[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009136956A - Turning method, turning condition and cutting path generation method - Google Patents

Turning method, turning condition and cutting path generation method Download PDF

Info

Publication number
JP2009136956A
JP2009136956A JP2007315065A JP2007315065A JP2009136956A JP 2009136956 A JP2009136956 A JP 2009136956A JP 2007315065 A JP2007315065 A JP 2007315065A JP 2007315065 A JP2007315065 A JP 2007315065A JP 2009136956 A JP2009136956 A JP 2009136956A
Authority
JP
Japan
Prior art keywords
turning
cutting
spindle
workpiece
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007315065A
Other languages
Japanese (ja)
Other versions
JP5126665B2 (en
Inventor
Norikazu Suzuki
教和 鈴木
Eiji Shamoto
英二 社本
Kiyoshi Yoshino
清 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Okuma Corp
Original Assignee
Nagoya University NUC
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Okuma Corp, Okuma Machinery Works Ltd filed Critical Nagoya University NUC
Priority to JP2007315065A priority Critical patent/JP5126665B2/en
Publication of JP2009136956A publication Critical patent/JP2009136956A/en
Application granted granted Critical
Publication of JP5126665B2 publication Critical patent/JP5126665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turning (AREA)

Abstract

【課題】加工面の仕上げ精度を維持しつつ、汎用性が高く、主軸に平行な加工経路でもびびり振動を好適に抑制できる旋削加工方法を提供する。
【解決手段】切削工具5による現在の切削位置が、主軸1回転前までの旋削によりワーク旋削面上に残されている切削跡と重ならないように、切削工具5の主軸1回転当たりの軸方向への送り量を設定する第1ステップと、第1ステップで設定した送り量Aで切削工具5を軸方向へ送りながら旋削加工を行う第2ステップと、第2ステップで旋削加工を行った加工面に対し、第2ステップの切り込み開始時の主軸回転位相から略180°回転させた主軸回転位相から、切削工具5を径方向に進めて、第2ステップの主軸回転速度と異なる主軸回転速度で再び旋削加工を行う第3ステップと、を有する。
【選択図】図1
The present invention provides a turning method capable of suitably suppressing chatter vibration even in a machining path parallel to a spindle while maintaining finishing accuracy of a machined surface.
An axial direction per one rotation of the spindle of the cutting tool 5 so that a current cutting position by the cutting tool 5 does not overlap with a cutting trace left on a workpiece turning surface by turning up to one rotation of the spindle. The first step for setting the feed amount to the workpiece, the second step for turning while feeding the cutting tool 5 in the axial direction with the feed amount A set in the first step, and the machining for which the turning processing was performed in the second step The cutting tool 5 is advanced in the radial direction from the spindle rotation phase rotated about 180 ° from the spindle rotation phase at the start of cutting in the second step with respect to the surface at a spindle rotation speed different from the spindle rotation speed in the second step. And a third step of performing turning again.
[Selection] Figure 1

Description

本発明は、NC旋盤等の工作機械において、旋削加工中に発生するびびり振動、特に再生びびり振動の抑制を図ることができる旋削加工方法と、その旋削加工方法を実施するための旋削条件及び切削経路の生成方法とに関する。   The present invention relates to a turning method capable of suppressing chatter vibration generated during turning, particularly regenerative chatter vibration in a machine tool such as an NC lathe, and turning conditions and cutting for carrying out the turning method. The present invention relates to a route generation method.

例えばNC旋盤では、回転可能な主軸にワークを把持させ、ワークを主軸とともに回転させると同時に、切削工具を軸方向へ送ることによってワークの外径加工(旋削加工)を行う。この旋削加工においては、ワークや切削工具の剛性、切削条件(例えば切り込み量、送り速度、主軸回転等)等に影響され、ワーク及び/又は切削工具が振動する「びびり振動」が発生する場合がある。この「びびり振動」の中でも自励振動である「再生びびり振動」は、ワーク加工面の仕上げ精度を悪化させるだけでなく、切削工具の欠損の要因でもあり、従来から問題となっている。   For example, in an NC lathe, a workpiece is gripped by a rotatable main shaft, and the workpiece is rotated together with the main shaft, and at the same time, the outer diameter machining (turning) of the workpiece is performed by sending a cutting tool in the axial direction. In this turning process, there is a case in which “chat vibration” in which the work and / or the cutting tool vibrates is generated by being affected by the rigidity of the work and the cutting tool, cutting conditions (for example, cutting depth, feed speed, spindle rotation, etc.). is there. Among these “chatter vibrations”, “regenerative chatter vibration”, which is self-excited vibration, not only deteriorates the finishing accuracy of the workpiece machining surface, but also causes cutting tool defects, and has been a problem in the past.

そこで、上述したような「びびり振動」を抑制すべく、たとえば特許文献1〜3に記載されているような旋削加工方法が提案されている。
特許文献1に記載されている旋削加工方法は、ワークに旋削加工を施すにあたり、ワークの回転速度を周期的に変動させて、「びびり振動」の抑制を図ったものである。また、特許文献2に記載の旋削加工方法は、ワークに軸方向の引張力を与え、旋削時におけるワークの逃げを低減することにより、「びびり振動」の抑制を図ったものである。
さらに、特許文献3に記載の旋削加工方法は、ワークの下り部の切削経路でびびり振動を発生させない切削経路を自動的に生成するものである。
Therefore, in order to suppress the “chatter vibration” as described above, for example, a turning method as described in Patent Documents 1 to 3 has been proposed.
The turning method described in Patent Document 1 is intended to suppress “chatter vibration” by periodically changing the rotation speed of the workpiece when turning the workpiece. Further, the turning method described in Patent Document 2 is intended to suppress “chatter vibration” by applying an axial tensile force to the workpiece and reducing the escape of the workpiece during turning.
Furthermore, the turning method described in Patent Document 3 automatically generates a cutting path that does not generate chatter vibration in the cutting path of the downward part of the workpiece.

特開昭49−105277号公報JP-A-49-105277 特開平9−290301号公報JP-A-9-290301 特開平5−324035号公報JP-A-5-324035

しかし、特許文献1に記載の旋削加工方法では、加工中に主軸の回転速度を変動させるため、ワークの加工面に回転速度の変動に起因した筋目が残りやすく、仕上げ精度が悪化するという問題がある。
また、特許文献2に記載の旋削加工方法では、ワークを引張する装置が別途必要になるため、コスト高、工程数の増加、装置全体の大型化といった問題がある上、ワーク側にも引張のための加工(引張装置に把持させる把持部を設ける等)を施す必要があり、軸方向長さが比較的長いワークにしか適用できないという問題があり、汎用性に課題を有する。
そして、特許文献3に記載の旋削加工方法では、ワークの下り部でのびびり振動は避けられるものの、一般的な主軸に平行な加工経路でのびびりは抑制できないという問題があった。
However, in the turning method described in Patent Document 1, since the rotational speed of the spindle is changed during processing, there is a problem in that streaks due to the change in the rotational speed are likely to remain on the work surface of the workpiece and the finishing accuracy is deteriorated. is there.
In addition, since the turning method described in Patent Document 2 requires a separate device for pulling the workpiece, there are problems such as high cost, an increase in the number of processes, and an increase in the size of the entire device. For this reason, there is a problem that it can be applied only to a workpiece having a relatively long axial length, and there is a problem in versatility.
The turning method described in Patent Document 3 has a problem that chatter vibrations in a machining path parallel to a general main axis cannot be suppressed, although chatter vibrations in the descending part of the workpiece can be avoided.

