific surface area are more preferably 1.0 g / cm 3 or more and 5 m 2 / g or less, respectively.
以上のように、本発明を実施例と図面とによって説明したが、これらの実施例および図面がたとえ限定されたものであるとしても、本発明はこれらによっては限定されず、また、本発明が属する技術分野において通常の知識を有する者により、本発明の技術思想および特許請求の範囲と均等な範囲内で多様な修正及び変形が可能であることは言うまでもない。 As described above, the present invention has been described with reference to the embodiments and the drawings. However, even if the embodiments and the drawings are limited, the present invention is not limited thereto, and the present invention is not limited thereto. It goes without saying that various modifications and variations can be made by persons having ordinary knowledge in the technical field to which the present invention pertains within the scope equivalent to the technical idea of the present invention and claims.
本明細書に添付される下記の図面は、本発明の望ましい実施例を例示するものであって、発明の詳細な説明とともに本発明の技術思想をさらに理解させる役割を果たすものであるため、本発明はそのような図面に記載された事項にのみ限定して解釈してはいけない。 The following drawings attached to the present specification illustrate preferred embodiments of the present invention and serve to further understand the technical idea of the present invention together with the detailed description of the invention. The invention should not be construed as limited to the matter set forth in such drawings.
Claims (15)
CuKα線をX線源とするXRD測定データで、(002)面のピークが始まる前、回折角2θが25.5〜26.3度の区間についての放物線の接線の傾きが30〜43度である
ことを特徴とする二次電池用負極活物質
(ここで、上記放物線の接線の傾きは、上記区間を多項式近似法(Polynomial approximation technique)に従って放物線の関数y=ax2+bx+cでマッピングしたときに、該放物線の関数の焦点に最も近接する点における接線の傾きである。)。 Including a core carbon material in which part or all of the edge is covered with a carbide layer;
In XRD measurement data using CuKα ray as an X-ray source, before the peak of the (002) plane starts, the inclination of the tangent of the parabola in the section where the diffraction angle 2θ is 25.5 to 26.3 degrees is 30 to 43 degrees. The negative electrode active material for a secondary battery characterized in that the slope of the tangent of the parabola is obtained by mapping the above section with a parabolic function y = ax 2 + bx + c according to a polynomial approximation technique (Polynomial approximation technique) , The slope of the tangent at the point closest to the focal point of the parabolic function).
(b)上記混合物を焼成して上記被覆炭素材料を炭化させることで芯材炭素材料のエッジの一部または全部に炭化物層を形成する段階;
を含み、かつ、
上記炭化物層が形成された芯材炭素材料からなる負極活物質についてのCuKα線をX線源とするXRD測定データで、(002)面のピークが始まる前、回折角2θが25.5〜26.3度の区間についての放物線の接線の傾きが30〜43度である
ことを特徴とする二次電池用負極活物質の製造方法
(ここで、上記放物線の接線の傾きは、上記区間を多項式近似法(Polynomial approximation technique)に従って放物線の関数y=ax2+bx+cでマッピングしたときに、該放物線の関数の焦点に最も近接する点における接線の傾きである。)。 (A) mixing a core carbon material having a tap density of 1.0 g / cm 3 or more and a coal-based or petroleum-based carbon material having a softening point of 100 ° C. or more to obtain a mixture; and (b) Firing the mixture to carbonize the coated carbon material to form a carbide layer on part or all of the edge of the core carbon material;
Including, and
XRD measurement data using a CuKα ray as an X-ray source for a negative electrode active material made of a core carbon material on which the carbide layer is formed. Before the peak of the (002) plane starts, the diffraction angle 2θ is 25.5 to 26. A method of manufacturing a negative electrode active material for a secondary battery, wherein a slope of a tangent of a parabola for a section of 3 degrees is 30 to 43 degrees (where the slope of a tangent of a parabola is a polynomial This is the slope of the tangent line at the point closest to the focal point of the parabola function when mapped with the parabola function y = ax 2 + bx + c according to an approximation method (Polynomial application technique).
