JP2009259808A - Solid polymer electrolyte membrane, manufacturing method of solid polymer electrolyte membrane, and polymer electrolyte fuel cell - Google Patents
Solid polymer electrolyte membrane, manufacturing method of solid polymer electrolyte membrane, and polymer electrolyte fuel cell Download PDFInfo
- Publication number
- JP2009259808A JP2009259808A JP2009076772A JP2009076772A JP2009259808A JP 2009259808 A JP2009259808 A JP 2009259808A JP 2009076772 A JP2009076772 A JP 2009076772A JP 2009076772 A JP2009076772 A JP 2009076772A JP 2009259808 A JP2009259808 A JP 2009259808A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- proton
- polymer electrolyte
- electrolyte membrane
- solid polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、固体高分子電解質膜、固体高分子電解質膜の製造方法及び固体高分子型燃料電池に関する。 The present invention relates to a solid polymer electrolyte membrane, a method for producing a solid polymer electrolyte membrane, and a solid polymer fuel cell.
固体高分子型燃料電池の電解質膜としては、パーフルオロスルホン酸膜が広く用いられる。パーフルオロスルホン酸膜はプロトン伝導性に優れるが、メタノール水溶液などの液状アルコール燃料を用いた場合に、膜が膨潤する、燃料を透過させやすいため発電効率が低いといった課題がある。 Perfluorosulfonic acid membranes are widely used as electrolyte membranes for polymer electrolyte fuel cells. A perfluorosulfonic acid membrane is excellent in proton conductivity, but when a liquid alcohol fuel such as a methanol aqueous solution is used, there is a problem that the membrane swells and the power generation efficiency is low because the fuel easily permeates.
これらの課題を解決するために絶縁性多孔膜の多孔内にプロトン伝導性ポリマーを充填した電解質膜が検討されている。この電解質膜は絶縁性多孔膜を基材に用いることで含水による寸法変化を抑えることができ、含水した状態でもアルコール透過性を抑制できるといった利点がある。 In order to solve these problems, an electrolyte membrane in which a proton conductive polymer is filled in the pores of an insulating porous membrane has been studied. This electrolyte membrane has the advantage that the dimensional change due to water content can be suppressed by using an insulating porous membrane as a base material, and alcohol permeability can be suppressed even in a water-containing state.
このような固体高分子電解質膜の例として、特許文献1には、ポリイミド多孔質フィルムに2−アクリルアミド−2−メチルプロパンスルホン酸と架橋剤を充填して重合させた電解質膜が記載されている。 As an example of such a solid polymer electrolyte membrane, Patent Document 1 describes an electrolyte membrane obtained by filling a polyimide porous film with 2-acrylamido-2-methylpropanesulfonic acid and a crosslinking agent and polymerizing them. .
また、別の固体高分子型電解質膜として、特許文献2では、架橋ポリエチレン膜に2−メタクリルアミド−2−メチルプロパンスルホン酸と架橋剤を充填して重合させた電解質膜が記載されている。 As another solid polymer electrolyte membrane, Patent Document 2 describes an electrolyte membrane obtained by filling a crosslinked polyethylene membrane with 2-methacrylamide-2-methylpropanesulfonic acid and a crosslinking agent and polymerizing them.
しかしながら、特許文献1および特許文献2に記載の固体高分子電解質膜は、低濃度メタノール水溶液の透過抑制には適するものの、高濃度メタノール溶液の透過を十分に抑制できるとは言いがたかった。直接メタノール型燃料電池に用いられるメタノール水溶液燃料のエネルギー貯蔵密度は、メタノールが高濃度であると高くなる。燃料極の反応には水も必要であるので、燃料から水を供給する場合は、メタノールと水が等モルである約64重量%がメタノール水溶液燃料の理想的な濃度である。 However, although the solid polymer electrolyte membranes described in Patent Document 1 and Patent Document 2 are suitable for suppressing permeation of a low-concentration methanol aqueous solution, it was difficult to say that the permeation of a high-concentration methanol solution could be sufficiently suppressed. The energy storage density of the methanol aqueous solution fuel used in the direct methanol fuel cell becomes high when the methanol concentration is high. Since water is also required for the reaction of the fuel electrode, when water is supplied from the fuel, about 64% by weight where methanol and water are equimolar is the ideal concentration of the aqueous methanol fuel.
そこで本発明は、高濃度アルコール燃料による発電に適応させた固体高分子電解質膜、その製造方法及び固体高分子型燃料電池を提供することを目的とする。 Therefore, an object of the present invention is to provide a solid polymer electrolyte membrane adapted for power generation using a high-concentration alcohol fuel, a production method thereof, and a solid polymer fuel cell.
本願の第一発明は、多孔性高分子膜と、プロトン伝導性基を含有するプロトン伝導成分と、を少なくとも有する固体高分子電解質膜であって、
前記プロトン伝導成分として、第一のプロトン伝導成分と、該第一のプロトン伝導成分よりも酸解離度が小さい第二のプロトン伝導成分と、を有し、
前記第二のプロトン伝導成分は、前記多孔性高分子膜の孔を該多孔性高分子膜の膜面方向にふさぐように存在しており、
前記固体高分子電解質膜中に存在する前記第一のプロトン伝導成分のプロトン伝導性基の数が、該固体高分子電解質膜中に存在する前記第二のプロトン伝導成分のプロトン伝導性基の数よりも多いことを特徴とする固体高分子電解質膜である。
The first invention of the present application is a solid polymer electrolyte membrane having at least a porous polymer membrane and a proton conducting component containing a proton conducting group,
As the proton conduction component, it has a first proton conduction component and a second proton conduction component having a lower acid dissociation degree than the first proton conduction component,
The second proton conducting component is present so as to close the pores of the porous polymer membrane in the membrane surface direction of the porous polymer membrane,
The number of proton conductive groups of the first proton conductive component present in the solid polymer electrolyte membrane is the number of proton conductive groups of the second proton conductive component present in the solid polymer electrolyte membrane. It is a solid polymer electrolyte membrane characterized by having more.
また、本願の第二発明は、多孔性高分子膜の孔部に第一のプロトン伝導成分を固定する第一固定工程と、前記多孔性高分子膜の表面近傍に第二のプロトン伝導成分を固定する第二固定工程とを少なくとも有することを特徴とする固体高分子電解質膜の製造方法である。 The second invention of the present application includes a first fixing step of fixing the first proton conductive component in the pores of the porous polymer membrane, and a second proton conductive component in the vicinity of the surface of the porous polymer membrane. It has a 2nd fixing process to fix, It is a manufacturing method of the solid polymer electrolyte membrane characterized by the above-mentioned.
さらに、本願の第三発明は、上記第一発明に係る固体高分子電解質膜と該固体高分子電解質膜を挟持する一対の電極とを少なくとも有する固体高分子型燃料電池である。 Furthermore, the third invention of the present application is a polymer electrolyte fuel cell having at least the solid polymer electrolyte membrane according to the first invention and a pair of electrodes sandwiching the solid polymer electrolyte membrane.
本発明によれば、高濃度アルコール燃料による発電に適した固体高分子電解質膜膜、その製造方法及び固体高分子型燃料電池を提供することができる。 According to the present invention, it is possible to provide a solid polymer electrolyte membrane suitable for power generation using a high-concentration alcohol fuel, a manufacturing method thereof, and a solid polymer fuel cell.
以下、本発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the present invention will be described.
[固体高分子電解質膜]
本発明に係る固体高分子電解質膜は、多孔性高分子膜と、プロトン伝導性基を含有するプロトン伝導成分とよりなる。また、前記プロトン伝導成分として、第一のプロトン伝導成分と、該第一のプロトン伝導成分よりも酸解離度が小さい第二のプロトン伝導成分とを有し、前記固体高分子電解質膜中に存在する前記第一のプロトン伝導成分のプロトン伝導性基の数が、該固体高分子電解質膜中に存在する前記第二のプロトン伝導成分のプロトン伝導性基の数よりも多い。
[Solid polymer electrolyte membrane]
The solid polymer electrolyte membrane according to the present invention comprises a porous polymer membrane and a proton conducting component containing a proton conducting group. Further, the proton conducting component includes a first proton conducting component and a second proton conducting component having a degree of acid dissociation smaller than that of the first proton conducting component, and is present in the solid polymer electrolyte membrane. The number of proton conductive groups of the first proton conductive component is greater than the number of proton conductive groups of the second proton conductive component present in the solid polymer electrolyte membrane.
本発明において「酸解離度」とは、酸のプロトン解離平衡反応における水素イオンの解離度の相対的な大小を示している。本願発明の場合、静的な状態におけるプロトン伝導性基ひとつあたりの解離プロトン数を用いて、プロトン伝導成分ごとの酸解離度の大小関係を比較する。より具体的には、プロトン伝導性基ひとつあたりの解離プロトン数は、「系中の解離プロトン数」を、「系中におけるプロトン伝導性基の数」で割ることにより求められる。プロトン伝導性基の数は、原料化合物の構造式からの換算やイオン交換容量測定で求めることができる。系中の解離プロトン数は、一定濃度の水溶液を作製して市販のpHメータなどで解離プロトン濃度を測定することで求めることができる。 In the present invention, “degree of acid dissociation” indicates the relative magnitude of the degree of dissociation of hydrogen ions in the proton dissociation equilibrium reaction of acid. In the case of the present invention, the number of dissociated protons per proton conductive group in a static state is used to compare the magnitude relation of the degree of acid dissociation for each proton conductive component. More specifically, the number of dissociated protons per proton conductive group can be obtained by dividing “the number of dissociated protons in the system” by “the number of proton conductive groups in the system”. The number of proton conductive groups can be determined by conversion from the structural formula of the raw material compound or by measuring the ion exchange capacity. The number of dissociated protons in the system can be determined by preparing an aqueous solution with a constant concentration and measuring the dissociated proton concentration with a commercially available pH meter or the like.
酸解離度が大きいプロトン伝導成分は、解離したプロトンの運動性が高いために固体高分子電解質膜のプロトン輸送能力を向上させる役割を担う。したがって、固体高分子電解質膜中の酸解離度が大きいプロトン伝導成分のプロトン伝導性基の数が多いほうが、膜のプロトン伝導抵抗が小さくなり、直接メタノール型燃料電池の電解質膜として適したものとなる。 The proton conducting component having a high degree of acid dissociation plays a role of improving the proton transport ability of the solid polymer electrolyte membrane because the dissociated proton has high mobility. Therefore, the larger the number of proton conductive groups of the proton conductive component having a large acid dissociation degree in the solid polymer electrolyte membrane, the smaller the proton conductive resistance of the membrane, and the more suitable as an electrolyte membrane of a direct methanol fuel cell. Become.
