[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009265067A - Silica nanoparticle labeled with molecular recognition fluorescence - Google Patents

Silica nanoparticle labeled with molecular recognition fluorescence Download PDF

Info

Publication number
JP2009265067A
JP2009265067A JP2008133652A JP2008133652A JP2009265067A JP 2009265067 A JP2009265067 A JP 2009265067A JP 2008133652 A JP2008133652 A JP 2008133652A JP 2008133652 A JP2008133652 A JP 2008133652A JP 2009265067 A JP2009265067 A JP 2009265067A
Authority
JP
Japan
Prior art keywords
molecular recognition
mips
silica nanoparticles
fluorescence
rubpy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008133652A
Other languages
Japanese (ja)
Inventor
Akio Susaka
昭夫 数坂
Isao Yamakawa
功 山川
Tadayoshi Omori
唯義 大森
Tatsuo Hamada
辰夫 濱田
Atsushi Fukuoka
淳 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKACHI TELEPHONE NETWORK KK
Original Assignee
TOKACHI TELEPHONE NETWORK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKACHI TELEPHONE NETWORK KK filed Critical TOKACHI TELEPHONE NETWORK KK
Priority to JP2008133652A priority Critical patent/JP2009265067A/en
Publication of JP2009265067A publication Critical patent/JP2009265067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing silica nanoparticles labeled with molecular recognition fluorescence for selectively recognizing specific molecules and provide a method for evaluating molecular recognition abilities. <P>SOLUTION: By coating the surfaces of silica nanoparticles including a fluorescent substance with polymers (molecular recognition polymers, Molecularly Imprinted Polymers, MIPs) which recognize specific molecules, silica nanoparticles labeled with molecular recognition fluorescence having molecular recognition abilities are prepared. Their specific molecule recognition abilities are evaluated by the pseudo-immunoreaction between the silica nanoparticles labeled with molecular recognition fluorescence and specific molecules immobilized to the surface of a solid. The effectiveness of this method as a method for evaluating the molecular recognition abilities of IMPs is shown. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

詳細な説明Detailed description

本発明は、微量抗菌性物質、環境汚染物質あるいは生体関連物質等の特定分子を、高選択、高感度に検知・分析するための分子認識蛍光標識シリカナノ粒子の調製、評価方法に関する。  The present invention relates to a method for preparing and evaluating molecule-recognized fluorescently labeled silica nanoparticles for detecting and analyzing specific molecules such as trace antibacterial substances, environmental pollutants and biological substances with high selectivity and high sensitivity.

特定微量物質を高選択、高感度に検知・分析するため、生物学的抗原抗体反応が汎用されている。しかし、上記抗体を用いる方法では、抗体が不安定である、あるいは、抗体を用いる反応操作が煩雑である等のため、使用に熟練を要することが多い。また、抗体が高価で、測定あたりのコストが高すぎる等の欠点もある。これらの欠点を補うため、特定分子を鋳型とする分子認識高分子(Molecularly Imprinted Polymers、MIPs)の使用が公知である(例えば特許文献1参照)。
特開2005−533146
Biological antigen-antibody reaction is widely used to detect and analyze specific trace substances with high selectivity and high sensitivity. However, the method using the above antibody often requires skill because of the instability of the antibody or complicated reaction operation using the antibody. In addition, there are disadvantages such as expensive antibodies and too high cost per measurement. In order to compensate for these drawbacks, it is known to use molecularly recognized polymers (MIPs) using a specific molecule as a template (see, for example, Patent Document 1).
JP 2005-533146 A

さらに、抗原抗体反応においては、測定感度増加のため、抗体を蛍光分子あるいは酵素で標識化することが行われている。標識分子としてAlexa Fluor▲R▼ タンパク質標識キット(Molecular Probes社製)、HiLyteFluor天然抗体標識化シリーズ(コスモ・バイオ株式会社製)、あるいは、QuantaBluTM Fluorogenic Peroxidase Substrate(タカラバイオ株式会社製)ペルオキシダーゼ蛍光標識キット等が市販されている。しかし、上記標識分子はいずれも不安定であり、価格も高価である等の欠点を持つ。Furthermore, in an antigen-antibody reaction, an antibody is labeled with a fluorescent molecule or an enzyme in order to increase measurement sensitivity. Alexa Fluor® protein labeling kit (manufactured by Molecular Probes), HiLyFluor natural antibody labeling series (manufactured by Cosmo Bio), or QuantaBlu Fluorogenic Peroxidase Substrate (manufactured by Takara Bio) Kits are commercially available. However, all of the above labeled molecules have disadvantages such as being unstable and expensive.