そこで、本発明は、上記問題に鑑み、加工面の仕上げ精度を維持しつつ、汎用性が高く、主軸に平行な加工経路でもびびり振動を好適に抑制できる旋削加工方法と、その旋削加工方法を実施するための旋削条件及び切削経路生成方法とを提供することを目的としたものである。   Therefore, in view of the above problems, the present invention provides a turning method and a turning method capable of suitably suppressing chatter vibration even in a machining path parallel to the spindle while maintaining the finishing accuracy of the machining surface. An object of the present invention is to provide a turning condition and a cutting path generation method for carrying out.

上記目的を達成するために、請求項1に記載の第1発明は、回転可能な主軸に取り付けられたワークを回転させながら、切削工具を主軸の軸方向又は径方向へ送ることにより、ワークに対する旋削加工を行う旋削加工方法であって、切削工具による現在の切削位置が、主軸1回転前までの旋削によりワーク旋削面上に残されている切削跡と重ならないように、切削工具の主軸1回転当たりの軸方向への送り量を設定する第1ステップと、第1ステップで設定した送り量で切削工具を軸方向へ送りながら旋削加工を行う第2ステップと、第2ステップで旋削加工を行った加工面に対し、第2ステップの切り込み開始時の主軸回転位相から略180°回転させた主軸回転位相から、切削工具を径方向に進めて、第1ステップで設定した送りにて、第2ステップの主軸回転速度と異なる主軸回転速度で再び旋削加工を行う第3ステップと、を有することを特徴とする。
上記目的を達成するために、請求項2に記載の第2発明は、回転可能な主軸に取り付けられたワークを回転させながら、切削工具を主軸の軸方向へ送ることにより、ワークに対する所定回数の旋削加工を行う旋削加工方法であって、ワーク仕上げ面粗さと、切削工具の形状と、ワークの削り代とから、切削工具による現在の切削位置が、主軸1回転前までの旋削によりワーク旋削面上に残されている切削跡と重ならないように、切削工具の主軸1回転当たりの送り量を設定する第1ステップと、主軸回転位相を所定回数で等分に分割し、分割後の各位相を各旋削加工の切り込み開始位置に設定する第2ステップと、第2ステップで設定した各切り込み開始位置から、第1ステップで設定した送り量で切削工具を軸方向へ送りながら、前回の旋削加工時の主軸回転速度と異なる主軸回転速度で夫々旋削加工を行う第3ステップと、を有することを特徴とする。
In order to achieve the above object, the first invention described in claim 1 is directed to a workpiece by feeding a cutting tool in the axial direction or the radial direction of the spindle while rotating the workpiece attached to the rotatable spindle. A turning method in which turning is performed so that the current cutting position of the cutting tool does not overlap the cutting trace left on the workpiece turning surface by turning up to one rotation of the main spindle. A first step for setting the feed amount in the axial direction per rotation, a second step for turning while feeding the cutting tool in the axial direction at the feed amount set in the first step, and turning in the second step With the feed set in the first step, the cutting tool is advanced in the radial direction from the spindle rotation phase rotated about 180 ° from the spindle rotation phase at the start of cutting in the second step with respect to the machining surface performed. A third step of performing again the turning in a two-step spindle rotation speed different spindle speed, and having a.
In order to achieve the above-mentioned object, the second invention according to claim 2 is a predetermined number of times with respect to the workpiece by feeding the cutting tool in the axial direction of the spindle while rotating the workpiece attached to the rotatable spindle. This is a turning method that performs turning, and the workpiece turning surface is turned by turning the current cutting position of the cutting tool up to one revolution before the main spindle, based on the finished surface roughness, cutting tool shape, and workpiece cutting allowance. The first step of setting the feed amount per rotation of the spindle of the cutting tool and the spindle rotation phase are equally divided by a predetermined number of times so as not to overlap the cutting traces left above, and each phase after the division Is set to the cutting start position of each turning process, and the cutting tool is fed in the axial direction with the feed amount set in the first step from each cutting start position set in the second step, and the previous turning A third step of performing each turning the spindle speed during working at different spindle speed, and having a.

上記目的を達成するために、請求項3に記載の第3発明は、請求項1に記載の旋削加工方法を実施するための旋削条件及び切削経路を生成する方法であって、少なくともワーク形状と、所望のワーク仕上げ面粗さと、切削工具形状と、主軸回転速度とを含む初期パラメータを記憶手段に記憶する第1ステップと、第1ステップで記憶された初期パラメータから、切削工具による現在の切削位置が、主軸1回転前までの旋削によりワーク旋削面上に残されている切削跡と重ならないように、切削工具の主軸1回転当たりの軸方向への送り量を算出して切り込みラインを設定する第2ステップと、互いに略180°異なる主軸回転位相で複数の切り込み位置を設定する第3ステップと、前回の旋削加工時の主軸回転速度と異なる主軸回転速度を設定する第4ステップと、を有することを特徴とする。
上記目的を達成するために、請求項4に記載の第4発明は、請求項2に記載の旋削加工方法を実施するための旋削条件及び切削経路を生成する方法であって、少なくともワーク仕上げ面粗さと、切削工具の形状と、前記ワークの削り代と、主軸回転速度とを含む初期パラメータを記憶手段に記憶する第1ステップと、第1ステップで記憶された初期パラメータから、切削工具による現在の切削位置が、主軸1回転前までの旋削によりワーク旋削面上に残されている切削跡と重ならないように、切削工具の主軸1回転当たりの軸方向への送り量を算出して切り込みラインを設定する第2ステップと、主軸回転位相を所定回数で等分に分割して各位相を切り込みラインの切り込み位置に設定する第3ステップと、前回の旋削加工時の主軸回転速度と異なる主軸回転速度を設定する第4ステップと、を有することを特徴とする。
In order to achieve the above object, a third invention described in claim 3 is a method for generating a turning condition and a cutting path for carrying out the turning method described in claim 1, wherein at least the workpiece shape and A first step for storing initial parameters including a desired workpiece finish surface roughness, a cutting tool shape, and a spindle rotation speed in the storage means; and a current cutting by the cutting tool from the initial parameters stored in the first step. Set the cutting line by calculating the feed amount in the axial direction per spindle revolution of the cutting tool so that the position does not overlap the cutting trace left on the workpiece turning surface by turning up to one revolution of the spindle A second step, a third step for setting a plurality of cutting positions at a spindle rotation phase different from each other by about 180 °, and a spindle rotation speed different from the spindle rotation speed at the previous turning. A fourth step of, characterized by having a.
In order to achieve the above object, a fourth invention according to claim 4 is a method for generating a turning condition and a cutting path for carrying out the turning method according to claim 2, wherein at least a workpiece finish surface is provided. A first step of storing in the storage means initial parameters including the roughness, the shape of the cutting tool, the machining allowance of the workpiece, and the spindle rotation speed, and the initial parameters stored in the first step, The cutting position is calculated by calculating the feed amount in the axial direction per spindle revolution of the cutting tool so that the cutting position does not overlap with the cutting trace left on the workpiece turning surface by turning until one revolution of the spindle A second step for setting the spindle, a third step for equally dividing the spindle rotation phase by a predetermined number of times and setting each phase as a cutting position of the cutting line, and a spindle rotating speed during the previous turning process And having a fourth step of setting a different spindle speed.