酸解離度が小さいプロトン伝導成分は、極性が小さいので、メタノール透過を抑制する効果がある。一方で、プロトンの伝導性は小さくなってしまう。しかしながら、プロトンの存在量はプロトン伝導性基の仕込み個数で制御できるので、酸解離度が大きいプロトン伝導成分のプロトン伝導性基の数が酸解離度が小さいプロトン伝導成分のプロトン伝導性基の数よりも多い限りにおいては、電解質膜全体のプロトン伝導性低下への影響が小さい。 Since the proton conducting component having a low acid dissociation degree has a small polarity, it has an effect of suppressing methanol permeation. On the other hand, proton conductivity decreases. However, since the amount of protons can be controlled by the number of charged proton conductive groups, the number of proton conductive groups in the proton conductive component having a high degree of acid dissociation is the number of proton conductive groups in the proton conductive component having a low degree of acid dissociation. As long as the amount is larger, the influence on the proton conductivity lowering of the entire electrolyte membrane is small.
酸解離度が大きいプロトン伝導成分(即ち第一のプロトン伝導成分)は前記多孔性高分子膜の孔内に存在していることが好ましい。言い換えれば、第一のプロトン伝導成分は前記多孔性高分子膜の孔内に充填されていることが好ましい。ここで、「プロトン伝導成分が多孔性高分子膜の孔内に存在する(充填されている)」とは、孔内の全てがプロトン伝導成分で満たされている必要は無く、孔内の90%以上にプロトン伝導成分が存在していれば良い。 It is preferable that the proton conducting component (that is, the first proton conducting component) having a high degree of acid dissociation is present in the pores of the porous polymer membrane. In other words, the first proton conducting component is preferably filled in the pores of the porous polymer membrane. Here, “the proton conducting component is present (filled) in the pores of the porous polymer membrane” does not require that all of the pores are filled with the proton conducting component. It suffices if the proton conductive component is present in an amount of at least%.
メタノール透過を抑制する役割を持つ酸解離度が小さいプロトン伝導成分(即ち第二のプロトン伝導成分)は、電解質膜のどの箇所に設けてもある程度の効果を有するが、多孔性高分子膜の孔を該多孔性高分子膜の膜面方向にふさぐように存在していれば全ての透過経路において抑制能力を発揮できる。ここで「多孔性高分子膜の孔を多孔性高分子膜の膜面方向にふさぐように存在している」とは、固体高分子電解質膜の膜面の一方から他方の膜面に至る経路のうち、多孔性高分子膜中は内部の孔のみを通過するプロトンの任意の経路を考えたとき、プロトンが第二のプロトン伝導成分を必ず通過するように第二のプロトン伝導成分が存在している状態を表す。すなわち上記経路において、固体高分子電解質膜の膜面のいずれかからその膜面に近い方の多孔性高分子膜の膜面に至るまで若しくは多孔性高分子膜中の孔内のいずれかに第二のプロトン伝導成分が存在していればよい。「膜面」とは、固体高分子電解質膜又は多孔性高分子膜の対向する表面のうち、最も面積が大きい一対の面のいずれか一方の面を表す。 The proton conducting component having a low acid dissociation degree that suppresses methanol permeation (ie, the second proton conducting component) has a certain effect regardless of the position of the electrolyte membrane. Can be exerted in all permeation paths as long as it is present in the direction of the membrane surface of the porous polymer membrane. Here, “existing pores of the porous polymer membrane in the direction of the membrane surface of the porous polymer membrane” means a path from one of the membrane surfaces of the solid polymer electrolyte membrane to the other membrane surface. Of these, in the porous polymer membrane, when an arbitrary path of protons passing only through the internal pores is considered, the second proton conductive component is present so that the proton always passes through the second proton conductive component. Represents the state. That is, in the above path, either from the membrane surface of the solid polymer electrolyte membrane to the membrane surface of the porous polymer membrane closer to the membrane surface, or in the pores in the porous polymer membrane. It is sufficient that two proton conducting components are present. “Membrane surface” represents one of a pair of surfaces having the largest area among the opposing surfaces of the solid polymer electrolyte membrane or the porous polymer membrane.
このような形状のうち、第二のプロトン伝導成分が多孔性高分子膜の外側で電解質膜の少なくとも一方の表面近傍に存在している形状は、実現が容易であるという点で好ましい。 Among such shapes, a shape in which the second proton conducting component is present in the vicinity of at least one surface of the electrolyte membrane outside the porous polymer membrane is preferable in terms of easy realization.
ここで「表面近傍」とは、固体高分子電解質膜の膜面、膜面の外側及び膜面から膜厚の20%までの深さの孔の内部を表す。 Here, “near the surface” represents the membrane surface of the solid polymer electrolyte membrane, the outside of the membrane surface, and the inside of the hole having a depth from the membrane surface to 20% of the film thickness.
また、前記第二のプロトン伝導成分が多孔性高分子膜の両面の表面近傍に存在することがさらに好ましい。 More preferably, the second proton conductive component is present in the vicinity of both surfaces of the porous polymer membrane.
例えば第二のプロトン伝導成分からなる膜を複数設け、一枚あたりの膜厚を薄くした方が良い。なぜならば、プロトンが固体高分子電解質膜を通過する際のホッピング移動を考慮すると、全体の膜厚が同じであった場合、第二のプロトン伝導成分からなる一枚の膜を設けた場合よりも電解質膜全体のプロトン伝導抵抗が小さくなるからである。この理は膜状でない場合も妥当する。したがって、第二のプロトン伝導成分が多孔性高分子膜の両面の表面近傍に存在することで、同じ量の第二のプロトン伝導成分が片面のみに存在している場合より、メタノールのバリア性を損なわずにプロトン伝導性を良好にすることができる。また、製造しやすいという観点からも、このような形状の高分子膜の方が好ましい。 For example, it is better to provide a plurality of films made of the second proton conducting component and to reduce the film thickness per sheet. This is because, in consideration of hopping movement when protons pass through the solid polymer electrolyte membrane, when the entire film thickness is the same, it is more than when a single membrane composed of the second proton conducting component is provided. This is because the proton conduction resistance of the entire electrolyte membrane is reduced. This reason is valid even when it is not film-like. Therefore, the presence of the second proton conducting component in the vicinity of the surfaces of both surfaces of the porous polymer membrane makes the methanol barrier property better than when the same amount of the second proton conducting component is present only on one side. Proton conductivity can be improved without loss. Further, from the viewpoint of easy manufacture, the polymer film having such a shape is preferable.
本発明において多孔性高分子膜とは、多数の微細な孔が存在する高分子膜を表している。これらの孔は独立しているのではなく、適度に連結して膜の一方の面から他方の面にかけて気体や液体が透過できる非直線的な通路状になっていることが好ましい。 In the present invention, the porous polymer film represents a polymer film having a large number of fine pores. These holes are not independent, but are preferably connected in a non-linear manner so that gas and liquid can pass from one side of the membrane to the other side.
本発明における多孔性高分子膜の材料は特に制限されないが、アルコール水溶液の使用を考えるとアルコール類と水に不溶かつ膨潤しない高分子材料が好ましい。具体的には、ポリイミド系樹脂(例:宇部興産社製のユーピレックス(登録商標))、ポリテトラフルオロエチレン系樹脂(例:日東電工社製の多孔性PTFE膜)、ポリアクリロニトリル系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリオレフィン系樹脂などの各種樹脂材料が使用可能である。ここで、「ポリイミド系樹脂」とは、ポリイミドもしくはポリイミド誘導体からなる樹脂のことであり、その他の材料についても同様とする。前記材料のうち、メタノールと水に対する不溶性、物理強度、化学安定性の面で特に優れているのは、ポリイミド系樹脂である。 The material for the porous polymer film in the present invention is not particularly limited, but a polymer material that is insoluble in alcohols and water and does not swell is preferable in consideration of the use of an aqueous alcohol solution. Specifically, polyimide resin (eg, Upilex (registered trademark) manufactured by Ube Industries), polytetrafluoroethylene resin (eg, porous PTFE membrane manufactured by Nitto Denko Corporation), polyacrylonitrile resin, polyamide system Various resin materials such as resin, polyamideimide resin, and polyolefin resin can be used. Here, the “polyimide resin” is a resin made of polyimide or a polyimide derivative, and the same applies to other materials. Of these materials, polyimide resins are particularly excellent in terms of insolubility in methanol and water, physical strength, and chemical stability.
多孔性高分子膜の膜厚や空孔率は、その材質、目的とする固体高分子電解質膜の強度、目的とする固体高分子型燃料電池の特性などから選ばれる。ここで、膜電極接合体の組み立て時や固体高分子型燃料電池としての使用時に十分な強度を保つという観点から、多孔性高分子膜の厚さは15μm以上であることが好ましい。一方、プロトンの移動距離を短くして発電効率を向上させるという観点から、多孔性高分子膜の厚さは150μm以下とすることが好ましい。 The film thickness and porosity of the porous polymer membrane are selected from the material thereof, the strength of the target solid polymer electrolyte membrane, the characteristics of the target polymer electrolyte fuel cell, and the like. Here, the thickness of the porous polymer membrane is preferably 15 μm or more from the viewpoint of maintaining sufficient strength when assembling the membrane electrode assembly or when used as a polymer electrolyte fuel cell. On the other hand, from the viewpoint of improving the power generation efficiency by shortening the proton movement distance, the thickness of the porous polymer film is preferably 150 μm or less.
また、プロトン伝導成分が存在できる部分を多くして発電効率を向上させるという観点から、多孔性高分子膜の平均空孔率は体積換算で30%以上であることが望ましい。一方、固体高分子膜の強度を確保するという観点から、多孔性高分子膜の平均空孔率は体積換算で90%以下であることが好ましい。なお、体積換算での平均空孔率とは、多孔性高分子膜において空孔部が占める体積(厳密に言えば容積)の割合である。平均空孔率(単位は%)の算出方法は、多孔性高分子膜の重量と体積から多孔性高分子膜の見かけの比重を計算し、その上で、[1−(多孔性高分子膜の見かけの比重/高分子材料自体の比重)]×100とすることで算出する。 Further, from the viewpoint of improving the power generation efficiency by increasing the portion where the proton conductive component can exist, it is desirable that the average porosity of the porous polymer film is 30% or more in terms of volume. On the other hand, from the viewpoint of ensuring the strength of the solid polymer membrane, the average porosity of the porous polymer membrane is preferably 90% or less in terms of volume. The average porosity in terms of volume is the ratio of the volume (strictly speaking, the volume) occupied by the pores in the porous polymer film. The average porosity (unit:%) is calculated by calculating the apparent specific gravity of the porous polymer membrane from the weight and volume of the porous polymer membrane, and then [1- (Porous Polymer Membrane). (Apparent specific gravity / specific gravity of the polymer material itself)] × 100.