本発明は、このような諸事情に対処する為に提案されたもので、従来の抗原抗体反応で使用されている、不安定で高価な蛍光標識化抗体に代わる、安定、且つ、安価な分子認識蛍光標識シリカナノ粒子を調製すること、および、その分子認識能の評価法を確立することを課題とした。  The present invention has been proposed to cope with such various situations, and is a stable and inexpensive molecule that replaces the unstable and expensive fluorescently labeled antibody used in the conventional antigen-antibody reaction. It was an object to prepare a recognition fluorescently labeled silica nanoparticle and to establish a method for evaluating its molecular recognition ability.

上記課題を解決するため、請求項1の発明では、蛍光標識シリカナノ粒子の表面を、特定分子を認識するMIPsでコーティングすることにより、特定分子を認識する蛍光標識シリカナノ粒子を調製した。  In order to solve the above-mentioned problems, in the invention of claim 1, fluorescently labeled silica nanoparticles that recognize specific molecules were prepared by coating the surfaces of the fluorescently labeled silica nanoparticles with MIPs that recognize specific molecules.

請求項2記載の分子認識能評価は、上記分子認識蛍光標識シリカナノ粒子を、他の固体表面(例えばシリカゲル、φ=約100μm)上に固定した特定分子と擬似免疫反応させることによって行った。  The molecular recognition ability evaluation according to claim 2 was performed by causing a pseudoimmune reaction between the molecular recognition fluorescent-labeled silica nanoparticles and a specific molecule immobilized on another solid surface (for example, silica gel, φ = about 100 μm).

上述のように、請求項1の発明により、蛍光標識シリカナノ粒子表面上に、安定、且つ、安価な特定分子を認識する吸着サイトを形成し、従って、試料中の特定分子を擬似免疫反応によって捕捉可能な人工抗体の調製が可能である。  As described above, according to the invention of claim 1, an adsorption site for recognizing a stable and inexpensive specific molecule is formed on the surface of the fluorescently labeled silica nanoparticle, and therefore the specific molecule in the sample is captured by a pseudo-immune reaction. Possible artificial antibody preparations are possible.

請求項2記載の評価法により、多種多様な特定分子を対象とするMIPsの分子認識能を容易に評価することが可能となる。  According to the evaluation method of claim 2, it is possible to easily evaluate the molecular recognition ability of MIPs targeting a wide variety of specific molecules.

また、希薄溶液に含まれる微量特定分子を固体に抽出・濃縮した後、特許文献2の方法により特定分子の定量測定を可能とする。
特願2007−41414
In addition, after extracting and concentrating a small amount of specific molecules contained in a dilute solution to a solid, quantitative measurement of the specific molecules is enabled by the method of Patent Document 2.
Japanese Patent Application No. 2007-41414

以下、図を用いて本発明の、特に、ペニシリンG(PG)を認識する分子認識蛍光標識シリカナノ粒子の調製とその認識能の評価に係わる実施の形態について説明する。  In the following, embodiments of the present invention relating to the preparation of molecularly recognized fluorescently labeled silica nanoparticles that recognize penicillin G (PG) and evaluation of their recognition ability will be described with reference to the drawings.

