JP2009242893A - Holder for rolling bearing and its surface treatment method - Google Patents
Holder for rolling bearing and its surface treatment method Download PDFInfo
- Publication number
- JP2009242893A JP2009242893A JP2008092500A JP2008092500A JP2009242893A JP 2009242893 A JP2009242893 A JP 2009242893A JP 2008092500 A JP2008092500 A JP 2008092500A JP 2008092500 A JP2008092500 A JP 2008092500A JP 2009242893 A JP2009242893 A JP 2009242893A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- cage
- rolling bearing
- heat treatment
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Rolling Contact Bearings (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、転がり軸受に組み込まれる鋼製の保持器及びその表面処理方法に関する。 The present invention relates to a steel cage incorporated in a rolling bearing and a surface treatment method thereof.
従来から、負荷が作用する転がり軸受には、強度に優れる高力黄銅製のもみ抜き保持器がよく使用されている。しかしながら、高力黄銅は自己潤滑性を有し摺動性、耐摩耗性に優れるものの高価であるので、高力黄銅製のもみ抜き保持器は材料コストが高いという問題点があった。また、もみ抜きにより加工されるため、加工費が高く、材料歩留まりも低い。よって、高力黄銅製のもみ抜き保持器は、特殊用途に限定されていた。
そのため、近年においては、保持器の設計を最適化してコストダウンや保持器強度の向上を図ることによって、SPCC材に代表される冷間圧延鋼板やSPHD材に代表される熱間圧延鋼板から製造されたプレス保持器が使用されるようになっている。
Conventionally, a high-strength brass machined cage that is excellent in strength is often used for a rolling bearing on which a load acts. However, high-strength brass is self-lubricating and excellent in slidability and wear resistance, but is expensive. Therefore, a high-strength brass machined cage has a problem of high material cost. In addition, since it is processed by milling, the processing cost is high and the material yield is low. Therefore, the high-strength brass machined cage has been limited to special applications.
Therefore, in recent years, it has been manufactured from cold-rolled steel plates typified by SPCC materials and hot-rolled steel plates typified by SPHD materials by optimizing the cage design to reduce costs and improve cage strength. A pressed press holder is used.
一般にSPCC材は高力黄銅と比較して摺動性、耐摩耗性が劣るため、潤滑条件が厳しい場合には、転動体と保持器ポケットとの接触部や、保持器の案内面と軌動輪との接触部で摩耗が著しく進行して、回転精度が低下する場合があり、最悪の場合には焼付きが生じて破損に至る場合があった。このため、SPCC材製又はSPHD材製の保持器には、塩浴窒化処理やガス軟窒化処理に代表される軟窒化処理を施して、鉄と窒素の化合物からなる硬質な窒化層を保持器表面に形成して耐摩耗性を向上させる努力がなされてきた。 In general, SPCC material is inferior in sliding property and wear resistance compared to high-strength brass. Therefore, when the lubrication conditions are severe, the contact portion between the rolling element and the cage pocket, the guide surface of the cage and the race wheel Wear may significantly progress at the contact area with the material, and rotation accuracy may be reduced. In the worst case, seizure may occur and damage may occur. Therefore, the cage made of SPCC material or SPHD material is subjected to soft nitriding treatment represented by salt bath nitriding treatment or gas soft nitriding treatment, and a hard nitride layer made of a compound of iron and nitrogen is held in the cage. Efforts have been made to improve wear resistance by forming on the surface.
例えば、特許文献1には、0.12%C以下の低炭素銅であって、かつTi含有量を0.0015%以下に規制したAlキルド鋼板から窒化処理をして深みぞ玉軸受の打ち抜き保持器を作製する技術が開示されている。これにより、鋼中のTi含有量を規制するので、タフトライド処理の際に鋼板内質部の脆化がなく、保持器の籾性を確保し、その破壊強度を高めるというものである。 For example, in Patent Document 1, a deep groove ball bearing is punched by nitriding from an Al-killed steel plate having a low carbon copper content of 0.12% C or less and a Ti content of 0.0015% or less. A technique for making a cage is disclosed. Thereby, since Ti content in steel is controlled, there is no embrittlement of the internal part of a steel plate at the time of a tuftride treatment, the toughness of a cage is secured, and the fracture strength is increased.