本発明の旋削加工方法によれば、切削加工を行った加工面に対し、径方向に切削工具を進めて再び旋削加工を行うにあたり、前回の旋削加工の切り込み開始時の主軸回転位相から略180°回転させた主軸回転位相から旋削加工を開始しているため、切削工具による現在の旋削範囲が1回転前の旋削跡と重複せず、1回転前の旋削時に削り残された起伏に起因する再生びびり振動は発生しない。また、前回の旋削加工における主軸回転速度を避けて今回の旋削加工における主軸回転速度を設定しているため、前回の旋削加工時に生じた起伏に起因した再生びびり振動も発止しない。したがって、再生びびり振動の発生を抑制することができ、工具の欠損防止等の効果を奏することができる。
特に請求項2に記載の旋削加工方法によれば、所望のワーク仕上げ面粗さを考慮して切削条件を設定しているため、びびり振動を避けるとともに所望の仕上げ面粗さが得られる。また、加工経路によらず、下りでも上りでも主軸に平行な加工経路でも良好な仕上げ面を加工できる。
本発明の旋削条件及び切削経路生成方法によれば、所望のワーク仕上げ面粗さが得られるようにびびり振動を避けた旋削条件及び切削経路を自動生成でき、オペレータが複雑な計算や切削条件の設定をする必要がなくなって作業負荷が軽減される。
According to the turning method of the present invention, when a cutting tool is advanced in the radial direction and the turning process is performed again on the machined surface after cutting, it is approximately 180 from the spindle rotation phase at the start of the previous turning operation. Since the turning process is started from the rotated spindle rotation phase, the current turning range by the cutting tool does not overlap with the turning trace of the previous rotation, which is caused by the undulations left uncut by the previous turning. Regenerative chatter vibration does not occur. In addition, since the spindle rotation speed in the current turning process is set to avoid the spindle rotation speed in the previous turning process, the regenerative chatter vibration caused by the undulations generated during the previous turning process is not stopped. Therefore, the occurrence of regenerative chatter vibration can be suppressed, and effects such as prevention of tool breakage can be achieved.
Particularly, according to the turning method described in claim 2, since the cutting conditions are set in consideration of the desired workpiece finish surface roughness, chatter vibration is avoided and the desired finish surface roughness is obtained. In addition, regardless of the machining path, a good finished surface can be machined by a machining path that is parallel to the spindle or down or up.
According to the turning condition and cutting path generation method of the present invention, it is possible to automatically generate turning conditions and a cutting path that avoid chatter vibration so that a desired workpiece finish surface roughness can be obtained. There is no need to make settings and the workload is reduced.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、第1発明に係る旋削加工方法における加工状況を示した説明図で、例えばNC旋盤等の工作機械に適用される。
同図において1は、回転可能に設けられた主軸で、爪3を備えたチャック2が取り付けられ、爪3によってワーク4が把持可能となっている。ワーク4に対する旋削加工(外径加工)は、チャック2に取り付けられたワーク4を主軸1とともに回転させる一方、ワーク4の外周面に切り込ませた切削工具5を主軸1の軸方向に沿って送ることにより行われる。尚、主軸の回転1の動作及び切削工具5の送り動作は、図示しないNC装置によって制御される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing a machining situation in the turning method according to the first invention, and is applied to a machine tool such as an NC lathe.
In FIG. 1, reference numeral 1 denotes a main shaft that is rotatably provided. A chuck 2 having a claw 3 is attached thereto, and the work 4 can be gripped by the claw 3. Turning (outer diameter machining) on the workpiece 4 rotates the workpiece 4 attached to the chuck 2 together with the main shaft 1, while cutting the cutting tool 5 cut into the outer peripheral surface of the workpiece 4 along the axial direction of the main shaft 1. Done by sending. The operation of the rotation 1 of the spindle and the feeding operation of the cutting tool 5 are controlled by an NC device (not shown).

ここで、「再生びびり振動」とは、切削工具が切削する範囲内に生じている前回の削り残しによる起伏が、現在の切削時における切削力に影響して、振動がフィードバックされ拡大していく現象である。一旦再生びびり振動が発生すると、ワーク仕上げ面に大きな起伏が残り仕上げ精度を悪化させるだけでなく、切削工具が破損するなど大きな問題となる。   Here, "regenerative chatter vibration" means that the undulation caused by the previous uncut material that occurs within the cutting range of the cutting tool affects the cutting force during the current cutting, and the vibration is fed back and expanded. It is a phenomenon. Once regenerative chatter vibration occurs, large undulations remain on the workpiece finish surface, which not only deteriorates the finishing accuracy, but also causes serious problems such as breakage of the cutting tool.

図2は、切削工具の経路を示す説明図で、前回の加工は6で示され、ワークに螺旋状の軌跡を残す。この時の主軸1回転当たりの切削工具の送り量は、現在の旋削範囲が1回転前の旋削跡と重複しないように設定する。すなわち、図1で切削工具のコーナー半径r、コーナー角度α、横切れ刃角β、ワークの削り代dを初期パラメータとして、下記の式(1)にもとづいて主軸1回転当たりの切削工具の送り量Aを算出するものである。   FIG. 2 is an explanatory diagram showing the path of the cutting tool. The previous machining is indicated by 6 and leaves a spiral trajectory on the workpiece. The feed amount of the cutting tool per spindle revolution at this time is set so that the current turning range does not overlap with the turning trace before one revolution. That is, in FIG. 1, the cutting tool feed amount per one rotation of the spindle based on the following formula (1), with the corner radius r, corner angle α, side cutting edge angle β, and workpiece cutting allowance d as initial parameters in FIG. A is calculated.