図1は本発明に係わる分子認識蛍光標識シリカナノ粒子の推定される模式図である。それは、PGを認識するMIPsのコーティング膜(PG−MIPs)2と蛍光性ルテニウム錯体を内包させた約100nmの粒系をもつシリカナノ粒子1(RuBpy−SiO)からなる。以下にPG認識蛍光標識ルテニウム・シリカナノ粒子3(PG−MIPs/RuBpy−SiO)の調製工程について説明する。FIG. 1 is an estimated schematic diagram of molecularly recognized fluorescently labeled silica nanoparticles according to the present invention. It consists of silica nano particles 1 (RuBpy-SiO 2 ) having a particle system of about 100 nm encapsulating a coating film (PG-MIPs) 2 of MIPs that recognizes PG and a fluorescent ruthenium complex. The preparation process of the PG recognition fluorescently labeled ruthenium silica nanoparticles 3 (PG-MIPs / RuBpy- SiO 2) is described below.

ゾルゲル法により蛍光性ルテニウム錯体(Tris(2,2′−bipyridine)dichlororuthenium(II)hexahydrate,Rubpy dye)をシリカナノ粒子に内包した蛍光性RuBpy−SiO(φ=約100nm)を調製する。Fluorescent RuBpy-SiO 2 (φ = about 100 nm) in which a fluorescent ruthenium complex (Tris (2,2′-bipyridine) dichlororuthenium (II) hexahydrate, ruby dye) is encapsulated in silica nanoparticles is prepared by a sol-gel method.

この蛍光性RuBpy−SiOをPG−MIPsのアセトニトリル飽和溶液中に添加し、室温で1時間反応させた後、吸引ろ過によりアセトニトリル溶媒から分離、および、空気中で乾燥する。The fluorescent RuBpy-SiO 2 is added to a saturated solution of PG-MIPs in acetonitrile, reacted at room temperature for 1 hour, separated from the acetonitrile solvent by suction filtration, and dried in air.

以下に本発明の実施の形態について、実施例によってさらに詳しく説明する。  Hereinafter, embodiments of the present invention will be described in more detail with reference to examples.

蛍光性標識シリカナノ粒子RuBpy−SiOの調製Preparation of fluorescently labeled silica nanoparticles RuBpy-SiO 2

蛍光性RuBpy−SiOの調製は、Tanらの方法(参照文献1 W.Tan他、J.Biomed.Opt.,6巻(2001年),160頁)に従った。The fluorescent RuBpy-SiO 2 was prepared according to the method of Tan et al. (Ref. 1 W. Tan et al., J. Biomed. Opt., 6 (2001), 160).

即ち、cyclohexane(7.5ml)、n−hexanol(1.8ml)、Triton X−100(1.77ml)、1.2mM Rubpy dye(Tris(2,2’−bipyridyl)dichlororuthenium(II)−6HO)/water(0.48ml)、TEOS(Tetraethoxysilane)(0.1ml)を混合し、室温で20分間振とうした。That is, cyclohexane (7.5 ml), n-hexanol (1.8 ml), Triton X-100 (1.77 ml), 1.2 mM ruby dye (Tris (2,2′-bipyridyl) dichlororuthenium (II) -6H 2 O) / water (0.48 ml) and TEOS (Tetraethoxysilane) (0.1 ml) were mixed and shaken at room temperature for 20 minutes.

その後、NHOH(60μl)を加え、室温で24時間振とうを続けた。Thereafter, NH 4 OH (60 μl) was added and shaking was continued for 24 hours at room temperature.

24時間の反応の後、(CHCO 11mlを加えvortexする。After the reaction for 24 hours, 11 ml of (CH 3 ) 2 CO is added and vortexed.

これを遠心分離(3000rpm、10min)し、沈殿したものを95%エタノールで3回洗浄した後、室温、空気中で乾燥させ、蛍光性RuBpy−SiOを得た。This was centrifuged (3000 rpm, 10 min), and the precipitated product was washed three times with 95% ethanol and then dried in air at room temperature to obtain fluorescent RuBpy-SiO 2 .

こうして調製された蛍光性RuBpy−SiOは、その直径がおよそ100nmの球体であり、層状のシリカ内に蛍光物質であるRubpy dyeが内包された構造になっていると考えられている(図1、3)。The fluorescent RuBpy-SiO 2 prepared in this way is a sphere having a diameter of about 100 nm, and is considered to have a structure in which rubpy dye, which is a fluorescent substance, is encapsulated in layered silica (FIG. 1). 3).