また、特許文献2には、窒化処理の前に保持器の表面の酸化物を金属フッ化膜に置き換えるフッ化処理を含むガス窒化方法が開示されている。これにより、鋼表面に均一な窒化層を迅速に得ることが可能である。
また、特許文献3には、所定の形状に成形した鋼材に窒化処理を施した後に、680〜750℃の温度から急冷する焼入れを施し、焼入れの後にサブゼロ処理を施す転がり軸受用保持器の製造方法が開示されている。この製造方法によれば、窒化後に焼入れるため、疲労強度に優れた保持器を製造することができる。
Patent Document 3 discloses the production of a rolling bearing cage in which a steel material formed into a predetermined shape is subjected to nitriding treatment, then quenched from a temperature of 680 to 750 ° C., and subjected to subzero treatment after quenching. A method is disclosed. According to this manufacturing method, since quenching is performed after nitriding, a cage having excellent fatigue strength can be manufactured.
近年、保持器の高機能化が進み、案内機能や針状ころの姿勢制御の機能を持たせるためにプレス保持器の形状は複雑化している。したがって、特許文献1に記載のように塩浴窒化処理を行った保持器においては、回転条件によって保持器の特定部位に過大な繰返し応力が付与されことにより、保持器の破壊を引き起こすことがある。これは、塩浴が十分に行き渡らなくなって窒化ムラが発生し、窒化層の薄くなった部分が破壊の起点となってしまうことに起因する。 2. Description of the Related Art In recent years, the function of a cage has been advanced, and the shape of a press cage has become complicated in order to provide a guide function and a function for controlling the posture of a needle roller. Therefore, in a cage that has been subjected to salt bath nitriding as described in Patent Document 1, an excessively repetitive stress is applied to a specific part of the cage depending on the rotation condition, which may cause breakage of the cage. . This is because the salt bath does not spread sufficiently and uneven nitriding occurs, and the thinned portion of the nitride layer becomes the starting point of destruction.
また、特許文献2は、硬い窒化層を深部まで得られがたく、保持器素材の強度不足を招く可能性があった。
近年では、自動車の低燃費化を目的としたA/Tの多段化に伴い、転がり軸受の使用条件が益々厳しくなりつつあるため、転がり軸受の高速回転化及び高付加容量化に対応できる保持器が望まれている。しかも、極めて高い寸法精度が要求されるので、変形はできるだけ抑制する必要がある。
Further, in
In recent years, the use of rolling bearings has become more and more severe due to the multi-stage A / T aimed at reducing fuel consumption of automobiles. Therefore, a cage that can cope with high-speed rotation and high added capacity of rolling bearings. Is desired. In addition, since extremely high dimensional accuracy is required, it is necessary to suppress deformation as much as possible.
また、特許文献3のように、第二熱処理において680〜750℃に保持した後、焼入を行った場合、窒化膜の分解と拡散が進行し、耐摩耗性が低下する虞がある。また、750℃以下に保持するため熱応力を低減することができるが、焼入れを施すため変形を免れることはできない。保持器は極めて高い寸法精度が要求されるので、変形はできるだけ抑制する必要がある。
そこで、本発明は上記の問題点に着目してなされたものであり、その目的は、転がり軸受の高速回転化及び高付加容量化に対応でき、疲労強度が高く、摩耗量が低い転がり軸受用保持器及びその表面処理方法を提供することにある。
In addition, as in Patent Document 3, when the quenching is performed after the temperature is maintained at 680 to 750 ° C. in the second heat treatment, the decomposition and diffusion of the nitride film may progress and the wear resistance may be lowered. Moreover, although it can hold | maintain at 750 degrees C or less, a thermal stress can be reduced, However, Since hardening is performed, a deformation | transformation cannot be avoided. Since the cage requires extremely high dimensional accuracy, it is necessary to suppress deformation as much as possible.
Accordingly, the present invention has been made paying attention to the above-mentioned problems, and its purpose is to meet the demands for high-speed rotation and high added capacity of rolling bearings, high fatigue strength, and low wear amount for rolling bearings. An object of the present invention is to provide a cage and a surface treatment method thereof.
本発明の請求項1に係る転がり軸受用保持器の表面処理方法は、鋼材をプレス成形してなる転がり軸受用保持器の母材の表面に対して、400〜590℃の温度でガス窒化処理を施す一次熱処理を行い、その後、矯正型に拘束して590〜700℃の温度に保持する二次熱処理を行い、その後、急冷する冷却処理を行うことを特徴とする。
本発明の請求項2に係る転がり軸受用保持器の表面処理方法は、請求項1に記載の転がり軸受用保持器の表面処理方法において、プレス成形後の転がり軸受用保持器の母材の表面をフッ化処理した後、前記ガス窒化処理を施すことを特徴とする。
A surface treatment method for a rolling bearing cage according to claim 1 of the present invention is a gas nitriding treatment at a temperature of 400 to 590 ° C. with respect to the surface of a base material of a rolling bearing cage formed by press forming a steel material. It is characterized in that a primary heat treatment is performed, followed by a secondary heat treatment that is constrained to a correction die and maintained at a temperature of 590 to 700 ° C., and thereafter a cooling treatment for rapid cooling is performed.