ことを特徴とする請求項10に記載の二次電池用負極活物質の製造方法。 The method for producing a negative electrode active material for a secondary battery according to claim 10, wherein in the step (b), the mixture is fired twice or more under different temperature conditions.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20080036737 | 2008-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009266816A true JP2009266816A (en) | 2009-11-12 |
Family
ID=41283506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009100812A Pending JP2009266816A (en) | 2008-04-21 | 2009-04-17 | Negative electrode active material for secondary battery, electrode for secondary battery containing the same, secondary battery and method of manufacturing them |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009266816A (en) |
CN (1) | CN101567448B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101966144B1 (en) * | 2016-09-29 | 2019-04-05 | 주식회사 엘지화학 | Multi-layer Anode Comprising Natural Graphite and Artificial Graphite and Lithium Secondary Battery Comprising the Same |
CN111477850B (en) * | 2020-04-14 | 2021-07-06 | 陕西煤业化工技术研究院有限责任公司 | High-compaction silicon-carbon negative electrode precursor material and high-compaction silicon-carbon negative electrode material thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000090930A (en) * | 1998-09-14 | 2000-03-31 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery and manufacture of negative electrode thereof |
JP2002348109A (en) * | 1995-11-14 | 2002-12-04 | Osaka Gas Co Ltd | Anode material for lithium secondary battery, method for producing the same and secondary battery using the same |
JP2004179015A (en) * | 2002-11-28 | 2004-06-24 | Nippon Carbon Co Ltd | Anode material for lithium-ion secondary battery, its manufacturing method and battery using this |
JP2005004974A (en) * | 2003-06-09 | 2005-01-06 | Matsushita Electric Ind Co Ltd | Lithium-ion secondary battery |
JP2007194201A (en) * | 2006-01-16 | 2007-08-02 | Ls Cable Ltd | Cathode material for secondary battery, its manufacturing method, and secondary battery using the same |
JP2007324067A (en) * | 2006-06-02 | 2007-12-13 | Nippon Carbon Co Ltd | Negative electrode for lithium secondary battery, and negative electrode active material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3873325B2 (en) * | 1996-07-25 | 2007-01-24 | 大阪瓦斯株式会社 | Carbon material for lithium secondary battery negative electrode and method for producing the same |
-
2009
- 2009-04-17 JP JP2009100812A patent/JP2009266816A/en active Pending
- 2009-04-21 CN CN2009101345747A patent/CN101567448B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002348109A (en) * | 1995-11-14 | 2002-12-04 | Osaka Gas Co Ltd | Anode material for lithium secondary battery, method for producing the same and secondary battery using the same |
JP2000090930A (en) * | 1998-09-14 | 2000-03-31 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery and manufacture of negative electrode thereof |
JP2004179015A (en) * | 2002-11-28 | 2004-06-24 | Nippon Carbon Co Ltd | Anode material for lithium-ion secondary battery, its manufacturing method and battery using this |
JP2005004974A (en) * | 2003-06-09 | 2005-01-06 | Matsushita Electric Ind Co Ltd | Lithium-ion secondary battery |
JP2007194201A (en) * | 2006-01-16 | 2007-08-02 | Ls Cable Ltd | Cathode material for secondary battery, its manufacturing method, and secondary battery using the same |
JP2007324067A (en) * | 2006-06-02 | 2007-12-13 | Nippon Carbon Co Ltd | Negative electrode for lithium secondary battery, and negative electrode active material |
Also Published As
Publication number | Publication date |
---|---|
CN101567448B (en) | 2012-07-04 |
CN101567448A (en) | 2009-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6243012B2 (en) | Negative electrode active material and lithium secondary battery including the same | |
JP6586105B2 (en) | Negative electrode active material and method for producing the same | |
CN111344884A (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
US10283762B2 (en) | Anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same | |
KR101626026B1 (en) | Anode active material for lithium secondary battery And Lithium secondary battery comprising the same | |
JP5186409B2 (en) | Negative electrode active material for secondary battery, secondary battery including the same, and manufacturing method thereof | |
JP5333963B2 (en) | Negative electrode active material for lithium ion secondary battery and negative electrode using the same | |
KR101631735B1 (en) | Anode active material for lithium secondary battery and preparation method of thereof | |
JP2011521404A (en) | Cathode active material for secondary battery, electrode for secondary battery containing the same, secondary battery and method for producing the same | |
KR100936571B1 (en) | Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same | |
JP2011519143A (en) | Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same as a negative electrode | |
JP5320645B2 (en) | Negative electrode active material for lithium ion secondary battery and negative electrode | |
KR100978422B1 (en) | Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same | |
KR101226107B1 (en) | Anode active material for lithium secondary battery And Lithium secondary battery comprising the same | |
KR101140866B1 (en) | Anode active material for lithium secondary battery And Lithium secondary battery comprising the same | |
JP2009266816A (en) | Negative electrode active material for secondary battery, electrode for secondary battery containing the same, secondary battery and method of manufacturing them | |
KR101091546B1 (en) | Anode active material for lithium secondary battery And Lithium secondary battery comprising the same | |
KR20090111289A (en) | Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same, and method thereof | |
KR101105875B1 (en) | Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries comprising the same | |
JP2011233541A (en) | Graphite particles for lithium ion secondary battery | |
JP2006024374A (en) | Lithium ion secondary battery negative electrode material, manufacturing method thereof and lithium-ion secondary battery | |
WO2022219836A1 (en) | Negative electrode material for lithium ion secondary batteries, and method for producing negative electrode material for lithium ion secondary batteries | |
JP5197938B2 (en) | Method for producing negative electrode active material for lithium ion secondary battery and negative electrode active material for lithium ion secondary battery | |
JP2016213130A (en) | Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery | |
JP2004095205A (en) | Nonaqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120717 |