ここでは、蛍光標識化のための蛍光物質としてRubpy dyeを用いたが、本発明はこれに限定されるものではない。  Here, Ruby dye was used as a fluorescent substance for fluorescent labeling, but the present invention is not limited to this.

PG分子認識蛍光標識シリカナノ粒子PG−MIPs/RuBpy−SiOの調製Preparation of PG molecule recognition fluorescent labeled silica nanoparticles PG-MIPs / RuBpy-SiO 2

実施例1のように調製したRuBpy−SiO表面上に、PGを鋳型として調製し、PGに分子認識能を持つMIPs(PG−MIPs)をコーティングし、PGに分子認識能を持つ蛍光標識化MIPsを調製する。 On the surface of RuBpy-SiO 2 prepared as in Example 1, PG was prepared as a template, PG was coated with MIPs having molecular recognition ability (PG-MIPs), and PG was labeled with fluorescence having molecular recognition ability Prepare MIPs.

ここでは、抗菌性物質であるペニシリンGを鋳型として作製したMIPsを用いた例を示すが、本発明はこれに限定されるものではない。  Here, although the example using MIPs produced using penicillin G which is an antibacterial substance as a template is shown, the present invention is not limited to this.

PGを鋳型とするMIPs(PG−MIPs)はUrracaらの方法に従って調製した(参照文献2 JL.Urraca他,Anal.Chem.,79巻(2007年),695頁)。PG−MIPs10mgを、アセトニトリル10ml中に加えて60℃で温めながらその飽和溶液を調製する。  MIPs using PG as a template (PG-MIPs) were prepared according to the method of Urraca et al. (Reference 2 JL. Urraca et al., Anal. Chem., 79 (2007), 695). Add 10 mg of PG-MIPs into 10 ml of acetonitrile and prepare the saturated solution while warming at 60 ° C.

得られた飽和溶液1ml中に、実施例1で調製したRuBpy−SiO10mgを加え、室温で一時間、放置する。In 1 ml of the obtained saturated solution, 10 mg of RuBpy-SiO 2 prepared in Example 1 is added, and the mixture is allowed to stand at room temperature for 1 hour.

その後、吸引ろ過によりアセトニトリル溶媒を除去し、空気中で乾燥した試料をPG−MIPs/RuBpy−SiO6とした(図1)。Thereafter, the acetonitrile solvent was removed by suction filtration, and a sample dried in air was designated as PG-MIPs / RuBpy-SiO 2 6 (FIG. 1).

PG−MIPs/RuBpy−SiOの分子認識能評価Evaluation of molecular recognition ability of PG-MIPs / RuBpy-SiO 2

実施例2において調製したPG−MIPs/RuBpy−SiOの分子認識能評価を、粒径、約100μmのシリカゲル表面上に固定したPG7(図1)と擬似免疫反応させることによって行った。The molecular recognition ability of PG-MIPs / RuBpy-SiO 2 prepared in Example 2 was evaluated by performing a pseudoimmune reaction with PG7 (FIG. 1) immobilized on a silica gel surface having a particle size of about 100 μm.

即ち、実施例2で調製したPG−MIPs/RuBpy−SiO(図2 11)を加えた緩衝溶液中に、表面にPGを固定化したシリカゲル(図2 13)を加えて、室温で10分反応させる。That is, silica gel (FIG. 213) with PG immobilized on its surface was added to the buffer solution to which PG-MIPs / RuBpy-SiO 2 (FIG. 211) prepared in Example 2 was added, and 10 minutes at room temperature. React.

PG−MIPs/RuBpy−SiO表面上のPG吸着サイト5(図1)にPG固定化シリカゲル表面のPG7が結合(擬似免疫反応)する。PG7 on the PG-immobilized silica gel surface binds (pseudoimmune reaction) to the PG adsorption site 5 (FIG. 1) on the PG-MIPs / RuBpy-SiO 2 surface.

反応後、未反応のPG−MIPs/RuBpy−SiOを洗浄し、PG固定化シリカゲルに結合したものだけを残す(図2 16)。After the reaction, unreacted PG-MIPs / RuBpy-SiO 2 is washed to leave only those bound to PG-immobilized silica gel (FIG. 216).