A surface treatment method for a rolling bearing cage according to
本発明の請求項3に係る転がり軸受用保持器は、鋼材をプレス成形してなる転がり軸受用保持器の表面をフッ化処理した後に、400〜590℃の温度でガス窒化処理を施す一次熱処理を行い、その後、矯正型に拘束して590〜700℃の温度に保持する二次熱処理を行い、その後、急冷する冷却処理を行って得られたことを特徴とする。
転がり軸受用保持器の母材の表面に対して、ガス窒化処理による一次熱処理を行うことにより、表面に窒化層が形成されるので表面硬さが増し、耐摩耗性が向上する。なお、ガス窒化処理を行う前に、転がり軸受用保持器の母材の表面にフッ化処理を施しておくと、その効果はさらに向上する。また、二次熱処理において保持器を矯正型で拘束した状態で590〜700℃の温度に保持した後急冷を行い、ベイナイトもしくはマルテンサイトを含む組織が窒化層に形成されることで、高精度で耐摩耗性及び高疲労強度の保持器を作成することが可能となる。ここで、前記矯正型は、二次熱処理前における保持器の形状を保つ形状であれば、特に制限はなく、目的に応じて適宜選択される。
The rolling bearing retainer according to claim 3 of the present invention is a primary heat treatment in which a gas nitriding treatment is performed at a temperature of 400 to 590 ° C. after the surface of the rolling bearing retainer formed by press forming a steel material is fluorinated. After that, it is obtained by performing a secondary heat treatment that is constrained to a straightening mold and is maintained at a temperature of 590 to 700 ° C., and then performing a cooling treatment for rapid cooling.
By performing a primary heat treatment by gas nitriding treatment on the surface of the base material of the rolling bearing cage, a nitrided layer is formed on the surface, so that the surface hardness is increased and the wear resistance is improved. If the surface of the base material of the rolling bearing cage is subjected to a fluorination treatment before the gas nitriding treatment, the effect is further improved. Further, in the secondary heat treatment, the cage is held at a temperature of 590 to 700 ° C. in a state in which the cage is restrained with a straightening mold, and then rapidly cooled, and a structure containing bainite or martensite is formed in the nitride layer, thereby achieving high accuracy. A cage having wear resistance and high fatigue strength can be produced. Here, there is no restriction | limiting in particular if the said correction | amendment type | mold is a shape which maintains the shape of the holder | retainer before secondary heat processing, According to the objective, it selects suitably.
本発明によれば、疲労強度が高く、摩耗量が低い転がり軸受用保持器が得られる。 According to the present invention, a cage for a rolling bearing having high fatigue strength and low wear is obtained.
本発明に係る転がり軸受用保持器の表面処理方法及び転がり軸受用保持器の一実施の形態について、図面を参照しながら以下に説明する。
SPCC材やSPHD材に代表される低炭素鋼板に窒化処理を施すと、鋼表面で窒素と鉄とが反応し、窒素原子が鋼中に拡散して行き、最表面では窒素濃度に応じてFe2N,Fe3N,Fe4N等の鉄と窒素との化合物からなる硬質な窒化層が形成される。ビッカース硬度計による窒化層の硬さは、一般的にはHV400以上で、窒化処理前の保持器母材に比較して硬度が増している。また、窒化層が形成された鋼製の転がり軸受用保持器においては、転動体と保持器との間の金属接触や、摺動する案内面と保持器との間の金属接触が窒化層により防止されるので、耐摩耗性、耐焼付性が改善される。
An embodiment of a surface treatment method for a rolling bearing cage and a rolling bearing cage according to the present invention will be described below with reference to the drawings.
When nitriding is applied to a low carbon steel plate typified by SPCC material or SPHD material, nitrogen and iron react on the steel surface, and nitrogen atoms diffuse into the steel. A hard nitride layer made of a compound of iron and nitrogen such as 2 N, Fe 3 N, or Fe 4 N is formed. The hardness of the nitrided layer measured by the Vickers hardness tester is generally HV400 or more, and the hardness is increased as compared with the cage base material before nitriding. Further, in a steel rolling bearing cage formed with a nitride layer, the metal contact between the rolling element and the cage or the metal contact between the sliding guide surface and the cage is caused by the nitride layer. Therefore, wear resistance and seizure resistance are improved.
