[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009139395A - Wavelength conversion laser beam source - Google Patents

Wavelength conversion laser beam source Download PDF

Info

Publication number
JP2009139395A
JP2009139395A JP2007312229A JP2007312229A JP2009139395A JP 2009139395 A JP2009139395 A JP 2009139395A JP 2007312229 A JP2007312229 A JP 2007312229A JP 2007312229 A JP2007312229 A JP 2007312229A JP 2009139395 A JP2009139395 A JP 2009139395A
Authority
JP
Japan
Prior art keywords
wavelength conversion
laser light
light source
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007312229A
Other languages
Japanese (ja)
Inventor
Kiyohide Sakai
清秀 酒井
Naritaka Itakura
成孝 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007312229A priority Critical patent/JP2009139395A/en
Publication of JP2009139395A publication Critical patent/JP2009139395A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a wavelength conversion laser beam source which is formed by optically bonding a laser beam generating part including a tapered optical amplifier or a tapered laser element to a planar waveguide type wavelength conversion element by using a single lens, and is stable and easy in optical axis adjustment. <P>SOLUTION: The wavelength conversion laser beam source includes: the laser beam generating parts (1, 2, 3) generating a fundamental wave of a laser beam; the planar waveguide type wavelength conversion element (4) converting the fundamental wave into harmonics and having a periodically poled structure part (4a) in at least a part of a core; and the lens (5) which optically bonds the laser beam generating parts (1, 2, 3) to the wavelength conversion element (4) and whose first surface (5a) opposed to the laser beam generating part is a convex in a direction vertical to the planar waveguide surface with respect to the emitted laser beam and is a convex in a direction parallel thereto and whose second surface (5b) opposed to the wavelength conversion element is a convex in the direction vertical thereto and a concave in the direction parallel thereto. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、テーパ型レーザ素子またはテーパ型光増幅器から出力されるレーザ光を非線形光学結晶で波長変換する波長変換レーザ光源に関するものである。   The present invention relates to a wavelength-converted laser light source that converts the wavelength of laser light output from a tapered laser element or a tapered optical amplifier using a nonlinear optical crystal.

近年、例えばレーザプリンタ装置やレーザディスプレイ装置で大出力の可視光レーザが求められている。このようなレーザ光源の一種として、テーパ型レーザ素子またはテーパ型光増幅器から出力されるレーザ光を基本波とし、単一モード光導波路または多モード光導波路に周期分極反転構造を有する非線形光学結晶で、その基本波を半分の波長(2倍の周波数)をもつ第二高調波に波長変換する波長変換レーザ光源が知られている(例えば特許文献1参照)。   In recent years, there has been a demand for a high-power visible light laser, for example, in a laser printer device or a laser display device. As a kind of such laser light source, a nonlinear optical crystal having a fundamentally polarized laser beam output from a tapered laser element or a tapered optical amplifier and having a periodically poled structure in a single mode optical waveguide or a multimode optical waveguide. A wavelength-converted laser light source that converts the wavelength of the fundamental wave into a second harmonic having a half wavelength (double frequency) is known (see, for example, Patent Document 1).

米国特許第5321718号明細書US Pat. No. 5,321,718

上記特許文献1に開示された従来の波長変換レーザ光源は、非点格差の大きいテーパ型光増幅器と、単一モード導波路を有する波長変換素子とを、2枚のレンズ系を用いて光学結合しているので光学系の調整が複雑という課題と、単一モード導波路の断面積が小さいために大きな波長変換光を得られないという課題があった。   The conventional wavelength conversion laser light source disclosed in Patent Document 1 includes an optical coupling between a tapered optical amplifier having a large astigmatic difference and a wavelength conversion element having a single mode waveguide using two lens systems. Therefore, there are a problem that the adjustment of the optical system is complicated and a problem that a large wavelength converted light cannot be obtained because the cross-sectional area of the single mode waveguide is small.

また、上記特許文献1に開示された従来の波長変換レーザ光源は、非点格差の大きいテーパ型光増幅器と、多モード導波路を有する波長変換素子とを、2枚のレンズ系を用いて光学結合しているので光学系の調整が複雑という課題と、多モード導波路の断面積が広すぎるために大きな波長変換光は得られるものの、波長変換効率が低くなるという課題があった。   In addition, the conventional wavelength conversion laser light source disclosed in Patent Document 1 includes a tapered optical amplifier having a large astigmatic difference and a wavelength conversion element having a multimode waveguide using two lens systems. Since they are coupled, there is a problem that the adjustment of the optical system is complicated and a problem that the wavelength conversion efficiency is lowered although a large wavelength converted light can be obtained because the cross-sectional area of the multimode waveguide is too wide.

また、上記特許文献1に開示された従来の波長変換レーザ光源は、テーパ型光増幅器の非点格差の温度や電流依存性によって、単一モード導波路または多モード導波路との結合効率が変動してしまうという課題があった。   Further, the conventional wavelength conversion laser light source disclosed in Patent Document 1 varies in coupling efficiency with a single mode waveguide or a multimode waveguide depending on the temperature and current dependency of the astigmatic difference of the tapered optical amplifier. There was a problem of doing it.

この発明は、上述のような課題を解決するためになされたもので、簡単な構造で大出力、高効率、かつ安定した出力が得られる波長変換レーザ光源を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a wavelength conversion laser light source capable of obtaining a large output, high efficiency, and stable output with a simple structure.

この発明は、レーザ光の基本波を発生するレーザ光発生部と、前記基本波を高調波に変換する少なくともコアの一部に周期分極反転構造部を有するプレーナ導波路型の波長変換素子と、前記レーザ光発生部と波長変換素子とを光学結合する、前記レーザ光発生部に対向する第1面が出射するレーザ光に対してプレーナ導波路面に垂直な方向に凸面かつ平行な方向に凸面であり、かつ前記波長変換素子に対向する第2面が前記垂直な方向に凸面かつ前記平行な方向に凹面であるレンズと、を備えたことを特徴とする波長変換レーザ光源にある。   The present invention relates to a laser light generating unit that generates a fundamental wave of laser light, a planar waveguide type wavelength conversion element that has a periodically poled structure part at least in part of a core that converts the fundamental wave into a harmonic, and Convex surface in a direction perpendicular to the planar waveguide surface and parallel to the laser light emitted from the first surface facing the laser light generation portion, which optically couples the laser light generation portion and the wavelength conversion element And a lens whose second surface facing the wavelength conversion element is convex in the perpendicular direction and concave in the parallel direction.

この発明では、テーパ型レーザ素子又はテーパ型光増幅器を含む大出力の基本波を出力するレーザ光発生部と、その基本波を高調波に波長変換するプレーナ導波路型の波長変換素子とを、高い結合効率が得られる単レンズで光学結合したので、簡単に光軸調整が行える。   In the present invention, a laser beam generator that outputs a fundamental wave of high output including a taper type laser element or a taper type optical amplifier, and a planar waveguide type wavelength conversion element that converts the wavelength of the fundamental wave into a harmonic, The optical axis can be adjusted easily because it is optically coupled with a single lens that provides high coupling efficiency.

また、テーパ型レーザ素子またはテーパ型光増幅器の導波モードがプレーナ導波路型の波長変換素子の導波モードに、また、テーパ型レーザ素子またはテーパ型光増幅器のガウス伝搬モードがプレーナ導波路型の波長変換素子のガウス伝搬モードに光学結合するように配置したので、テーパ型レーザ素子またはテーパ型光増幅器の動作電流や温度変化による熱やキャリア密度に誘起された屈折率変動で出力側から見た水平方向のビームウエスト位置が変化しても、波長変換効率の変化を少なくできるという格別の効果がある。   Also, the waveguide mode of the tapered laser element or the tapered optical amplifier is the waveguide mode of the planar waveguide type wavelength conversion element, and the Gaussian propagation mode of the tapered laser element or the tapered optical amplifier is the planar waveguide type. Since this is arranged so as to be optically coupled to the Gaussian propagation mode of the wavelength conversion element, the refractive index variation induced by heat or carrier density due to the operating current or temperature change of the tapered laser element or tapered optical amplifier is viewed from the output side. Even if the horizontal beam waist position changes, there is a special effect that the change in wavelength conversion efficiency can be reduced.