第一のプロトン伝導成分は、プロトン伝導性基を有する高分子化合物からなることが好ましい。プロトン伝導性基の役割は、固体高分子電解質膜の燃料極側から空気極側へプロトンを輸送することである。また、第一のプロトン伝導成分の母体を高分子化合物とすることにより、第一のプロトン伝導成分を発電反応中に流れ出ない程度の強度で前記多孔性高分子膜に物理的または化学的に固定化することが容易になる。 The first proton conducting component is preferably composed of a polymer compound having a proton conducting group. The role of the proton conductive group is to transport protons from the fuel electrode side to the air electrode side of the solid polymer electrolyte membrane. In addition, by using a polymer compound as the base of the first proton conducting component, the first proton conducting component is physically or chemically fixed to the porous polymer membrane with a strength that does not flow out during the power generation reaction. It becomes easy to make.
プロトン伝導性基としては、例えば、スルホン酸基、スルフィン酸基、カルボン酸基、ホスホン酸基、リン酸基、ホスフィン酸基、ボロン酸基などが挙げられる。 Examples of proton conductive groups include sulfonic acid groups, sulfinic acid groups, carboxylic acid groups, phosphonic acid groups, phosphoric acid groups, phosphinic acid groups, and boronic acid groups.
第一のプロトン伝導成分の酸解離度を第二のプロトン伝導成分の酸解離度よりも大きくするためには、第一のプロトン伝導成分に含まれるプロトン伝導性基はスルホン酸基であることが好ましい。スルホン酸基は酸解離度が高いので、プロトンの輸送効率を向上させる効果が高い。 In order to make the acid dissociation degree of the first proton conducting component larger than the acid dissociation degree of the second proton conducting component, the proton conducting group contained in the first proton conducting component must be a sulfonic acid group. preferable. Since the sulfonic acid group has a high degree of acid dissociation, the effect of improving proton transport efficiency is high.
また、第一及び第二のプロトン伝導成分中のプロトン伝導性基の含有量は、特に制限されないが、固体高分子電解質膜のプロトン伝導率を高く保つという観点から、プロトン伝導性基1個あたりのプロトン伝導成分の分子量が1000以下であることが好ましい。 Further, the content of the proton conductive group in the first and second proton conductive components is not particularly limited, but per proton conductive group from the viewpoint of keeping the proton conductivity of the solid polymer electrolyte membrane high. The proton conductive component preferably has a molecular weight of 1000 or less.
第二のプロトン伝導成分は、前記多孔性高分子膜に物理的または化学的に固定化することが容易になるという観点から、プロトン伝導性基を有する高分子化合物からなることが好ましい。 The second proton conductive component is preferably made of a polymer compound having a proton conductive group from the viewpoint of easy physical or chemical immobilization on the porous polymer membrane.
プロトン伝導性基としては、例えば、スルホン酸基、スルフィン酸基、カルボン酸基、ホスホン酸基、リン酸基、ホスフィン酸基、ボロン酸基などが挙げられる。 Examples of proton conductive groups include sulfonic acid groups, sulfinic acid groups, carboxylic acid groups, phosphonic acid groups, phosphoric acid groups, phosphinic acid groups, and boronic acid groups.
第二のプロトン伝導成分の酸解離度を相対的に小さくするためには、第二のプロトン伝導成分に含まれるプロトン伝導性基はリン酸基またはホスホン酸基であることが好ましい。リン酸基またはホスホン酸基はプロトン伝導性であり、固体電解質膜のプロトン伝導を妨げず、酸解離度が小さいためにメタノール透過を抑制する機能を有する。 In order to relatively reduce the acid dissociation degree of the second proton conductive component, the proton conductive group contained in the second proton conductive component is preferably a phosphate group or a phosphonic acid group. The phosphoric acid group or phosphonic acid group is proton-conductive, does not hinder proton conduction of the solid electrolyte membrane, and has a function of suppressing methanol permeation because the acid dissociation degree is small.
本願発明の固体高分子電解質膜は、プロトン伝導率が0.10S/cm以上で、かつメタノール透過係数が1.0×10−7以下であることが好ましい。 The solid polymer electrolyte membrane of the present invention preferably has a proton conductivity of 0.10 S / cm or more and a methanol permeability coefficient of 1.0 × 10 −7 or less.
[固体高分子電解質膜の製造方法]
本発明における固体高分子電解質膜の製造方法は、多孔性高分子膜の孔部に第一のプロトン伝導成分を固定する第一固定工程と、前記多孔性高分子膜の表面近傍に、前記第一のプロトン伝導成分よりも酸解離度が小さいかつ前記第一のプロトン伝導成分のプロトン伝導性基の数よりもプロトン伝導性基の数が少ない第二のプロトン伝導成分を固定する第二固定工程とを少なくとも有する。
[Method for producing solid polymer electrolyte membrane]
The method for producing a solid polymer electrolyte membrane according to the present invention includes a first fixing step of fixing a first proton conducting component in the pores of the porous polymer membrane, and the first polymerizing component in the vicinity of the surface of the porous polymer membrane. A second immobilization step of immobilizing a second proton conductive component having a lower degree of acid dissociation than one proton conductive component and a smaller number of proton conductive groups than the number of proton conductive groups of the first proton conductive component And at least.
第一固定工程は、多孔性高分子膜の孔部に第一のプロトン伝導成分前駆体を充填し、第一のプロトン伝導成分前駆体を第一のプロトン伝導成分に変換して多孔性高分子膜に固定する工程であることが好ましい。なお、第一のプロトン伝導成分前駆体は、第一のプロトン伝導成分に変換されるものであれば、プロトン伝導性基を有する化合物(例えばスルホン酸基含有化合物)であっても良く、プロトン伝導性基を有する化合物とその他の添加剤を含む混合物であっても良い。 In the first fixing step, the pores of the porous polymer membrane are filled with the first proton conducting component precursor, and the first proton conducting component precursor is converted into the first proton conducting component to convert the porous polymer membrane to the porous polymer membrane. A step of fixing to a membrane is preferable. The first proton conductive component precursor may be a compound having a proton conductive group (for example, a sulfonic acid group-containing compound) as long as it can be converted into the first proton conductive component. It may be a mixture containing a compound having a functional group and other additives.
多孔性高分子膜の孔内に前記第一のプロトン伝導成分前駆体を充填する方法は特に制限されない。例えば、第一のプロトン伝導成分前駆体に多孔性高分子膜を浸漬するだけでも良い。更に接触効率を上げるために、必要に応じて超音波振動を加えたり、減圧濾過や加圧濾過の手法を併用したりしても良い。 The method for filling the first proton conductive component precursor in the pores of the porous polymer membrane is not particularly limited. For example, the porous polymer membrane may be simply immersed in the first proton conducting component precursor. In order to further increase the contact efficiency, ultrasonic vibration may be applied as necessary, or a vacuum filtration or pressure filtration technique may be used in combination.
第一のプロトン伝導成分前駆体を第一のプロトン伝導成分に変換して多孔性高分子膜に固定する方法としては、重合開始剤を用いた加熱重合反応や、電子線照射又は紫外線照射による重合反応が考えられる。その他、カップリング剤(架橋剤)によるクロスリンキング、ゾルゲル反応などの方法も考えられる。 As a method for converting the first proton conducting component precursor to the first proton conducting component and fixing it to the porous polymer membrane, a heat polymerization reaction using a polymerization initiator, polymerization by electron beam irradiation or ultraviolet irradiation, etc. Reaction is possible. In addition, methods such as cross-linking with a coupling agent (cross-linking agent) and sol-gel reaction are also conceivable.
第一固定工程において多孔内に充填された第一のプロトン伝導成分前駆体を重合させる方法としては、特に電子線照射を用いることが好ましい。後述する除去工程の際に表面近傍の第一のプロトン伝導成分を効果的に除去できるからである。重合後の第一のプロトン伝導成分は、固体状またはゲル状のプロトン伝導成分となっていることが好ましい。 As a method for polymerizing the first proton conductive component precursor filled in the pores in the first fixing step, it is particularly preferable to use electron beam irradiation. This is because the first proton-conducting component in the vicinity of the surface can be effectively removed during the removing step described later. The first proton conducting component after polymerization is preferably a solid or gel proton conducting component.
電子線照射において、化合物同士の化学結合の形成量を増大させるという観点から、電子線の照射量は100Gy以上に設定することが好ましく、5kGy以上に設定することがより好ましい。一方、多孔性高分子膜やプロトン伝導成分の変性を抑制するという観点から、電子線の照射量は10MGy以下に設定することが好ましく、200kGy以下に設定することがより好ましい。 In the electron beam irradiation, from the viewpoint of increasing the amount of chemical bond formation between the compounds, the electron beam irradiation amount is preferably set to 100 Gy or more, and more preferably set to 5 kGy or more. On the other hand, from the viewpoint of suppressing denaturation of the porous polymer membrane and the proton conducting component, the electron beam irradiation amount is preferably set to 10 MGy or less, and more preferably set to 200 kGy or less.
電子線の加速電圧は電解質膜の厚さによって異なるが、例えば15μm以上150μm以下程度のフィルムでは50kV以上2MV以下程度の加速電圧が好ましい。加速電圧の異なる複数の電子線を同時に照射してもよい。また電子線の照射中に加速電圧を変化させてもよい。また、必要に応じて活性エネルギー線の照射中または照射直後に加熱処理を行っても良い。 Although the acceleration voltage of the electron beam varies depending on the thickness of the electrolyte membrane, for example, an acceleration voltage of about 50 kV to 2 MV is preferable for a film of about 15 μm to 150 μm. A plurality of electron beams having different acceleration voltages may be irradiated simultaneously. Further, the acceleration voltage may be changed during the electron beam irradiation. Moreover, you may heat-process during the irradiation of an active energy ray or immediately after irradiation as needed.
第一固定工程で用いる第一のプロトン伝導成分前駆体の種類は特に制限されないが、固体高分子電解質膜のプロトン伝導性のためにはスルホン酸基含有化合物を用いることが好ましい。その中でも、化合物中におけるスルホン酸基の割合の大きいものを用いることが好ましく、例えば、官能基1個あたりの分子量は500以下であることが好ましい。 The type of the first proton conductive component precursor used in the first fixing step is not particularly limited, but it is preferable to use a sulfonic acid group-containing compound for proton conductivity of the solid polymer electrolyte membrane. Among them, it is preferable to use a compound having a large proportion of sulfonic acid groups in the compound. For example, the molecular weight per functional group is preferably 500 or less.
第一のプロトン伝導成分前駆体は、電子線に活性を有する官能基を持つ化合物であると、第一固定工程における化学結合が更に強固になるのでより好ましい。電子線に活性を有する官能基としては、二重結合、三重結合などの不飽和結合が挙げられる。その中でも特に活性の高い官能基は、メタクリル酸基、アクリル酸基、ビニル基、スチレン基である。 The first proton conducting component precursor is more preferably a compound having a functional group having activity in an electron beam because the chemical bond in the first fixing step is further strengthened. Examples of the functional group having activity on the electron beam include unsaturated bonds such as double bonds and triple bonds. Among them, particularly active functional groups are methacrylic acid groups, acrylic acid groups, vinyl groups, and styrene groups.
第一のプロトン伝導成分前駆体としての、スルホン酸基と電子線に活性を有する官能基を持つ化合物の例としては、ビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸、スルホブチルメタクリレート類、スルホプロピルメタクリレート類、2−アクリルアミド−2−メチルプロパンスルホン酸、スルホベンゼンメタクリレート類、スルホベンジルメタクリレート類を挙げることができる。 Examples of the compound having a sulfonic acid group and a functional group having activity in an electron beam as the first proton conductive component precursor include vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, sulfobutyl methacrylate, sulfopropyl Examples include methacrylates, 2-acrylamido-2-methylpropane sulfonic acid, sulfobenzene methacrylates, and sulfobenzyl methacrylates.
また、上記化合物にフッ素を導入した化合物を使用しても構わない。これら化合物の複数種類を混合併用しても構わない。 Moreover, you may use the compound which introduce | transduced the fluorine into the said compound. A plurality of these compounds may be used in combination.
また、第一のプロトン伝導成分前駆体は、スルホン酸基を持たない化合物を含んでいても良い。例えば、複素環構造を有する化合物を添加することで、第一固定工程で形成されるプロトン伝導成分の多孔性高分子膜への固定を強固にする効果が期待できる。なお、複素環構造を有する化合物は電子線に活性を有する官能基を有していても良い。また、スルホン酸基を持たない化合物として、重合物同士あるいは重合物と多孔性高分子膜の化学結合を強固にするために、架橋剤を適量添加しても良い。このような架橋剤としては、電子線に対して活性を有するものが好ましい。例えば、アクリルアミド、メチレンビスアクリルアミド、アクリロニトリル、N−ビニルピロリドン、グリセリンジメタクリレートなどが好適な架橋剤として挙げられる。また、粘度調整の目的で、機能性化合物に適当な溶剤を少量添加しても良い。第一固定工程と前記第二固定工程の間に、前記多孔性高分子膜の表面近傍にある第一のプロトン伝導成分を除去する除去工程を設けることが好ましい。除去工程によって、高分子膜の表面近傍にある孔を露出させて、第二のプロトン伝導成分の定着性を良くするためである。この時、多孔性高分子膜の表面近傍にある全ての第一のプロトン伝導成分を除去する必要は無く、第二のプロトン伝導成分が十分に定着する程度に除去を行えば良い。除去の手法は、特に制限されないが、電子線照射前の第一のプロトン伝導成分にとって可溶である溶媒に浸漬し、その中で擦り処理を実施すると効果的に除去できる。 The first proton conductive component precursor may contain a compound having no sulfonic acid group. For example, by adding a compound having a heterocyclic structure, an effect of strengthening the fixation of the proton conducting component formed in the first fixing step to the porous polymer membrane can be expected. Note that the compound having a heterocyclic structure may have a functional group having activity in an electron beam. Further, as a compound having no sulfonic acid group, an appropriate amount of a crosslinking agent may be added in order to strengthen the chemical bond between the polymers or between the polymer and the porous polymer membrane. As such a crosslinking agent, what has activity with respect to an electron beam is preferable. For example, acrylamide, methylene bisacrylamide, acrylonitrile, N-vinyl pyrrolidone, glycerin dimethacrylate and the like can be mentioned as suitable crosslinking agents. For the purpose of adjusting the viscosity, a small amount of a suitable solvent may be added to the functional compound. It is preferable to provide a removal step for removing the first proton conducting component in the vicinity of the surface of the porous polymer membrane between the first fixing step and the second fixing step. This is because the hole in the vicinity of the surface of the polymer membrane is exposed by the removing step to improve the fixability of the second proton conducting component. At this time, it is not necessary to remove all the first proton conductive components in the vicinity of the surface of the porous polymer membrane, and it may be removed to such an extent that the second proton conductive components are sufficiently fixed. The removal method is not particularly limited, but it can be effectively removed by immersing in a solvent that is soluble in the first proton conducting component before electron beam irradiation and carrying out a rubbing treatment therein.
第二固定工程は、多孔性高分子膜の表面近傍に第二のプロトン伝導成分を接触させ、第二のプロトン伝導成分前駆体を第二のプロトン伝導成分に変換して多孔性高分子膜に固定する工程である。第二のプロトン伝導成分前駆体とは、プロトン伝導性基を有する化合物(例えばリン酸基又はホスホン酸基含有化合物)とその他の添加剤を含む混合物である。 In the second fixing step, the second proton conducting component is brought into contact with the surface of the porous polymer membrane, and the second proton conducting component precursor is converted into the second proton conducting component to form a porous polymer membrane. It is the process of fixing. The second proton conductive component precursor is a mixture containing a compound having a proton conductive group (for example, a phosphate group or phosphonic acid group-containing compound) and other additives.
多孔性高分子膜の表面近傍に第二のプロトン伝導成分を接触させる方法は特に制限されない。例えば、第二のプロトン伝導成分に多孔性高分子膜を浸漬するだけでも良い。更に接触効率を上げるために、必要に応じて超音波振動を加えても良い。 The method for bringing the second proton conductive component into contact with the vicinity of the surface of the porous polymer membrane is not particularly limited. For example, the porous polymer membrane may be simply immersed in the second proton conducting component. In order to further increase the contact efficiency, ultrasonic vibration may be applied as necessary.
第二固定工程において多孔性高分子膜の表面に付着した第二のプロトン伝導成分前駆体を重合させる方法としては、第一固定工程と同様の方法を用いることができる。重合後の第二のプロトン伝導成分は、膜状のプロトン伝導成分として多孔性高分子膜の少なくとも一方の表面近傍に存在していることが好ましい。 As a method for polymerizing the second proton conducting component precursor attached to the surface of the porous polymer membrane in the second fixing step, the same method as in the first fixing step can be used. The second proton conducting component after polymerization is preferably present in the vicinity of at least one surface of the porous polymer membrane as a membrane-like proton conducting component.
第二固定工程における電子線照射の照射量や加速電圧の条件は、第一固定工程と同様で特に制限されない。第一固定工程で形成されたプロトン伝導成分を保護する目的で、第二固定工程における電子線の照射量や加速電圧を相対的に小さくしても良い。 The electron beam irradiation dose and acceleration voltage conditions in the second fixing step are the same as those in the first fixing step, and are not particularly limited. In order to protect the proton conduction component formed in the first fixing step, the electron beam irradiation amount and the acceleration voltage in the second fixing step may be relatively reduced.
また、電子線照射後、不要の混合物が膜の表面に残る場合は、水などで洗浄することによって取り除いてもよい。 In addition, if an unnecessary mixture remains on the surface of the film after electron beam irradiation, it may be removed by washing with water or the like.
第二固定工程で用いる第二のプロトン伝導成分前駆体の種類は特に制限されないが、固体高分子電解質膜のプロトン伝導性とメタノール透過抑制のためにはリン酸基またはホスホン酸基含有化合物を用いることが好ましい。特に、化合物中におけるリン酸基またはホスホン酸基の割合の大きいものを用いることが好ましく、例えば、官能基1個あたりの分子量は500以下であることが好ましい。 The type of the second proton conducting component precursor used in the second fixing step is not particularly limited, but a phosphate group or phosphonic acid group-containing compound is used for proton conductivity of the solid polymer electrolyte membrane and methanol permeation suppression. It is preferable. In particular, it is preferable to use a compound having a large proportion of phosphoric acid groups or phosphonic acid groups in the compound. For example, the molecular weight per functional group is preferably 500 or less.
第二のプロトン伝導成分前駆体は、電子線に活性を有する官能基を持つ化合物であると、第二固定工程における化学結合が更に強固になるのでより好ましい。電子線照射に活性を有する官能基としては、二重結合、三重結合などの不飽和結合が挙げられる。その中でも特に活性の高い官能基は、メタクリル酸基、アクリル酸基、ビニル基、スチレン基である。そのうち、膜状の重合体を得やすい官能基は、メタクリル基とアクリル基である。 The second proton-conducting component precursor is more preferably a compound having a functional group having activity in an electron beam because the chemical bond in the second fixing step is further strengthened. Examples of the functional group having activity in electron beam irradiation include unsaturated bonds such as double bonds and triple bonds. Among them, particularly active functional groups are methacrylic acid groups, acrylic acid groups, vinyl groups, and styrene groups. Among them, the functional groups that are easy to obtain a film-like polymer are a methacryl group and an acrylic group.
第二のプロトン伝導成分前駆体としての、リン酸基と電子線に活性な官能基を有する化合物としては、側鎖にリン酸エステル基を持つ(メタ)アクリル酸エステル誘導体を好適に用いることができる。また、リン酸基含有化合物は、添加物としてリン酸基を持たない化合物を含んでいても良い。添加可能な化合物の例は、スルホン酸基含有化合物の場合と同様である。 As a compound having a phosphate group and a functional group active on an electron beam as the second proton conducting component precursor, a (meth) acrylic acid ester derivative having a phosphate group in the side chain is preferably used. it can. The phosphate group-containing compound may contain a compound having no phosphate group as an additive. Examples of compounds that can be added are the same as in the case of the sulfonic acid group-containing compound.
本発明による固体高分子電解質膜を用いると、高濃度アルコール燃料に適応した固体高分子型燃料電池を形成することができる。このような固体高分子型燃料電池は、本発明の固体高分子電解質膜とこの膜を挟持する一対の電極とを少なくとも有している。この燃料電池は、水素ガス燃料を用いた場合でも発電可能である。 When the polymer electrolyte membrane according to the present invention is used, a polymer electrolyte fuel cell suitable for high-concentration alcohol fuel can be formed. Such a polymer electrolyte fuel cell has at least the polymer electrolyte membrane of the present invention and a pair of electrodes that sandwich the membrane. This fuel cell can generate power even when hydrogen gas fuel is used.
固体高分子型燃料電池を形成する場合の、電池構成や製造方法、各種部材の材質などは一般に知られている技術を適用することができる。たとえば、固体高分子電解質膜の両面に触媒層を設け、その外側に燃料拡散層、酸化剤拡散層(一般的には、空気拡散層又は酸素拡散層)を設ける。それにより、固体高分子電解質膜の一方の面に燃料極を、他方の面に酸素極又は酸化剤極を、それぞれ配置して、膜電極接合体とすることが可能である。そして、この膜電極接合体に、燃料供給路及び燃料タンク並びに空気(又は酸素)供給路を設けることによって、燃料電池とすることができる。なお、空気を送り込む送気ポンプや酸素タンクを設けても良い。 For forming a polymer electrolyte fuel cell, generally known techniques can be applied to the cell configuration, manufacturing method, materials of various members, and the like. For example, a catalyst layer is provided on both sides of a solid polymer electrolyte membrane, and a fuel diffusion layer and an oxidant diffusion layer (generally, an air diffusion layer or an oxygen diffusion layer) are provided outside thereof. Thereby, a fuel electrode can be arranged on one surface of the solid polymer electrolyte membrane, and an oxygen electrode or an oxidizer electrode can be arranged on the other surface to form a membrane electrode assembly. A fuel cell can be obtained by providing the membrane electrode assembly with a fuel supply path, a fuel tank, and an air (or oxygen) supply path. Note that an air supply pump or an oxygen tank for supplying air may be provided.
このような燃料電池の具体例としては、図1に示す構造の燃料電池を挙げることができる。図1は本発明の固体高分子電解質膜を適用した燃料電池の最小構成の一例を示したものであって、実際の形状は任意である。また、複数個の膜電極接合体を直列または並列に組み合わせても良い。 A specific example of such a fuel cell is a fuel cell having the structure shown in FIG. FIG. 1 shows an example of the minimum configuration of a fuel cell to which the solid polymer electrolyte membrane of the present invention is applied, and the actual shape is arbitrary. A plurality of membrane electrode assemblies may be combined in series or in parallel.
図中、1は膜電極接合体、101は本発明の固体高分子電解質膜、102は触媒層、103は拡散層、2は燃料極(アノード)、3は酸化剤極(カソード)である。本例では固体高分子電解質膜101、一対の触媒層102、一対の拡散層103よりなる接合体を膜電極接合体と称する。また、本例では、触媒層102、拡散層103はアノード2又はカソード3の一部である。本例では、アノード2及びカソード3の触媒層102、拡散層103以外の部分は、燃料又は酸化剤の供給路の外壁と電流を取り出すための回路の一部とを兼ねている部分である。なお、図示していないが、固体高分子電解質膜101、触媒層102、拡散層103、の周囲の少なくとも一部にシール材を設けてこれらの部材(の少なくとも一部)と外気との接触を防ぐことができる。 In the figure, 1 is a membrane electrode assembly, 101 is a solid polymer electrolyte membrane of the present invention, 102 is a catalyst layer, 103 is a diffusion layer, 2 is a fuel electrode (anode), and 3 is an oxidant electrode (cathode). In this example, a joined body composed of the solid polymer electrolyte membrane 101, the pair of catalyst layers 102, and the pair of diffusion layers 103 is referred to as a membrane electrode assembly. In this example, the catalyst layer 102 and the diffusion layer 103 are part of the anode 2 or the cathode 3. In this example, the portions of the anode 2 and the cathode 3 other than the catalyst layer 102 and the diffusion layer 103 serve as both the outer wall of the fuel or oxidant supply path and part of the circuit for taking out current. Although not shown, a sealing material is provided on at least a part of the periphery of the solid polymer electrolyte membrane 101, the catalyst layer 102, and the diffusion layer 103 so that the contact between these members (at least a part thereof) and the outside air is achieved. Can be prevented.
第二のプロトン伝導成分が前記多孔性高分子膜の片面のみの表面近傍に存在している場合は、酸解離度が相対的に小さい方の面を燃料極側として、電池を構成することが好ましい。例えば、第一のプロトン伝導成分より酸解離度が小さい第二のプロトン伝導成分に接するように燃料極を配置することが好ましい。燃料としてメタノール水溶液を用いる場合のメタノール濃度は、3重量%から60重量%が適当である。特に高濃度領域でメタノールの透過抑制という本発明の効果は大きく現れる。 When the second proton conducting component is present in the vicinity of only one surface of the porous polymer membrane, the battery may be configured with the surface having a relatively low acid dissociation degree as the fuel electrode side. preferable. For example, the fuel electrode is preferably disposed so as to be in contact with the second proton conductive component having a lower acid dissociation degree than the first proton conductive component. The methanol concentration in the case of using a methanol aqueous solution as the fuel is suitably from 3% to 60% by weight. In particular, the effect of the present invention, that is, suppression of methanol permeation, appears in a high concentration region.
本発明による固体高分子電解質膜を燃料電池に適用する場合、第二のプロトン伝導成分は、必ずしも全面にわたって多孔性高分子膜の孔を該多孔性高分子膜の膜面方向にふさぐように存在していなくともよい場合がある。たとえば、固体高分子電解質膜よりもそれを挟持する電極(一般的には触媒層)のサイズが小さい場合、電極間に存在する多孔性高分子膜の孔を膜面方向にふさぐように存在していれば、本発明の効果は達成できる。 When the solid polymer electrolyte membrane according to the present invention is applied to a fuel cell, the second proton conducting component does not necessarily exist so as to block the pores of the porous polymer membrane over the entire surface in the direction of the membrane surface of the porous polymer membrane. You may not have to. For example, when the size of an electrode (generally a catalyst layer) sandwiching the polymer electrolyte membrane is smaller than that of the solid polymer electrolyte membrane, it exists so as to close the pores of the porous polymer membrane existing between the electrodes in the membrane surface direction. If so, the effects of the present invention can be achieved.
これは、一方の電極から他方の電極に至る経路(多孔性高分子膜中は内部の孔のみを通過するプロトンの任意の経路)を考えたとき、プロトンが第二のプロトン伝導成分を必ず通過するように第二のプロトン伝導成分が存在している状態を表す。具体的な構成としては、図1に示した構造の燃料電池において、個体高分子電解質膜101の片面又は両面の触媒層102と接触している表面近傍に第二のプロトン伝導成分からなる膜が設けられている構成を挙げることができる。 This is because when a path from one electrode to the other electrode is considered (any path of protons that pass only through the internal pores in the porous polymer membrane), the proton always passes through the second proton conducting component. In this way, the second proton conductive component is present. Specifically, in the fuel cell having the structure shown in FIG. 1, a membrane composed of a second proton conductive component is formed in the vicinity of the surface in contact with the catalyst layer 102 on one or both sides of the solid polymer electrolyte membrane 101. The structure provided can be mentioned.
以下に実施例を挙げて本発明をより具体的に説明するが、本発明は特許請求の範囲の記載に基づいて解釈されるものであり、以下の実施例により限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is construed based on the description of the scope of claims, and is not limited by the following examples.
(固体高分子電解質膜の製造例)
(実施例1)
第一のプロトン伝導成分としてビニルスルホン酸の重合体、第二のプロトン伝導成分としてメタクロイルオキシエチルホスフェートを選択した。事前にビニルスルホン酸を水溶液化してpHメータ(堀場製作所製、D−50)により酸解離度を測定した。その結果、ビニルスルホン酸のプロトン伝導性基あたりの解離プロトン数は0.56であった。同様にして測定したところ、メタクロイルオキシエチルホスフェートのプロトン伝導性基あたりの解離プロトン数は0.24であった。
(Example of production of solid polymer electrolyte membrane)
(Example 1)
A vinyl sulfonic acid polymer was selected as the first proton conducting component, and methacryloyloxyethyl phosphate as the second proton conducting component. Vinylsulfonic acid was made into an aqueous solution in advance, and the acid dissociation degree was measured with a pH meter (D-50 manufactured by Horiba, Ltd.). As a result, the number of dissociated protons per proton conductive group of vinyl sulfonic acid was 0.56. When measured in the same manner, the number of dissociated protons per proton conductive group of methacryloyloxyethyl phosphate was 0.24.
プラスチック容器中でビニルスルホン酸28.0g、アクリロイルモルホリン9.2g、メチレンビスアクリルアミド1.2gを混合し、スルホン酸基含有の混合溶液を作製した。この溶液中に多孔性高分子膜として厚さ27μm、平均細孔径0.1μm、充填前の平均空孔率40%のポリイミド膜を浸漬し、ポリイミド膜の孔内に溶液を充填した。容器より取り出したポリイミド膜を平滑なPTFEフィルム上へ移して、電子線照射装置(岩崎電気社製、EC250/15/180L)を用いて、加速電圧200kV、線量50kGyの電子線を照射した。電子線の照射によりポリイミド膜の孔内に充填された液状の混合溶液は固着した。 In a plastic container, 28.0 g of vinyl sulfonic acid, 9.2 g of acryloylmorpholine, and 1.2 g of methylenebisacrylamide were mixed to prepare a mixed solution containing sulfonic acid groups. A polyimide film having a thickness of 27 μm, an average pore diameter of 0.1 μm, and an average porosity of 40% before filling was immersed in this solution as a porous polymer film, and the solution was filled into the pores of the polyimide film. The polyimide film taken out from the container was transferred onto a smooth PTFE film, and an electron beam with an acceleration voltage of 200 kV and a dose of 50 kGy was irradiated using an electron beam irradiation apparatus (EC250 / 15 / 180L manufactured by Iwasaki Electric Co., Ltd.). The liquid mixed solution filled in the pores of the polyimide film by electron beam irradiation was fixed.
電子線照射後のポリイミド膜を60℃に熱したメタノール/水混合溶液(等体積混合)に移して、その両表面をスポンジで擦り洗いすることで表面近傍の充填物を除去した。洗浄後の膜は、一旦、自然乾燥させた。 The polyimide film after electron beam irradiation was transferred to a methanol / water mixed solution (equal volume mixing) heated to 60 ° C., and both surfaces thereof were scrubbed with a sponge to remove the filler near the surface. The washed membrane was once naturally dried.
洗浄後の膜を走査型電子顕微鏡で観察したところ、表面から1μm程度の深さにかけて平均直径0.1μmの孔が多数空いている様子が見られた。 When the washed film was observed with a scanning electron microscope, a large number of holes having an average diameter of 0.1 μm were observed from the surface to a depth of about 1 μm.
次に、別のプラスチック容器中でメタクロイルオキシエチルホスフェート(共栄社化学製、商品名P−1M)28.0g、アクリロイルモルホリン9.2g、メチレンビスアクリルアミド0.7gを混合し、リン酸基含有の混合溶液を作製した。この溶液中に洗浄後自然乾燥させた膜を浸漬させた。この膜を容器より取り出してPTFEフィルム上へ移して、加速電圧150kV、線量30kGyの電子線を照射した。電子線の照射によりポリイミド膜の表面近傍に付着した液状の混合物は膜状に固着し、本実施例の固体高分子電解質膜(以下、PEM−1という)を得た。PEM−1の膜厚は29μmであった。 Next, 28.0 g of methacryloyloxyethyl phosphate (trade name P-1M, manufactured by Kyoeisha Chemical Co., Ltd.), 9.2 g of acryloylmorpholine, and 0.7 g of methylenebisacrylamide were mixed in another plastic container, A mixed solution was prepared. A membrane which was washed and naturally dried was immersed in this solution. This film was taken out from the container, transferred onto a PTFE film, and irradiated with an electron beam having an acceleration voltage of 150 kV and a dose of 30 kGy. The liquid mixture adhering to the vicinity of the surface of the polyimide film by electron beam irradiation was fixed in the form of a film to obtain a solid polymer electrolyte membrane (hereinafter referred to as PEM-1) of this example. The film thickness of PEM-1 was 29 μm.
固体高分子電解質膜中に存在する第一のプロトン伝導成分のプロトン伝導性基の数と第二のプロトン伝導成分のプロトン伝導性基の数との比を、膜中のそれぞれのプロトン伝導性基の存在比を求めることで比較した。 The ratio of the number of proton conductive groups of the first proton conductive component present in the solid polymer electrolyte membrane to the number of proton conductive groups of the second proton conductive component is determined by the respective proton conductive groups in the membrane. Comparison was made by obtaining the abundance ratio of.
まず、第一のプロトン伝導成分前駆体と第二のプロトン伝導成分前駆体の比重が同じで、かつ電子線照射後の化学的結合による体積変化が無いと仮定した。そうすると、膜中のプロトン伝導性基の数は、「単位体積におけるプロトン伝導成分前駆体中のプロトン伝導性基の数」に「固体高分子電解質膜中にプロトン伝導成分が存在する体積」をかければ求めることが出来る。膜中の第一のプロトン伝導成分のプロトン伝導性基の数と第二のプロトン伝導成分のプロトン伝導性基の数との比をとると以下のような式になる。
(第一のプロトン伝導成分前駆体におけるプロトン伝導成分の単位体積あたりの官能基数×第一のプロトン伝導成分の概算膜厚)
/(第二のプロトン伝導成分前駆体におけるプロトン伝導成分の単位体積あたりの官能基数×第二のプロトン伝導成分の概算膜厚)
=固体高分子電解質膜中の第一のプロトン伝導成分のプロトン伝導性基の数と第二のプロトン伝導成分のプロトン伝導性基の数との比
概算膜厚とは、多孔性高分子膜の外に存在するプロトン伝導成分の膜の厚さと、多孔性高分子膜の孔内に存在するプロトン伝導成分の膜の厚さに平均空孔率をかけたものとを足し合わせたプロトン伝導成分の膜の厚さの概算値である。実施例1の概算膜厚は以下のようにして求めた。
First, it was assumed that the specific gravity of the first proton conducting component precursor and the second proton conducting component precursor were the same, and that there was no volume change due to chemical bonding after electron beam irradiation. Then, the number of proton conductive groups in the membrane can be multiplied by "the number of proton conductive groups in the proton conductive component precursor in a unit volume" multiplied by "the volume in which the proton conductive component exists in the solid polymer electrolyte membrane". Can be obtained. When the ratio of the number of proton conductive groups of the first proton conductive component in the membrane to the number of proton conductive groups of the second proton conductive component is taken, the following equation is obtained.
(Number of functional groups per unit volume of the proton conducting component in the first proton conducting component precursor × approximate thickness of the first proton conducting component)
/ (Number of functional groups per unit volume of proton conduction component in second proton conduction component precursor × approximate thickness of second proton conduction component)
= The ratio of the number of proton conductive groups of the first proton conductive component to the number of proton conductive groups of the second proton conductive component in the solid polymer electrolyte membrane. The proton conducting component, which is the sum of the thickness of the proton conducting component present outside and the thickness of the proton conducting component present in the pores of the porous polymer membrane multiplied by the average porosity. Approximate value of film thickness. The approximate film thickness of Example 1 was determined as follows.
「多孔性高分子膜の厚さ」27μmから「洗浄後に観察された膜の孔の深さ」1μm×2を引き、それに「充填前の膜の平均空孔率」40%をかけたものを第一のプロトン伝導成分の概算膜厚とした。「PEM−1の膜厚」29μmから「多孔性高分子膜の厚さ」27μmを引いたものと、「洗浄後に観察された膜の孔の深さ」1μm×2に「充填前の膜の平均空孔率」40%をかけたものとを足し合わせ第二のプロトン伝導成分の概算膜厚とした。 Subtracting “the thickness of the pores of the membrane observed after cleaning” 1 μm × 2 from “the thickness of the porous polymer membrane” 27 μm, and multiplying by “40% of the average porosity of the membrane before filling” The approximate film thickness of the first proton conducting component was used. “PEM-1 film thickness” 29 μm minus “porous polymer film thickness” 27 μm, and “film pore depth observed after cleaning” 1 μm × 2 “film before filling” The average film thickness multiplied by 40% was added to obtain the approximate thickness of the second proton conducting component.
求めた概算膜厚の値を用いて計算を行ったところ、「固体高分子電解質膜中の第一のプロトン伝導成分のプロトン伝導性基の数と第二のプロトン伝導成分のプロトン伝導性基の数との比」は7.36であった。 When the calculation was performed using the obtained approximate film thickness value, “the number of proton conductive groups of the first proton conductive component and the proton conductive group of the second proton conductive component in the solid polymer electrolyte membrane” The ratio to the number was 7.36.
この事から、固体高分子電解質膜中には第一のプロトン伝導成分のプロトン伝導性基がより多く存在することが分かった。 From this, it was found that more proton conductive groups of the first proton conductive component exist in the solid polymer electrolyte membrane.
(実施例2)
第二のプロトン伝導成分をジメタクロイルオキシエチルホスフェートとした点及び以下に示した点以外は実施例1と同様にして、固体高分子電解質膜を製造した。
(Example 2)
A solid polymer electrolyte membrane was produced in the same manner as in Example 1 except that dimethacloyloxyethyl phosphate was used as the second proton conducting component and the following points.
まず、実施例1と同様にしてジメタクロイルオキシエチルホスフェートの酸解離度を測定したところ、プロトン伝導性基あたりの解離プロトン数は0.18であった。 First, when the acid dissociation degree of dimethacloyloxyethyl phosphate was measured in the same manner as in Example 1, the number of dissociated protons per proton conductive group was 0.18.
実施例1と同様にして、スルホン酸基含有成分を電子線照射により固着させた多孔性ポリイミド膜を製造した。電子線照射後のポリイミド膜を常温のイオン交換水に浸して、その両表面をスポンジで擦り洗いすることで表面近傍の充填物を除去した。洗浄後の膜は、一旦、自然乾燥させた。 In the same manner as in Example 1, a porous polyimide film having a sulfonic acid group-containing component fixed by electron beam irradiation was produced. The polyimide film after electron beam irradiation was immersed in room temperature ion-exchanged water, and both surfaces thereof were scrubbed with a sponge to remove the filler near the surface. The washed membrane was once naturally dried.
洗浄後自然乾燥させた膜を走査型電子顕微鏡で観察したところ表面から0.5μm程度の深さにかけて平均直径0.1μmの孔が多数空いている様子が見られた。 When the film which had been washed and dried naturally was observed with a scanning electron microscope, many pores having an average diameter of 0.1 μm were observed from the surface to a depth of about 0.5 μm.
次に別のプラスチック容器中でジメタクロイルオキシエチルホスフェート(共栄社化学製、商品名P−2M)28.0g、アクリロイルモルホリン9.2gを混合し、リン酸基含有の混合溶液を作製した。この溶液中に洗浄後の膜を再度浸漬させた。この膜を容器より取り出してPTFEフィルム上へ移して、加速電圧150kV、線量30kGyの電子線を照射した。電子線の照射によりポリイミド膜の表面近傍に付着した液状の混合物は膜状に固着し、本実施例の固体高分子電解質膜(以下、PEM−2という)を得た。 Next, 28.0 g of dimethacryloyloxyethyl phosphate (trade name P-2M, manufactured by Kyoeisha Chemical Co., Ltd.) and 9.2 g of acryloylmorpholine were mixed in another plastic container to prepare a mixed solution containing a phosphate group. The washed membrane was immersed again in this solution. This film was taken out from the container, transferred onto a PTFE film, and irradiated with an electron beam having an acceleration voltage of 150 kV and a dose of 30 kGy. The liquid mixture adhering to the vicinity of the surface of the polyimide film by the electron beam irradiation was fixed in the form of a film to obtain a solid polymer electrolyte membrane (hereinafter referred to as PEM-2) of this example.
PEM−2の膜厚は30μmであった。 The film thickness of PEM-2 was 30 μm.
実施例1と同様の方法を用いて、固体高分子電解質膜中に存在する第一及び第二プロトン伝導成分のプロトン伝導性基の数を比較した。固体高分子電解質膜中の第一のプロトン伝導成分のプロトン伝導性基の数と第二のプロトン伝導成分のプロトン伝導性基の数との比は7.42であった。この事から、固体高分子電解質膜中には第一のプロトン伝導成分のプロトン伝導性基がより多く存在することが分かった。 Using the same method as in Example 1, the number of proton conductive groups of the first and second proton conductive components present in the solid polymer electrolyte membrane was compared. The ratio between the number of proton conductive groups of the first proton conductive component and the number of proton conductive groups of the second proton conductive component in the solid polymer electrolyte membrane was 7.42. From this, it was found that more proton conductive groups of the first proton conductive component exist in the solid polymer electrolyte membrane.
(実施例3)
第二のプロトン伝導成分を多孔性高分子膜の片面にのみ設けた点及びそれに伴い下記の処理を行った点以外は実施例1と同様にして、固体高分子電解質膜を製造した。
(Example 3)
A solid polymer electrolyte membrane was produced in the same manner as in Example 1 except that the second proton conducting component was provided only on one side of the porous polymer membrane and the following treatment was performed accordingly.
実施例1と同様にして、スルホン酸基含有成分を電子線照射により固着させた多孔性ポリイミド膜を製造した。電子線照射後のポリイミド膜を60℃に熱したメタノール/水混合溶液に浸して、その片側の表面のみをスポンジで擦り洗いすることで表面近傍の充填物を除去した。洗浄後の膜は、一旦、自然乾燥させた。 In the same manner as in Example 1, a porous polyimide film having a sulfonic acid group-containing component fixed by electron beam irradiation was produced. The polyimide film after the electron beam irradiation was immersed in a methanol / water mixed solution heated to 60 ° C., and only one surface of the polyimide film was scrubbed with a sponge to remove the filler near the surface. The washed membrane was once naturally dried.
洗浄後の膜を走査型電子顕微鏡で観察したところ擦り洗いした面から1μm程度の深さにかけて平均直径0.1μmの孔が多数空いている様子が見られた。 When the washed film was observed with a scanning electron microscope, a large number of holes having an average diameter of 0.1 μm were observed from the scrubbed surface to a depth of about 1 μm.
次に別の容器中でジメタクロイルオキシエチルホスフェート28.0g、アクリロイルモルホリン4.6gを混合し、リン酸基含有の混合溶液を作製した。洗浄後の膜をPTFEフィルム上に固定して、擦り洗いした表面のみにリン酸基含有溶液をドクターブレード法で塗布した。このポリイミド膜に加速電圧150kV、線量30kGyの電子線を照射することで、表面近傍に付着した液状の混合物は膜状に固着し、本実施例の固体高分子電解質膜(以下、PEM−3という)を得た。
PEM−3の膜厚は30μmであった。
Next, 28.0 g of dimethacryloyloxyethyl phosphate and 4.6 g of acryloylmorpholine were mixed in another container to prepare a mixed solution containing phosphate groups. The washed membrane was fixed on a PTFE film, and the phosphate group-containing solution was applied only to the scrubbed surface by the doctor blade method. By irradiating this polyimide film with an electron beam with an acceleration voltage of 150 kV and a dose of 30 kGy, the liquid mixture adhering to the vicinity of the surface is fixed in the form of a film, and the solid polymer electrolyte membrane (hereinafter referred to as PEM-3) of this example. )
The film thickness of PEM-3 was 30 μm.
実施例1と同様の方法を用いて、固体高分子電解質膜中に存在する第一及び第二プロトン伝導成分のプロトン伝導性基の数を比較した。固体高分子電解質膜中の第一のプロトン伝導成分のプロトン伝導性基の数と第二のプロトン伝導成分のプロトン伝導性基の数との比は5.42であった。この事から、固体高分子電解質膜中には第一のプロトン伝導成分のプロトン伝導性基がより多く存在することが分かった。 Using the same method as in Example 1, the number of proton conductive groups of the first and second proton conductive components present in the solid polymer electrolyte membrane was compared. The ratio of the number of proton conductive groups of the first proton conductive component and the number of proton conductive groups of the second proton conductive component in the solid polymer electrolyte membrane was 5.42. From this, it was found that more proton conductive groups of the first proton conductive component exist in the solid polymer electrolyte membrane.
(比較例1)
実施例1、3との比較用に、実施例1における固体高分子電解質膜の中間状態である、第一のプロトン伝導成分のみを有する多孔充填ポリイミド膜を作製した。
(Comparative Example 1)
For comparison with Examples 1 and 3, a porous filled polyimide membrane having only the first proton conducting component, which is an intermediate state of the solid polymer electrolyte membrane in Example 1, was prepared.
すなわち、実施例1と同様にして、ビニルスルホン酸、アクリロイルモルホリン、メチレンビスアクリルアミドよりなるスルホン酸基含有の混合溶液に、実施例1で用いたものと同じ多孔性ポリイミド膜を浸漬した。容器より取り出したポリイミド膜に、実施例1と同様に電子線照射を照射して、比較用の固体高分子電解質膜(以下、REF−1という)を得た。 That is, in the same manner as in Example 1, the same porous polyimide film as used in Example 1 was immersed in a sulfonic acid group-containing mixed solution composed of vinyl sulfonic acid, acryloylmorpholine, and methylenebisacrylamide. The polyimide film taken out from the container was irradiated with electron beam irradiation in the same manner as in Example 1 to obtain a comparative solid polymer electrolyte membrane (hereinafter referred to as REF-1).
(比較例2)
水にアクリルアミドメチルプロピルスルホン酸とメチレン−ビス−アクリルアミドと2,2’−アゾビス(2−アミジノプロパン)二塩酸塩(V−50、和光純薬工業社製)を重量比50:30:1の比で溶解させて溶液を作製した。この溶液に実施例1で用いたものと同じ多孔性ポリイミド膜を浸漬した後に多孔性ポリイミド膜を取り出し、ガラス板で挟んだ。そのまま50℃の乾燥機内に12時間静置して加熱重合を行った。これを3回繰り返して、多孔性高分子膜の内部を重合物で充填させた。最後に膜の表面上に弱い力で付着する過剰なポリマーを純水で取り除いて膜を平滑化した。こうして比較用の固体高分子電解質膜(以下、REF−2という)を得た。
(Comparative Example 2)
Acrylamide methylpropyl sulfonic acid, methylene-bis-acrylamide and 2,2′-azobis (2-amidinopropane) dihydrochloride (V-50, manufactured by Wako Pure Chemical Industries, Ltd.) in a weight ratio of 50: 30: 1 A solution was prepared by dissolving at a ratio. The same porous polyimide film as used in Example 1 was immersed in this solution, and then the porous polyimide film was taken out and sandwiched between glass plates. As it was, it was left to stand in a dryer at 50 ° C. for 12 hours to carry out heat polymerization. This was repeated three times to fill the inside of the porous polymer membrane with the polymer. Finally, the excess polymer adhering to the surface of the membrane with a weak force was removed with pure water to smooth the membrane. Thus, a comparative solid polymer electrolyte membrane (hereinafter referred to as REF-2) was obtained.
(比較例3)
第二のプロトン伝導成分に代えて、プロトン伝導性のないポリビニルアルコール膜を設けた点及びそれに伴い下記の処理を行った点以外は実施例1と同様にして、固体高分子電解質膜を製造した。
(Comparative Example 3)
A solid polymer electrolyte membrane was produced in the same manner as in Example 1 except that instead of the second proton conducting component, a polyvinyl alcohol membrane having no proton conductivity was provided and the following treatment was performed accordingly. .
実施例1と同様にして、スルホン酸基含有成分を電子線照射により固着させた多孔性ポリイミド膜を製造した。さらに実施例1と同様にして、膜表面の洗浄と乾燥を行った。 In the same manner as in Example 1, a porous polyimide film having a sulfonic acid group-containing component fixed by electron beam irradiation was produced. Further, the membrane surface was washed and dried in the same manner as in Example 1.
次に別のプラスチック容器中で1重量%のポリビニルアルコール(キシダ化学製、重合度2000、けん化度78〜82モル%)水溶液を調製した。この溶液中に洗浄後の膜を浸漬させた。この膜を容器より取り出してPTFEフィルム上へ移して、常温で自然乾燥させた。こうして比較用の固体高分子電解質膜(以下、REF−3という)を得た。 Next, a 1% by weight aqueous solution of polyvinyl alcohol (manufactured by Kishida Chemical Co., Ltd., polymerization degree 2000, saponification degree 78-82 mol%) was prepared in another plastic container. The washed membrane was immersed in this solution. The membrane was taken out from the container, transferred onto a PTFE film, and naturally dried at room temperature. Thus, a comparative solid polymer electrolyte membrane (hereinafter referred to as REF-3) was obtained.
(プロトン伝導性の測定)
各実施例および各比較例によって得られた固体高分子電解質膜を幅2mm、長さ3cmに切断し、その両面に1cmの間隔で設けられた白金の電極を密着させた。この電極をインピーダンスアナライザー(ソーラトロン社製、SI−1260)に接続し、温度50℃、相対湿度90%の環境下で、周波数10MHzから1Hzまでインピーダンス測定を行った。Cole−Coleプロットに表れる半円の直径から、伝導率を算出した。表1にその結果を示す。
(Measurement of proton conductivity)
The solid polymer electrolyte membranes obtained in each Example and each Comparative Example were cut into a width of 2 mm and a length of 3 cm, and platinum electrodes provided at an interval of 1 cm were adhered to both surfaces. This electrode was connected to an impedance analyzer (manufactured by Solartron, SI-1260), and impedance measurement was performed from a frequency of 10 MHz to 1 Hz in an environment of a temperature of 50 ° C. and a relative humidity of 90%. The conductivity was calculated from the diameter of the semicircle appearing in the Cole-Cole plot. Table 1 shows the results.
(メタノール透過性の測定)
各実施例および各比較例によって得られた固体高分子電解質膜をガラス製セルに挟み、25℃において透過試験を行なった。電解質膜を挟んだ一方のセルには50重量%メタノール水溶液を入れ、もう一方のセルには同体積のイオン交換水を入れた。イオン交換水側に浸透するメタノール量をメタノール濃度計(京都電子工業社製、MCM−600)により経時的に測定して得られた透過速度からメタノールの透過係数を算出した。透過係数が低いほど、電解質膜中をメタノールが透過しにくい。
(Measurement of methanol permeability)
The solid polymer electrolyte membrane obtained in each example and each comparative example was sandwiched between glass cells, and a permeation test was performed at 25 ° C. One cell containing the electrolyte membrane was filled with a 50 wt% aqueous methanol solution, and the other cell was filled with the same volume of ion-exchanged water. The methanol permeation coefficient was calculated from the permeation rate obtained by measuring the amount of methanol penetrating into the ion-exchanged water side with a methanol concentration meter (manufactured by Kyoto Electronics Industry Co., Ltd., MCM-600) over time. The lower the permeability coefficient, the more difficult it is for methanol to permeate through the electrolyte membrane.
(膜電極接合体、固体高分子型燃料電池の製造例と出力測定)
図1に模式的に示すような構成の膜電極接合体および固体高分子型燃料電池を作製して、本発明および比較用の固体高分子電解質膜を評価した。
(Production example and output measurement of membrane electrode assembly and polymer electrolyte fuel cell)
A membrane electrode assembly and a polymer electrolyte fuel cell having a configuration as schematically shown in FIG. 1 were prepared, and the polymer electrolyte membrane for comparison with the present invention was evaluated.