そこで、本発明に係る転がり軸受用保持器の表面処理方法は、図1(a)及び(b)に示す鋼材をプレス成形してなる保持器母材1の表面に、フッ化処理、一次熱処理、二次熱処理、及び冷却処理を行うことを特徴とする。
フッ化処理は、保持器母材の表面に存在する酸化物をフッ化膜に置き換える処理である。保持器母材の窒化に先立って、まず、保持器母材を炉中で加熱しながら、その状態で炉中にフッ素化合物もしくはフッ素を含むガスを導入して保持器母材の表面を上記ガスと接触させると、活性化したフッ素原子により保持器母材の表面に付着していた無機物及び有機物の汚染物質が破壊除去されて表面が浄化されると共に、このフッ素原子が酸化膜と反応してフッ化物膜に変化して保持器母材の表面がフッ化物膜で被覆保護された状態となる。
Then, the surface treatment method of the rolling bearing retainer according to the present invention includes a fluorination treatment and a primary heat treatment on the surface of the retainer base material 1 formed by press-forming the steel shown in FIGS. 1 (a) and (b). Second heat treatment and cooling treatment are performed.
The fluorination treatment is a treatment in which the oxide present on the surface of the cage base material is replaced with a fluoride film. Prior to nitridation of the cage base material, first, while heating the cage base material in the furnace, in this state, a fluorine compound or a gas containing fluorine is introduced into the furnace, and the surface of the cage base material is When the contact is made, the activated fluorine atoms destroy and remove the inorganic and organic contaminants adhering to the surface of the cage base material, purify the surface, and the fluorine atoms react with the oxide film. It changes to a fluoride film, and the surface of the cage base material is covered and protected by the fluoride film.
一次熱処理は、フッ化処理された鋼を、アンモニアガスを窒化媒体として400〜590℃の温度で行われる窒化処理である。一次熱処理で窒化処理を行うことにより、表面に窒化層が形成されるので表面硬さが増し、耐摩耗性が向上する。一次熱処理における温度が400℃未満であると、良好な窒化膜を得ることができず、590℃を超えると、保持器母材のA1変態点を超えるため、熱処理変形が発生し、高い寸法精度を得ることができない。 The primary heat treatment is a nitriding treatment performed on a fluorinated steel at a temperature of 400 to 590 ° C. using ammonia gas as a nitriding medium. By performing the nitriding treatment by the primary heat treatment, a nitride layer is formed on the surface, so that the surface hardness is increased and the wear resistance is improved. If the temperature in the primary heat treatment is less than 400 ° C., a good nitride film cannot be obtained, and if it exceeds 590 ° C., it exceeds the A1 transformation point of the cage base material, resulting in heat treatment deformation and high dimensional accuracy. Can't get.
二次熱処理は、一次熱処理された保持器母材を矯正型に拘束して590〜700℃の温度に保持する処理である。冷却処理は、二次熱処理された保持器母材を急冷する処理である。二次熱処理で590〜700℃に加熱保持してオーステナイト化した後急冷することにより、ベイナイト、もしくはマルテンサイトを含む組織が窒化層に形成されるので疲労強度が向上する。ここで、590℃以上ではA1変態点を超えるため焼入変形により反りなどが発生し、高い寸法精度を得ることができない虞がある。そこで、保持器を矯正型で矯正した状態で加熱及び冷却を行うことにより、高い寸法精度を得ることができる。 The secondary heat treatment is a treatment in which the cage base material subjected to the primary heat treatment is held at a temperature of 590 to 700 ° C. by constraining the retainer base material to a straightening mold. The cooling process is a process of rapidly cooling the cage base material subjected to the secondary heat treatment. By heating and holding at 590 to 700 ° C. in the secondary heat treatment to form austenite and then rapidly cooling, a structure containing bainite or martensite is formed in the nitride layer, so that the fatigue strength is improved. Here, since it exceeds the A1 transformation point at 590 ° C. or higher, warping or the like may occur due to quenching deformation, and high dimensional accuracy may not be obtained. Therefore, high dimensional accuracy can be obtained by performing heating and cooling in a state where the cage is corrected with a correction die.
矯正型は、二次熱処理前における保持器の形状を保つ形状であれば、特に制限はなく、目的に応じて適宜選択される。図2は、二次熱処理において、転がり軸受用保持器の母材を矯正型で拘束したときの構成を示す断面図である。図2に示すように、保持器を矯正型2で拘束することで、反りなどを減少させる。
二次熱処理における温度が590℃未満であると、A1変態点を超えないため組織がフェライトとなり、高い硬さを得ることができない。二次熱処理における温度が700℃を超えると窒化層における分解と拡散が進行し、十分な耐摩耗性を得ることができない。なお、好ましい二次熱処理温度は600〜670℃である。また、冷却処理における冷却速度は、50℃/s以上が好ましい。冷却速度が50℃/s未満であると、保持器母材の深部が十分に硬化せず、十分な疲労強度が得られない可能性がある。
The straightening mold is not particularly limited as long as it retains the shape of the cage before the secondary heat treatment, and is appropriately selected according to the purpose. FIG. 2 is a cross-sectional view showing a configuration when the base material of the rolling bearing cage is restrained by a straightening die in the secondary heat treatment. As shown in FIG. 2, warping or the like is reduced by restraining the cage with the correction die 2.
If the temperature in the secondary heat treatment is lower than 590 ° C., the A1 transformation point is not exceeded, and the structure becomes ferrite, and high hardness cannot be obtained. If the temperature in the secondary heat treatment exceeds 700 ° C., decomposition and diffusion in the nitride layer proceed, and sufficient wear resistance cannot be obtained. A preferable secondary heat treatment temperature is 600 to 670 ° C. Further, the cooling rate in the cooling treatment is preferably 50 ° C./s or more. If the cooling rate is less than 50 ° C./s, the deep portion of the cage base material may not be sufficiently cured, and sufficient fatigue strength may not be obtained.
また、プレス成形される鋼材は、C:0.08〜0.20質量%、Si:0.30質量%以下、Mn:0.05〜1.0質量%、P:0.03質量%以下、S:0.05質量%以下、Al:0.01〜0.1質量%を含有し、残部はFe及び不可避的不純物からなることが好ましい。
なお、上記含有成分の数値限定の理由は以下の通りである。
The steel materials to be press-formed are C: 0.08 to 0.20 mass%, Si: 0.30 mass% or less, Mn: 0.05 to 1.0 mass%, P: 0.03 mass% or less. S: 0.05% by mass or less, Al: 0.01-0.1% by mass, and the balance is preferably composed of Fe and inevitable impurities.
The reason for limiting the numerical values of the above-mentioned components is as follows.
[C:0.08〜0.20質量%]
Cは強度確保のために必要な元素であり、炭素含有量が0.08質量%を下回ると十分な強度が得られなくなる。また、炭素含有量が0.20質量%を超えると保持器素材の加工性が低下する。
[Si:0.30質量%以下]
Siは脱酸のために必要な元素であり、0.30質量%を超えると加工性が低下する。
[C: 0.08 to 0.20 mass%]
C is an element necessary for ensuring the strength. When the carbon content is less than 0.08% by mass, sufficient strength cannot be obtained. Moreover, when carbon content exceeds 0.20 mass%, the workability of a cage | basket material will fall.
[Si: 0.30 mass% or less]
Si is an element necessary for deoxidation, and if it exceeds 0.30% by mass, workability deteriorates.
[Mn:0.05〜1.0質量%]
Mnは脱酸・脱硫のために必要な元素であり、0.05質量%を下回ると脱酸が不十分となり非金属介在物量の増加を招く。また、1.0%質量を超えると靱性が低下する。
[P:0.03質量%以下]
Pは不可避的に鋼中に混入する有害不純物元素であり、その上限を0.03質量%とする。
[Mn: 0.05 to 1.0% by mass]
Mn is an element necessary for deoxidation / desulfurization, and if it is less than 0.05% by mass, deoxidation is insufficient and the amount of nonmetallic inclusions is increased. Moreover, when it exceeds 1.0% mass, toughness will fall.
[P: 0.03 mass% or less]
P is a harmful impurity element inevitably mixed in the steel, and its upper limit is 0.03% by mass.
[S:0.05質量%以下]
Sは不可避的に鋼中に混入する有害不純物元素であり、その上限を0.05質量%とする。
[Al:0.01〜0.1質量%]
Alは窒化特性向上、特に表面硬さ向上や、結晶粒粗大化抑制のために必要な元素であり、0.01質量%以上含有させる必要がある。また、0.1質量%を超えると靱性が低下する。
[S: 0.05% by mass or less]
S is a harmful impurity element inevitably mixed in the steel, and its upper limit is 0.05 mass%.
[Al: 0.01 to 0.1% by mass]
Al is an element necessary for improving the nitriding characteristics, particularly for improving the surface hardness and for suppressing the coarsening of crystal grains, and needs to be contained in an amount of 0.01% by mass or more. Moreover, when it exceeds 0.1 mass%, toughness will fall.
(実施例)
以下に、さらに具体的な実施例を示して、本発明を説明する。
表1に示す成分を含む鋼材をプレス成形して、転がり軸受用保持器の母材を作製した。この母材の表面に対して、350℃でフッ化処理をした。その後、表2に示す処理条件に基づいて、加熱炉において一次熱処理(窒化処理)を施した後、炉冷した。その後、表2に示す処理条件に基づいて、二次熱処理として保持器を矯正型で拘束した状態で加熱炉において加熱及び保持した。その後、冷却処理として水冷を行って、実施例1〜4及び比較例1〜7の転がり軸受用保持器を得た。
(Example)
Hereinafter, the present invention will be described with reference to more specific examples.
A steel material containing the components shown in Table 1 was press-molded to produce a base material for a rolling bearing cage. The surface of the base material was fluorinated at 350 ° C. Then, based on the processing conditions shown in Table 2, after performing a primary heat treatment (nitriding treatment) in a heating furnace, the furnace was cooled. Then, based on the process conditions shown in Table 2, it heated and hold | maintained in the heating furnace in the state which restrained the cage | basket with the correction type | mold as secondary heat processing. Then, water cooling was performed as a cooling process, and the rolling bearing cages of Examples 1 to 4 and Comparative Examples 1 to 7 were obtained.
次に、実施例1〜4及び比較例1〜7の転がり軸受用保持器の疲労強度を評価した。すなわち、実施例1〜4及び比較例1〜7の転がり軸受用保持器の端面に対して疲労強度試験を行い、実施例1の疲労強度を1とした疲労強度比を求め、これを評価した。疲労強度試験は、実施例1〜4及び比較例1〜7の転がり軸受用保持器の端面に対して、応力を20Hzで繰り返し加え、転がり軸受用保持器にクラックが入るまでの繰り返し数を測定し、繰り返し数が1×107サイクルのときの疲労強度を求めた。疲労強度比の結果を表2に示す。 Next, the fatigue strength of the rolling bearing cages of Examples 1 to 4 and Comparative Examples 1 to 7 was evaluated. That is, the fatigue strength test was performed on the end faces of the rolling bearing cages of Examples 1 to 4 and Comparative Examples 1 to 7, and the fatigue strength ratio was determined with the fatigue strength of Example 1 being 1, and this was evaluated. . In the fatigue strength test, stress is repeatedly applied at 20 Hz to the end faces of the rolling bearing cages of Examples 1 to 4 and Comparative Examples 1 to 7, and the number of repetitions until the rolling bearing cage is cracked is measured. The fatigue strength when the number of repetitions was 1 × 10 7 cycles was determined. The results of the fatigue strength ratio are shown in Table 2.
次に、実施例1〜4及び比較例1〜7の保持器の耐摩耗性を評価した。すなわち、保持器を自動調心ころ軸受(呼び番号22211)に組み込んで高速回転試験を行い、回転試験後の保持器の摩耗状況を質量変化によって評価した。回転試験の条件は、以下の通りである。
・荷重:15415N
・回転速度:6750min
・潤滑条件:グリース潤滑
・試験時間:24時間
保持器の摩耗量比を表2に示す。なお、保持器の摩耗量比は、実施例1の保持器の摩耗量を1とした場合の相対値である。
表2に示すように、本発明の要件を満たす実施例1〜4については、いずれも良好な評価結果を得ることができた。
Next, the abrasion resistance of the cages of Examples 1 to 4 and Comparative Examples 1 to 7 was evaluated. That is, the cage was assembled in a self-aligning roller bearing (nominal number 22211) and a high-speed rotation test was conducted, and the wear situation of the cage after the rotation test was evaluated by mass change. The conditions of the rotation test are as follows.
・ Load: 15415N
・ Rotation speed: 6750 min
-Lubrication conditions: Grease lubrication-Test time: 24 hours Table 2 shows the wear amount ratio of the cage. The wear amount ratio of the cage is a relative value when the wear amount of the cage of Example 1 is 1.
As shown in Table 2, good evaluation results could be obtained for Examples 1 to 4 that satisfy the requirements of the present invention.
一方、比較例1及び2は、一次熱処理及び二次熱処理において規定した処理温度より低い温度で処理したので、実施例1よりも高い疲労強度を得ることができなかった。特に、一次熱処理において低い温度で処理した比較例1は、耐摩耗性も低かった。また、比較例3は、一次熱処理及び二次熱処理において規定した処理温度より高い温度で処理したので、実施例1よりも高い耐摩耗性を得ることができなかった。また、比較例5は、二次熱処理の後に冷却処理として急冷ではなく、冷却速度が50℃/sよりも著しく遅い冷却速度の炉冷を行ったので、実施例1よりも高い疲労強度を得ることができなかった。また、比較例6は、二次熱処理を行わなかったので、実施例1よりも高い疲労強度を得ることができなかった。また、比較例7は、一次熱処理においてガス窒化ではなく塩浴窒化を施したので、実施例1よりも高い疲労強度及び耐摩耗性を得ることができなかった。更に、比較例4は、二次熱処理において規定した処理温度より高い温度で処理したので、熱処理変形し、疲労試験を行うことができなかった。 On the other hand, since Comparative Examples 1 and 2 were processed at a temperature lower than the processing temperature defined in the primary heat treatment and the secondary heat treatment, higher fatigue strength than that in Example 1 could not be obtained. In particular, Comparative Example 1 treated at a low temperature in the primary heat treatment also had low wear resistance. Moreover, since the comparative example 3 processed at the temperature higher than the processing temperature prescribed | regulated in primary heat processing and secondary heat processing, it was not able to obtain abrasion resistance higher than Example 1. FIG. In Comparative Example 5, the secondary heat treatment was not rapid cooling as the cooling treatment, and the furnace cooling was performed at a cooling rate that was significantly slower than 50 ° C./s, so that higher fatigue strength than that of Example 1 was obtained. I couldn't. Moreover, since the comparative example 6 did not perform secondary heat processing, the fatigue strength higher than Example 1 was not able to be obtained. Moreover, since the comparative example 7 performed salt bath nitriding instead of gas nitriding in the primary heat treatment, it was not possible to obtain higher fatigue strength and wear resistance than in the first embodiment. Furthermore, since Comparative Example 4 was processed at a temperature higher than the processing temperature specified in the secondary heat treatment, the heat treatment was deformed and a fatigue test could not be performed.
なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、一次熱処理で窒化した後、冷却を行うことなく二次熱処理を行い、一定時間保持後冷却処理を行ってもよい。この冷却処理は、水冷でも油冷でもよい。また、一次熱処理は、保持器を矯正型で拘束した状態でガス窒化処理が行われてもよい。このときに用いられる矯正型は、一次熱処理前における保持器の形状を保つ形状であれば、特に制限はなく、目的に応じて適宜選択される。また、保持器を矯正型で拘束した状態で冷却処理が行われてもよい。また、保持器を構成する鋼の種類は特に限定されるものではなく、冷間圧延鋼板や熱間圧延鋼板以外の材料を用いて保持器を製造してもよい。また、保持器の製造法も特に限定されるものではなく、プレス保持器に限らず、もみ抜き保持器でもよい。さらに、本発明に係る転がり軸受用保持器は、様々な種類の転がり軸受に対して適用することができる。例えば、自動調心ころ軸受、深溝玉軸受、アンギュラ玉軸受、自動調心玉軸受、円筒ころ軸受、円すいころ軸受、針状ころ軸受等のラジアル形の転がり軸受や、スラスト玉軸受、スラストころ軸受等のスラスト形の転がり軸受である。 In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. For example, after nitriding by primary heat treatment, secondary heat treatment may be performed without cooling, and cooling treatment may be performed after holding for a certain period of time. This cooling process may be water cooling or oil cooling. In addition, the primary heat treatment may be performed by gas nitriding in a state where the cage is restrained by a straightening mold. The straightening mold used at this time is not particularly limited as long as it retains the shape of the cage before the primary heat treatment, and is appropriately selected depending on the purpose. In addition, the cooling process may be performed in a state where the cage is constrained by a correction die. Moreover, the kind of steel which comprises a cage is not specifically limited, You may manufacture a cage using materials other than a cold rolled steel plate and a hot rolled steel plate. Further, the manufacturing method of the cage is not particularly limited, and is not limited to the press cage and may be a machined cage. Furthermore, the rolling bearing retainer according to the present invention can be applied to various types of rolling bearings. For example, radial roller bearings such as spherical roller bearings, deep groove ball bearings, angular contact ball bearings, self-aligning ball bearings, cylindrical roller bearings, tapered roller bearings, needle roller bearings, thrust ball bearings, thrust roller bearings This is a thrust type rolling bearing.
本発明の転がり軸受用保持器は、自動車、一般産業機械、工作機械、鉄鋼用機械等に使用される転がり軸受に好適である。 The cage for rolling bearings of the present invention is suitable for rolling bearings used in automobiles, general industrial machines, machine tools, steel machines and the like.
1 転がり軸受用保持器の母材
2 矯正型
1 Base material of cage for rolling
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008092500A JP2009242893A (en) | 2008-03-31 | 2008-03-31 | Holder for rolling bearing and its surface treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008092500A JP2009242893A (en) | 2008-03-31 | 2008-03-31 | Holder for rolling bearing and its surface treatment method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009242893A true JP2009242893A (en) | 2009-10-22 |
Family
ID=41305123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008092500A Pending JP2009242893A (en) | 2008-03-31 | 2008-03-31 | Holder for rolling bearing and its surface treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009242893A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105039654A (en) * | 2015-06-13 | 2015-11-11 | 秦皇岛首秦金属材料有限公司 | Thermal treatment production method for composite board |
CN105274288A (en) * | 2014-12-16 | 2016-01-27 | 马鞍山金泉工业介质科技有限公司 | Method for making bearing steel blacken after quenching |
CN106893822A (en) * | 2015-12-18 | 2017-06-27 | 沈阳透平机械股份有限公司 | Centrifugal compressor 35CrMoV teeth set or the ionic nitriding Technology for Heating Processing of ring gear |
CN112746225A (en) * | 2020-12-30 | 2021-05-04 | 上海大学 | High-carbon corrosion-wear-resistant cast lining plate steel for semi-automatic ball mill and preparation method and application thereof |
CN113215578A (en) * | 2021-05-14 | 2021-08-06 | 马鞍山市恒精金属材料科技有限公司 | Surface treatment method for metal shock absorption rod for automobile |
-
2008
- 2008-03-31 JP JP2008092500A patent/JP2009242893A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105274288A (en) * | 2014-12-16 | 2016-01-27 | 马鞍山金泉工业介质科技有限公司 | Method for making bearing steel blacken after quenching |
CN105039654A (en) * | 2015-06-13 | 2015-11-11 | 秦皇岛首秦金属材料有限公司 | Thermal treatment production method for composite board |
CN105039654B (en) * | 2015-06-13 | 2017-03-01 | 秦皇岛首秦金属材料有限公司 | A kind of heat treatment production method of composite plate |
CN106893822A (en) * | 2015-12-18 | 2017-06-27 | 沈阳透平机械股份有限公司 | Centrifugal compressor 35CrMoV teeth set or the ionic nitriding Technology for Heating Processing of ring gear |
CN106893822B (en) * | 2015-12-18 | 2019-03-19 | 沈阳透平机械股份有限公司 | Centrifugal compressor is covered with 35CrMoV tooth or the ionic nitriding heat treatment process of ring gear |
CN112746225A (en) * | 2020-12-30 | 2021-05-04 | 上海大学 | High-carbon corrosion-wear-resistant cast lining plate steel for semi-automatic ball mill and preparation method and application thereof |
CN113215578A (en) * | 2021-05-14 | 2021-08-06 | 马鞍山市恒精金属材料科技有限公司 | Surface treatment method for metal shock absorption rod for automobile |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5126857B2 (en) | Manufacturing method of case-hardened steel pipe with excellent workability | |
US9816557B2 (en) | Tapered roller bearing | |
US8709173B2 (en) | Thrust bearing component | |
JP5168958B2 (en) | Rolling shaft | |
EP1215292B1 (en) | High-strength race and method of producing the same | |
JP2009242893A (en) | Holder for rolling bearing and its surface treatment method | |
JP5168898B2 (en) | Rolling shaft | |
JP2014122378A (en) | Rolling bearing | |
JP5998631B2 (en) | Rolling bearing | |
JP5598016B2 (en) | Manufacturing method of thrust trace of needle thrust bearing | |
JP5152832B2 (en) | Hardening method of high carbon chromium bearing steel, high carbon chromium bearing steel, bearing parts and rolling bearing | |
JP2008174822A (en) | Thrust bearing | |
JP2007182926A (en) | Manufacturing method for needle-like roll bearing raceway member, needle-like roll bearing raceway member, and needle-like roll bearing | |
JP2011190921A (en) | Thrust roller bearing | |
JP2009243616A (en) | Retainer for rolling bearing and its surface treatment method | |
JP2008082379A (en) | Method for manufacturing thrust bearing component part | |
JP2010209965A (en) | Cage for rolling bearing | |
JP2013194292A (en) | Bearing washer, thrust needle roller bearing, and methods of manufacturing them | |
JP2005337362A (en) | Full type roller bearing | |
JP2007182603A (en) | Method for manufacturing rolling member, rolling member and rolling bearing | |
JP2005314789A (en) | Rolling device | |
JP2009242894A (en) | Cage for rolling bearing | |
WO2014019670A1 (en) | Low temperature heat treatment for steel alloy | |
JP2009236227A (en) | Method of manufacturing for rolling bearing retainer | |
JP7323850B2 (en) | Steel and carburized steel parts |