Figure 2009136956
Figure 2009136956

続いて、径方向に工具を進めて再び旋削加工を実施するにあたり、図2の7で示すように前回の旋削加工の切り込み開始時の主軸回転位相から180°回転させた主軸回転位相から旋削加工を実施する。図3(A)は、この旋削加工においてワーク4に残された切削跡を、同図(B)は、切削開始時の主軸回転位相が180°ずれていない場合の旋削加工においてワーク4に残された切削跡を夫々示すもので、前回の加工による切削跡は点線で、今回の切削による切削跡は実線で示している。(A)では、切削開始時の主軸回転位相が前回と今回で180°ずれていることから、切削跡は前回と今回で工具形状の半分だけずれた位置になり、隣接する切削跡に重複がない。従って、1回転前の旋削時に削り残された起伏に起因する再生びびり振動は発生しない。しかし、主軸回転位相が180°ずれていない(B)では、斜線部に示すように、隣接する切削跡に重複が発生し、再生びびり振動が発生してしまう可能性がある。   Next, when turning the tool again in the radial direction and turning again, as shown by 7 in FIG. 2, turning is performed from the spindle rotation phase rotated 180 ° from the spindle rotation phase at the start of the previous turning operation. To implement. 3A shows the cutting trace left on the workpiece 4 in this turning process, and FIG. 3B shows the cutting trace left on the workpiece 4 in the turning process when the spindle rotation phase at the start of cutting is not shifted by 180 °. The cutting traces made by the previous machining are indicated by dotted lines, and the cutting traces obtained by the current cutting are indicated by solid lines. In (A), the spindle rotation phase at the start of cutting is shifted by 180 ° between the previous time and this time, so the cutting marks are shifted by half of the tool shape between the previous time and this time, and the adjacent cutting marks are overlapped. Absent. Accordingly, there is no regenerative chatter vibration due to the undulations left uncut during turning one revolution. However, when the main spindle rotation phase is not shifted by 180 ° (B), as shown by the hatched portion, there is a possibility that the adjacent cutting traces are overlapped and regenerative chatter vibration is generated.

また、ここでは、径方向に工具を進めて切削するにあたり、前回の主軸回転速度とは異なる主軸回転速度を設定している。これにより、びびり振動のフィードバックループが成立しないため、前回の旋削加工における起伏に起因した再生びびり振動を抑制することができる。   Further, here, when the tool is advanced and cut in the radial direction, a spindle rotation speed different from the previous spindle rotation speed is set. Thereby, since the feedback loop of chatter vibration is not established, it is possible to suppress regenerative chatter vibration caused by undulations in the previous turning process.

このように、上記形態の旋削加工方法によれば、切削工具5による現在の切削位置が、主軸1回転前までの旋削によりワーク4の旋削面上に残されている切削跡と重ならないように、切削工具5の主軸1回転当たりの軸方向への送り量を設定し、設定した送り量で切削工具5を軸方向へ送りながら旋削加工を行い、その旋削加工を行った加工面に対し、先の旋削加工の切り込み開始時の主軸回転位相から略180°回転させた主軸回転位相から、切削工具5を径方向に進めて、先の旋削加工時の主軸回転速度と異なる主軸回転速度で再び旋削加工を行うようにしたことで、切削工具5による現在の旋削範囲が1回転前の旋削跡と重複しないため、1回転前の旋削時に削り残された起伏に起因する再生びびり振動は発生しない。また、前回の旋削加工における主軸回転速度を避けて今回の旋削加工における主軸回転速度を設定しているため、前回の旋削加工時に生じた起伏に起因した再生びびり振動も発生しない。したがって、再生びびり振動の発生を抑制することができ、工具の欠損防止等の効果を奏することができる。
なお、上述の旋削加工方法は、単位時間当たりの切り屑排出量が多く高効率加工であるという利点はあるものの、仕上げ面粗さは考慮していないため荒加工に適している。
As described above, according to the turning method of the above aspect, the current cutting position by the cutting tool 5 is not overlapped with the cutting trace left on the turning surface of the work 4 by turning before one rotation of the spindle. , Set the feed amount in the axial direction per rotation of the spindle of the cutting tool 5, perform turning while feeding the cutting tool 5 in the axial direction with the set feed amount, From the spindle rotation phase rotated approximately 180 ° from the spindle rotation phase at the start of the previous turning, the cutting tool 5 is advanced in the radial direction and again at a spindle rotation speed different from the spindle rotation speed at the previous turning. By performing the turning process, the current turning range by the cutting tool 5 does not overlap with the turning trace before one rotation, so that the regenerative chatter vibration due to the undulations left uncut during the one-turn turning does not occur . In addition, since the spindle rotation speed in the current turning process is set to avoid the spindle rotation speed in the previous turning process, regenerative chatter vibration due to the undulation that occurred during the previous turning process does not occur. Therefore, the occurrence of regenerative chatter vibration can be suppressed, and effects such as prevention of tool breakage can be achieved.
The above-mentioned turning method is suitable for rough machining because it has a merit that the amount of chips discharged per unit time is large and high-efficiency machining, but the finished surface roughness is not taken into consideration.

一方で、仕上げ面に精度が求められる場合は、第2発明の旋削加工方法を用いる。
ここでは、所望のワーク仕上げ面粗さと、切削工具形状と、ワークの削り代とから、1回転前までの切削跡と重ならない主軸1回転当たりの送り量を算出し、その送り量で径方向切り込み位置を変化させずに複数回旋削加工を行う。この時、複数回の旋削でそれぞれ異なる回転数を設定するとともに、切り込み開始時の主軸の位相を複数回で等分に分割した位相から旋削加工を開始する。
図4に、この時の切削工具経路の説明図を示し、具体的に数値を代入し説明する。たとえば所望のワーク仕上げ面粗さRz=0.01[mm]、工具のコーナー半径r=1[mm]、コーナー角度α=90°、横切れ刃角β=45°、ワークの削り代d=0.4[mm]、とすると、1回転前までの切削跡と重ならない主軸1回転当たりの送り量は、先の式(1)から1.63[mm]と計算される。一方で所望の仕上げ面粗さを得るためのピッチpは、下式の式(2)に近似され、0.28[mm]となる。
On the other hand, when accuracy is required for the finished surface, the turning method of the second invention is used.
Here, the feed amount per rotation of the main spindle that does not overlap with the cutting trace before one rotation is calculated from the desired workpiece finish surface roughness, cutting tool shape, and workpiece cutting allowance, and the feed direction is used in the radial direction. Performs multiple turning without changing the cutting position. At this time, different rotational speeds are set for each of the plurality of turnings, and the turning process is started from a phase obtained by equally dividing the phase of the spindle at the start of the cutting.
FIG. 4 shows an explanatory diagram of the cutting tool path at this time, and a specific numerical value is substituted for explanation. For example, desired workpiece finish surface roughness Rz = 0.01 [mm], tool corner radius r = 1 [mm], corner angle α = 90 °, side cutting edge angle β = 45 °, workpiece cutting allowance d = 0 .4 [mm], the feed amount per rotation of the main spindle that does not overlap with the cutting trace before one rotation is calculated as 1.63 [mm] from the previous equation (1). On the other hand, the pitch p for obtaining a desired finished surface roughness is approximated by the following equation (2) and is 0.28 [mm].