実施の形態1.
この発明の実施の形態1による波長変換レーザ光源は、半導体レーザ素子と、ブラッグ回折格子を内蔵する光ファイバと、テーパ型光増幅器と、アナモルフィック光学系を構成するレンズと、プレーナ導波路型波長変換素子とから構成されている。
Embodiment 1 FIG.
The wavelength conversion laser light source according to the first embodiment of the present invention includes a semiconductor laser element, an optical fiber incorporating a Bragg diffraction grating, a tapered optical amplifier, a lens constituting an anamorphic optical system, and a planar waveguide type. And a wavelength conversion element.

図1はこの発明の実施の形態1による波長変換レーザ光源の透視平面図、図2は図1の波長変換レーザ光源を図のx軸方向から見た透視側面図、図3は図1のテーパ型レーザ増幅器3のx軸方向の中心に沿って切断した断面構造の一例を示す断面図、図4は図1のプレーナ導波路型の波長変換素子4の構造の一例を示す斜視図、そして図5は図1のプレーナ導波路型の波長変換素子4の導波路内のガウスビームの伝搬特性の一例を示す図である。この実施の形態による波長変換レーザ光源は図1に示すように、半導体レーザ素子を構成する例えば半導体レーザダイオード1、光ファイバ2、テーパ型光増幅器である例えばテーパ型レーザ増幅器3、プレーナ導波路型の波長変換素子4、レンズ5が順に配列されてなる。なお、半導体レーザダイオード1、光ファイバ2、テーパ型レーザ増幅器3がレーザ光発生部を構成する。また、z軸(図4のZ軸とは異なる)はレーザ光の出射方向、x軸とy軸はz軸と直交する平面内の互いに直交する軸で、y軸が各素子の主面に垂直な方向(又はプレーナ導波路型の波長変換素子4のプレーナ導波路面に垂直な方向)を示す。   1 is a perspective plan view of a wavelength conversion laser light source according to Embodiment 1 of the present invention, FIG. 2 is a perspective side view of the wavelength conversion laser light source of FIG. 1 viewed from the x-axis direction, and FIG. 3 is a taper of FIG. FIG. 4 is a perspective view showing an example of the structure of the planar waveguide type wavelength conversion element 4 of FIG. 1, and FIG. FIG. 5 is a diagram illustrating an example of propagation characteristics of a Gaussian beam in the waveguide of the planar waveguide type wavelength conversion element 4 of FIG. As shown in FIG. 1, the wavelength conversion laser light source according to this embodiment includes, for example, a semiconductor laser diode 1, an optical fiber 2, a taper type optical amplifier such as a taper type laser amplifier 3 and a planar waveguide type. The wavelength conversion element 4 and the lens 5 are arranged in order. The semiconductor laser diode 1, the optical fiber 2, and the taper type laser amplifier 3 constitute a laser light generator. Also, the z axis (different from the Z axis in FIG. 4) is the laser beam emission direction, the x axis and the y axis are orthogonal to each other in a plane orthogonal to the z axis, and the y axis is the main surface of each element. A perpendicular direction (or a direction perpendicular to the planar waveguide surface of the planar waveguide type wavelength conversion element 4) is shown.

次に、詳細な構成と動作について説明する。半導体レーザダイオード1は、光導波路1aを有するファブリペロー共振器型のレーザダイオードであり、波長1064nm帯に利得の最大値を有し、光の取り出し効率を上げるため背端面(z軸方向のレーザ光の出射方向の後方側の面)に反射率90%の高反射膜、前端面(z軸方向のレーザ光の出射方向の前方側の面:又は出射端面)に反射率0.5%の低反射膜が施されており、半導体レーザダイオード1単体では多縦モードで発振するものである。   Next, a detailed configuration and operation will be described. The semiconductor laser diode 1 is a Fabry-Perot resonator type laser diode having an optical waveguide 1a. The semiconductor laser diode 1 has a maximum gain in a wavelength of 1064 nm and has a back end surface (laser light in the z-axis direction) to increase light extraction efficiency. A high-reflection film having a reflectivity of 90% on the rear surface in the emission direction), and a low reflectivity of 0.5% on the front end surface (the front surface in the emission direction of the laser beam in the z-axis direction: or the output end surface). A reflective film is provided, and the semiconductor laser diode 1 alone oscillates in a multi-longitudinal mode.

また、半導体レーザダイオード1において、光導波路1aは厚み方向(図のy軸方向)には単一量子井戸活性層と光ガイド層とクラッド層とが構成され、単一横モードで発振する。一方、光導波路1aは面方向(x軸方向)には信頼性向上のために電流密度や光密度を比較的低く抑える必要があり、幅の広いリッジ型光導波路が採用されている。従って、光導波路としての閉じ込めが緩いため、注入電流値が小さいときには基本モード、つまり単一横モードで励振されるが、注入電流値が大きくなり光密度が高くなると空間的ホールバーニング効果により高次モードが励振され易いという特徴があり、使用する光出力まで基本モードが維持されるように4〜6μm程度の幅とされている。なお、偏波消光比はレーザ発振の電流閾値以上で略27dBである。   In the semiconductor laser diode 1, the optical waveguide 1a includes a single quantum well active layer, a light guide layer, and a cladding layer in the thickness direction (y-axis direction in the figure), and oscillates in a single transverse mode. On the other hand, the optical waveguide 1a needs to have a relatively low current density and light density in order to improve reliability in the plane direction (x-axis direction), and a wide ridge type optical waveguide is adopted. Therefore, since the confinement as an optical waveguide is loose, excitation is performed in the fundamental mode, that is, the single transverse mode when the injection current value is small, but higher order due to the spatial hole burning effect when the injection current value increases and the light density increases. The mode is easy to be excited, and the width is set to about 4 to 6 μm so that the fundamental mode is maintained until the light output to be used. The polarization extinction ratio is approximately 27 dB above the laser oscillation current threshold.

次に、モードフィールド径6.6μmの偏波面保存型の光ファイバ2を採用し、そのコア部2eに位相マスクを介して紫外線を照射することによりブラッグ回折格子2bを配設している。偏波面保存型の光ファイバ2は伝搬モードであるHE11偶数モードとHE11奇数モードの伝搬速度を変えることで両モードの結合を防いでいるため、直線偏波の光を偏波面保存型の光ファイバ2のスロー軸かファースト軸に一致させると直線偏波が維持される。一方、光導波路2aの等価屈折率がファースト軸とスロー軸で若干異なることからブラッグ回折格子2bの反射ピーク波長がファースト軸とスロー軸でずれるが、ここでは曲げ損失に強くなるように電界方向をスロー軸に合わせており、偏波消光比は光ファイバ2の固定時の応力で劣化するものの出射端で略23dBである。   Next, a polarization-preserving optical fiber 2 having a mode field diameter of 6.6 μm is employed, and the Bragg diffraction grating 2b is disposed by irradiating the core portion 2e with ultraviolet rays through a phase mask. Since the polarization-maintaining optical fiber 2 prevents the coupling of both modes by changing the propagation speeds of the HE11 even mode and the HE11 odd mode, which are propagation modes, linearly polarized light is converted into a polarization-maintaining optical fiber. If it is coincident with the slow axis or the fast axis of 2, the linearly polarized wave is maintained. On the other hand, since the equivalent refractive index of the optical waveguide 2a is slightly different between the first axis and the slow axis, the reflection peak wavelength of the Bragg diffraction grating 2b is shifted between the first axis and the slow axis, but here the electric field direction is set so as to be strong against bending loss. Although it is aligned with the slow axis, the polarization extinction ratio is about 23 dB at the output end although it deteriorates due to the stress when the optical fiber 2 is fixed.

半導体レーザダイオード1の出射ビームは光導波路1aが扁平であることからアスペクト比(ビームの楕円率)が大きく、円形の光導波路2aを備えたファイバ2と低損失で光学結合するために、偏波面保存型の光ファイバ2の入射端面(背端面)をバイコニカルレンズ加工されたバイコニカルレンズ加工面2cにしてアスペクト比を補正している。   The outgoing beam of the semiconductor laser diode 1 has a large aspect ratio (the ellipticity of the beam) since the optical waveguide 1a is flat, and is polarized in order to optically couple with the fiber 2 including the circular optical waveguide 2a with low loss. The aspect ratio is corrected by making the incident end face (back end face) of the storage-type optical fiber 2 into a biconical lens processed surface 2c processed by a biconical lens.

半導体レーザダイオード1の利得帯は単一量子井戸構造であるため波長依存性が比較的に緩やかであり、この利得帯の中にブラッグ回折格子2bの反射ピーク波長を設定すれば反射ピーク波長付近の利得が最大になり、半導体レーザダイオード1の発振波長が制御される。この複合共振器による縦モードは、半導体レーザダイオード1とブラッグ回折格子2bとの光学長による位相関係と、ブラッグ回折格子2bから半導体レーザダイオード1ヘの戻り光量との関係から、単一モード、多モード、コヒーレントコラプスモードなど多彩な状態で発振できる。   Since the gain band of the semiconductor laser diode 1 has a single quantum well structure, the wavelength dependence is relatively gentle. If the reflection peak wavelength of the Bragg diffraction grating 2b is set in this gain band, the gain band is near the reflection peak wavelength. The gain is maximized and the oscillation wavelength of the semiconductor laser diode 1 is controlled. The longitudinal mode by this composite resonator is a single mode, multiple mode based on the relationship between the phase relationship due to the optical length of the semiconductor laser diode 1 and the Bragg diffraction grating 2b and the amount of light returning from the Bragg diffraction grating 2b to the semiconductor laser diode 1. It can oscillate in various states such as mode and coherent collapse mode.

ここでは、コヒーレントコラプスモードで発振するように、半導体レーザダイオード1の背端面反射率と前端面反射率を夫々90%と0.5%、共振器長を1.8mm、ブラッグ回折格子2bの反射率を5%、反射帯域幅を0.5nm、結合効率を80%として、特にブラッグ回折格子2bと半導体レーザダイオード素子1との間隔を50cm以上に離して配置することでコヒーレントコラプスモードを安定化させ、スペクトラム半値幅0.25nmを得ている。なお、ブラッグ回折格子2bの反射率を30%とし、半導体レーザダイオード1に近接して配置すれば、単一縦モードで発振させることも可能である。   Here, the back end face reflectance and the front end face reflectance of the semiconductor laser diode 1 are 90% and 0.5%, the resonator length is 1.8 mm, and the Bragg diffraction grating 2b is reflected so as to oscillate in a coherent collapse mode. The coherent collapse mode is stabilized by arranging the Bragg diffraction grating 2b and the semiconductor laser diode element 1 at a distance of 50 cm or more with a rate of 5%, a reflection bandwidth of 0.5 nm, and a coupling efficiency of 80%. Thus, a spectrum half width of 0.25 nm is obtained. If the Bragg diffraction grating 2b has a reflectance of 30% and is disposed close to the semiconductor laser diode 1, it is possible to oscillate in a single longitudinal mode.

次に、テーパ型レーザ増幅器3は、図3に示すとおり、プレーナ状の単一量子井戸活性層3aを含む活性層を有し、プロトン注入で高抵抗化した電流狭窄構造3bでテーパ型の利得領域3c(図1の3cの半分を示す)を形成している。テーパ状の利得領域3cの入射側の幅は10μm、出射側の幅は324μm、広がり半角は3度とし、チップ長さは3mm、屈折率は約3.5である。また、フィラメント現象を防止するため、チップの両端面に反射率0.01%以下の反射防止膜(図示省略)を施している。なお、偏波面保存型の光ファイバ2のコア部2eはz軸に垂直な方向の断面が円形であるため、出射端面をバイコニカルレンズ加工したバイコニカルレンズ加工面2dにして、厚み方向(y軸方向)には単一量子井戸活性層3a、光ガイド層3d、クラッド層3eから構成される光導波路の導波モードのスポット径0.6μmとモード整合させ、面方向(x軸方向)にはスポット径略1.65μmで入射させてガウスビームモードでテーパ型レーザ増幅器3の活性層内を伝搬させ、光増幅するようにした。   Next, as shown in FIG. 3, the taper type laser amplifier 3 has an active layer including a planar single quantum well active layer 3a, and has a taper type gain with a current confinement structure 3b whose resistance is increased by proton injection. Region 3c (showing half of 3c in FIG. 1) is formed. The tapered gain region 3c has an incident side width of 10 μm, an output side width of 324 μm, a spread half angle of 3 degrees, a chip length of 3 mm, and a refractive index of about 3.5. Further, in order to prevent the filament phenomenon, an antireflection film (not shown) having a reflectance of 0.01% or less is applied to both end faces of the chip. Since the core 2e of the polarization plane preserving optical fiber 2 has a circular cross section in the direction perpendicular to the z-axis, the exit end face is formed as a biconical lens processed surface 2d, and the thickness direction (y (Axis direction) is mode-matched with the waveguide mode spot diameter of 0.6 μm of the optical waveguide composed of the single quantum well active layer 3a, the light guide layer 3d, and the cladding layer 3e, and in the plane direction (x-axis direction) Was incident at a spot diameter of about 1.65 μm, propagated in the active layer of the tapered laser amplifier 3 in a Gaussian beam mode, and optically amplified.

なお、バイコニカルレンズ2dの垂直方向(図のy軸方向)と水平方向(図のx軸方向)の具体的な曲率半径は夫々4μmと11μmとした。従って、テーパ型レーザ増幅器3の出射ビームは、垂直方向には光導波路の出口から回折して広がり、水平方向は光ファイバ2の出口から回折して広がっているので、略0.9mmの非点格差と略3のアスペクトを持っている。サンプルの光出力は、室温、電流9Aにおいて5.5W、ビーム品質1.5程度であった。また、全光出力の中の回折限界光の比率は約85%であった。ところで、テーパ型レーザ増幅器3は動作電流や素子温度が変化すると、発熱やキャリア密度に誘起された屈折率変化により、出力側から見た水平方向の発光点位置が見かけ上変化する大きな欠点がある。なお、この現象は、素子を固定するヒートシンクやサブマウントの熱伝導を上げれば多少は改善する。   The specific curvature radii of the biconical lens 2d in the vertical direction (y-axis direction in the figure) and in the horizontal direction (x-axis direction in the figure) were 4 μm and 11 μm, respectively. Accordingly, the outgoing beam of the taper type laser amplifier 3 is diffracted and spreads from the exit of the optical waveguide in the vertical direction, and diffracted and spreads from the exit of the optical fiber 2 in the horizontal direction. It has a disparity and almost three aspects. The light output of the sample was 5.5 W at room temperature and a current of 9 A, and the beam quality was about 1.5. The ratio of diffraction limited light in the total light output was about 85%. By the way, the taper type laser amplifier 3 has a great drawback that when the operating current and the element temperature are changed, the position of the light emitting point in the horizontal direction seen from the output side is apparently changed due to the refractive index change induced by heat generation or carrier density. . This phenomenon is somewhat improved if the heat conduction of the heat sink or submount for fixing the element is increased.

次に図4に示すように、波長変換素子4は、オフ角θが5度のYカットまたはXカットの酸化マグネシウムを5mol%添加したニオブ酸リチウム(LiNbO3)基板4cに、櫛形の電極と対向電極を取り付け、高電界をかける手法で幅W150μmの周期分極反転構造部4aを形成し、研磨によって厚さtを3μmにしたコアと、その両側に二酸化珪素を蒸着したクラッド(薄いため図示省略)とで光導波路4bを作り、ニオブ酸リチウム基板4cに貼り付けたものである。それを長さL(例えば7mm)に切断し、端面を光学研磨した後に基本波と第2高調波の波長に対して通過帯のある二酸化珪素と五酸化二タンタル、または二酸化珪素と二酸化チタンの多層膜からなる反射防止膜を施したものである。周期分極反転構造部4aの断面は平行四辺形状であり、厚み方向全体が反転している幅Wは116μmである。 Next, as shown in FIG. 4, the wavelength conversion element 4 includes a comb-shaped electrode and a lithium niobate (LiNbO 3 ) substrate 4c to which 5 mol% of Y-cut or X-cut magnesium oxide having an off angle θ of 5 degrees is added. A periodically poled structure 4a having a width W of 150 μm is formed by attaching a counter electrode and applying a high electric field, a core having a thickness t of 3 μm by polishing, and a clad in which silicon dioxide is vapor-deposited on both sides (not shown because it is thin) ) And the optical waveguide 4b is made and attached to the lithium niobate substrate 4c. After cutting it into length L (for example, 7 mm) and optically polishing the end face, silicon dioxide and tantalum pentoxide, or silicon dioxide and titanium dioxide having passbands for the fundamental and second harmonic wavelengths. An antireflection film made of a multilayer film is applied. The cross section of the periodically poled structure portion 4a is a parallelogram, and the width W where the entire thickness direction is inverted is 116 μm.

図5はこの周期分極反転構造部4aの基本波と第2高調波のビーム伝搬特性を示す図であり(ビームウエスト位置を原点として図示した)、破線は長さ7mm、幅116μmの周期分極反転構造部4a、実線は波長変換素子4の中央にビームウエストをスポット径44μmで一致させたガウスビームの基本波を電界強度1/eで示したもの、一点鎖線はボイド・クラインマンの計算式に従って波長変換した第2高調波を電界強度1/eで示したものである。図5から分かるように、ほぼコリメートしたガウスビームを通過させることで、基本波、第2高調波ともに幅116μmの範囲を通過していることが分かる。なお、この高屈折率差導波路は本質的には多モード導波路なので基本導波モードと入射光のガウスビームをよく一致させて高次モードの発生を防ぐ必要がある。そのためには導波路に入射するガウスビームのスポット径は略1.1μmが最適値となる。   FIG. 5 is a diagram showing the beam propagation characteristics of the fundamental wave and the second harmonic of the periodic polarization reversal structure 4a (illustrated with the beam waist position as the origin), and the broken line is a periodic polarization reversal of length 7 mm and width 116 μm. The structure portion 4a, the solid line shows the fundamental wave of the Gaussian beam in which the beam waist coincides with the center of the wavelength conversion element 4 with a spot diameter of 44 μm by the electric field intensity 1 / e, and the alternate long and short dash line follows the calculation formula of Boyd Kleinman The wavelength-converted second harmonic is indicated by the electric field intensity 1 / e. As can be seen from FIG. 5, it is understood that both the fundamental wave and the second harmonic wave pass through a range of 116 μm by passing a substantially collimated Gaussian beam. Since this high refractive index difference waveguide is essentially a multimode waveguide, it is necessary to make the fundamental waveguide mode and the Gaussian beam of the incident light coincide well to prevent the generation of higher order modes. For this purpose, the optimum spot diameter of the Gaussian beam incident on the waveguide is approximately 1.1 μm.

テーパ型レーザ増幅器3の欠点である熱レンズ効果やキャリアレンズ効果の影響で、波長変換素子4の光導波路4bとの結合効率や波長変換効率が変化しないようにするには、テーパ型レーザ増幅器3の導波モードと波長変換素子4の導波モードとを結合させ、テーパ型レーザ増幅器3のガウス伝搬モードは波長変換素子4のガウス伝搬モードと結合するようにすれば良い。つまり、テーパ型レーザ増幅器3の出力側から見た発光点の位置が熱やキャリア密度に誘起された屈折率変化で変動しても、テーパ型レーザ増幅器3の垂直方向の導波路モードは変化しないので波長変換素子4との結合効率は安定であり、一方、テーパ型レーザ増幅器3の水平方向に非点格差が変化して見えるものの、波長変換素子4の導波路内もガウス伝搬モードであるためビームウエスト位置が大幅に変化するが、略コリメート光線になっているおかげで光密度の変化は小さくなり、波長変換効率の変化も小さい。また、テーパ型レーザ増幅器3の導波モードは安定であり、波長変換素子4の導波モードと安定に光学結合できる。   In order to prevent the coupling efficiency and wavelength conversion efficiency of the wavelength conversion element 4 with the optical waveguide 4b from being affected by the thermal lens effect and the carrier lens effect, which are disadvantages of the taper type laser amplifier 3, the taper type laser amplifier 3 is used. These waveguide modes and the waveguide mode of the wavelength conversion element 4 may be coupled so that the Gaussian propagation mode of the tapered laser amplifier 3 is coupled to the Gaussian propagation mode of the wavelength conversion element 4. That is, even if the position of the light emitting point viewed from the output side of the taper type laser amplifier 3 fluctuates due to a change in refractive index induced by heat or carrier density, the waveguide mode in the vertical direction of the taper type laser amplifier 3 does not change. Therefore, the coupling efficiency with the wavelength conversion element 4 is stable. On the other hand, although the astigmatic difference appears to change in the horizontal direction of the tapered laser amplifier 3, the waveguide of the wavelength conversion element 4 is also in the Gaussian propagation mode. Although the beam waist position changes significantly, the change in light density is small and the change in wavelength conversion efficiency is small due to the substantially collimated light beam. Further, the waveguide mode of the tapered laser amplifier 3 is stable, and can be stably optically coupled with the waveguide mode of the wavelength conversion element 4.

次に、本発明の特徴となるレンズ5について詳しく説明する。レンズ5のテーパ型レーザ増幅器3に対向するレンズ第1面5aは、出射するレーザ光に対してプレーナ導波路面に垂直な方向(y軸方向)に凸面かつ平行な方向(x軸方向)に凸面であり、また、波長変換素子4に対向するレンズ第2面5bは、前記垂直な方向に凸面かつ前記平行な方向に凹面である。テーパ型レーザ増幅器3の水平方向にはスポット径1.65μmの光線6が物点6aから出射するので、レンズ5のレンズ第1面5aを凸面にして低い光線位置で屈折させて収束光とし、レンズ第2面5bを凹面にして光線6を略コリメート光線6bにして、かつビームウエスト位置を波長変換素子4の中央にした時に波長変換効率が最大となる。また、レンズ収差による波面収差が付加されると波長変換効率が低下するので、両面ともに非球面形状として波面収差を小さくすることが望ましく、また、レンズ面間隔を比較的大きくして緩やかに光束を収束させて収差発生を抑えている。次に、テーパ型レーザ増幅器3の光導波路の出口を物点6cから垂直方向にスポット径0.6μmの光が出射し、レンズ第1面5aとレンズ第2面5bで屈折力を分散し、収差発生を抑えて収束させ、波長変換素子4の光導波路の入口を像点6dとしてスポット径1.1μmで結合させれば、波長変換素子4の垂直方向には基本モードが励振される。なお、回折理論より大きなレンズ開口が要求されるので、球面収差を小さくするには、両面ともに非球面形状が望ましい。   Next, the lens 5 that is a feature of the present invention will be described in detail. The lens first surface 5a of the lens 5 facing the tapered laser amplifier 3 is convex in the direction perpendicular to the planar waveguide surface (y-axis direction) and parallel to the direction of the emitted laser light (y-axis direction). The second lens surface 5b that is convex and faces the wavelength conversion element 4 is convex in the perpendicular direction and concave in the parallel direction. Since the light beam 6 having a spot diameter of 1.65 μm is emitted from the object point 6a in the horizontal direction of the tapered laser amplifier 3, the lens first surface 5a of the lens 5 is made convex to be refracted at a low light beam position to be converged light, The wavelength conversion efficiency is maximized when the lens second surface 5b is concave, the light beam 6 is substantially collimated light beam 6b, and the beam waist position is at the center of the wavelength conversion element 4. In addition, if wavefront aberration due to lens aberration is added, the wavelength conversion efficiency decreases. Therefore, it is desirable to reduce the wavefront aberration by making the both surfaces aspherical, and the distance between the lens surfaces is relatively large so that the light flux is gently Convergence suppresses the occurrence of aberrations. Next, light having a spot diameter of 0.6 μm is emitted in the vertical direction from the object point 6c to the exit of the optical waveguide of the tapered laser amplifier 3, and the refractive power is dispersed by the lens first surface 5a and the lens second surface 5b. If the aberration is suppressed and converged, and the entrance of the optical waveguide of the wavelength conversion element 4 is coupled as the image point 6d with a spot diameter of 1.1 μm, the fundamental mode is excited in the vertical direction of the wavelength conversion element 4. Since a lens aperture larger than that of diffraction theory is required, an aspheric shape is desirable on both surfaces in order to reduce spherical aberration.

また、本発明による波長変換レーザ光源は、テーパ型レーザ増幅器3と波長変換素子4との光結合を、単一のレンズ5で実施しているので、構造が簡単であり、また、光軸調整が簡単になる。さらに、テーパ型レーザ増幅器3の水平方向の発光点が熱レンズ効果などで変動しても、結合効率や波長変換効率があまり変化しないという効果もある。   The wavelength conversion laser light source according to the present invention has a simple structure because the optical coupling between the tapered laser amplifier 3 and the wavelength conversion element 4 is performed by a single lens 5, and the optical axis is adjusted. Will be easier. Furthermore, even if the horizontal light emitting point of the taper type laser amplifier 3 fluctuates due to the thermal lens effect or the like, there is an effect that the coupling efficiency and the wavelength conversion efficiency do not change so much.

実施の形態2.
図6はこの発明の実施の形態2による波長変換レーザ光源の透視平面図、図7は図6の波長変換レーザ光源を図のx軸方向から見た透視側面図である。図中、上記実施の形態と同一もしくは相当部分は同一符号で示す。この実施の形態2による波長変換レーザ光源は、素子の前端面3f(出射端面)に低反射膜を蒸着したテーパ型レーザ増幅器3と、反射率略99.7%、かつ反射スペクトラム幅0.2nmのブラッグ回折格子2bがコア部2eに加工形成された光ファイバ2とを備えたものであり、テーパ型レーザ増幅器3と光ファイバ2のブラッグ回折格子2bとで不安定共振型のレーザ共振器を構成しレーザ発振する。発振波長はブラッグ回折格子2bで決定されるので、温度など外部環境が変化しても発振波長が安定しており、波長変換素子4による波長変換レーザ光源の基本波光源として優れた効果を発揮する。なお、複合共振器を構成してレーザ動作が不安定化しないように、光ファイバ2の背端面2fは斜めに加工され、光ファイバ2の前端面の上記実施の形態と同様にバイコニカルレンズ加工された先端レンズ2gとテーパ型レーザ増幅器3の背端面3gには反射防止膜が蒸着されている。なお、光ファイバ2、テーパ型レーザ増幅器3がレーザ光発生部を構成する。
Embodiment 2. FIG.
6 is a perspective plan view of a wavelength conversion laser light source according to Embodiment 2 of the present invention, and FIG. 7 is a perspective side view of the wavelength conversion laser light source of FIG. In the figure, the same or corresponding parts as those in the above embodiment are indicated by the same reference numerals. The wavelength conversion laser light source according to the second embodiment includes a tapered laser amplifier 3 having a low reflection film deposited on the front end face 3f (outgoing end face) of the element, a reflectivity of approximately 99.7%, and a reflection spectrum width of 0.2 nm. The Bragg diffraction grating 2b is provided with the optical fiber 2 processed and formed in the core portion 2e. The taper type laser amplifier 3 and the Bragg diffraction grating 2b of the optical fiber 2 form an unstable resonance type laser resonator. Configure and oscillate. Since the oscillation wavelength is determined by the Bragg diffraction grating 2b, the oscillation wavelength is stable even when the external environment such as temperature changes, and it exhibits an excellent effect as a fundamental wave light source of the wavelength conversion laser light source by the wavelength conversion element 4. . The back end face 2f of the optical fiber 2 is processed obliquely so that the laser operation is not destabilized by constituting the composite resonator, and the biconical lens processing is performed on the front end face of the optical fiber 2 as in the above embodiment. An antireflection film is deposited on the tip lens 2 g and the back end surface 3 g of the tapered laser amplifier 3. The optical fiber 2 and the taper type laser amplifier 3 constitute a laser light generator.

以上のように構成することにより、例えば、実施の形態1で必要だった半導体レーザダイオードが不要となり、構造が簡単になり、かつコストを下げることができる。   By configuring as described above, for example, the semiconductor laser diode required in the first embodiment is not required, the structure is simplified, and the cost can be reduced.

実施の形態3.
図8はこの発明の実施の形態3による波長変換レーザ光源の透視平面図、図9は図8の波長変換レーザ光源を図のx軸方向から見た透視側面図である。図中、上記実施の形態と同一もしくは相当部分は同一符号で示す。この実施の形態3による波長変換レーザ光源は、ブラッグ回折格子3hをテーパ型レーザ増幅器の素子内部に集積化したテーパ型レーザ素子30をレーザ光発生部として設けたものであり、大出力のDBR(Distributed Bragg Reflector)レーザダイオードとして動作するものである。構造が簡単化される利点がある。発振波長が動作電流や温度で変化しやすいのでペルチェ素子などの上に実装して温度制御するなどの工夫を行ってもよい。
Embodiment 3 FIG.
8 is a see-through plan view of a wavelength conversion laser light source according to Embodiment 3 of the present invention, and FIG. 9 is a see-through side view of the wavelength conversion laser light source shown in FIG. In the figure, the same or corresponding parts as those in the above embodiment are indicated by the same reference numerals. The wavelength-converted laser light source according to the third embodiment is provided with a tapered laser element 30 in which a Bragg diffraction grating 3h is integrated in an element of a tapered laser amplifier as a laser light generating unit. It operates as a Distributed Bragg Reflector) laser diode. There is an advantage that the structure is simplified. Since the oscillation wavelength is likely to change depending on the operating current and temperature, it may be devised such as mounting on a Peltier element and controlling the temperature.

以上のように構成することにより、構造が簡単なものが得られる。   By configuring as described above, a simple structure can be obtained.

なお、チャンネル導波路部分に別のブラッグ回折格子を備え、テーパ型レーザ増幅器3の前端面を反射防止膜としたモノリシック集積型のマスタオシレータパワーアンプの構造でもよく(例えば分布ブラッグ反射レーザ素子(図示省略)をモノリシック集積したテーパ型レーザ増幅器3をレーザ光発生部として設ける)、同様の効果を奏する。   Note that a monolithic integrated master oscillator power amplifier structure in which another Bragg diffraction grating is provided in the channel waveguide portion and the front end surface of the tapered laser amplifier 3 is an antireflection film (for example, a distributed Bragg reflection laser element (illustrated) A taper type laser amplifier 3 monolithically integrated as a laser beam generator is provided), and the same effect is obtained.

実施の形態4.
図10はこの発明の実施の形態4による波長変換レーザ光源の透視平面図、図11は図10の波長変換レーザ光源を図のx軸方向から見た透視側面図である。図中、上記実施の形態と同一もしくは相当部分は同一符号で示す。この実施の形態4による波長変換レーザ光源は、ボリューム型のブラッグ回折格子素子7を、前端面3fに低反射膜を有するテーパ型レーザ増幅器3の背端面3gに近接して配置したものであり、大出力のDBR(Distributed Bragg Reflector)レーザダイオードとして動作するものである(テーパ型レーザ増幅器3とブラッグ回折格子素子7とで不安定共振型のレーザ発振器を構成する)。ボリューム型のブラッグ回折格子素子7なので、軸ずれしても特性の変化が少なく、また、発振波長が動作電流や温度で変化にくい利点がある。但し、テーパ型レーザ増幅器3の背端面3gとブラッグ回折格子素子7との間隔が変化しないように、ペルチェ素子などの上に実装して温度制御するなどの工夫を行ってもよい。なお、ブラッグ回折格子素子7、テーパ型レーザ増幅器3がレーザ光発生部を構成する。
Embodiment 4 FIG.
10 is a see-through plan view of a wavelength conversion laser light source according to Embodiment 4 of the present invention, and FIG. 11 is a see-through side view of the wavelength conversion laser light source shown in FIG. In the figure, the same or corresponding parts as those in the above embodiment are indicated by the same reference numerals. In the wavelength conversion laser light source according to the fourth embodiment, a volume type Bragg diffraction grating element 7 is disposed close to the back end surface 3g of the tapered laser amplifier 3 having a low reflection film on the front end surface 3f. It operates as a high output DBR (Distributed Bragg Reflector) laser diode (the taper type laser amplifier 3 and the Bragg diffraction grating element 7 constitute an unstable resonance type laser oscillator). Since it is a volume type Bragg diffraction grating element 7, there is an advantage that the change in characteristics is small even when the axis is shifted, and the oscillation wavelength is hardly changed by the operating current and temperature. However, it may be devised such that the temperature is controlled by mounting on a Peltier element or the like so that the distance between the back end face 3g of the tapered laser amplifier 3 and the Bragg diffraction grating element 7 does not change. The Bragg diffraction grating element 7 and the taper type laser amplifier 3 constitute a laser beam generation unit.

以上のように構成することにより、構造が簡単なものが得られる。   By configuring as described above, a simple structure can be obtained.

実施の形態5.
図12はこの発明の実施の形態5による波長変換レーザ光源のレンズの透視平面図、図13は図12のレンズを図のx軸方向から見た透視側面図である。図中、上記実施の形態と同一もしくは相当部分は同一符号で示す。上記各実施の形態で使用され得るこの実施の形態5の波長変換レーザ光源のためのレンズ5では、レンズ5の角が急峻にならないように(全体として低曲率とする)、光学的に必要のない不要部分5cを用いて、例えばレーザ光の出射方向(z軸)と平行な面と垂直な面がなだらかな曲面又はテーパ面で繋がる形状とした。すなわち一般的に、不要部分である角部では、なだらかな曲面又はテーパ面にして角部を無くした。すなわち、レンズ5の光学的未使用面が使用面間を滑らかに接続する形状を有するようにした。これによりレンズ5の強度が向上する。
Embodiment 5 FIG.
12 is a perspective plan view of a lens of a wavelength conversion laser light source according to Embodiment 5 of the present invention, and FIG. 13 is a perspective side view of the lens of FIG. 12 as viewed from the x-axis direction of the figure. In the figure, the same or corresponding parts as those in the above embodiment are indicated by the same reference numerals. In the lens 5 for the wavelength conversion laser light source of the fifth embodiment that can be used in each of the above-described embodiments, the lens 5 is optically necessary so that the angle of the lens 5 does not become steep (the whole has a low curvature). The unnecessary portion 5c is used, for example, to have a shape in which a surface parallel to a laser beam emission direction (z-axis) and a surface perpendicular to each other are connected by a gentle curved surface or a tapered surface. That is, generally, corners that are unnecessary portions are made gently curved or tapered to eliminate the corners. That is, the optically unused surface of the lens 5 has a shape that smoothly connects the used surfaces. Thereby, the strength of the lens 5 is improved.

実施の形態6.
図14はこの発明の実施の形態6による波長変換レーザ光源のレンズの透視平面図、図15は図14のレンズを図のx軸方向から見た透視側面図である。図中、上記実施の形態と同一もしくは相当部分は同一符号で示す。上記各実施の形態で使用され得るこの実施の形態6の波長変換レーザ光源のためのレンズ5では、光学的に必要のない不要部分5cを単純な形状にする。すなわち、光学的未使用面が使用面間を複数の平面で接続する形状を有する。これにより非球面モールド型の加工面積を減らすことができる。
Embodiment 6 FIG.
14 is a perspective plan view of a lens of a wavelength conversion laser light source according to Embodiment 6 of the present invention, and FIG. 15 is a perspective side view of the lens of FIG. 14 viewed from the x-axis direction of the figure. In the figure, the same or corresponding parts as those in the above embodiment are indicated by the same reference numerals. In the lens 5 for the wavelength conversion laser light source according to the sixth embodiment that can be used in each of the above-described embodiments, the unnecessary portion 5c that is not optically required is formed into a simple shape. That is, the optically unused surface has a shape that connects the used surfaces with a plurality of planes. As a result, the processing area of the aspheric mold can be reduced.

なお、各実施の形態において、レンズ5は少なくとも1面が軸対象でない非球面で構成されるように形成され得る。またレンズ5は、アナモルフック系の光学系を構成するように形成され得る。またレンズ5は、垂直方向に有限系、水平方向に無限系の配置になるように形成され得る。   In each embodiment, the lens 5 can be formed such that at least one surface is formed of an aspherical surface that is not an axis object. The lens 5 can be formed to constitute an anamorphic optical system. Further, the lens 5 can be formed so as to have a finite system in the vertical direction and an infinite system in the horizontal direction.

この発明の実施の形態1による波長変換レーザ光源の透視平面図である。1 is a perspective plan view of a wavelength conversion laser light source according to Embodiment 1 of the present invention. FIG. 図1の波長変換レーザ光源を図のx軸方向から見た透視側面図である。It is the see-through | perspective side view which looked at the wavelength conversion laser light source of FIG. 1 from the x-axis direction of the figure. 図1のテーパ型レーザ増幅器のx軸方向の中心に沿って切断した断面構造の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a cross-sectional structure cut along the center in the x-axis direction of the tapered laser amplifier of FIG. 1. 図1のプレーナ導波路型の波長変換素子の構造の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the planar waveguide type wavelength conversion element of FIG. 図1のプレーナ導波路型の波長変換素子の導波路内のガウスビームの伝搬特性の一例を示す図である。It is a figure which shows an example of the propagation characteristic of the Gaussian beam in the waveguide of the planar waveguide type wavelength conversion element of FIG. この発明の実施の形態2による波長変換レーザ光源の透視平面図である。It is a perspective top view of the wavelength conversion laser light source by Embodiment 2 of this invention. 図6の波長変換レーザ光源を図のx軸方向から見た透視側面図である。It is the see-through | perspective side view which looked at the wavelength conversion laser light source of FIG. 6 from the x-axis direction of the figure. この発明の実施の形態3による波長変換レーザ光源の透視平面図である。It is a see-through | perspective plan view of the wavelength conversion laser light source by Embodiment 3 of this invention. 図8の波長変換レーザ光源を図のx軸方向から見た透視側面図である。It is the see-through | perspective side view which looked at the wavelength conversion laser light source of FIG. 8 from the x-axis direction of the figure. この発明の実施の形態4による波長変換レーザ光源の透視平面図である。It is a perspective top view of the wavelength conversion laser light source by Embodiment 4 of this invention. 図10の波長変換レーザ光源を図のx軸方向から見た透視側面図である。It is the see-through | perspective side view which looked at the wavelength conversion laser light source of FIG. 10 from the x-axis direction of the figure. この発明の実施の形態5による波長変換レーザ光源のレンズの透視平面図である。It is a perspective top view of the lens of the wavelength conversion laser light source by Embodiment 5 of this invention. 図12のレンズを図のx軸方向から見た透視側面図である。It is the see-through | perspective side view which looked at the lens of FIG. 12 from the x-axis direction of the figure. この発明の実施の形態6による波長変換レーザ光源のレンズの透視平面図である。It is a perspective top view of the lens of the wavelength conversion laser light source by Embodiment 6 of this invention. 図14のレンズを図のx軸方向から見た透視側面図である。It is the see-through | perspective side view which looked at the lens of FIG. 14 from the x-axis direction of the figure.

符号の説明Explanation of symbols

1 半導体レーザダイオード(半導体レーザ素子)、1a 光導波路、2 光ファイバ(偏波面保存型の光ファイバ)、2a 光導波路、2b ブラッグ回折格子、2c バイコニカルレンズ加工面、2d バイコニカルレンズ加工面、2e コア部、2f 背端面、2g 先端レンズ、3 テーパ型レーザ増幅器(テーパ型光増幅器)、3a 単一量子井戸活性層(活性層)、3b 電流狭窄構造、3c 利得領域、3d 光ガイド層、3e クラッド層、3f 前端面、3g 背端面、3h ブラッグ回折格子、4 波長変換素子(プレーナ導波路型の波長変換素子)、4a 周期分極反転構造部、4b 光導波路、4c ニオブ酸リチウム基板、5 レンズ、5a レンズ第1面、5b レンズ第2面、5c 不要部分、6 光線、6a 物点、6b コリメート光線、6c 物点、6d 像点、7 ブラッグ回折格子素子、30 テーパ型レーザ素子。   DESCRIPTION OF SYMBOLS 1 Semiconductor laser diode (semiconductor laser element), 1a Optical waveguide, 2 Optical fiber (Polarization plane preservation type optical fiber), 2a Optical waveguide, 2b Bragg diffraction grating, 2c Biconical lens processing surface, 2d Biconical lens processing surface, 2e core portion, 2f back end surface, 2g tip lens, 3 taper type laser amplifier (tapered optical amplifier), 3a single quantum well active layer (active layer), 3b current confinement structure, 3c gain region, 3d light guide layer, 3e cladding layer, 3f front end face, 3g back end face, 3h Bragg diffraction grating, 4 wavelength conversion element (planar waveguide type wavelength conversion element), 4a periodic polarization inversion structure, 4b optical waveguide, 4c lithium niobate substrate, 5 Lens, 5a Lens 1st surface, 5b Lens 2nd surface, 5c Unnecessary part, 6 rays, 6a Object point, 6b Collimated rays, 6 c Object point, 6d image point, 7 Bragg grating element, 30 taper type laser element.

Claims (12)

レーザ光の基本波を発生するレーザ光発生部と、
前記基本波を高調波に変換する少なくともコアの一部に周期分極反転構造部を有するプレーナ導波路型の波長変換素子と、
前記レーザ光発生部と波長変換素子とを光学結合する、前記レーザ光発生部に対向する第1面が出射するレーザ光に対してプレーナ導波路面に垂直な方向に凸面かつ平行な方向に凸面であり、かつ前記波長変換素子に対向する第2面が前記垂直な方向に凸面かつ前記平行な方向に凹面であるレンズと、
を備えたことを特徴とする波長変換レーザ光源。
A laser beam generator for generating a fundamental wave of the laser beam;
A planar waveguide type wavelength conversion element having a periodically poled structure part in at least a part of the core for converting the fundamental wave into a harmonic; and
Convex surface in a direction perpendicular to the planar waveguide surface and parallel to the laser light emitted from the first surface facing the laser light generation portion, which optically couples the laser light generation portion and the wavelength conversion element And a second surface facing the wavelength conversion element is convex in the perpendicular direction and concave in the parallel direction;
A wavelength conversion laser light source characterized by comprising:
レーザ光発生部が、レーザ光の出射側の前端面に反射防止膜を有した半導体レーザ素子と、ブラッグ回折格子をコア部に有する光ファイバと、両端面に反射防止膜を有するテーパ型光増幅器が、レーザ光の出射方向に順番に配置されてなることを特徴とする請求項1に記載の波長変換レーザ光源。   A laser beam generator having a semiconductor laser element having an antireflection film on the front end surface on the laser beam emission side, an optical fiber having a Bragg diffraction grating in the core, and a taper type optical amplifier having antireflection films on both end surfaces The wavelength conversion laser light source according to claim 1, wherein the wavelength conversion laser light sources are arranged in order in a laser beam emission direction. レーザ光発生部が、高反射率のブラッグ回折格子をコア部に有する光ファイバと、レーザ光の出射側の前端面に低反射膜を有するテーパ型光増幅器がレーザ光の出射方向に順番に配置されてなり、前記テーパ型光増幅器と前記光ファイバのブラッグ回折格子とで不安定共振型のレーザ発振器を構成することを特徴とする請求項1に記載の波長変換レーザ光源。   The laser beam generator has an optical fiber with a highly reflective Bragg diffraction grating in the core, and a tapered optical amplifier with a low-reflection film on the front end surface on the laser beam emission side. The wavelength-converted laser light source according to claim 1, wherein an unstable resonance type laser oscillator is configured by the tapered optical amplifier and the Bragg diffraction grating of the optical fiber. 前記光ファイバが偏波面保存型であることを特徴とする請求項2又は3に記載の波長変換レーザ光源。   4. The wavelength conversion laser light source according to claim 2, wherein the optical fiber is a polarization plane preserving type. レーザ光発生部が、ブラッグ回折格子をテーパ型光増幅器に集積化したテーパ型レーザ素子からなることを特徴とする請求項1に記載の波長変換レーザ光源。   2. The wavelength-converted laser light source according to claim 1, wherein the laser light generation unit is composed of a tapered laser element in which a Bragg diffraction grating is integrated in a tapered optical amplifier. レーザ光発生部が、分布ブラッグ反射レーザ素子をモノリシック集積したテーパ型光増幅器からなることを特徴とする請求項1に記載の波長変換レーザ光源。   2. The wavelength-converted laser light source according to claim 1, wherein the laser light generation unit comprises a tapered optical amplifier in which distributed Bragg reflection laser elements are monolithically integrated. レーザ光発生部が、ボリューム型のブラッグ回折格子素子と、レーザ光の出射側の前端面に低反射膜を有するテーパ型光増幅器がレーザ光の出射方向に順番に配置されてなり、前記テーパ型光増幅器と前記ブラッグ回折格子素子とで不安定共振型のレーザ発振器を構成することを特徴とする請求項1に記載の波長変換レーザ光源。   The laser beam generator comprises a volume type Bragg diffraction grating element and a taper type optical amplifier having a low reflection film on the front end surface on the laser beam emission side, arranged in order in the laser beam emission direction. 2. The wavelength conversion laser light source according to claim 1, wherein an optical amplifier and the Bragg diffraction grating element constitute an unstable resonance type laser oscillator. 前記レンズが、光学的未使用面が使用面間を滑らかに接続する形状を有することを特徴とする請求項1から7までのいずれか1項に記載の波長変換レーザ光源。   The wavelength conversion laser light source according to any one of claims 1 to 7, wherein the lens has a shape in which an optically unused surface smoothly connects between used surfaces. 前記レンズが、光学的未使用面が使用面間を複数の平面で接続する形状を有することを特徴とする請求項1から7までのいずれか1項に記載の波長変換レーザ光源。   8. The wavelength-converted laser light source according to claim 1, wherein the lens has a shape in which an optically unused surface connects the used surfaces with a plurality of planes. 9. 前記レンズの少なくとも1面が軸対象でない非球面で構成されていることを特徴とする請求項1から9までのいずれか1項に記載の波長変換レーザ光源。   10. The wavelength-converted laser light source according to claim 1, wherein at least one surface of the lens is formed of an aspheric surface that is not an axis target. 11. 前記レンズがアナモルフック系の光学系を構成していることを特徴とする請求項1から9までのいずれか1項に記載の波長変換レーザ光源。   The wavelength conversion laser light source according to any one of claims 1 to 9, wherein the lens constitutes an anamorphic optical system. 前記レンズが垂直方向に有限系、水平方向に無限系の配置になっていることを特徴とする請求項1から11までのいずれか1項に記載の波長変換レーザ光源。   The wavelength conversion laser light source according to any one of claims 1 to 11, wherein the lenses are arranged in a finite system in the vertical direction and an infinite system in the horizontal direction.
JP2007312229A 2007-12-03 2007-12-03 Wavelength conversion laser beam source Pending JP2009139395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312229A JP2009139395A (en) 2007-12-03 2007-12-03 Wavelength conversion laser beam source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312229A JP2009139395A (en) 2007-12-03 2007-12-03 Wavelength conversion laser beam source

Publications (1)

Publication Number Publication Date
JP2009139395A true JP2009139395A (en) 2009-06-25

Family

ID=40870102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312229A Pending JP2009139395A (en) 2007-12-03 2007-12-03 Wavelength conversion laser beam source

Country Status (1)

Country Link
JP (1) JP2009139395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108682A (en) * 2009-11-12 2011-06-02 Anritsu Corp External resonator-type semiconductor laser and raman amplifier using the same
WO2014045658A1 (en) * 2012-09-20 2014-03-27 富士電機株式会社 Wavelength conversion element, light source device, and method for manufacturing wavelength conversion element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108620A (en) * 1990-08-27 1992-04-09 Matsushita Electric Ind Co Ltd Method and material for forming optical element
JPH0659211A (en) * 1992-08-05 1994-03-04 Asahi Glass Co Ltd Lens for shaping luminous flux section and higher harmonic generator with the same
JPH0730192A (en) * 1993-07-13 1995-01-31 Fuji Photo Film Co Ltd Semiconductor laser
JPH08181383A (en) * 1994-12-27 1996-07-12 Fuji Photo Film Co Ltd Integrated semiconductor laser device
JP2000261089A (en) * 1999-03-09 2000-09-22 Fuji Photo Film Co Ltd Semiconductor laser
WO2006016410A1 (en) * 2004-08-12 2006-02-16 Mitsubishi Denki Kabushiki Kaisha Fundamental wave light source and wavelength converter
JP2006290692A (en) * 2005-04-13 2006-10-26 Konica Minolta Opto Inc Method of forming beam reshaping element, and beam reshaping element manufactured by the method
JP2006330661A (en) * 2005-04-27 2006-12-07 Mitsubishi Electric Corp Optical wavelength conversion element and optical wavelength converter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108620A (en) * 1990-08-27 1992-04-09 Matsushita Electric Ind Co Ltd Method and material for forming optical element
JPH0659211A (en) * 1992-08-05 1994-03-04 Asahi Glass Co Ltd Lens for shaping luminous flux section and higher harmonic generator with the same
JPH0730192A (en) * 1993-07-13 1995-01-31 Fuji Photo Film Co Ltd Semiconductor laser
JPH08181383A (en) * 1994-12-27 1996-07-12 Fuji Photo Film Co Ltd Integrated semiconductor laser device
JP2000261089A (en) * 1999-03-09 2000-09-22 Fuji Photo Film Co Ltd Semiconductor laser
WO2006016410A1 (en) * 2004-08-12 2006-02-16 Mitsubishi Denki Kabushiki Kaisha Fundamental wave light source and wavelength converter
JP2006290692A (en) * 2005-04-13 2006-10-26 Konica Minolta Opto Inc Method of forming beam reshaping element, and beam reshaping element manufactured by the method
JP2006330661A (en) * 2005-04-27 2006-12-07 Mitsubishi Electric Corp Optical wavelength conversion element and optical wavelength converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012034737; G. Lucas-Leclin et al.: '"Wavelength Stabilization of Extended-Cavity Tapered Lasers with Volume Bragg Gratings"' Conference on Lasers and Electro-Optics 2006 and 2006 Quantum Electronics and Laser Science Conferen , 20060521, JWB8 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108682A (en) * 2009-11-12 2011-06-02 Anritsu Corp External resonator-type semiconductor laser and raman amplifier using the same
WO2014045658A1 (en) * 2012-09-20 2014-03-27 富士電機株式会社 Wavelength conversion element, light source device, and method for manufacturing wavelength conversion element
JP2014062960A (en) * 2012-09-20 2014-04-10 Fuji Electric Co Ltd Wavelength conversion element, light source device, and manufacturing method of wavelength conversion element

Similar Documents

Publication Publication Date Title
US6785304B2 (en) Waveguide device with mode control and pump light confinement and method of using same
US8885677B1 (en) Semiconductor external cavity laser with integrated planar waveguide bragg grating and wide-bandwidth frequency modulation
WO2016080252A1 (en) External resonator-type semiconductor laser
JP5484592B2 (en) High linear power laser system
US7760775B2 (en) Apparatus and method of generating laser beam
JP5926340B2 (en) LD module
US7260133B2 (en) Diode-pumped laser
JP2009139395A (en) Wavelength conversion laser beam source
JP4706403B2 (en) Optical wavelength conversion element and optical wavelength converter
US6563983B2 (en) Laser diode module
JP4793311B2 (en) Laser amplifier
US6556597B2 (en) Laser diode module
JP2014229738A (en) Planar waveguide laser device
US20060056476A1 (en) Laser diode with corner reflector having emission window
JP6145194B2 (en) LD module
CN117220122B (en) Plane waveguide laser gain module and laser amplifying device for 1.3um
JPH05323403A (en) Higher harmonic generator
JP5742331B2 (en) Laser light scanner
WO2018108251A1 (en) Laser
JPH0414024A (en) Secondary higher harmonic generation device
JP2001111153A (en) Optical coupling system
JP2007220877A (en) External resonator semiconductor laser, and light source with it
JP2016171219A (en) External resonator type light emitting device
JP4205076B2 (en) Laser light generation apparatus and generation method
TW201027218A (en) Wavelength conversion devices having multi-component output faces and systems incorporating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Effective date: 20110519

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121106

Free format text: JAPANESE INTERMEDIATE CODE: A02