[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009253174A - Impurity analysis method and impurity analysis device of semiconductor substrate - Google Patents

Impurity analysis method and impurity analysis device of semiconductor substrate Download PDF

Info

Publication number
JP2009253174A
JP2009253174A JP2008102016A JP2008102016A JP2009253174A JP 2009253174 A JP2009253174 A JP 2009253174A JP 2008102016 A JP2008102016 A JP 2008102016A JP 2008102016 A JP2008102016 A JP 2008102016A JP 2009253174 A JP2009253174 A JP 2009253174A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
outer peripheral
peripheral surface
stage
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008102016A
Other languages
Japanese (ja)
Inventor
Ayako Mizuno
綾子 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008102016A priority Critical patent/JP2009253174A/en
Publication of JP2009253174A publication Critical patent/JP2009253174A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply analyzing impurity existing on an outer circumferential surface of a semiconductor substrate. <P>SOLUTION: The semiconductor substrate 4 for measurement target is sandwiched by a stage 2 of divided structure, and a flat part F centering around the outer circumferential surface of the semiconductor substrate 4 is formed by the outer circumferential surface of the semiconductor substrate 4 and the outer circumferential surface of the stage 2. The flat part F formed by the outer circumferential surface of the semiconductor substrate 4 and the outer circumferential surface of the stage 2 is irradiated with X-ray under total reflection conditions to detect fluorescent X-ray of the impurity generated from the outer circumferential surface of the semiconductor substrate 4. A contamination state by the impurity on the outer circumferential surface of the semiconductor substrate 4 is evaluated on the basis of a detection result of the florescent X-ray. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は半導体基板の外周面の不純物を分析する方法と装置に関する。   The present invention relates to a method and apparatus for analyzing impurities on an outer peripheral surface of a semiconductor substrate.

半導体基板表面の不純物分析には、高感度で簡易な装置として全反射蛍光X線分析装置が用いられている。全反射蛍光X線分析装置は例えば半導体デバイスの製造ラインに組み込まれ、デバイス特性に悪影響を及ぼす半導体基板の不純物による汚染状態の分析や評価に使用されている。不純物による汚染に関しては、半導体基板の表面(デバイス形成面やその裏面)のみならず、搬送系等からの汚染が半導体基板のベベル部(面取り部)を含む外周面に局在していることから、外周面の不純物分析の必要性が高まっている。   For analyzing impurities on the surface of a semiconductor substrate, a total reflection fluorescent X-ray analyzer is used as a highly sensitive and simple apparatus. The total reflection X-ray fluorescence analyzer is incorporated in a semiconductor device production line, for example, and is used for analysis and evaluation of a contamination state due to impurities of a semiconductor substrate that adversely affects device characteristics. Concerning contamination by impurities, not only the surface of the semiconductor substrate (device forming surface and its back surface) but also contamination from the transport system is localized on the outer peripheral surface including the bevel portion (chamfered portion) of the semiconductor substrate. The necessity of analyzing impurities on the outer peripheral surface is increasing.

このような点に対して、一般的な全反射蛍光X線分析装置では照射X線にシート状の広がりを持たせた光学系が用いられているため、半導体基板の平坦面は良好に分析できるものの、ベベル部(面取り部)を含む外周面の分析は困難とされている。半導体基板の外周面の分析方法としては、半導体基板の外周部を薬液と接触させて不純物を回収し、回収した不純物をICP質量分析装置や原子吸光分析装置等で分析する方法(特許文献1参照)、半導体基板の外周部に接触させた薬液の液滴を、半導体基板の表面上を移動させた後、液滴中に回収した不純物を全反射蛍光X線分析装置で分析する方法(特許文献2参照)が知られている。不純物を回収する薬液にはフッ化水素酸溶液やその蒸気が用いられており、半導体基板の表面分析にも使用されている(特許文献3参照)。   On the other hand, a general total reflection fluorescent X-ray analyzer uses an optical system in which the irradiated X-ray has a sheet-like spread, and therefore, the flat surface of the semiconductor substrate can be analyzed well. However, it is considered difficult to analyze the outer peripheral surface including the bevel portion (chamfered portion). As a method for analyzing the outer peripheral surface of a semiconductor substrate, the outer peripheral portion of the semiconductor substrate is brought into contact with a chemical solution to recover impurities, and the recovered impurities are analyzed with an ICP mass spectrometer or an atomic absorption spectrometer (see Patent Document 1). ) After the liquid droplet of the chemical liquid brought into contact with the outer peripheral portion of the semiconductor substrate is moved on the surface of the semiconductor substrate, the impurities collected in the liquid droplet are analyzed with a total reflection X-ray fluorescence spectrometer (Patent Document) 2) is known. A hydrofluoric acid solution or its vapor is used as a chemical solution for collecting impurities, and is also used for surface analysis of a semiconductor substrate (see Patent Document 3).

フッ化水素酸溶液等の薬液中に不純物を回収して分析する方法は、不純物の回収に手間を要することから、半導体基板の分析コストを増大させる要因となっている。さらに、薬液中の不純物分析には、平坦面の分析に使用する全反射蛍光X線分析装置とは別に、ICP質量分析装置や原子吸光分析装置等が必要となるために装置コストも増大する。半導体基板の外周部に存在する不純物を回収した液滴を、半導体基板の表面上を移動させた場合には、表面に存在する不純物も回収できるものの、外周部や表面に付着している不純物以外に、半導体基板の表面に形成されている酸化膜や窒化膜中の不純物も含んだ分析結果しか得ることができず、半導体基板の汚染状況を正確に評価することができない。
特開平11−204604号公報 特開2005−109292号公報 再公表特許WO2005/073692
The method of collecting and analyzing impurities in a chemical solution such as a hydrofluoric acid solution is a factor that increases the analysis cost of the semiconductor substrate because it takes time to collect the impurities. Furthermore, the analysis of impurities in a chemical solution requires an ICP mass spectrometer, an atomic absorption spectrometer, and the like separately from the total reflection X-ray fluorescence analyzer used for analysis of a flat surface, which increases the apparatus cost. If the droplets collected from the outer periphery of the semiconductor substrate are moved over the surface of the semiconductor substrate, the impurities present on the surface can be recovered, but other than the impurities attached to the outer periphery and the surface. In addition, only an analysis result including impurities in the oxide film and nitride film formed on the surface of the semiconductor substrate can be obtained, and the contamination status of the semiconductor substrate cannot be accurately evaluated.
JP-A-11-204604 JP 2005-109292 A Republished patent WO2005 / 073692

本発明の目的は、半導体基板の外周面に存在する不純物を簡易的に分析することを可能にした半導体基板の不純物分析方法と不純物分析装置を提供することにある。   An object of the present invention is to provide an impurity analysis method and an impurity analysis apparatus for a semiconductor substrate, which can easily analyze impurities existing on the outer peripheral surface of the semiconductor substrate.

本発明の一態様に係る半導体基板の不純物分析方法は、分割構造を有するステージで半導体基板を挟持し、前記半導体基板の外周面と前記ステージの外周面とで前記半導体基板の外周面を中心とする平坦部を形成する工程と、前記半導体基板の外周面と前記ステージの外周面とで形成された前記平坦部にX線を全反射条件で照射し、前記半導体基板の外周面から発生した不純物の蛍光X線を検出する工程と、前記蛍光X線の検出結果に基づいて前記半導体基板の外周面の前記不純物による汚染状態を評価する工程とを具備することを特徴としている。   An impurity analysis method for a semiconductor substrate according to one embodiment of the present invention includes sandwiching a semiconductor substrate with a stage having a divided structure, and the outer peripheral surface of the semiconductor substrate and the outer peripheral surface of the stage are centered on the outer peripheral surface of the semiconductor substrate. An impurity generated from the outer peripheral surface of the semiconductor substrate by irradiating the flat portion formed by the step of forming a flat portion and the outer peripheral surface of the semiconductor substrate and the outer peripheral surface of the stage under total reflection conditions. And a step of evaluating the contamination state of the outer peripheral surface of the semiconductor substrate by the impurities based on the detection result of the fluorescent X-rays.

本発明の別の態様に係る半導体基板の不純物分析装置は、半導体基板を挟持することが可能な分割構造を有するステージを備え、前記半導体基板の外周面と前記ステージの外周面とで前記半導体基板の外周面を中心とする平坦部を形成するステージ部と、前記ステージに挟持された前記半導体基板の外周面と前記ステージの外周面とで形成された前記平坦部にX線を全反射条件で照射するX線照射部と、前記X線の照射に基づいて前記半導体基板の外周面から発生した不純物の蛍光X線を検出する蛍光X線検出部とを具備することを特徴としている。   An impurity analysis apparatus for a semiconductor substrate according to another aspect of the present invention includes a stage having a split structure capable of sandwiching a semiconductor substrate, and the semiconductor substrate includes an outer peripheral surface of the semiconductor substrate and an outer peripheral surface of the stage. A X-ray is applied to the flat portion formed by the stage portion that forms a flat portion centered on the outer peripheral surface of the semiconductor substrate and the outer peripheral surface of the semiconductor substrate sandwiched between the stages and the outer peripheral surface of the stage under a total reflection condition. An X-ray irradiation unit for irradiation and a fluorescent X-ray detection unit for detecting fluorescent X-rays of impurities generated from the outer peripheral surface of the semiconductor substrate based on the X-ray irradiation are provided.

本発明の態様に係る半導体基板の不純物分析方法および不純物分析装置によれば、半導体基板の外周面に存在する不純物を簡易的に分析することができる。従って、半導体基板の外周面の分析に要するコストや手間等を削減することが可能となる。   According to the impurity analysis method and the impurity analysis apparatus for a semiconductor substrate according to the aspect of the present invention, impurities existing on the outer peripheral surface of the semiconductor substrate can be easily analyzed. Therefore, it is possible to reduce the cost and labor required for analyzing the outer peripheral surface of the semiconductor substrate.

以下、本発明を実施するための形態について、図面を参照して説明する。図1は本発明の実施形態による半導体基板の不純物分析装置の概略構成を示す斜視図である。図2および図3は図1に示す不純物分析装置を適用した第1の実施形態を示す図、図4および図5は図1に示す不純物分析装置を適用した第2の実施形態を示す図である。まず、図1ないし図3を参照して第1の実施形態について説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of a semiconductor substrate impurity analyzing apparatus according to an embodiment of the present invention. 2 and 3 are diagrams showing a first embodiment to which the impurity analyzer shown in FIG. 1 is applied, and FIGS. 4 and 5 are diagrams showing a second embodiment to which the impurity analyzer shown in FIG. 1 is applied. is there. First, a first embodiment will be described with reference to FIGS. 1 to 3.

図1ないし図3に示す半導体基板の不純物分析装置1は、分割構造のステージ2を有するステージ部3を具備している。ステージ2は測定対象となる円盤状の半導体基板(半導体ウェーハ)4を挟持することが可能なように2分割されており、具体的には第1のステージ2Aと第2のステージ2Bとを有している。第1および第2のステージ2A、2Bは、円盤状の半導体基板4を挟持した際に、半導体基板4の外周面(端面)とステージ2A、2Bの外周面とで平坦部Fを形成し得るような形状を有している。平坦部Fはステージ2A、2Bで挟持された半導体基板4の厚さ方向に形成される。   The impurity analysis apparatus 1 for a semiconductor substrate shown in FIGS. 1 to 3 includes a stage unit 3 having a stage 2 having a divided structure. The stage 2 is divided into two so that a disk-shaped semiconductor substrate (semiconductor wafer) 4 to be measured can be sandwiched. Specifically, the stage 2 has a first stage 2A and a second stage 2B. is doing. When the disc-shaped semiconductor substrate 4 is sandwiched between the first and second stages 2A and 2B, a flat portion F can be formed by the outer peripheral surface (end surface) of the semiconductor substrate 4 and the outer peripheral surfaces of the stages 2A and 2B. It has such a shape. The flat portion F is formed in the thickness direction of the semiconductor substrate 4 sandwiched between the stages 2A and 2B.