Figure 2009136956
Figure 2009136956

よって、A/p=5.82となるので、小数点以下を切り上げた6回の加工を、径方向切り込み位置を変化させずに行う。ここでも6回の主軸回転数は、びびり振動を避けるために前回とは異なる値とする。また、ワークの切り込み開始時の主軸回転位相は、360°を切削回数の6回で割った60°毎とする。すなわち、図4に示すように、1回目の旋削軌跡をaとすると、60°ずらしてb、さらに60°ずらしてc、・・となる。
図5は、ワークに残された切削跡を示す図で、ここで1回目の切削跡aを見ると、1回転目の切削跡a1と2回転目の切削跡a2とは重複しておらず、再生びびり振動は発生しない。また、a1は2回目の切削の1回転目の切削跡b1と重複しているが、異なる回転数で加工しているのでびびり振動の発生を避けることができる。以上のようにして、びびり振動を発生させず、所望の仕上げ面粗さを得る加工条件の設定ができる。
Therefore, since A / p = 5.82, the machining is performed six times rounded up after the decimal point without changing the radial cutting position. Again, the six spindle revolutions are different from the previous values to avoid chatter vibration. The spindle rotation phase at the start of workpiece cutting is set to every 60 ° obtained by dividing 360 ° by 6 times of cutting. That is, as shown in FIG. 4, when the first turning trajectory is a, it is shifted by 60 ° to b, and further shifted by 60 ° to c,.
FIG. 5 is a diagram showing the cutting traces left on the workpiece. Here, when the first cutting trace a is viewed, the first rotation cutting trace a1 and the second rotation cutting trace a2 do not overlap. Regenerative chatter vibration does not occur. Moreover, although a1 overlaps with the cutting trace b1 of the first rotation of the second cutting, the occurrence of chatter vibration can be avoided because the machining is performed at a different rotational speed. As described above, it is possible to set processing conditions for obtaining a desired finished surface roughness without generating chatter vibration.

このように、第2発明の旋削加工方法においても、ワーク仕上げ面粗さと、切削工具5の形状と、ワークの削り代とから、切削工具5による現在の切削位置が、主軸1回転前までの旋削によりワーク旋削面上に残されている切削跡と重ならないように、切削工具5の主軸1回転当たりの送り量を設定して、主軸回転位相を所定回数で等分に分割し、分割後の各位相を各旋削加工の切り込み開始位置に設定し、設定した各切り込み開始位置から、先に設定した送り量で切削工具5を軸方向へ送りながら、前回の旋削加工時の主軸回転速度と異なる主軸回転速度で夫々旋削加工を行うようにしたことで、切削工具5による現在の旋削範囲が1回転前の旋削跡と重複せず、1回転前の旋削時に削り残された起伏に起因する再生びびり振動は発生しない。また、前回の旋削加工における主軸回転速度を避けて今回の旋削加工における主軸回転速度を設定しているため、前回の旋削加工時に生じた起伏に起因した再生びびり振動も発止しない。したがって、再生びびり振動の発生を抑制することができ、工具の欠損防止等の効果を奏することができる。
特にここでは、所望のワーク仕上げ面粗さを考慮して切削条件を設定しているため、びびり振動を避けるとともに所望の仕上げ面粗さが得られる。また、加工経路によらず、下りでも上りでも主軸に平行な加工経路でも良好な仕上げ面を加工できる。
As described above, also in the turning method of the second invention, the current cutting position by the cutting tool 5 is until one rotation before the main shaft, based on the workpiece finish surface roughness, the shape of the cutting tool 5, and the workpiece cutting allowance. Set the feed amount per rotation of the spindle of the cutting tool 5 so that it does not overlap with the cutting trace left on the workpiece turning surface by turning, and divide the spindle rotation phase equally by a predetermined number of times. Are set as the cutting start position of each turning process, and the cutting tool 5 is fed in the axial direction with the previously set feed amount from each set cutting start position, and the spindle rotational speed during the previous turning process By turning each with a different spindle rotation speed, the current turning range by the cutting tool 5 does not overlap with the turning trace of the previous rotation, resulting from the undulations left uncut by the previous turning. Regenerative chatter vibration does not occur . In addition, since the spindle rotation speed in the current turning process is set to avoid the spindle rotation speed in the previous turning process, the regenerative chatter vibration caused by the undulations generated during the previous turning process is not stopped. Therefore, the occurrence of regenerative chatter vibration can be suppressed, and effects such as prevention of tool breakage can be achieved.
In particular, since the cutting conditions are set in consideration of the desired workpiece finish surface roughness, chatter vibration is avoided and the desired finish surface roughness is obtained. In addition, regardless of the machining path, a good finished surface can be machined by a machining path that is parallel to the spindle or down or up.

次に、少なくともワーク形状と、所望のワーク仕上げ面粗さと、切削工具形状とをもとに、上記旋削加工方法の実施のための旋削条件及び切削経路を自動生成する旋削条件及び切削経路生成方法を、図6のフローチャートを用いて具体的に数値を代入して説明する。
まず、オペレータは、ワーク形状D1=30[mm]と、所望のワーク仕上げ面粗さRz=0.01[mm]と、切削工具形状としてコーナー半径r=1[mm]、コーナー角度α=90°、横切れ刃角β=45°と、素材形状D2=34[mm]と、仕上げ代d1=0.2[mm]と、荒加工切り込み量d2=0.5[mm]と、主軸回転速度S=1000[min−1]とを初期パラメータとしてNC装置に入力する(ステップ1、図6では「S1」と表記する、以下同じ)。
Next, a turning condition and a cutting path generation method for automatically generating a turning condition and a cutting path for performing the above-described turning method based on at least the work shape, a desired workpiece finish surface roughness, and the cutting tool shape Will be described by specifically substituting numerical values with reference to the flowchart of FIG.
First, the operator has a workpiece shape D1 = 30 [mm], a desired workpiece finish surface roughness Rz = 0.01 [mm], a corner radius r = 1 [mm] as a cutting tool shape, and a corner angle α = 90. °, horizontal cutting edge angle β = 45 °, material shape D2 = 34 [mm], finishing allowance d1 = 0.2 [mm], rough cutting depth d2 = 0.5 [mm], spindle speed S = 1000 [min −1 ] is input to the NC device as an initial parameter (step 1, expressed as “S 1” in FIG. 6, and so on).