洗浄後、シリカゲルをガラスプレート上に取り出し、蛍光顕微鏡により観察した写真を図3 31に示す。  After washing, the silica gel is taken out on a glass plate and a photograph observed with a fluorescence microscope is shown in FIG.

比較のため、PG−MIPs/RuBpy−SiOを加えることなく、同様な操作後(図2 18、19)に観察した結果を図3 32に示した。For comparison, FIG. 332 shows the results observed after the same operation (FIGS. 218 and 19) without adding PG-MIPs / RuBpy-SiO 2 .

また、PG未固定のシリカゲルを用いた同様な操作後(図2 21、22)に観察した結果を図3 33に示した。  Further, FIG. 333 shows the results observed after the same operation using silica gel not fixed with PG (FIGS. 21 and 22).

本発明のPG−MIPs/RuBpy−SiOをPG固定化シリカゲルに結合させた結果(図3 31)では、シリカゲル上にRuBpy−SiOによる強い蛍光が観察された。一方、PG−MIPs/RuBpy−SiOを加えていないPG固定化シリカゲル上には、その様な強い蛍光は観察されず(図3 32)、図3 31で観察された蛍光がPG−MIPs/RuBpy−SiOによるものであることが確認された。As a result of binding PG-MIPs / RuBpy-SiO 2 of the present invention to PG-immobilized silica gel (FIG. 331), strong fluorescence due to RuBpy-SiO 2 was observed on the silica gel. On the other hand, such strong fluorescence is not observed on the PG-immobilized silica gel to which PG-MIPs / RuBpy-SiO 2 is not added (FIG. 332), and the fluorescence observed in FIG. It was confirmed that it was due to RuBpy-SiO 2 .

また、PG−MIPs/RuBpy−SiOをPG未固定のシリカゲルと反応させた結果(図3 33)では、微弱な蛍光しか観察されなかった。従って、図3 31で観察された強い蛍光は、PG−MIPs/RuBpy−SiO上のPG吸着サイトにシリカゲル表面上に固定化されたPGが擬似免疫反応によって結合したことを裏付ける結果とすることが出来る。Moreover, only weak fluorescence was observed in the result of reacting PG-MIPs / RuBpy-SiO 2 with PG unfixed silica gel (FIG. 333). Therefore, the strong fluorescence observed in FIG. 331 should confirm that the PG immobilized on the silica gel surface was bound to the PG adsorption site on PG-MIPs / RuBpy-SiO 2 by a pseudoimmune reaction. I can do it.

このよう方法によってPG−MIPs/RuBpy−SiOが持つPG吸着サイトによるPG分子認識能が評価された。Such PG molecular recognition ability of PG adsorption sites with the PG-MIPs / RuBpy-SiO 2 were evaluated by the method.

利用方法How to Use

蛍光物質を内包するシリカナノ粒子表面上にコートされたMIPsは、MIPsを調製する際に用いた特定鋳型分子を認識する吸着サイトを持ち、従って特定分子を擬似免疫反応により高選択的に捕捉することができる人工抗体として利用が可能である。  MIPs coated on the surface of silica nanoparticles encapsulating a fluorescent substance have an adsorption site that recognizes the specific template molecule used in preparing the MIPs, and thus highly selectively capture the specific molecule by a pseudo-immune reaction. It can be used as an artificial antibody capable of

また、希薄溶液に含まれる微量特定分子を固体に抽出・濃縮した後、その特定分子を、分子認識蛍光標識シリカナノ粒子を人工抗体とする擬似免疫反応により、定量的に測定することが可能である。  In addition, it is possible to quantitatively measure the specific molecule by extracting and concentrating the trace specific molecule contained in the dilute solution into a solid, and then performing a pseudo-immune reaction using the molecular recognition fluorescently labeled silica nanoparticles as an artificial antibody. .

本発明における蛍光標識化分子認識人工抗体調製のための、蛍光物質を内包させたシリカナノ粒子、および、蛍光性シリカナノ粒子の分子認識人工抗体(MIPs)によるコーティングを示した図である。また、蛍光標識化分子認識人工抗体による特定分子の測定法についても示してある。図は全て断面図として示してある。It is the figure which showed the coating by the molecular recognition artificial antibody (MIPs) of the silica nanoparticle which included the fluorescent substance, and the fluorescent silica nanoparticle for preparation of the fluorescent labeling molecular recognition artificial antibody in this invention. In addition, a method for measuring a specific molecule using a fluorescently labeled molecule recognition artificial antibody is also shown. All figures are shown as cross-sectional views. 本発明において調製した蛍光標識化分子認識人工抗体の評価方法を示した図である。It is the figure which showed the evaluation method of the fluorescence labeled molecule recognition artificial antibody prepared in this invention. 本発明において調製した蛍光標識化分子認識人工抗体の評価結果を示す蛍光顕微鏡写真である。It is a fluorescence micrograph which shows the evaluation result of the fluorescence labeled molecular recognition artificial antibody prepared in this invention.

符号の説明Explanation of symbols

1 蛍光物質
2 シリカゲル層
3 蛍光性シリカゲル
4 分子認識人工抗体層
5 化合物分子認識サイト
6 蛍光標識化MIPs
7 化合物分子
8 ペニシリンG固定化シリカゲル
31 蛍光標識化MIPsとペニシリンG固定化シリカゲルとの結合物の顕微鏡写真
32 ペニシリンG固定化シリカゲルの顕微鏡写真
33 蛍光標識化MIPsとペニシリンG未固定シリカゲルとの結合物の顕微鏡写真
DESCRIPTION OF SYMBOLS 1 Fluorescent substance 2 Silica gel layer 3 Fluorescent silica gel 4 Molecular recognition artificial antibody layer 5 Compound molecule recognition site 6 Fluorescent labeling MIPs
7 Compound Molecule 8 Penicillin G-immobilized silica gel 31 Photomicrograph of a conjugate of fluorescently labeled MIPs and penicillin G-immobilized silica gel 32 Microphotograph of penicillin G-immobilized silica gel 33 Binding of fluorescence-labeled MIPs to silica gel not immobilized with penicillin G Photomicrograph

Claims (3)

蛍光物質を内包させて作成したシリカナノ粒子(蛍光標識シリカナノ粒子、φ=約100nm)を、特定分子を認識する分子認識高分子(MIPs)でコーティングすることを特長とする、分子認識蛍光標識シリカナノ粒子の調製法。  Silica nanoparticles (fluorescence-labeled silica nanoparticles, φ = approx. 100 nm) prepared by encapsulating a fluorescent substance are coated with molecular recognition polymers (MIPs) that recognize specific molecules. Preparation method. 上記分子認識蛍光標識シリカナノ粒子を、固体表面上に固定化した特定分子と擬似免疫反応させることによる、分子認識能の評価方法。  A method for evaluating molecular recognition ability, wherein the molecule-recognized fluorescent-labeled silica nanoparticles are subjected to a pseudoimmune reaction with a specific molecule immobilized on a solid surface. 上記請求項1および2による、MIPsの分子認識能評価法。  The method for evaluating the molecular recognition ability of MIPs according to claims 1 and 2.
JP2008133652A 2008-04-21 2008-04-21 Silica nanoparticle labeled with molecular recognition fluorescence Pending JP2009265067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133652A JP2009265067A (en) 2008-04-21 2008-04-21 Silica nanoparticle labeled with molecular recognition fluorescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133652A JP2009265067A (en) 2008-04-21 2008-04-21 Silica nanoparticle labeled with molecular recognition fluorescence

Publications (1)

Publication Number Publication Date
JP2009265067A true JP2009265067A (en) 2009-11-12

Family

ID=41391084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133652A Pending JP2009265067A (en) 2008-04-21 2008-04-21 Silica nanoparticle labeled with molecular recognition fluorescence

Country Status (1)