分割構造を有するステージ2は、具体的には円盤状の半導体基板4と同一径を有する第1のステージ2Aと第2のステージ2Bとで構成されている。例えば、半導体基板4の直径が300mmの場合、第1および第2のステージ2A、2Bには直径が300mmの樹脂製円板、例えばアクリル樹脂やポリカーボネート樹脂からなる円板等が用いられる。各ステージ2A、2Bを構成する樹脂製円板は、外周面の不純物量が少ないことが好ましい。各ステージ2A、2Bの厚さは特に限定されるものではなく、照射したX線を全反射させる平坦部Fを形成することが可能な厚さであればよい。   Specifically, the stage 2 having a divided structure includes a first stage 2A and a second stage 2B having the same diameter as the disk-shaped semiconductor substrate 4. For example, when the diameter of the semiconductor substrate 4 is 300 mm, a resin disc having a diameter of 300 mm, such as a disc made of acrylic resin or polycarbonate resin, is used for the first and second stages 2A and 2B. It is preferable that the resin disk constituting each stage 2A, 2B has a small amount of impurities on the outer peripheral surface. The thicknesses of the stages 2A and 2B are not particularly limited as long as the flat portions F that totally reflect the irradiated X-rays can be formed.

第1および第2のステージ2A、2Bは半導体基板4と同一径を有することに加えて、それらの外周部分が厚さ方向に対して光学的に平坦化されている。従って、第1および第2のステージ2A、2Bで半導体基板4を挟持した際に、半導体基板4の外周面を中心とする平坦部Fを形成することができる。すなわち、半導体基板4の外周面とステージ2A、2Bの外周面とによって、半導体基板4の外周面を中心とする平坦部Fが形成される。ここで、平坦部Fとは照射したX線に対して平坦で、かつ照射X線を全反射することが可能な部分であればよく、平面状であることを意味するものではない。   The first and second stages 2A and 2B have the same diameter as the semiconductor substrate 4, and their outer peripheral portions are optically flattened in the thickness direction. Therefore, when the semiconductor substrate 4 is sandwiched between the first and second stages 2 </ b> A and 2 </ b> B, the flat portion F centering on the outer peripheral surface of the semiconductor substrate 4 can be formed. That is, the flat part F centering on the outer peripheral surface of the semiconductor substrate 4 is formed by the outer peripheral surface of the semiconductor substrate 4 and the outer peripheral surfaces of the stages 2A and 2B. Here, the flat portion F may be a portion that is flat with respect to the irradiated X-ray and can totally reflect the irradiated X-ray, and does not mean a flat shape.

第1および第2のステージ2A、2Bには、それらで挟持した半導体基板4の中心に相当する位置に回転軸5A、5Bが設けられている。ステージ2は図示を省略した回転機構で回転軸5A、5Bを回転駆動させることによって、第1および第2のステージ2A、2Bで挟持した半導体基板4を回転させることが可能とされている。すなわち、ステージ2は半導体基板4を挟持することが可能な分割構造を有し、かつ挟持した半導体基板4を回転させることが可能な回転構造を有している。ステージ2は回転式ステージである。   The first and second stages 2A and 2B are provided with rotating shafts 5A and 5B at positions corresponding to the center of the semiconductor substrate 4 sandwiched between them. The stage 2 is configured to rotate the semiconductor substrate 4 sandwiched between the first and second stages 2A and 2B by rotationally driving the rotation shafts 5A and 5B with a rotation mechanism (not shown). That is, the stage 2 has a divided structure that can sandwich the semiconductor substrate 4 and a rotating structure that can rotate the sandwiched semiconductor substrate 4. Stage 2 is a rotary stage.

半導体基板4は第1および第2のステージ2A、2Bに挟持された状態で、図示を省略した測定チャンバ内に配置される。測定チャンバ内において、第1および第2のステージ2A、2Bの回転軸5A、5Bは図示を省略した回転機構と接続される。これによって、第1および第2のステージ2A、2Bに挟持された半導体基板4を、その円周方向に回転させることが可能とされる。半導体基板4の分析は、ステージ2A、2Bを回転させた状態、もしくは回転させずに静止させた状態のいずれでも実施可能である。   The semiconductor substrate 4 is disposed in a measurement chamber (not shown) while being sandwiched between the first and second stages 2A and 2B. In the measurement chamber, the rotation shafts 5A and 5B of the first and second stages 2A and 2B are connected to a rotation mechanism (not shown). Thereby, the semiconductor substrate 4 sandwiched between the first and second stages 2A and 2B can be rotated in the circumferential direction. The analysis of the semiconductor substrate 4 can be performed in either a state where the stages 2A and 2B are rotated or a state where the stage is stationary without rotating.

測定チャンバの外側には、X線発生源(X線管等)6や分光器(図示せず)等を有するX線照射部が配置されている。X線発生源6から出射されたX線(入射X線)7は分光器(図示せず)を通った後、ステージ2の回転方向と同方向(半導体基板4の円周方向)から測定チャンバ内に入射される。入射X線7は、半導体基板4の外周面(端面/ベベル部)が中心となるように、半導体基板4の外周面とステージ2A、2Bの外周面とで形成された平坦部Fに照射される。入射X線7は平坦部Fに対して全反射条件で照射される。平坦部Fで全反射したX線(反射X線)8は測定チャンバの内壁に吸収される。   An X-ray irradiation unit having an X-ray generation source (X-ray tube or the like) 6, a spectroscope (not shown) or the like is disposed outside the measurement chamber. X-rays (incident X-rays) 7 emitted from the X-ray generation source 6 pass through a spectroscope (not shown), and are then measured from the same direction as the rotation direction of the stage 2 (circumferential direction of the semiconductor substrate 4). Is incident on the inside. Incident X-rays 7 are applied to a flat portion F formed by the outer peripheral surface of the semiconductor substrate 4 and the outer peripheral surfaces of the stages 2A and 2B so that the outer peripheral surface (end surface / bevel portion) of the semiconductor substrate 4 is at the center. The Incident X-rays 7 are irradiated to the flat portion F under total reflection conditions. X-rays (reflected X-rays) 8 totally reflected by the flat portion F are absorbed by the inner wall of the measurement chamber.

入射X線7は半導体基板4の外周面を含む平坦部Fに対して半導体基板4の円周方向から照射される。この際、入射X線7の平坦部Fに対する入射角度を制御することによって、入射X線7を全反射条件で反射させる。例えば、半導体基板4の外周面を中心とする平坦部Fを含む照射領域Aに対する入射角度θを低入射角側で調整することによって、照射領域Aで入射X線7を全反射させる。X線発生源6は平坦部Fに対する入射X線7の入射角度を調整する機構を有している。入射角度の調整はステージ2側で実施してもよい。   Incident X-rays 7 are irradiated from the circumferential direction of the semiconductor substrate 4 to the flat portion F including the outer peripheral surface of the semiconductor substrate 4. At this time, the incident X-ray 7 is reflected under the total reflection condition by controlling the incident angle of the incident X-ray 7 with respect to the flat portion F. For example, the incident X-ray 7 is totally reflected in the irradiation region A by adjusting the incident angle θ with respect to the irradiation region A including the flat portion F centering on the outer peripheral surface of the semiconductor substrate 4 on the low incident angle side. The X-ray generation source 6 has a mechanism for adjusting the incident angle of the incident X-ray 7 with respect to the flat portion F. The incident angle may be adjusted on the stage 2 side.

入射X線7の照射領域Aの直上には、半導体基板4の外周面を含む平坦部FにX線7を全反射条件で照射した際に、半導体基板4の外周面から発生した不純物の蛍光X線を検出するX線検出器9が蛍光X線検出部として配置されている。平坦部Fを含む照射領域AにX線7を全反射条件で照射すると、平坦部Fの中央に位置する半導体基板4の外周面から蛍光X線が発生する。照射領域Aから生じた蛍光X線は、半導体基板4の外周面に存在する不純物に起因する蛍光X線を含んでいる。従って、照射領域Aから生じた蛍光X線をX線検出器9で検出することによって、その検出結果(蛍光X線スペクトル)から半導体基板4の外周面に存在する不純物元素の種類や量を評価することができる。   Immediately above the irradiation area A of the incident X-ray 7, the fluorescence of impurities generated from the outer peripheral surface of the semiconductor substrate 4 when the flat portion F including the outer peripheral surface of the semiconductor substrate 4 is irradiated with the X-ray 7 under the total reflection condition. An X-ray detector 9 for detecting X-rays is arranged as a fluorescent X-ray detector. When the irradiation region A including the flat part F is irradiated with the X-rays 7 under the total reflection condition, fluorescent X-rays are generated from the outer peripheral surface of the semiconductor substrate 4 located at the center of the flat part F. The fluorescent X-rays generated from the irradiation region A include fluorescent X-rays caused by impurities existing on the outer peripheral surface of the semiconductor substrate 4. Therefore, by detecting the fluorescent X-rays generated from the irradiation region A with the X-ray detector 9, the type and amount of impurity elements present on the outer peripheral surface of the semiconductor substrate 4 are evaluated from the detection result (fluorescent X-ray spectrum). can do.

X線検出器9としては半導体検出器(SSD)を用いることが好ましい。入射X線7の照射領域Aは、半導体基板4の円周方向に対して照射方向に平行な奥行きと半導体基板4の厚さ方向に対して照射方向と直交する幅とを有している。従って、ステージ2の表面に存在する不純物の蛍光X線も発生する。このような点に対し、半導体検出器9の感度分布はその中心に直径数mm程度であるため、半導体検出器9の感度分布の中心で厚さが1mm程度の半導体基板4の外周面から発生した蛍光X線を検出するように半導体検出器9を配置する。これによって、半導体基板4からの蛍光X線の検出感度が向上する。すなわち、半導体基板4の外周面に存在する不純物の分析精度を高めることが可能となる。   A semiconductor detector (SSD) is preferably used as the X-ray detector 9. The irradiation region A of the incident X-ray 7 has a depth parallel to the irradiation direction with respect to the circumferential direction of the semiconductor substrate 4 and a width perpendicular to the irradiation direction with respect to the thickness direction of the semiconductor substrate 4. Accordingly, fluorescent X-rays of impurities existing on the surface of the stage 2 are also generated. On the other hand, since the sensitivity distribution of the semiconductor detector 9 is about several millimeters in diameter at the center, the sensitivity distribution of the semiconductor detector 9 occurs from the outer peripheral surface of the semiconductor substrate 4 having a thickness of about 1 mm at the center of the sensitivity distribution of the semiconductor detector 9. The semiconductor detector 9 is arranged so as to detect the fluorescent X-rays. Thereby, the detection sensitivity of the fluorescent X-rays from the semiconductor substrate 4 is improved. That is, it becomes possible to improve the analysis accuracy of impurities existing on the outer peripheral surface of the semiconductor substrate 4.

次に、第1の実施形態による不純物分析装置1を用いた半導体基板4の分析工程について説明する。まず、測定対象となる円盤状の半導体基板(半導体ウェーハ)4を第1のステージ2Aと第2のステージ2Bとで挟持し、この状態で測定チャンバ内にセットする。測定チャンバ内において、ステージ2A、2Bに挟持された半導体基板4は回転可能とされる。次いで、入射X線7の入射角度を全反射条件に調整した後、半導体基板4を入射X線7の照射方向と同方向、もしくは照射方向に向う方向に回転させながら、半導体基板4の外周面を中心とする平坦部Fを含む照射領域Aに入射X線7を照射する。   Next, the analysis process of the semiconductor substrate 4 using the impurity analyzer 1 according to the first embodiment will be described. First, a disk-shaped semiconductor substrate (semiconductor wafer) 4 to be measured is sandwiched between the first stage 2A and the second stage 2B, and is set in the measurement chamber in this state. In the measurement chamber, the semiconductor substrate 4 sandwiched between the stages 2A and 2B is rotatable. Next, after adjusting the incident angle of the incident X-ray 7 to the total reflection condition, the outer peripheral surface of the semiconductor substrate 4 is rotated while rotating the semiconductor substrate 4 in the same direction as the irradiation direction of the incident X-ray 7 or in the direction toward the irradiation direction. The incident X-rays 7 are irradiated to the irradiation region A including the flat portion F centered at the center.

入射X線7の全反射条件による照射に基づいて照射領域Aから生じた蛍光X線をX線検出器9で検出する。そして、X線検出器9による蛍光X線の検出結果に基づいて、半導体基板4の外周面に存在する不純物元素(重金属元素等)の種類や量を評価する。半導体基板4の外周面の汚染濃度(不純物元素量)の測定に必要な感度に対し、ステージ2から不純物のバックグラウンドや半導体基板4の外周面の形状(面取りされた端面(ベベル部)の形状)による散乱バックグラウンドは十分に低い。従って、半導体基板4の外周面とステージ2の外周面とで形成された平坦部Fを含む照射領域Aからの蛍光X線を検出することによって、半導体基板4の外周面の汚染状態を評価することができる。   The X-ray detector 9 detects the fluorescent X-rays generated from the irradiation region A based on the irradiation of the incident X-ray 7 under the total reflection condition. Based on the detection result of the fluorescent X-rays by the X-ray detector 9, the type and amount of impurity elements (such as heavy metal elements) present on the outer peripheral surface of the semiconductor substrate 4 are evaluated. For the sensitivity required for measuring the contamination concentration (impurity element amount) on the outer peripheral surface of the semiconductor substrate 4, the background of impurities from the stage 2 and the shape of the outer peripheral surface of the semiconductor substrate 4 (the shape of the chamfered end face (bevel portion)) ) Scattering background is sufficiently low. Therefore, the contamination state of the outer peripheral surface of the semiconductor substrate 4 is evaluated by detecting fluorescent X-rays from the irradiation region A including the flat portion F formed by the outer peripheral surface of the semiconductor substrate 4 and the outer peripheral surface of the stage 2. be able to.

さらに、半導体基板4を連続的に回転させながら入射X線7を照射することによって、蛍光X線による不純物の検出結果は積算結果として求められる。従って、半導体基板4の外周面に存在する不純物の分析精度を高めることができる。半導体基板4の外周面の分析は半導体基板4を回転させず、外周面の特定部位に対して部分的に入射X線7を照射して実施することも可能である。半導体基板4を回転させずに入射X線7を照射することによって、半導体基板4の外周面における不純物分布等を評価することができる。   Further, by irradiating the incident X-ray 7 while continuously rotating the semiconductor substrate 4, the detection result of the impurity by the fluorescent X-ray is obtained as an integration result. Therefore, the analysis accuracy of impurities existing on the outer peripheral surface of the semiconductor substrate 4 can be increased. The analysis of the outer peripheral surface of the semiconductor substrate 4 can be performed by partially irradiating the incident X-rays 7 on a specific portion of the outer peripheral surface without rotating the semiconductor substrate 4. By irradiating the incident X-rays 7 without rotating the semiconductor substrate 4, the impurity distribution and the like on the outer peripheral surface of the semiconductor substrate 4 can be evaluated.

なお、半導体基板4の外周面の形状(ベベル形状)が極端な場合やデバイス製造工程で外周面に磨耗等が生じるおそれがある場合には、入射X線7の全反射条件が低下することも考えられる。このような点に対しては、予め汚染されていない半導体基板4を用いて全反射蛍光X線分析を実施し、ブランクとしての分析結果を求めておく。そして、実際のデバイス製造工程で搬送される半導体基板4の全反射蛍光X線分析を実施し、その分析結果をブランクと比較することで、半導体基板4の外周面の不純物による汚染状態を評価することができる。このように、半導体基板4の外周面における不純物分析は、不純物量の定量化による評価のみならず、比較評価として実施することも可能である。   In addition, when the shape (bevel shape) of the outer peripheral surface of the semiconductor substrate 4 is extreme, or when there is a possibility that the outer peripheral surface may be worn in the device manufacturing process, the total reflection condition of the incident X-ray 7 may be lowered. Conceivable. For such a point, a total reflection fluorescent X-ray analysis is performed using a semiconductor substrate 4 that has not been contaminated in advance, and an analysis result as a blank is obtained. And the total reflection fluorescent X-ray analysis of the semiconductor substrate 4 conveyed by an actual device manufacturing process is implemented, and the contamination state by the impurity of the outer peripheral surface of the semiconductor substrate 4 is evaluated by comparing the analysis result with a blank. be able to. Thus, the impurity analysis on the outer peripheral surface of the semiconductor substrate 4 can be performed not only as an evaluation by quantifying the amount of impurities but also as a comparative evaluation.

次に、図1、図4および図5を参照して第2の実施形態について説明する。第2の実施形態による不純物分析装置1は、平端部Fに対する入射X線7の照射方向が異なること以外は第1の実施形態と同様な構成を有している。すなわち、第2の実施形態による不純物分析装置1において、X線発生源から出射された入射X線7は、半導体基板4の外周面を含む平坦部Fに対して半導体基板4の厚さ方向、言い換えるとステージ2の回転方向に垂直な方向から照射される。第2の実施形態においても、平坦部Fを含む照射領域Aに対するX線7の入射角度を制御することによって、入射X線7を全反射条件で反射させる。   Next, a second embodiment will be described with reference to FIG. 1, FIG. 4, and FIG. The impurity analyzer 1 according to the second embodiment has the same configuration as that of the first embodiment except that the irradiation direction of the incident X-ray 7 with respect to the flat end F is different. That is, in the impurity analyzer 1 according to the second embodiment, the incident X-rays 7 emitted from the X-ray generation source are in the thickness direction of the semiconductor substrate 4 with respect to the flat portion F including the outer peripheral surface of the semiconductor substrate 4. In other words, irradiation is performed from a direction perpendicular to the rotation direction of the stage 2. Also in the second embodiment, by controlling the incident angle of the X-ray 7 with respect to the irradiation region A including the flat portion F, the incident X-ray 7 is reflected under the total reflection condition.

入射X線7を半導体基板4の厚さ方向に照射する場合、照射領域Aは半導体基板4の厚さ方向に対して照射方向に平行な奥行きと半導体基板4の円周方向に対して照射方向と直交する幅とを有している。従って、ステージ2の表面に存在する不純物の蛍光X線も発生する。このような点に対し、前述したように半導体検出器9をその感度分布の中心で半導体基板4の外周面から発生した蛍光X線を検出するように配置することによって、半導体基板4からの蛍光X線の検出感度を向上させることができる。   When irradiating the incident X-rays 7 in the thickness direction of the semiconductor substrate 4, the irradiation region A has a depth parallel to the irradiation direction with respect to the thickness direction of the semiconductor substrate 4 and an irradiation direction with respect to the circumferential direction of the semiconductor substrate 4. And a width orthogonal to each other. Accordingly, fluorescent X-rays of impurities existing on the surface of the stage 2 are also generated. With respect to such a point, as described above, the semiconductor detector 9 is arranged so as to detect fluorescent X-rays generated from the outer peripheral surface of the semiconductor substrate 4 at the center of its sensitivity distribution, whereby fluorescence from the semiconductor substrate 4 is detected. X-ray detection sensitivity can be improved.

第2の実施形態による不純物分析装置1を用いた半導体基板4の分析工程は、以下のようにして実施される。まず、測定対象となる円盤状の半導体基板(半導体ウェーハ)4を第1のステージ2Aと第2のステージ2Bとで挟持し、この状態で測定チャンバ内にセットする。次いで、入射X線7の入射角度を全反射条件に調整した後、半導体基板4を入射X線7の照射方向と直交する方向に回転させながら、半導体基板4の外周面を中心とする平坦部Fを含む照射領域Aに入射X線7を照射する。   The analysis process of the semiconductor substrate 4 using the impurity analysis apparatus 1 according to the second embodiment is performed as follows. First, a disk-shaped semiconductor substrate (semiconductor wafer) 4 to be measured is sandwiched between the first stage 2A and the second stage 2B, and is set in the measurement chamber in this state. Next, after adjusting the incident angle of the incident X-ray 7 to the total reflection condition, the flat portion centered on the outer peripheral surface of the semiconductor substrate 4 while rotating the semiconductor substrate 4 in a direction orthogonal to the irradiation direction of the incident X-ray 7. The incident X-ray 7 is irradiated to the irradiation area A including F.

入射X線7の全反射条件による照射に基づいて照射領域Aから生じた蛍光X線をX線検出器9で検出する。そして、X線検出器9による蛍光X線の検出結果に基づいて、半導体基板4の外周面に存在する不純物元素(重金属元素等)の種類や量を評価する。第2の実施形態においても、半導体基板4の外周面の汚染濃度(不純物元素量)の測定に必要な感度に対し、ステージ2から不純物のバックグラウンドや半導体基板4の外周面の形状(面取りされた端面(ベベル部)の形状)による散乱バックグラウンドは十分に低い。従って、平坦部Fを含む照射領域Aからの蛍光X線を検出することによって、半導体基板4の外周面の汚染状態を評価することができる。   The X-ray detector 9 detects the fluorescent X-rays generated from the irradiation region A based on the irradiation of the incident X-ray 7 under the total reflection condition. Based on the detection result of the fluorescent X-rays by the X-ray detector 9, the type and amount of impurity elements (such as heavy metal elements) present on the outer peripheral surface of the semiconductor substrate 4 are evaluated. Also in the second embodiment, with respect to the sensitivity necessary for measuring the contamination concentration (impurity element amount) on the outer peripheral surface of the semiconductor substrate 4, the background of the impurities from the stage 2 and the shape (chamfered) of the outer peripheral surface of the semiconductor substrate 4. Scattering background due to the shape of the end face (bevel portion) is sufficiently low. Therefore, the contamination state of the outer peripheral surface of the semiconductor substrate 4 can be evaluated by detecting fluorescent X-rays from the irradiation region A including the flat portion F.

さらに、半導体基板4を連続的に回転させながら入射X線7を照射することによって、蛍光X線による不純物の検出結果は積算結果として求められる。従って、半導体基板4の外周面に存在する不純物の分析精度を高めることができる。半導体基板4の外周面の分析は半導体基板4を回転させず、外周面の特定部位に対して部分的に入射X線7を照射して実施することも可能である。半導体基板4を回転させずに入射X線7を照射することによって、半導体基板4の外周面における不純物分布等を評価することができる。第2の実施形態においても、第1の実施形態と同様に半導体基板4の全反射蛍光X線分析結果をブランクと比較して、半導体基板4の外周面の汚染状態を評価することも可能である。   Further, by irradiating the incident X-ray 7 while continuously rotating the semiconductor substrate 4, the detection result of the impurity by the fluorescent X-ray is obtained as an integration result. Therefore, the analysis accuracy of impurities existing on the outer peripheral surface of the semiconductor substrate 4 can be increased. The analysis of the outer peripheral surface of the semiconductor substrate 4 can be performed by partially irradiating the incident X-rays 7 on a specific portion of the outer peripheral surface without rotating the semiconductor substrate 4. By irradiating the incident X-rays 7 without rotating the semiconductor substrate 4, the impurity distribution and the like on the outer peripheral surface of the semiconductor substrate 4 can be evaluated. Also in the second embodiment, it is possible to evaluate the contamination state of the outer peripheral surface of the semiconductor substrate 4 by comparing the total reflection fluorescent X-ray analysis result of the semiconductor substrate 4 with the blank as in the first embodiment. is there.

上述した実施形態による半導体基板4の外周面の不純物分析方法、およびそれに用いられる不純物分析装置1によれば、2分割構造のステージ2を用いて半導体基板4の外周面を中心とする平坦部Fを形成することによって、半導体基板4の外周面に全反射条件でX線7を照射することが可能となる。これによって、従来の全反射蛍光X線分析装置では困難であった半導体基板4の外周面からの蛍光X線を検出することができ、半導体基板4の外周面の不純物による汚染状態を比較的簡易に評価することが可能となる。これは半導体基板4の外周面の不純物分析に要する手間やコストの削減に繋がる。   According to the impurity analysis method for the outer peripheral surface of the semiconductor substrate 4 and the impurity analysis apparatus 1 used therefor according to the above-described embodiment, the flat portion F centered on the outer peripheral surface of the semiconductor substrate 4 using the stage 2 having the two-part structure. The X-ray 7 can be irradiated on the outer peripheral surface of the semiconductor substrate 4 under the total reflection condition. As a result, it is possible to detect fluorescent X-rays from the outer peripheral surface of the semiconductor substrate 4 which has been difficult with the conventional total reflection X-ray fluorescence analyzer, and the contamination state due to impurities on the outer peripheral surface of the semiconductor substrate 4 is relatively simple. It becomes possible to evaluate. This leads to a reduction in labor and cost required for impurity analysis on the outer peripheral surface of the semiconductor substrate 4.

この実施形態の半導体基板4の不純物分析装置1は、典型的に半導体デバイスの製造ラインに組み込んで使用される。この際、不純物分析装置(全反射蛍光X線分析装置)1は半導体基板4の外周面の測定に使用するステージ2に加えて、半導体基板4の平坦面(表面や裏面)の測定に使用する通常のステージを備えることができる。通常の平坦面用ステージと外周面用ステージ2とを組合せて使用することによって、装置コストの増加等を抑制しつつ、平坦面の不純物分析と外周面の不純物分析とを実施することが可能となる。   The impurity analyzer 1 of the semiconductor substrate 4 of this embodiment is typically used by being incorporated in a semiconductor device production line. At this time, the impurity analyzer (total reflection X-ray fluorescence analyzer) 1 is used for measuring a flat surface (front surface or back surface) of the semiconductor substrate 4 in addition to the stage 2 used for measuring the outer peripheral surface of the semiconductor substrate 4. A normal stage can be provided. By using a combination of a normal flat surface stage and an outer peripheral surface stage 2, it is possible to perform an impurity analysis on the flat surface and an impurity analysis on the outer peripheral surface while suppressing an increase in apparatus cost and the like. Become.

さらに、全反射蛍光X線分析による半導体基板の平坦面の分析結果と外周面の分析結果とを組合せて解釈することによって、各種半導体デバイスの製造工程における不純物汚染の挙動や汚染源等をより正確に把握することが可能となる。このような分析結果とそれに基づく汚染状況や汚染挙動の解析結果を利用することによって、半導体基板の汚染対策をより正確にかつ詳細に実施することができる。これは半導体デバイスの歩留りや生産性の向上に大きく寄与するものである。   Furthermore, by analyzing the analysis result of the flat surface of the semiconductor substrate by the total reflection X-ray fluorescence analysis and the analysis result of the outer peripheral surface, it is possible to more accurately determine the behavior of impurity contamination and the contamination source in the manufacturing process of various semiconductor devices. It becomes possible to grasp. By utilizing such analysis results and analysis results of contamination status and behavior based on the analysis results, it is possible to carry out countermeasures against contamination of the semiconductor substrate more accurately and in detail. This greatly contributes to the improvement of the yield and productivity of semiconductor devices.

なお、本発明の半導体基板の不純物分析方法および不純物分析装置は上記した実施形態に限定されるものではなく、各種半導体基板の外周面(端面)に存在する不純物の分析・評価、すなわち各種半導体基板の外周面の不純物による汚染状態の評価に適用することができる。本発明の不純物分析装置の具体的な構造は、本発明の基本構成を満足するものであれば種々に変形が可能である。さらに、実施形態は本発明の技術的思想の範囲内で拡張または変更することができ、拡張、変更した実施形態も本発明の技術的範囲に含まれる。   The impurity analysis method and impurity analysis apparatus for a semiconductor substrate of the present invention are not limited to the above-described embodiments, but analysis and evaluation of impurities existing on the outer peripheral surface (end face) of various semiconductor substrates, that is, various semiconductor substrates It can be applied to the evaluation of the contamination state due to impurities on the outer peripheral surface. The specific structure of the impurity analyzer of the present invention can be variously modified as long as it satisfies the basic configuration of the present invention. Furthermore, the embodiments can be expanded or modified within the scope of the technical idea of the present invention, and the expanded and modified embodiments are also included in the technical scope of the present invention.

本発明の実施形態による半導体基板の不純物分析装置を示す斜視図である。1 is a perspective view showing an impurity analysis apparatus for a semiconductor substrate according to an embodiment of the present invention. 図1に示す不純物分析装置を適用した第1の実施形態の平面図である。It is a top view of 1st Embodiment to which the impurity analyzer shown in FIG. 1 is applied. 図1に示す不純物分析装置を適用した第1の実施形態の正面図である。It is a front view of 1st Embodiment to which the impurity analyzer shown in FIG. 1 is applied. 図1に示す不純物分析装置を適用した第2の実施形態の平面図である。It is a top view of 2nd Embodiment to which the impurity analyzer shown in FIG. 1 is applied. 図1に示す不純物分析装置を適用した第2の実施形態の正面図である。It is a front view of 2nd Embodiment to which the impurity analyzer shown in FIG. 1 is applied.

符号の説明Explanation of symbols

1…半導体基板の不純物分析装置、2…分割構造を有するステージ、2A…第1のステージ、2B…第2のステージ、3…ステージ部、4…半導体基板(半導体ウェーハ)、5A,5B…回転軸、6…X線発生源、7…入射X線、8…反射X線、9…X線検出器、A…X線照射領域、F…平坦部。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate impurity analysis apparatus, 2 ... Stage having divided structure, 2A ... First stage, 2B ... Second stage, 3 ... Stage part, 4 ... Semiconductor substrate (semiconductor wafer), 5A, 5B ... Rotation Axis, 6 ... X-ray generation source, 7 ... Incident X-ray, 8 ... Reflected X-ray, 9 ... X-ray detector, A ... X-ray irradiation region, F ... Flat part.

Claims (5)

分割構造を有するステージで半導体基板を挟持し、前記半導体基板の外周面と前記ステージの外周面とで前記半導体基板の外周面を中心とする平坦部を形成する工程と、
前記半導体基板の外周面と前記ステージの外周面とで形成された前記平坦部にX線を全反射条件で照射し、前記半導体基板の外周面から発生した不純物の蛍光X線を検出する工程と、
前記蛍光X線の検出結果に基づいて前記半導体基板の外周面の前記不純物による汚染状態を評価する工程と
を具備することを特徴とする半導体基板の不純物分析方法。
Sandwiching a semiconductor substrate with a stage having a divided structure, and forming a flat portion centered on the outer peripheral surface of the semiconductor substrate between the outer peripheral surface of the semiconductor substrate and the outer peripheral surface of the stage;
Irradiating the flat portion formed by the outer peripheral surface of the semiconductor substrate and the outer peripheral surface of the stage under total reflection conditions to detect fluorescent X-rays of impurities generated from the outer peripheral surface of the semiconductor substrate; ,
And a step of evaluating a contamination state of the outer peripheral surface of the semiconductor substrate due to the impurities based on the detection result of the fluorescent X-rays.
請求項1記載の半導体基板の不純物分析方法において、
前記ステージとして前記半導体基板と同一径の回転式ステージを使用し、前記回転式ステージで挟持した前記半導体基板を回転させながら前記平坦部に前記X線を照射することを特徴とする半導体基板の不純物分析方法。
The impurity analysis method for a semiconductor substrate according to claim 1,
An impurity of a semiconductor substrate, wherein a rotary stage having the same diameter as the semiconductor substrate is used as the stage, and the flat portion is irradiated with the X-rays while rotating the semiconductor substrate held by the rotary stage. Analysis method.
半導体基板を挟持することが可能な分割構造を有するステージを備え、前記半導体基板の外周面と前記ステージの外周面とで前記半導体基板の外周面を中心とする平坦部を形成するステージ部と、
前記ステージに挟持された前記半導体基板の外周面と前記ステージの外周面とで形成された前記平坦部にX線を全反射条件で照射するX線照射部と、
前記X線の照射に基づいて前記半導体基板の外周面から発生した不純物の蛍光X線を検出する蛍光X線検出部と
を具備することを特徴とする半導体基板の不純物分析装置。
A stage portion including a stage having a split structure capable of sandwiching a semiconductor substrate, and forming a flat portion centering on the outer peripheral surface of the semiconductor substrate between the outer peripheral surface of the semiconductor substrate and the outer peripheral surface of the stage;
An X-ray irradiation unit that irradiates the flat part formed by the outer peripheral surface of the semiconductor substrate sandwiched between the stages and the outer peripheral surface of the stage under total reflection conditions;
And a fluorescent X-ray detector for detecting fluorescent X-rays of impurities generated from the outer peripheral surface of the semiconductor substrate based on the X-ray irradiation.
請求項3記載の半導体基板の不純物分析装置において、
前記ステージ部は前記ステージとして前記半導体基板と同一径の回転式ステージを備え、かつ前記X線照射部は前記回転式ステージに挟持された前記半導体基板を回転させながら前記平坦部に前記X線を照射することを特徴とする半導体基板の不純物分析装置。
The impurity analysis apparatus for a semiconductor substrate according to claim 3,
The stage unit includes a rotary stage having the same diameter as the semiconductor substrate as the stage, and the X-ray irradiation unit transmits the X-rays to the flat part while rotating the semiconductor substrate sandwiched by the rotary stage. Irradiation apparatus for semiconductor substrate impurity irradiation.
請求項3または請求項4記載の半導体基板の不純物分析装置において、
前記X線検出部はその感度分布の中心で前記半導体基板の外周面から発生した蛍光X線を検出するように配置されていることを特徴とする半導体基板の不純物分析装置。
In the impurity analysis apparatus of the semiconductor substrate of Claim 3 or Claim 4,
The X-ray detection unit is arranged to detect fluorescent X-rays generated from the outer peripheral surface of the semiconductor substrate at the center of its sensitivity distribution.
JP2008102016A 2008-04-10 2008-04-10 Impurity analysis method and impurity analysis device of semiconductor substrate Withdrawn JP2009253174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102016A JP2009253174A (en) 2008-04-10 2008-04-10 Impurity analysis method and impurity analysis device of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102016A JP2009253174A (en) 2008-04-10 2008-04-10 Impurity analysis method and impurity analysis device of semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2009253174A true JP2009253174A (en) 2009-10-29

Family

ID=41313555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102016A Withdrawn JP2009253174A (en) 2008-04-10 2008-04-10 Impurity analysis method and impurity analysis device of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2009253174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149293A (en) * 2013-01-30 2014-08-21 Bruker Axs Gmbh Xrf measuring apparatus for detecting contaminant on bevel of wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149293A (en) * 2013-01-30 2014-08-21 Bruker Axs Gmbh Xrf measuring apparatus for detecting contaminant on bevel of wafer

Similar Documents

Publication Publication Date Title
JP5722861B2 (en) Inspection method and inspection apparatus
US9666323B2 (en) Radiolucent window, radiation detector and radiation detection apparatus
KR102009051B1 (en) Foreign matter detector
JP2005024327A (en) Surface inspection method and surface inspection device
JP2003045928A (en) METHOD FOR EVALUATING Cu CONTAMINATION IN SEMICONDUCTOR SILICON WAFER
JP2009253174A (en) Impurity analysis method and impurity analysis device of semiconductor substrate
JP2005140767A (en) Three-dimensional surface analysis method
JP2008157753A (en) Inspection device, annealing device, and inspection method
KR101921726B1 (en) Sample collection device, sample collection method, and fluorescent X-ray analysis device using them
JP2002243594A (en) Sampling jig and infrared spectrometric method using it
JP2001133420A (en) Method and apparatus for total reflection x-ray fluorescence analysis
JP2921910B2 (en) Total reflection X-ray fluorescence analyzer
JP2001343339A (en) X-ray fluorescence analysis method provided with analysis position setting means and device therefor
JP2002340794A (en) Method for measuring infrared absorption of semiconductor wafer
JPH11248653A (en) Method and device for analyzing total reflection fluorescent x-ray
US9645087B2 (en) Measuring apparatus where a distance between a surface of a transparent substrate on which a marker pattern is formed and a front surface is within a depth of focus of a detecting means
TWI827060B (en) Total reflection fluorescence X-ray analysis device
JP2006189281A (en) Surface inspection device and surface inspection method
Krstajic Application of Total Reflection X-Ray Fluorescence Analysis Down to Carbon
JP4052951B2 (en) Thin film analysis method and thin film analyzer
JP2010103258A (en) Method of measuring quality of semiconductor wafer
WO2012008513A1 (en) Fluorescent x-ray detection method and fluorescent x-ray detection device
JP2002236101A (en) Method and device for measuring surface state
KR20070113678A (en) Apparatus and method for manufacturing a specimen for tem
JP2009075018A (en) Fluorescent x-ray analysis apparatus, and fluorescent x-ray analysis method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705