次に、荒加工の設定で切削残の有無を確認し(ステップ2)、切削残があれば荒加工切り込み量d2分シフトした切り込みラインL1を設定して(ステップ3)、荒加工切削条件設定で、主軸回転速度とワークへの切削開始時の主軸回転位相を設定する(ステップ4)。1回目の主軸回転速度は初期値のS=1000[min−1]とし、ワークへの切削開始時の主軸回転位相を0°として、記憶手段となるNC装置のメモリ部に記録する。NC装置に記録した値を図7に示す。
次にステップ2に戻って切り込み残があれば、ステップ3で更に荒加工切り込み量d2分シフトして切削ラインL2を設定する。次の荒加工切削条件設定(ステップ4)では、前回の主軸回転速度を避けて、たとえば5%下げた950[min−1]とし、切削開始時の主軸回転位相を180°とする。本例では荒加工を4回繰り返し、この時の主軸回転速度を交互に1000[min−1]と950[min−1]としている。ここまでは第3発明に相当する。
こうして4回の荒加工を実施した後、仕上げ代を残して切削残がなくなると、仕上げ加工切削条件設定へ進む(ステップ5)。
Next, the presence or absence of cutting residue is confirmed in the roughing setting (step 2). If there is a cutting residue, a cutting line L1 shifted by the roughing cutting amount d2 is set (step 3), and roughing cutting condition setting is performed. Thus, the spindle rotation speed and the spindle rotation phase at the start of cutting on the workpiece are set (step 4). The first spindle rotation speed is set to an initial value S = 1000 [min −1 ], and the spindle rotation phase at the start of cutting on the workpiece is set to 0 °, and is recorded in the memory unit of the NC device serving as a storage unit. The values recorded in the NC device are shown in FIG.
Next, returning to step 2, if there is any remaining cutting, step 3 further shifts by the roughing cutting amount d2 to set the cutting line L2. In the next roughing cutting condition setting (step 4), avoiding the previous spindle rotation speed, for example, it is reduced by 5% to 950 [min −1 ], and the spindle rotation phase at the start of cutting is 180 °. In this example, roughing is repeated four times, and the spindle rotation speed at this time is alternately set to 1000 [min −1 ] and 950 [min −1 ]. The process so far corresponds to the third invention.
After the rough machining is performed four times in this way, when there is no cutting residue with a finishing allowance, the process proceeds to finishing machining cutting condition setting (step 5).

切削ラインと切削条件の設定は第4発明による。ここで、ワークの削り代は、仕上げ代d1=0.2[mm]に荒加工切り込み量d2=0.5[mm]の値を加算して0.7[mm]となる。まず、1回転前までの切削跡と重ならない主軸1回転当たりの送り量は式(1)から2.23[mm]と計算される。一方で所望の仕上げ面粗さを得るためのピッチpは式(2)から、0.28[mm]となる。A/p=7.96であるので、小数点以下を切り上げた8回の加工を設定する。切削開始時の主軸回転位相は360°を切削回数の8回で割った45°毎とし、主軸回転速度はびびり振動を避けるために前回とは異なる値を設定する。   The cutting line and cutting conditions are set according to the fourth invention. Here, the machining allowance of the workpiece is 0.7 [mm] by adding the value of the rough cutting depth d2 = 0.5 [mm] to the finishing allowance d1 = 0.2 [mm]. First, the feed amount per one revolution of the spindle that does not overlap with the cutting trace before one revolution is calculated as 2.23 [mm] from the equation (1). On the other hand, the pitch p for obtaining the desired finished surface roughness is 0.28 [mm] from the equation (2). Since A / p = 7.96, eight machining rounded up after the decimal point is set. The spindle rotation phase at the start of cutting is set to 45 ° obtained by dividing 360 ° by 8 times of cutting, and the spindle rotation speed is set to a value different from the previous value in order to avoid chatter vibration.

このように、上記形態の旋削条件及び切削経路生成方法によれば、所望のワーク仕上げ面粗さが得られるようにびびり振動を避けた旋削条件及び切削経路を自動生成でき、オペレータが複雑な計算や切削条件の設定をする必要がなくなって作業負荷が軽減される。   As described above, according to the above-described turning condition and cutting path generation method, the turning condition and the cutting path that avoid chatter vibration can be automatically generated so that a desired workpiece finish surface roughness can be obtained, and the operator can perform complicated calculation. It is no longer necessary to set the cutting conditions and the work load is reduced.

なお、上記実施形態では、外径旋削に対して適用した例について説明しているが、本発明に係る旋削加工方法は、内径旋削、端面旋削、及びテーパ面や曲面加工等に対しても効果的に適用することができる。
また、第1発明において、上記形態では、前回の旋削加工の切り込み開始時の主軸回転位相から180°回転させた主軸回転位相から旋削加工を開始するようにしているが、厳密には、現在の工具経路で生成される加工面の山の頂点となる位置が、前回の加工で生成された加工面の谷の位置と一致する位相がよい。この値は、工具形状により異なる値となるが、殆どの場合において180°として差し支えない。また、この主軸回転位相は180°から若干ずれた値でもよい。すなわち、180°であれば再生びびり振動を確実に回避することができるが、主軸回転位相ずれが若干であれば、切削跡の重複がわずかに起こるだけで、再生びびり振動が発生しない場合もあるため、このような場合には180°から若干ずれた値も許容できる。
In the above-described embodiment, an example applied to outer diameter turning is described, but the turning method according to the present invention is also effective for inner diameter turning, end face turning, and tapered surface and curved surface machining. Can be applied.
In the first aspect of the invention, in the above embodiment, the turning is started from the spindle rotation phase rotated by 180 ° from the spindle rotation phase at the start of the previous turning incision. The position where the peak of the peak of the machining surface generated by the tool path coincides with the position of the valley of the machining surface generated by the previous machining is good. This value varies depending on the tool shape, but in most cases, it may be 180 °. Further, this spindle rotation phase may be a value slightly deviated from 180 °. That is, if it is 180 °, regenerative chatter vibration can be avoided reliably, but if the main shaft rotational phase shift is slight, there may be a slight overlap of cutting traces and regenerative chatter vibration may not occur. Therefore, in such a case, a value slightly deviated from 180 ° is acceptable.

さらに、上記形態の旋削条件及び切削経路生成方法では、第3,第4発明を共に実施した例で説明しているが、夫々荒加工と仕上加工との何れかのみを行う場合は夫々単独の発明で旋削条件及び切削経路を自動生成するようにしても差し支えない。
Furthermore, the turning conditions and the cutting path generation method of the above embodiment have been described in the examples in which the third and fourth inventions are implemented. However, in the case where only either roughing or finishing is performed, each is independent. In the invention, the turning conditions and the cutting path may be automatically generated.