アノード側触媒層を構成する触媒担持伝導物質の前駆体ペーストとして、白金−ルテニウム触媒(田中貴金属工業社製「TEC90110」)1gと、5重量%ナフィオン溶液(アルドリッチ社製)5gとを十分に混合したペーストを作製した。カソード側触媒層を構成する触媒担持伝導物質の前駆体ペーストとしては、白金触媒(田中貴金属工業社製「AY−1020」)1gと、5重量%ナフィオン溶液(アルドリッチ社製)5gとを十分に混合したペーストを作製した。 1 g of platinum-ruthenium catalyst (“TEC90110” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and 5 g of 5 wt% Nafion solution (manufactured by Aldrich) are mixed well as a precursor paste of the catalyst-supporting conductive material constituting the anode side catalyst layer. A paste was prepared. As a precursor paste of the catalyst-supporting conductive material constituting the cathode-side catalyst layer, 1 g of platinum catalyst (“AY-1020” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) and 5 g of 5 wt% Nafion solution (manufactured by Aldrich) are sufficiently used. A mixed paste was prepared.
これらのペーストをそれぞれカーボンペーパー(東レ社製「TGP−H−060」、200μm厚)に金属触媒換算で2mg/cm2となるように塗布した後乾燥して、アノード側触媒層付き拡散層とカソード側触媒層付き拡散層とした。 Each of these pastes was applied to carbon paper (“TGP-H-060” manufactured by Toray Industries, Inc., 200 μm thick) so as to be 2 mg / cm 2 in terms of metal catalyst, and then dried to form a diffusion layer with an anode side catalyst layer and A diffusion layer with a cathode catalyst layer was formed.
各実施例および各比較例によって得られた固体高分子電解質膜をそれぞれアノード側触媒層付き拡散層とカソード側触媒層付き拡散層で挟み込み、100℃、2kNの条件でホットプレス処理して膜電極接合体を得た。
膜電極接合体を燃料電池セル(ケミックス社製、DFC−012、単セル、触媒層面積10cm2)に装着して本実施例および比較用の固体高分子型燃料電池を得た。
得られた固体高分子型燃料電池セルのアノード側には50重量%メタノールを燃料として供給し、カソード側には常圧の空気を供給し、セル全体を50℃にて保温しながら発電を行った。出力測定には燃料電池テストシステム(スクリブナー社製、890B)を用いて、電流値を変化させた時の最高出力値を読み取った。各電池セルについての最高出力値を表1に示す。
The solid polymer electrolyte membranes obtained in each example and each comparative example were sandwiched between a diffusion layer with an anode side catalyst layer and a diffusion layer with a cathode side catalyst layer, respectively, and subjected to hot press treatment at 100 ° C. and 2 kN to form membrane electrodes A joined body was obtained.
The membrane electrode assembly was attached to a fuel cell (Demiconductor Chemistry, DFC-012, single cell, catalyst layer area 10 cm 2 ) to obtain solid polymer fuel cells for this example and for comparison.
The obtained polymer electrolyte fuel cell is supplied with 50 wt% methanol as the fuel on the anode side, and is supplied with normal pressure air on the cathode side, and generates electricity while keeping the whole cell at 50 ° C. It was. For the output measurement, a fuel cell test system (manufactured by Scribner, 890B) was used to read the maximum output value when the current value was changed. Table 1 shows the maximum output value for each battery cell.
各実施例の固体高分子電解質膜は、高いプロトン伝導率を示すとともに、高濃度メタノール燃料を用いたにも関わらず小さなメタノール透過係数を示した。その結果、各実施例の固体高分子電解質膜を用いた燃料電池は、大きな出力値を示した。それに対して、比較例のREF−1、REF−2はプロトン伝導性には優れているものの、実施例と比較してメタノール透過量が多いために、これらを用いた燃料電池の出力は低かった。REF−3は、メタノールの透過は抑えられるものの、プロトン伝導性を示さない層を有するためにプロトン伝導率が極めて低かった。そのため、REF−3を用いた燃料電池の出力は極めて低いものとなった。 The solid polymer electrolyte membrane of each example showed high proton conductivity and a small methanol permeability coefficient despite using a high concentration methanol fuel. As a result, the fuel cell using the solid polymer electrolyte membrane of each example showed a large output value. On the other hand, although REF-1 and REF-2 of the comparative examples are excellent in proton conductivity, the output of the fuel cell using them was low because of the large amount of methanol permeation compared to the examples. . REF-3 has a very low proton conductivity because it has a layer that does not exhibit proton conductivity, although the permeation of methanol is suppressed. Therefore, the output of the fuel cell using REF-3 was extremely low.
1 膜電極接合体
2 アノード
3 カソード
101 固体高分子電解質膜
102 触媒層
103 拡散層
DESCRIPTION OF SYMBOLS 1 Membrane electrode assembly 2 Anode 3 Cathode 101 Solid polymer electrolyte membrane 102 Catalyst layer 103 Diffusion layer
Claims (10)
前記プロトン伝導成分として、第一のプロトン伝導成分と、該第一のプロトン伝導成分よりも酸解離度が小さい第二のプロトン伝導成分と、を有し、
前記第二のプロトン伝導成分は、前記多孔性高分子膜の孔を該多孔性高分子膜の膜面方向にふさぐように存在しており、
前記固体高分子電解質膜中に存在する前記第一のプロトン伝導成分のプロトン伝導性基の数が、該固体高分子電解質膜中に存在する前記第二のプロトン伝導成分のプロトン伝導性基の数よりも多いことを特徴とする固体高分子電解質膜。 A solid polymer electrolyte membrane having at least a porous polymer membrane and a proton conducting component containing a proton conducting group,
As the proton conduction component, it has a first proton conduction component and a second proton conduction component having a lower acid dissociation degree than the first proton conduction component,
The second proton conducting component is present so as to close the pores of the porous polymer membrane in the membrane surface direction of the porous polymer membrane,
The number of proton conductive groups of the first proton conductive component present in the solid polymer electrolyte membrane is the number of proton conductive groups of the second proton conductive component present in the solid polymer electrolyte membrane. A solid polymer electrolyte membrane characterized in that it is more than the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009076772A JP2009259808A (en) | 2008-03-27 | 2009-03-26 | Solid polymer electrolyte membrane, manufacturing method of solid polymer electrolyte membrane, and polymer electrolyte fuel cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008084103 | 2008-03-27 | ||
JP2009076772A JP2009259808A (en) | 2008-03-27 | 2009-03-26 | Solid polymer electrolyte membrane, manufacturing method of solid polymer electrolyte membrane, and polymer electrolyte fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009259808A true JP2009259808A (en) | 2009-11-05 |
Family
ID=41386929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009076772A Pending JP2009259808A (en) | 2008-03-27 | 2009-03-26 | Solid polymer electrolyte membrane, manufacturing method of solid polymer electrolyte membrane, and polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009259808A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015165026A (en) * | 2009-11-02 | 2015-09-17 | アイティーエム パワー (リサーチ) リミティド | Ionic membrane preparation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003020308A (en) * | 2001-07-10 | 2003-01-24 | Toyota Central Res & Dev Lab Inc | Method for producing solid polymeric electrolyte |
JP2006278323A (en) * | 2005-03-02 | 2006-10-12 | Canon Inc | Membrane electrode assembly, method for manufacturing the same, and solid polymer type fuel cell |
-
2009
- 2009-03-26 JP JP2009076772A patent/JP2009259808A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003020308A (en) * | 2001-07-10 | 2003-01-24 | Toyota Central Res & Dev Lab Inc | Method for producing solid polymeric electrolyte |
JP2006278323A (en) * | 2005-03-02 | 2006-10-12 | Canon Inc | Membrane electrode assembly, method for manufacturing the same, and solid polymer type fuel cell |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015165026A (en) * | 2009-11-02 | 2015-09-17 | アイティーエム パワー (リサーチ) リミティド | Ionic membrane preparation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110244367A1 (en) | Separation membrane for fuel cell, and method for production thereof | |
JP4979243B2 (en) | Polymer electrolyte membrane, method for producing the same, and fuel cell | |
JP4769518B2 (en) | Polymer electrolyte membrane and fuel cell employing polymer electrolyte membrane | |
JP4989226B2 (en) | Membrane for fuel cell and manufacturing method thereof | |
JPWO2008120675A1 (en) | Membrane for direct liquid fuel type fuel cell and method for producing the same | |
JP5770163B2 (en) | Method for producing a membrane for a polymer electrolyte fuel cell | |
US8642228B2 (en) | Polymer electrolyte membrane and fuel cell using the polymer electrolyte membrane | |
JP2009172475A (en) | Gas decomposing element | |
JP5164149B2 (en) | Cation exchange membrane and method for producing the same | |
JP5283826B2 (en) | Membrane electrode assembly and polymer electrolyte fuel cell | |
JP5551877B2 (en) | Membrane for fuel cell and manufacturing method thereof | |
JP5164528B2 (en) | Solid polymer electrolyte membrane and method for producing solid polymer electrolyte membrane | |
JP2009259808A (en) | Solid polymer electrolyte membrane, manufacturing method of solid polymer electrolyte membrane, and polymer electrolyte fuel cell | |
JP4379025B2 (en) | Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point | |
JP2008135399A (en) | Electrolyte membrane-electrode assembly, fuel cell, and method of manufacturing electrolyte membrane-electrode assembly | |
JP2007134343A (en) | Ion conductive electrolyte membrane and its manufacturing method as well as fuel cell | |
JP2006269266A (en) | Compound solid polyelectrolyte membrane having reinforcement material | |
JP2007080558A (en) | Electrolyte membrane and polymer electrolyte fuel cell | |
JP2009093998A (en) | Diaphragm for direct liquid fuel cell and its manufacturing method | |
JP2009218154A (en) | Manufacturing method of membrane electrode assembly | |
JP4683524B2 (en) | Electrolyte membrane and method for producing the same | |
JP5111349B2 (en) | Modified hydrocarbon cation exchange membrane and method for producing the same | |
JP4849892B2 (en) | Method for manufacturing diaphragm for direct liquid fuel cell | |
JP2007200794A (en) | Acid-base composite electrolyte, its manufacturing method, and membrane electrode assembly and fuel cell containing the same | |
JP2005276847A (en) | Polymer solid electrolyte-electrode junction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100201 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100630 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130625 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130826 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130917 |