Country Link
JP (1) JP2009265067A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024106A1 (en) 2012-08-10 2014-02-13 R.D. Pharmadvice S.R.L. Method for the production of thermochemiluminescent silica nanoparticles and their use as markers in bioanalytic methods
CN104099085A (en) * 2014-07-04 2014-10-15 苏州大学 Fluorescent encoding microspheres based on conjugated polymers and preparation method thereof
JPWO2013146841A1 (en) * 2012-03-30 2015-12-14 コニカミノルタ株式会社 Medical image processing apparatus and program
WO2021120518A1 (en) * 2019-12-15 2021-06-24 北京化工大学 Polymer material aging detection and process analysis method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013146841A1 (en) * 2012-03-30 2015-12-14 コニカミノルタ株式会社 Medical image processing apparatus and program
US9483684B2 (en) 2012-03-30 2016-11-01 Konica Minolta, Inc. Medical image processor and storage medium
WO2014024106A1 (en) 2012-08-10 2014-02-13 R.D. Pharmadvice S.R.L. Method for the production of thermochemiluminescent silica nanoparticles and their use as markers in bioanalytic methods
CN104099085A (en) * 2014-07-04 2014-10-15 苏州大学 Fluorescent encoding microspheres based on conjugated polymers and preparation method thereof
WO2021120518A1 (en) * 2019-12-15 2021-06-24 北京化工大学 Polymer material aging detection and process analysis method

Similar Documents

Publication Publication Date Title
Liu et al. A facile, green synthesis of biomass carbon dots coupled with molecularly imprinted polymers for highly selective detection of oxytetracycline
Copur et al. Nanopaper-based photoluminescent enantioselective sensing of L-Lysine by L-Cysteine modified carbon quantum dots
Luo et al. Electrochemical sensor for bovine hemoglobin based on a novel graphene-molecular imprinted polymers composite as recognition element
Chen et al. An ultra-sensitive chemiluminescence immunosensor of carcinoembryonic antigen using HRP-functionalized mesoporous silica nanoparticles as labels
Tan et al. A fluorescent turn-on detection scheme for α-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins
JP5367915B2 (en) Method for producing functional molecule-containing silica nanoparticles bonded with biomolecules
WO2011107003A1 (en) N-(4-aminobutyl)-n-ethylisoluminol functionalized gold nanoparticles, preparation method and application thereof
Xiao et al. Fluorescent nanomaterials combined with molecular imprinting polymer: synthesis, analytical applications, and challenges
Zhang et al. A magnetic molecularly imprinted optical chemical sensor for specific recognition of trace quantities of virus
Xu et al. A multicoloured Au NCs based cross-reactive sensor array for discrimination of multiple proteins
Marfà et al. Magnetic-molecularly imprinted polymers in electrochemical sensors and biosensors
Xie et al. Label-free and highly selective MOFs-based dopamine detection in urine of Parkinson’s patients
Dehghani et al. Carbon quantum dots embedded silica molecular imprinted polymer as a novel and sensitive fluorescent nanoprobe for reproducible enantioselective quantification of naproxen enantiomers
CN102721680A (en) Method for high-sensitivity detection for t-DNA (transfer-deoxyribose nucleic acid) by aid of SERS (surface enhanced Raman spectroscopy) liquid chip
JP2008543982A (en) Nanoscale fluorescent melamine particles
Wang et al. Specific determination of HBV using a viral aptamer molecular imprinting polymer sensor based on ratiometric metal organic framework
JP2009265067A (en) Silica nanoparticle labeled with molecular recognition fluorescence
Dmitrienko et al. A simple approach to prepare molecularly imprinted polymers from nylon‐6
Diltemiz et al. A reflectometric interferometric nanosensor for sarcosine
Tsai et al. Preparation of imprinted poly (tetraethoxysilanol) sol–gel for the specific uptake of creatinine
Xia et al. Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment
Yu et al. Mesoporous silica particles for selective detection of dopamine with β-cyclodextrin as the selective barricade
Wang et al. Preparation of fluorescein-modified polymer dots and their application in chiral discrimination of lysine enantiomers
JP4391567B2 (en) Method for producing layered silica nanoparticles, layered silica nanoparticles, and labeling reagent using the same
Sun et al. Click synthesis of boronic acid-functionalized molecularly imprinted silica nanoparticles with polydopamine coating for enrichment of trace glycoproteins