本発明に係る旋削加工方法における加工状況の説明図である。It is explanatory drawing of the processing condition in the turning method which concerns on this invention. ワークに対する切削工具経路を示す説明図である。It is explanatory drawing which shows the cutting tool path | route with respect to a workpiece | work. (A)は、ワークに残された重複のない切削跡を示す説明図で、(B)は、ワークに残された重複のある切削跡を示す説明図である。(A) is explanatory drawing which shows the cutting trace without the duplication left on the workpiece | work, (B) is explanatory drawing which shows the cutting trace with the duplication remaining on the workpiece | work. 切り込み開始時の主軸回転位相を6回で等分に分割した場合のワークに対する切削工具経路を示す説明図である。It is explanatory drawing which shows the cutting tool path | route with respect to the workpiece | work at the time of dividing | segmenting the spindle rotational phase at the time of a cutting start into 6 equal parts. 図4の加工でワークに残された切削跡を示す説明図である。It is explanatory drawing which shows the cutting trace left on the workpiece | work by the process of FIG. 旋削条件及び切削経路を自動生成する方法を説明するフローチャートである。It is a flowchart explaining the method of producing | generating a turning condition and a cutting path automatically. 図6に示した方法により設定された値を説明する表である。It is a table | surface explaining the value set by the method shown in FIG.

符号の説明Explanation of symbols

1・・主軸、2・・チャック、4・・ワーク、5・・切削工具、6・・前回の工具経路、7・・設定した工具経路、A・・軸方向送り量、α・・コーナー角度、β・・横切れ刃角、r・・コーナー半径、d・・ワークの削り代。   1 .... Spindle, 2 .... Chuck, 4 .... Work, 5 .... Cutting tool, 6 .... Previous tool path, 7 .... Set tool path, A ... Axial feed amount, .alpha. , Β ·· Horizontal cutting edge angle, r · Corner radius, d ·· Work cutting allowance.

Claims (4)

回転可能な主軸に取り付けられたワークを回転させながら、切削工具を前記主軸の軸方向又は径方向へ送ることにより、前記ワークに対する旋削加工を行う旋削加工方法であって、
前記切削工具による現在の切削位置が、前記主軸1回転前までの旋削により前記ワーク旋削面上に残されている切削跡と重ならないように、前記切削工具の前記主軸1回転当たりの軸方向への送り量を設定する第1ステップと、
第1ステップで設定した送り量で前記切削工具を軸方向へ送りながら旋削加工を行う第2ステップと、
第2ステップで旋削加工を行った加工面に対し、第2ステップの切り込み開始時の主軸回転位相から略180°回転させた主軸回転位相から、前記切削工具を径方向に進めて、第1ステップで設定した送りにて、第2ステップの主軸回転速度と異なる主軸回転速度で再び旋削加工を行う第3ステップと、
を有することを特徴とする旋削加工方法。
A turning method for performing a turning process on the workpiece by sending a cutting tool in an axial direction or a radial direction of the spindle while rotating a workpiece attached to a rotatable spindle,
In the axial direction per one rotation of the main shaft of the cutting tool, the current cutting position by the cutting tool does not overlap the cutting trace left on the workpiece turning surface by the turning up to one rotation of the main shaft. A first step of setting the feed amount of
A second step of performing turning while feeding the cutting tool in the axial direction at the feed amount set in the first step;
The cutting tool is advanced in the radial direction from the spindle rotation phase rotated about 180 ° from the spindle rotation phase at the start of cutting in the second step with respect to the machining surface that has been turned in the second step, and the first step A third step of turning again at a spindle rotational speed different from the spindle rotational speed of the second step with the feed set in
A turning method characterized by comprising:
回転可能な主軸に取り付けられたワークを回転させながら、切削工具を前記主軸の軸方向へ送ることにより、前記ワークに対する所定回数の旋削加工を行う旋削加工方法であって、
前記ワーク仕上げ面粗さと、前記切削工具の形状と、前記ワークの削り代とから、前記切削工具による現在の切削位置が、前記主軸1回転前までの旋削により前記ワーク旋削面上に残されている切削跡と重ならないように、前記切削工具の前記主軸1回転当たりの送り量を設定する第1ステップと、
主軸回転位相を前記所定回数で等分に分割し、分割後の各位相を各旋削加工の切り込み開始位置に設定する第2ステップと、
第2ステップで設定した各切り込み開始位置から、第1ステップで設定した送り量で前記切削工具を軸方向へ送りながら、前回の旋削加工時の主軸回転速度と異なる主軸回転速度で夫々旋削加工を行う第3ステップと、
を有することを特徴とする旋削加工方法。
A turning method that performs a predetermined number of turnings on the workpiece by rotating a workpiece attached to the rotatable spindle while sending a cutting tool in the axial direction of the spindle,
From the workpiece finish surface roughness, the shape of the cutting tool, and the machining allowance of the workpiece, the current cutting position by the cutting tool is left on the workpiece turning surface by turning up to one rotation before the main spindle. A first step of setting a feed amount per rotation of the spindle of the cutting tool so as not to overlap with a cutting trace that is present;
A second step of equally dividing the spindle rotation phase by the predetermined number of times, and setting each phase after the division to a cutting start position of each turning process;
From each incision start position set in the second step, while turning the cutting tool in the axial direction with the feed amount set in the first step, each turning operation is performed at a spindle rotation speed different from the spindle rotation speed at the previous turning. A third step to perform;
A turning method characterized by comprising:
請求項1に記載の旋削加工方法を実施するための旋削条件及び切削経路を生成する方法であって、
少なくともワーク形状と、所望のワーク仕上げ面粗さと、切削工具形状と、主軸回転速度とを含む初期パラメータを記憶手段に記憶する第1ステップと、
第1ステップで記憶された初期パラメータから、前記切削工具による現在の切削位置が、主軸1回転前までの旋削によりワーク旋削面上に残されている切削跡と重ならないように、前記切削工具の主軸1回転当たりの軸方向への送り量を算出して切り込みラインを設定する第2ステップと、
互いに略180°異なる主軸回転位相で複数の切り込み位置を設定する第3ステップと、
前回の旋削加工時の主軸回転速度と異なる主軸回転速度を設定する第4ステップと、
を有することを特徴とする旋削条件及び切削経路生成方法。
A method for generating a turning condition and a cutting path for performing the turning method according to claim 1,
A first step of storing in the storage means initial parameters including at least a workpiece shape, a desired workpiece finish surface roughness, a cutting tool shape, and a spindle rotation speed;
Based on the initial parameters stored in the first step, the cutting position of the cutting tool is set so that the current cutting position by the cutting tool does not overlap with the cutting trace left on the workpiece turning surface by turning up to one rotation of the spindle. A second step of calculating a feed amount in the axial direction per one rotation of the spindle and setting a cutting line;
A third step of setting a plurality of cutting positions at spindle rotation phases different from each other by approximately 180 °;
A fourth step of setting a spindle rotational speed different from the spindle rotational speed at the time of the previous turning,
A turning condition and a cutting path generation method characterized by comprising:
請求項2に記載の旋削加工方法を実施するための旋削条件及び切削経路を生成する方法であって、
少なくともワーク仕上げ面粗さと、切削工具の形状と、前記ワークの削り代と、主軸回転速度とを含む初期パラメータを記憶手段に記憶する第1ステップと、
第1ステップで記憶された初期パラメータから、前記切削工具による現在の切削位置が、主軸1回転前までの旋削によりワーク旋削面上に残されている切削跡と重ならないように、前記切削工具の主軸1回転当たりの軸方向への送り量を算出して切り込みラインを設定する第2ステップと、
主軸回転位相を所定回数で等分に分割して各位相を切り込みラインの切り込み位置に設定する第3ステップと、
前回の旋削加工時の主軸回転速度と異なる主軸回転速度を設定する第4ステップと、
を有することを特徴とする旋削条件及び切削経路生成方法。
A method for generating a turning condition and a cutting path for performing the turning method according to claim 2,
A first step of storing in the storage means initial parameters including at least the workpiece finish surface roughness, the shape of the cutting tool, the machining allowance of the workpiece, and the spindle rotation speed;
Based on the initial parameters stored in the first step, the cutting position of the cutting tool is set so that the current cutting position by the cutting tool does not overlap with the cutting trace left on the workpiece turning surface by turning up to one rotation of the spindle. A second step of calculating a feed amount in the axial direction per one rotation of the spindle and setting a cutting line;
A third step of dividing the spindle rotation phase into equal parts by a predetermined number of times and setting each phase as a cutting position of a cutting line;
A fourth step of setting a spindle rotational speed different from the spindle rotational speed at the time of the previous turning,
A turning condition and a cutting path generation method characterized by comprising:
JP2007315065A 2007-12-05 2007-12-05 Turning method, turning condition and cutting path generation method Expired - Fee Related JP5126665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315065A JP5126665B2 (en) 2007-12-05 2007-12-05 Turning method, turning condition and cutting path generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315065A JP5126665B2 (en) 2007-12-05 2007-12-05 Turning method, turning condition and cutting path generation method

Publications (2)

Publication Number Publication Date
JP2009136956A true JP2009136956A (en) 2009-06-25
JP5126665B2 JP5126665B2 (en) 2013-01-23

Family

ID=40868142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315065A Expired - Fee Related JP5126665B2 (en) 2007-12-05 2007-12-05 Turning method, turning condition and cutting path generation method

Country Status (1)

Country Link
JP (1) JP5126665B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087887A (en) * 2012-10-30 2014-05-15 Okuma Corp Machine tool
US9662727B2 (en) 2012-10-30 2017-05-30 Okuma Corporation Machine tool for threading processes
JP2017177267A (en) * 2016-03-29 2017-10-05 シチズン時計株式会社 Machine tool and control device therefor
CN110935892A (en) * 2018-09-21 2020-03-31 迪睿合电子材料有限公司 Micro-machining device, micro-machining method, transfer mold, and transfer object
CN112666896A (en) * 2020-12-14 2021-04-16 北京航星机器制造有限公司 Cutting parameter selection method and device for high-temperature aluminum alloy inner cavity curved surface
CN112805108A (en) * 2018-10-26 2021-05-14 西铁城时计株式会社 Machine tool and control device
CN114888530A (en) * 2022-05-19 2022-08-12 贵州天义电器有限责任公司 Forming process method for one-step processing of polished rod and threads of shaft parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180523A (en) * 1988-12-28 1990-07-13 Tsubakimoto Chain Co Cutting method for screw shaft
JP2001304267A (en) * 2000-04-20 2001-10-31 Nissan Motor Co Ltd Sliding member and its manufacturing method
JP2007175796A (en) * 2005-12-27 2007-07-12 Takamatsu Machinery Co Ltd Machining method and machining apparatus
JP2008290187A (en) * 2007-05-24 2008-12-04 Okuma Corp Turning method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180523A (en) * 1988-12-28 1990-07-13 Tsubakimoto Chain Co Cutting method for screw shaft
JP2001304267A (en) * 2000-04-20 2001-10-31 Nissan Motor Co Ltd Sliding member and its manufacturing method
JP2007175796A (en) * 2005-12-27 2007-07-12 Takamatsu Machinery Co Ltd Machining method and machining apparatus
JP2008290187A (en) * 2007-05-24 2008-12-04 Okuma Corp Turning method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087887A (en) * 2012-10-30 2014-05-15 Okuma Corp Machine tool
US9662727B2 (en) 2012-10-30 2017-05-30 Okuma Corporation Machine tool for threading processes
US9690283B2 (en) 2012-10-30 2017-06-27 Okuma Corporation Machine tool for a threading process
JP2017177267A (en) * 2016-03-29 2017-10-05 シチズン時計株式会社 Machine tool and control device therefor
CN110935892A (en) * 2018-09-21 2020-03-31 迪睿合电子材料有限公司 Micro-machining device, micro-machining method, transfer mold, and transfer object
CN112805108A (en) * 2018-10-26 2021-05-14 西铁城时计株式会社 Machine tool and control device
CN112805108B (en) * 2018-10-26 2023-09-26 西铁城时计株式会社 Machine tool and control device
CN112666896A (en) * 2020-12-14 2021-04-16 北京航星机器制造有限公司 Cutting parameter selection method and device for high-temperature aluminum alloy inner cavity curved surface
CN114888530A (en) * 2022-05-19 2022-08-12 贵州天义电器有限责任公司 Forming process method for one-step processing of polished rod and threads of shaft parts

Also Published As

Publication number Publication date
JP5126665B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5126665B2 (en) Turning method, turning condition and cutting path generation method
JP5258921B2 (en) Machine tool and its processing control device
JP5908386B2 (en) Machine Tools
JP5411137B2 (en) Thin wall cutting method
JP5984183B2 (en) Machine Tools
EP2407273B1 (en) Method for controlling rotation of main spindle and controller of machine tool
JP2012213830A5 (en)
JP2008279547A (en) Groove working method and formed rotary cutting tool
KR20140144342A (en) setting method of cut depth of initial axial direction for spin cutting tool and the same control device
JP7036786B2 (en) Numerical control device, program and control method
JPWO2017086238A1 (en) Machine tool and machining method by machine tool
JP5131738B2 (en) Turning method
JP7225715B2 (en) Gear processing method and gear processing device
JP6565399B2 (en) Gear processing equipment
JP2023053762A (en) Work-piece turning method and machine tool, and processing program
JP2013244576A (en) Machine Tools
JP7373161B2 (en) Hole drilling method and boring tool
JP2007105819A (en) Threading tool, threading device and threading method
JP6495682B2 (en) Method for controlling feed axis in machine tool and machine tool
JP7289563B2 (en) Machining method, machining equipment and machining program
JP6531353B2 (en) Gear processing device
JP7053362B2 (en) Threading method and machine tool
JP7516234B2 (en) Method for turning a workpiece and machine tool
JP5615684B2 (en) Machining method for suppressing chatter vibration in machine tools
JP7268329B2 (en) Gear processing device and gear processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Ref document number: 5126665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees