[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009133284A - Combustion diagnostic method and combustion diagnostic device of internal combustion engine - Google Patents

Combustion diagnostic method and combustion diagnostic device of internal combustion engine Download PDF

Info

Publication number
JP2009133284A
JP2009133284A JP2007311475A JP2007311475A JP2009133284A JP 2009133284 A JP2009133284 A JP 2009133284A JP 2007311475 A JP2007311475 A JP 2007311475A JP 2007311475 A JP2007311475 A JP 2007311475A JP 2009133284 A JP2009133284 A JP 2009133284A
Authority
JP
Japan
Prior art keywords
cylinder
ignition
engine
combustion
standard deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007311475A
Other languages
Japanese (ja)
Inventor
Takayoshi Terakado
貴芳 寺門
Yoshihiro Nakayama
善博 中山
Suminosuke Ando
純之介 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007311475A priority Critical patent/JP2009133284A/en
Publication of JP2009133284A publication Critical patent/JP2009133284A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion diagnostic method and a combustion diagnostic device of an internal combustion engine capable of clearly identifying and determining preignition and abnormality of a pressure sensor in a cylinder, and with heightened reliability by detecting preignition in a cylinder in a wide load range regardless of an operating condition. <P>SOLUTION: In this combustion diagnosis method of an internal combustion engine (engine) for diagnosing a combustion condition in a cylinder based on an in-cylinder pressure detection value detected by an in-cylinder pressure detector, preignition is determined when a standard deviation σP<SB>α</SB>of a change of the in-cylinder pressure at a predetermined crank angle α before ignition of the engine is calculated and the standard deviation σP<SB>α</SB>is not less than a standard deviation threshold value β, and when a differential pressure ΔP<SB>0</SB>of the in-cylinder pressures at a reference crank angle and a top dead center is calculated and a load factor in-cylinder differential pressure ΔP<SB>0</SB>/L found by dividing the differential pressure ΔP<SB>0</SB>with a load factor L on a driven machine driven by the engine is not less than a load factor in-cylinder differential pressure threshold value γ. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガスエンジンおよびディーゼルエンジンを含む内燃機関における燃焼診断方法および燃焼診断装置に関するものであって、特に、シリンダ内における過早着火の発生を運転状況に左右されずに広い負荷範囲で検知可能にした内燃機関の燃焼診断方法および燃焼診断装置に関する。   The present invention relates to a combustion diagnostic method and a combustion diagnostic apparatus for an internal combustion engine including a gas engine and a diesel engine, and particularly detects occurrence of pre-ignition in a cylinder in a wide load range without being influenced by an operation state. The present invention relates to an internal combustion engine combustion diagnostic method and a combustion diagnostic apparatus.

内燃機関、特に都市ガス等の清浄ガスを主燃料とするガスエンジンにおいては、燃焼室内における燃焼状態を検知、診断し、その燃焼診断結果に適合した燃焼着火タイミングおよび燃料噴射量の制御が必須であるとともに、燃焼室内における失火や消炎および混合気濃度の不均一等によるノッキングの発生やシリンダ内における残留未燃燃料による過早着火の発生等の燃焼に係る不具合現象を確実に検知して、速やかに対応処置することが要求される。   In an internal combustion engine, particularly a gas engine that uses clean gas such as city gas as the main fuel, it is essential to detect and diagnose the combustion state in the combustion chamber, and to control the combustion ignition timing and the fuel injection amount in accordance with the combustion diagnosis result. At the same time, it can reliably detect malfunctions related to combustion such as occurrence of knocking due to misfire or extinguishing in the combustion chamber and non-uniform mixture concentration, or premature ignition due to residual unburned fuel in the cylinder. It is required to deal with the situation.

このようなエンジンの燃焼室内における燃焼状態を検知、診断する診断装置として、特許文献1(特開平10−238374号公報)、特許文献2(特開2007−32407号公報)等の技術が提案されている。
特許文献1においては、吸気中に燃料を供給して予混合する予混合着火内燃機関において、広い負荷範囲で着火時期を適切に制御するものであり、吸気中に燃料を供給して予混合する予混合燃料インジェクタと、燃焼室の容積を可変にして圧縮比を可変にする圧縮比可変機構とを備えて、負荷状態に基づく予混合燃料量に応じて圧縮比を可変とすることによって、どのような負荷状態においても着火時期前に自着火しないように制御することが示されている。
As diagnostic devices for detecting and diagnosing the combustion state in the combustion chamber of the engine, techniques such as Patent Document 1 (Japanese Patent Laid-Open No. 10-238374) and Patent Document 2 (Japanese Patent Laid-Open No. 2007-32407) have been proposed. ing.
In Patent Document 1, in a premixed ignition internal combustion engine in which fuel is supplied during intake and premixed, the ignition timing is appropriately controlled over a wide load range, and fuel is supplied during intake and premixed. By providing a premixed fuel injector and a compression ratio variable mechanism that varies the volume of the combustion chamber to vary the compression ratio, the compression ratio can be varied according to the amount of premixed fuel based on the load state. It is shown that control is performed so that self-ignition does not occur before the ignition timing even in such a load state.

また、特許文献2においては、筒内圧力検出値に基づいて燃焼診断を行う技術が示されており、過早着火発生の有無を、筒内圧力が予め設定された過早着火しき値に基づく基準圧力値によって判定し、過早着火発生ありの場合に筒内圧力検出器の異常判定ロジックを停止し、過早着火発生なしの場合には筒内圧力検出器の異常判定ロジックに進む。これによって、筒内圧力検出器の異常判定の際に過早着火原因混入による誤診断を回避して燃焼診断誤差の発生を防止している。   Patent Document 2 discloses a technique for performing a combustion diagnosis based on the in-cylinder pressure detection value. Whether or not pre-ignition has occurred is determined based on the pre-ignition threshold value in which the in-cylinder pressure is set in advance. Judgment is made based on the reference pressure value, and the abnormality determination logic of the in-cylinder pressure detector is stopped when premature ignition occurs, and the process proceeds to the abnormality determination logic of the in-cylinder pressure detector when premature ignition does not occur. This avoids misdiagnosis due to premature ignition cause mixing when determining the abnormality of the in-cylinder pressure detector, thereby preventing the occurrence of combustion diagnosis errors.

特開平10−238374号公報JP-A-10-238374 特開2007−32407号公報JP 2007-32407 A

過早着火とは、一般的にシリンダ内に高温のすす等の未燃分の着火源が残留していると、次のサイクルで、該着火源を起点として本来の着火点よりも早期に着火燃焼する現象をいい、図6に示すように、本来の着火点(F点)よりも早期に着火燃焼し、A、B、C、Dで示すような正常な筒内圧力変化に対して、A1、B1、C1、D1のように高く圧力変動が大きい筒内圧力変化となる。
そのため、過早着火が進行すると筒内圧力が高まり、例えば副室付きのガスエンジンにおいては、最悪の場合には副室容損などといった重大なトラブルが発生し、さらに容損したな副室の一部がシリンダライナを傷つけたり、排気弁に衝突したり、ターボチャージャーに侵入して傷つける等のおそれがある。
Pre-ignition generally means that if an unburned ignition source such as high-temperature soot remains in the cylinder, the ignition source will start earlier than the original ignition point in the next cycle. This refers to the phenomenon of ignition and combustion. As shown in FIG. 6, ignition and combustion is performed earlier than the original ignition point (point F). With respect to normal in-cylinder pressure changes as indicated by A, B, C, and D, In-cylinder pressure changes such as A1, B1, C1, and D1 that have high pressure fluctuations.
For this reason, if pre-ignition progresses, the in-cylinder pressure increases. For example, in the case of a gas engine with a sub chamber, a serious trouble such as sub chamber damage occurs in the worst case. Some may damage the cylinder liner, collide with the exhaust valve, or invade and damage the turbocharger.

従って、この過早着火を適切に検出して燃焼を制御する必要があるが、そのための燃焼診断装置として上死点前15°〜40°における着火前の筒内圧力を検出して判定することが行われている。   Therefore, it is necessary to appropriately detect this pre-ignition and control the combustion. However, as a combustion diagnostic device for that purpose, the in-cylinder pressure before ignition at 15 ° to 40 ° before top dead center is detected and determined. Has been done.

しかし、かかる判定手法であると筒内圧力を検出する筒内圧力センサの異常判定に着火前の特定のクランク角での筒内圧力の検出値を利用しているため、過早着火による圧力の急激な上昇であってもセンサ異常と誤判定することが多々あり、誤判定した場合にはセンサ異常の判定が他の判定よりも優先されるように設定されているので一定時間に渡って他の判定が無視され、所定の運転条件で運転が進められる。その結果、圧縮初期から着火して過早着火現象が生じていてもセンサ異常と判定されてしまい過早着火を検知することができない問題があった。
さらに、エンジン負荷によって筒内圧力特性が変化するため、運転状況に左右されずに広い負荷範囲での過早着火の検出が不十分であった。
However, with such a determination method, the detected value of the in-cylinder pressure at a specific crank angle before ignition is used to determine the abnormality of the in-cylinder pressure sensor that detects the in-cylinder pressure. Even if it is a sudden rise, there are many cases where it is erroneously determined that the sensor is abnormal, and when it is erroneously determined, the determination of sensor abnormality is given priority over other determinations. This determination is ignored, and the operation is continued under predetermined operating conditions. As a result, there is a problem that even if the pre-ignition phenomenon occurs due to ignition from the early stage of compression, it is determined that the sensor is abnormal and pre-ignition cannot be detected.
Furthermore, since the in-cylinder pressure characteristic changes depending on the engine load, detection of pre-ignition in a wide load range is insufficient without being influenced by the driving situation.

そのため、着火前の筒内圧力を検出して判定するセンサ異常判定と過早着火とを区別し、しかもエンジンの運転状況に左右されずに確実に判定することが必要となる。
しかし、特許文献1の技術は前記したように予混合燃料インジェクタと、燃焼室の容積を可変にする圧縮比可変機構とを備えて、どのような負荷状態においても着火時期前に自着火しないように制御するもので、着火前の筒内圧力を検出して判定するセンサ異常判定と過早着火とを区別して判定する手段については提案されていない。
Therefore, it is necessary to distinguish between sensor abnormality determination and pre-ignition that are determined by detecting the in-cylinder pressure before ignition, and to make a reliable determination regardless of the operating state of the engine.
However, as described above, the technique of Patent Document 1 includes the premixed fuel injector and the compression ratio variable mechanism that makes the volume of the combustion chamber variable so that it does not self-ignite before the ignition timing in any load state. No means has been proposed for distinguishing between sensor abnormality determination and pre-ignition that are determined by detecting in-cylinder pressure before ignition.

また、特許文献2の技術は、前記したように筒内圧力検出器の異常判定の際に過早着火原因混入による誤診断を回避して燃焼診断誤差の発生を防止することが示されているが、所定のクランク角における筒内圧力検出値のみで判定しているため、エンジン負荷に応じた判定が考慮されていないため、運転状況に左右されずに広い負荷範囲での判定には不十分である。   Further, as described above, the technique of Patent Document 2 has been shown to prevent the occurrence of a combustion diagnosis error by avoiding a misdiagnosis due to premature ignition cause mixing at the time of abnormality determination of the in-cylinder pressure detector. However, since the determination is based only on the in-cylinder pressure detection value at a predetermined crank angle, the determination according to the engine load is not taken into consideration, so that it is not sufficient for the determination in a wide load range regardless of the driving situation. It is.

そこで、本発明は、このような背景に鑑みてなされたものであり、過早着火の判定と筒内圧力センサ異常の判定とを明確に識別して判定可能とすると共に、シリンダ内における過早着火の発生を運転状況に左右されずに広い負荷範囲で検知可能にして信頼性を高めた内燃機関の燃焼診断方法および燃焼診断装置を提供することを課題とする。   Therefore, the present invention has been made in view of such a background, and it is possible to clearly identify and determine the determination of premature ignition and the determination of abnormality of the in-cylinder pressure sensor. It is an object of the present invention to provide a combustion diagnostic method and a combustion diagnostic device for an internal combustion engine that can detect the occurrence of ignition in a wide load range without depending on the operation state and thereby improve the reliability.

前記課題を解決するために本出願の第1発明は、内燃機関の燃焼診断方法に関し、筒内圧力検出器により検出された筒内圧力検出値に基づいてシリンダ内の燃焼状態を診断する内燃機関(エンジン)の燃焼診断方法において、エンジンの着火前の所定クランク角度(α)における筒内圧力の変化の標準偏差(σPα)を算出し該標準偏差(σPα)が標準偏差閾値(β)以上で、かつ基準クランク角度と上死点とにおける筒内圧力の差圧(ΔP)を算出し、該差圧(ΔP)をエンジンによって駆動される被駆動機側の負荷率(L)で除した負荷率筒内差圧(ΔP/L)が負荷率筒内差圧閾値(γ)以上であるときに過早着火が発生していると判定することを特徴とする。 In order to solve the above-mentioned problems, a first invention of the present application relates to a combustion diagnosis method for an internal combustion engine, and relates to an internal combustion engine that diagnoses a combustion state in a cylinder based on a detected value of a cylinder pressure detected by a cylinder pressure detector. In the combustion diagnosis method of (engine), the standard deviation (σP α ) of the change in in-cylinder pressure at a predetermined crank angle (α) before ignition of the engine is calculated, and the standard deviation (σP α ) is the standard deviation threshold (β) Thus, the differential pressure (ΔP 0 ) of the in-cylinder pressure between the reference crank angle and the top dead center is calculated, and the differential pressure (ΔP 0 ) is calculated as the load factor (L) on the driven machine side driven by the engine. When the load factor in-cylinder differential pressure (ΔP 0 / L) divided by is equal to or greater than the load factor in-cylinder differential pressure threshold (γ), it is determined that pre-ignition has occurred.

かかる発明によれば、エンジンの着火前の所定クランク角度(α)における筒内圧力の変化の標準偏差(σPα)を算出し該標準偏差(σPα)が標準偏差閾値(β)以上の第1判定条件だけでなく、この条件にさらに、基準クランク角度と上死点とにおける筒内圧力の差圧(ΔP)を算出し、該差圧(ΔP)をエンジンによって駆動される被駆動機側の負荷率(L)で除した負荷率筒内差圧(ΔP/L)が負荷率筒内差圧閾値(γ)以上の第2の判定条件を付加して過早着火を判定する。 According to this invention, the standard deviation (σP α ) of the change in the in-cylinder pressure at the predetermined crank angle (α) before the ignition of the engine is calculated, and the standard deviation (σP α ) is equal to or greater than the standard deviation threshold (β). In addition to this one determination condition, in addition to this condition, a differential pressure (ΔP 0 ) of the in-cylinder pressure between the reference crank angle and the top dead center is calculated, and the differential pressure (ΔP 0 ) is driven by the engine. Pre-ignition is determined by adding a second determination condition in which the load factor in-cylinder differential pressure (ΔP 0 / L) divided by the machine-side load factor (L) is greater than or equal to the load factor in-cylinder differential pressure threshold (γ). To do.

第1判定条件によって、エンジンの着火前の所定クランク角度(α)における筒内圧力の標準偏差(σPα)を見ることで、筒内圧力センサの異常を判定でき、さらに、第2判定条件を付加することで、筒内圧力センサとは峻別して過早着火が発生していることが判別でき、さらに被駆動機側の負荷率(L)を考慮するため広いエンジン負荷範囲での判定が可能になる。 By looking at the standard deviation (σP α ) of the in-cylinder pressure at the predetermined crank angle (α) before the ignition of the engine according to the first determination condition, it is possible to determine abnormality of the in-cylinder pressure sensor. By adding, it can be distinguished from the in-cylinder pressure sensor that premature ignition has occurred, and in addition, the load factor (L) on the driven machine side is taken into consideration, so a determination in a wide engine load range is possible. It becomes possible.

図4、5に示すように、図4は低負荷時(50%)での筒内圧力変化状況を示し、図5は高負荷時(80%)での筒内圧力変化状況を示し、エンジン負荷が上昇するにつれて正常運転時においても過早着火時においても、ΔP、ΔPmaxともに上昇していることがわかる。
ΔPは、上死点前180°における筒内圧力P−180とクランク角度ゼロの上死点時における筒内圧力Pとの相対差圧を示し、ΔPmaxは、上死点前180°における筒内圧力P−180と筒内最大圧力Pmaxとの相対差圧を示す。
従って、負荷によって、筒内圧力特性が上下するため、過早着火時の判定においてエンジンの運転状況を示すエンジン負荷の影響を極力抑えて広い負荷範囲での判定できるようにするため、クランク角ゼロの上死点時の筒内圧力Pと基準クランク角(死点前180°)の筒内圧力P−180との相対差圧ΔPを負荷率Lで除した負荷率筒内差圧(ΔP/L)を用いて判定している。
このようにして負荷率で除して運転状況に左右されずに広い負荷範囲での判定できるようになる。
As shown in FIGS. 4 and 5, FIG. 4 shows the in-cylinder pressure change situation at low load (50%), and FIG. 5 shows the in-cylinder pressure change situation at high load (80%). It can be seen that as the load increases, both ΔP 0 and ΔPmax increase both during normal operation and during pre-ignition.
ΔP 0 indicates the relative differential pressure between the in-cylinder pressure P −180 at 180 ° before top dead center and the in-cylinder pressure P 0 at the top dead center at zero crank angle, and ΔPmax is at 180 ° before top dead center. The relative pressure difference between the cylinder pressure P- 180 and the cylinder maximum pressure Pmax is shown.
Therefore, in-cylinder pressure characteristics increase and decrease depending on the load, so that the determination of pre-ignition can suppress the influence of the engine load indicating the engine operating state as much as possible and make a determination in a wide load range. The in-cylinder pressure P 0 at the top dead center and the relative differential pressure ΔP 0 between the in-cylinder pressure P −180 at the reference crank angle (180 ° before the dead center) divided by the load factor L ( (ΔP 0 / L).
In this way, it is possible to determine in a wide load range without being influenced by the driving situation by dividing by the load factor.

負荷率は、具体的には該エンジンで駆動する発電機の定格発電出力に対する実際の発電出力を用いて算出できる。
以上のように、過早着火の判定と筒内圧力センサ異常の判定とを明確に識別して判定可能となると共に、シリンダ内における過早着火の発生を運転状況に左右されずに広い負荷範囲で検知可能となり、内燃機関の燃焼診断結果の信頼性が高まる。
Specifically, the load factor can be calculated using an actual power generation output with respect to a rated power generation output of a generator driven by the engine.
As described above, it is possible to clearly discriminate between the determination of pre-ignition and the determination of abnormality of the in-cylinder pressure sensor, and it is possible to determine the occurrence of pre-ignition in the cylinder without depending on the operation status, and a wide load range. And the reliability of the combustion diagnosis result of the internal combustion engine is increased.

また、好ましくは、前記標準偏差閾値(β)以上の判定および前記負荷率筒内差圧閾値(γ)以上の判定をエンジンの1燃焼サイクル毎に行い、前記両判定が共に閾値以上の回数が基準サイクル数中に設定回数以上発生した場合に過早着火と判定するとよい。
このように両判定結果が閾値以上である場合が設定回数以上発生したときに過早着火と判定することで、判定の信頼性が向上する。
Preferably, the determination above the standard deviation threshold (β) and the determination above the load factor in-cylinder differential pressure threshold (γ) are performed for each combustion cycle of the engine. It may be determined that pre-ignition occurs when the set number of occurrences occurs during the reference cycle.
Thus, the reliability of determination improves by determining with premature ignition when the case where both determination results are more than a threshold value occurs more than a set number of times.

また、好ましくは、前記両判定が共に閾値以上の回数が基準サイクル数中に設定回数以上発生しない場合には前記筒内圧力検出器の異常と判定するとよい。
このように設定回数に達していないが、前記両判定が共に閾値以上になったサイクルがある場合には筒内圧力検出器の異常と判定することで、筒内圧力検出器の異常と過早着火とを区別して判定をすることができる。
In addition, it is preferable to determine that the in-cylinder pressure detector is abnormal when both the determinations do not occur more than a set number of times during the reference cycle number.
As described above, when there is a cycle in which both the determinations have not reached the set number but both the determinations are equal to or greater than the threshold value, it is determined that the in-cylinder pressure detector is abnormal. Judgment can be made separately from ignition.

さらに、好ましくは、前記過早着火の判定後の一定時間内に、前記過早着火であると判定した割合が一定値以上に達したときに、該過早着火と判定したシリンダへの燃料を停止して休筒運転状態するとよい。
このように一定時間の結果を見て総合的に判定することで過早着火が発生している気筒を確実に判定でき、早期に休筒運転状態とする対応処置をとることができる。その結果、副室付きのガスエンジンにおいて、副室容損などといった重大なトラブルの発生を未然に防止でき、さらに容損した副室の一部がシリンダライナを傷つけたり、排気弁に衝突したり、ターボチャージャーに侵入して傷つけたりする等の問題を回避できる。
Further preferably, when a ratio determined to be pre-ignition reaches a predetermined value or more within a predetermined time after the determination of pre-ignition, fuel to the cylinder determined to be pre-ignition is supplied. It is good to stop and make a cylinder resting state.
Thus, by comprehensively judging the result of a predetermined time, it is possible to reliably determine the cylinder in which the pre-ignition has occurred, and to take a countermeasure to make the cylinder resting operation state early. As a result, in a gas engine with a sub chamber, it is possible to prevent the occurrence of serious troubles such as sub chamber loss, and a part of the sub chamber that is damaged can damage the cylinder liner or collide with the exhaust valve. It is possible to avoid problems such as intrusion and damage to the turbocharger.

さらに、好ましくは、前記エンジンがガスエンジンであり、前記被駆動機が発電機からなり、該発電機の発電出力を検出して該発電機の定格発電出力との割合から前記負荷率(L)を算出するとよい。
副室付きのガスエンジンにおいては、主燃焼室に予混合ガス燃料が吸気弁から吸入され、その予混合ガス燃料に副室内で生成された火種であるトーチによって燃焼が伝搬される。このため、シリンダ内に高温のすす等の未燃分の着火源が残留していると、次のサイクルで、主燃焼室に予混合ガスが吸気弁から吸入されると該着火源を起点として本来の燃焼よりも早期に着火する過早着火が生じやすいが、本発明ではかかる過早着火を前記発電機の発電出力を検出することで広い負荷範囲で確実に判定でき、さらに副室の容損等を防止することができる。
Further preferably, the engine is a gas engine, the driven machine is a generator, and the load factor (L) is determined from the ratio of the generator output of the generator to the rated power output of the generator. Should be calculated.
In a gas engine with a sub chamber, premixed gas fuel is drawn into the main combustion chamber from the intake valve, and combustion is propagated to the premixed gas fuel by a torch which is a fire type generated in the sub chamber. For this reason, if an unburned ignition source such as hot soot remains in the cylinder, the ignition source will be turned off when premixed gas is drawn into the main combustion chamber from the intake valve in the next cycle. Pre-ignition is likely to occur earlier than the original combustion as a starting point, but in the present invention such pre-ignition can be reliably determined over a wide load range by detecting the power generation output of the generator, and the sub chamber Can be prevented.

本出願の第2発明は、前記第1発明の内燃機関の燃焼診断方法を実施するための内燃機関の燃焼診断装置に関するものであり、筒内圧力検出器により検出された筒内圧力検出値に基づいてシリンダ内の燃焼状態を診断する内燃機関(エンジン)の燃焼診断装置において、前記筒内圧力検出器からの筒内圧力検出値およびクランク角検出器からのクランク角検出値に基づいてエンジンの着火前の所定クランク角度αにおける筒内圧力の変化の標準偏差(σPα)を算出する標準偏差算出部と、前記標準偏差(σPα)が標準偏差閾値(β)以上であるか否かを判定する標準偏差判定部と、前記筒内圧力検出器からの筒内圧力検出値およびクランク角検出器からのクランク角検出値に基づいて基準クランク角度と上死点とにおける筒内圧力の差圧(ΔP)を算出する筒内差圧算出部と、前記差圧(ΔP)をエンジンによって駆動される被駆動機側の負荷率(L)で除した負荷率筒内差圧(ΔP/L)が負荷率筒内差圧閾値(γ)以上であるか否かを判定する負荷率筒内差圧判定部と、前記標準偏差判定手段によって前記標準偏差(σPα)が標準偏差閾値(β)以上と判定し、前記負荷率筒内差圧判定手段によって負荷率筒内差圧(ΔP/L)が負荷率筒内差圧閾値(γ)以上であと判定したときに、エンジンの過早着火を判定する過早着火判定部と、を備えたことを特徴とする。 The second invention of the present application relates to a combustion diagnostic apparatus for an internal combustion engine for carrying out the combustion diagnostic method for an internal combustion engine of the first invention, and the in-cylinder pressure detection value detected by the in-cylinder pressure detector. An internal combustion engine (engine) combustion diagnostic apparatus for diagnosing a combustion state in a cylinder based on an in-cylinder pressure detection value from the in-cylinder pressure detector and a crank angle detection value from a crank angle detector. A standard deviation calculation unit for calculating a standard deviation (σP α ) of a change in the cylinder pressure at a predetermined crank angle α before ignition, and whether or not the standard deviation (σP α ) is equal to or greater than a standard deviation threshold (β). Based on the standard deviation determination unit for determining, the in-cylinder pressure detection value from the in-cylinder pressure detector and the crank angle detection value from the crank angle detector, the differential pressure between the in-cylinder pressure at the reference crank angle and the top dead center ( An in-cylinder differential pressure calculation unit for calculating ΔP 0 ), and a load factor in-cylinder differential pressure (ΔP 0 //) obtained by dividing the differential pressure (ΔP 0 ) by a load factor (L) on the driven machine driven by the engine. L) is a load factor in-cylinder differential pressure threshold (γ) or more, and the standard deviation (σP α ) is set to a standard deviation threshold ( β) or more, and when the load factor in-cylinder differential pressure determining means determines that the load factor in-cylinder differential pressure (ΔP 0 / L) is greater than or equal to the load factor in-cylinder differential pressure threshold (γ), An early ignition determination unit that determines excessive ignition is provided.

係る発明によれば、標準偏差算出部によって、筒内圧力検出器からの筒内圧力検出値およびクランク角検出器からのクランク角検出値に基づいてエンジンの着火前の所定クランク角度(α)における筒内圧力の変化の標準偏差(σPα)を算出し、さらに負荷率筒内差圧判定部によって、基準クランク角度と上死点とにおける筒内圧力の差圧(ΔP)を、エンジンによって駆動される被駆動機側の負荷率(L)で除した負荷率筒内差圧(ΔP/L)を算出し、過早着火判定部によって前記標準偏差(σPα)と負荷率筒内差圧(ΔP/L)とが、ともに閾値以上の場合に過早着火と判定するので、過早着火の判定と筒内圧力センサ異常の判定とを明確に識別して判定可能となると共に、シリンダ内における過早着火の発生を運転状況に左右されずに広い負荷範囲で検知可能となり、内燃機関の燃焼診断結果の信頼性が高まる。 According to such an invention, the standard deviation calculation unit performs the predetermined crank angle (α) before ignition of the engine based on the in-cylinder pressure detection value from the in-cylinder pressure detector and the crank angle detection value from the crank angle detector. The standard deviation (σP α ) of the change in in-cylinder pressure is calculated, and the in-cylinder pressure differential pressure (ΔP 0 ) between the reference crank angle and the top dead center is calculated by the engine by the load factor in-cylinder differential pressure determination unit. The in-cylinder differential pressure (ΔP 0 / L) divided by the load factor (L) of the driven machine to be driven is calculated, and the standard deviation (σP α ) and the in-cylinder load factor are calculated by the pre-ignition determination unit. When both of the differential pressures (ΔP 0 / L) are equal to or greater than the threshold value, it is determined as premature ignition. Therefore, it is possible to clearly identify and determine the premature ignition determination and the in-cylinder pressure sensor abnormality determination. , The occurrence of premature ignition in the cylinder It allows detection over a wide load range without being influenced, increases the reliability of the combustion diagnosis result of the internal combustion engine.

また、係る装置発明において好ましくは、前記標準偏差判定部での標準偏差閾値(β)以上の判定、および前記負荷率筒内差圧判定部での負荷率筒内差圧閾値(γ)以上の判定をエンジンの1燃焼サイクル毎に行い、前記過早着火判定部は前記両判定が共に閾値以上の回数が基準サイクル数中に設定回数以上発生した場合に過早着火と判定し、両判定結果が、共に閾値以上の回数が基準サイクル数中に前記設定回数以上発生しない場合には前記筒内圧力検出器の異常と判定するとよい。   In the apparatus invention, preferably, the standard deviation determination unit has a standard deviation threshold (β) or higher determination, and the load factor in-cylinder differential pressure determination unit has a load factor in-cylinder differential pressure threshold (γ) or higher. The determination is performed for each combustion cycle of the engine, and the pre-ignition determination unit determines pre-ignition when both of the determinations occur more than a set number of times in the reference cycle number, and both determination results However, when the number of times equal to or greater than the threshold value does not occur more than the set number of times during the reference cycle number, it is preferable to determine that the in-cylinder pressure detector is abnormal.

このように両判定結果が閾値以上である場合が設定回数以上発生したときに過早着火と判定することで、判定の信頼性が向上する。
設定回数に達していないが、前記両判定が共に閾値以上になったサイクルがある場合には筒内圧力検出器の異常と判定することで、筒内圧力検出器の異常と過早着火とを区別して判定をすることができる。
Thus, the reliability of determination improves by determining with premature ignition when the case where both determination results are more than a threshold value occurs more than a set number of times.
If there is a cycle in which both the determinations have not reached the set number of times but both the determinations are equal to or greater than the threshold value, it is determined that the in-cylinder pressure detector is abnormal, thereby detecting the abnormality in the in-cylinder pressure detector and premature ignition. It is possible to make a distinction.

また、係る装置発明において好ましくは、エンジンの運転を制御する運転制御手段を備え、該運転制御手段は前記過早着火判定部からの過早着火であるとの判定結果を一定時間内に一定割合以上受けたとき該過早着火と判定したシリンダへの燃料を停止して休筒運転状態とするとよい。
係る発明によれば運転制御手段によって、過早着火が発生している気筒を確実に判定でき、早期に休筒運転状態とする対応処置を適切にとることができる。
Preferably, the apparatus invention further includes an operation control means for controlling the operation of the engine, and the operation control means outputs a determination result from the pre-ignition determination unit that the pre-ignition is determined at a constant rate within a predetermined time. When the above is received, it is preferable to stop the fuel to the cylinder determined to be prematurely ignited so that the cylinder is rested.
According to such an invention, the operation control means can reliably determine the cylinder in which the premature ignition has occurred, and can appropriately take a countermeasure for making the cylinder resting operation state early.

また、係る装置発明において好ましくは、前記エンジンがガスエンジンであり、前記被駆動機が発電機からなり、該発電機の発電出力を検出して該発電機の定格発電出力との割合から前記負荷率(L)を算出する負荷率算出手段を備えるとよい。
係る発明では、負荷率算出手段によって、発電機の発電出力を検出して該発電機の定格発電出力との割合から前記負荷率(L)を算出でき、過早着火を広い負荷範囲で確実に判定できる。
Preferably, in the apparatus invention, the engine is a gas engine, the driven machine is a generator, the power generation output of the power generator is detected, and the load is calculated from a ratio with the rated power output of the power generator. A load factor calculating means for calculating the rate (L) may be provided.
In such an invention, the load factor calculating means can detect the power generation output of the generator and calculate the load factor (L) from the ratio with the rated power generation output of the generator, so that pre-ignition can be reliably performed in a wide load range. Can be judged.

本発明によれば、過早着火の判定と筒内圧力センサ異常の判定とを明確に識別して判定可能とすると共に、シリンダ内における過早着火の発生を運転状況に左右されずに広い負荷範囲で検知可能にして信頼性を高めた内燃機関の燃焼診断方法および燃焼診断装置を提供することができる。   According to the present invention, the determination of pre-ignition and the determination of abnormality of the in-cylinder pressure sensor can be clearly identified and determined, and the occurrence of pre-ignition in the cylinder is not affected by the driving situation, and a wide load It is possible to provide a combustion diagnostic method and combustion diagnostic apparatus for an internal combustion engine that can be detected in a range and have improved reliability.

以下、図面を参照して本発明の好適な実施の形態を例示的に詳しく説明する。但しこの実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.

なお、実施形態の説明で参照する図面は次の通りである。
図1は本発明の実施形態の燃焼診断装置の制御フローチャートである。図2は、本発明の実施形態を示すガスエンジンシの燃焼診断装置を示す全体構成図である。図3は、過早着火時の筒内圧力変化状況を示す説明図である。図4は、低負荷時の過早着火発生時と正常時との筒内圧力変化状況を記す説明図である。図5は、高負荷時の過早着火発生時と正常時との筒内圧力変化状況を記す説明図である。図6は、ガスエンジンの過早着火発生の筒内圧力変化状況を記す説明図である。
The drawings referred to in the description of the embodiment are as follows.
FIG. 1 is a control flowchart of a combustion diagnostic apparatus according to an embodiment of the present invention. FIG. 2 is an overall configuration diagram illustrating a combustion diagnosis apparatus for a gas engine according to an embodiment of the present invention. FIG. 3 is an explanatory diagram showing the in-cylinder pressure change situation at the time of premature ignition. FIG. 4 is an explanatory diagram showing the in-cylinder pressure change state between when pre-ignition occurs at low load and when it is normal. FIG. 5 is an explanatory diagram showing the in-cylinder pressure change state between the occurrence of premature ignition under a high load and the normal time. FIG. 6 is an explanatory diagram showing the in-cylinder pressure change situation of premature ignition of the gas engine.

図2は本発明の実施形態に係るガスエンジンの燃焼診断装置40の全体構成を示す構成図である。
図2において、ガスエンジン2は多シリンダの4サイクルガスエンジであり、シリンダ4内に往復摺動自在に嵌合されたピストン6、該ピストン6の往復動をコネクチングロッド8を介して回転に変換するクランク軸10を備えている。
また、前記ガスエンジン2は、ピストン6の上面とシリンダ4の内面との間に区画形成される燃焼室12、該燃焼室12に接続される給気ポート14及び給気管16、該給気ポート14を開閉する給気弁18を備え、さらに前記燃焼室12に接続される排気ポート20、該排気ポート20を開閉する排気弁22を備えている。
FIG. 2 is a configuration diagram showing the overall configuration of the gas engine combustion diagnostic apparatus 40 according to the embodiment of the present invention.
In FIG. 2, the gas engine 2 is a multi-cylinder four-cycle gas engine. A crankshaft 10 is provided.
The gas engine 2 includes a combustion chamber 12 defined between the upper surface of the piston 6 and the inner surface of the cylinder 4, an air supply port 14 and an air supply pipe 16 connected to the combustion chamber 12, and the air supply port 14 is provided with an air supply valve 18 for opening and closing 14, an exhaust port 20 connected to the combustion chamber 12, and an exhaust valve 22 for opening and closing the exhaust port 20.

前記給気管16の途中にはガスミキサー24が設置され、燃料ガス管26からガス量調整弁28を通して供給された燃料ガスと図示しない過給機から供給された圧縮空気(過給機を備えない場合は無過給空気)とを該ガスミキサー24で混合し、この予混合ガスを前記給気ポート14及び給気弁18を通して燃焼室12に供給する。
着火装置30は、図示しない副室内に軽油等のパイロット燃料32を噴射ノズル34により噴射して着火燃焼させ、この燃焼火炎を前記燃焼室12に噴出するパイロット噴射装置で構成されている。
A gas mixer 24 is installed in the middle of the air supply pipe 16. The fuel gas supplied from the fuel gas pipe 26 through the gas amount adjusting valve 28 and the compressed air supplied from a supercharger (not shown) (not provided with a supercharger). In this case, non-supercharged air) is mixed by the gas mixer 24, and this premixed gas is supplied to the combustion chamber 12 through the supply port 14 and the supply valve 18.
The ignition device 30 is composed of a pilot injection device that injects a pilot fuel 32 such as light oil into an auxiliary chamber (not shown) by an injection nozzle 34 to ignite and combust it, and injects the combustion flame into the combustion chamber 12.

燃料制御装置36はガス量調整弁28の開度または開時間を制御すると共に、前記噴射ノズル34へのパイロット燃料32の供給を制御してガスエンジンの運転を制御している。
また、ガスエンジン2の、各シリンダ筒内圧力は筒内圧力検出器(筒内圧力センサ)38で計測され、燃焼診断装置40に入力される。
また、前記燃焼診断装置40にはクランク角検出器42によって検出されたガスエンジン2のクランク角の検出値が入力される。
The fuel control device 36 controls the opening or opening time of the gas amount adjusting valve 28 and also controls the operation of the gas engine by controlling the supply of the pilot fuel 32 to the injection nozzle 34.
In-cylinder in-cylinder pressure of the gas engine 2 is measured by an in-cylinder pressure detector (in-cylinder pressure sensor) 38 and input to the combustion diagnostic device 40.
Further, the detected value of the crank angle of the gas engine 2 detected by the crank angle detector 42 is input to the combustion diagnostic device 40.

また、このガスエンジン2のエンジン負荷はガスエンジン2によって駆動される発電機44の発電電力が負荷信号として燃焼診断装置40に入力される。また、発電機44を設置しなくても、クランク軸10に負荷検出器を装着してエンジン負荷を検出するようにしても良いことは勿論である。   As for the engine load of the gas engine 2, the power generated by the generator 44 driven by the gas engine 2 is input to the combustion diagnostic device 40 as a load signal. Of course, even if the generator 44 is not installed, a load detector may be attached to the crankshaft 10 to detect the engine load.

燃焼診断装置40は、過早着火判定手段46と運転制御手段48とから構成され、さらにこの過早着火判定手段46は、筒内圧力検出器38からの筒内圧力検出値およびクランク角検出器42からのクランク角検出値に基づいてエンジンの着火前の所定クランク角度αにおける筒内圧力の変化の標準偏差σPαを算出する標準偏差算出部50と、標準偏差σPαが標準偏差閾値β以上であるか否かを判定する標準偏差判定部52と、筒内圧力検出器38からの筒内圧力検出値およびクランク角検出器42からのクランク角検出値に基づいて基準クランク角度と上死点とにおける筒内圧力の差圧ΔPを算出する筒内差圧算出部54と、該差圧ΔPをエンジンによって駆動される発電機44の負荷率Lで除した負荷率筒内差圧ΔP/Lが負荷率筒内差圧閾値γ以上であるか否かを判定する負荷率筒内差圧判定部56と、標準偏差σPαが標準偏差閾値β以上かを判定するとともに、負荷率筒内差圧ΔP/Lが負荷率筒内差圧閾値γ以上であるかを判定して、エンジンの過早着火を判定する過早着火判定部58と、負荷率算出部60とを備えて構成されている。
さらに、前記運転制御手段48は、燃料制御装置36を制御して各気筒に対するパイロット燃料32の供給、ガス量調整弁28の制御による燃料ガス量の制御を行っている。
The combustion diagnostic device 40 includes pre-ignition determination means 46 and operation control means 48. The pre-ignition determination means 46 further includes an in-cylinder pressure detection value from the in-cylinder pressure detector 38 and a crank angle detector. 42, a standard deviation calculator 50 for calculating a standard deviation σP α of a change in the in-cylinder pressure at a predetermined crank angle α before ignition of the engine based on the detected crank angle value from 42, and the standard deviation σP α is equal to or greater than the standard deviation threshold β Based on the standard deviation determination unit 52 for determining whether or not, the in-cylinder pressure detection value from the in-cylinder pressure detector 38 and the crank angle detection value from the crank angle detector 42, and the top dead center cylinder in-cylinder pressure calculation unit 54 for calculating a differential pressure [Delta] P 0 pressure, load factor-cylinder differential pressure [Delta] P obtained by dividing the load factor L of the generator 44 which is driven differential pressure [Delta] P 0 by the engine in a 0 / L is load And the load factor-cylinder pressure difference determination unit 56 is equal to or larger cylinder difference pressure threshold gamma, with standard deviation .sigma.p alpha to determine the standard deviation threshold β or more, the load factor-cylinder differential pressure [Delta] P 0 It is configured to include an pre-ignition determination unit 58 that determines whether / L is equal to or greater than the load factor in-cylinder differential pressure threshold γ and determines pre-ignition of the engine, and a load factor calculation unit 60.
Further, the operation control means 48 controls the fuel control device 36 to control the fuel gas amount by supplying the pilot fuel 32 to each cylinder and controlling the gas amount adjusting valve 28.

次に、図1に基づいて燃焼診断装置40による過早着火判定の制御について説明する。
図1の制御フローがガスエンジン2の1燃焼サイクル毎に実施されサイクル毎の燃焼状態が、図1のステップS1〜S5によって判定される。
その後、前記毎サイクルの瞬時の過早着火の判定結果に基づいてステップS6〜S10によって総合的な判定を行いその結果に基づいてガスエンジンの運転制御が行われる。すなわち、ステップS1〜5を瞬時判定といい、ステップS6〜S10を総合判定という。この瞬時判定が前記過早着火判定手段46によって行われ、総合判定が運転制御手段48によって行われる。
Next, control of the pre-ignition determination by the combustion diagnostic device 40 will be described based on FIG.
The control flow in FIG. 1 is performed for each combustion cycle of the gas engine 2, and the combustion state for each cycle is determined by steps S1 to S5 in FIG.
Then, based on the determination result of the instantaneous pre-ignition of each cycle, comprehensive determination is performed in steps S6 to S10, and the operation control of the gas engine is performed based on the result. That is, steps S1 to 5 are referred to as instantaneous determination, and steps S6 to S10 are referred to as comprehensive determination. This instantaneous determination is performed by the pre-ignition determination means 46, and the comprehensive determination is performed by the operation control means 48.

まずステップS1でスタートすると、ステップS2で、標準偏差算出部50によって、筒内圧力検出器38からの筒内圧力検出値、およびクランク角検出器42からのクランク角検出値に基づいてエンジン2の着火前の所定クランク角度α、例えば上死点前40度における筒内圧力の変化の標準偏差σP−40を算出する。1燃焼サイクル毎に制御フローが実行されて、標準偏差σP−40は、例えば16サイクル中の標準偏差によって判定される。
標準偏差判定部52ではこの上死点前40度における筒内圧力の変化の標準偏差σP−40が標準偏差閾値β、例えば0.1以上であるか否かを判定する。標準偏差σP−40が標準偏差閾値β=0.1以上の場合には次のステップS3へ進み、0.1を超えなかった場合にはステップS9へ進み、その他ノッキングの判定や失火の判定へと進む。
First, starting at step S1, in step S2, the standard deviation calculator 50 determines the engine 2 based on the in-cylinder pressure detection value from the in-cylinder pressure detector 38 and the crank angle detection value from the crank angle detector 42. A standard deviation σP −40 of a change in in-cylinder pressure at a predetermined crank angle α before ignition, for example, 40 degrees before top dead center is calculated. A control flow is executed for each combustion cycle, and the standard deviation σP- 40 is determined by, for example, the standard deviation in 16 cycles.
The standard deviation determination unit 52 determines whether or not the standard deviation σP- 40 of the change in the in-cylinder pressure at 40 degrees before the top dead center is a standard deviation threshold β, for example, 0.1 or more. If the standard deviation σP- 40 is greater than or equal to the standard deviation threshold β = 0.1, the process proceeds to the next step S3, and if it does not exceed 0.1, the process proceeds to step S9, and to other knocking determination or misfire determination. Proceed with

上死点前40度における筒内圧力の変化状況を図3に示す。この変化特性から分かるように過早着火の発生によって図3のH領域に示すように筒内圧力が急変する。この過早着火の発生による筒内圧力の変化を、標準偏差σP−40を算出することで検出して判定要素としている。 The change state of the in-cylinder pressure at 40 degrees before the top dead center is shown in FIG. As can be seen from this change characteristic, the in-cylinder pressure changes suddenly as shown in the H region of FIG. 3 due to the occurrence of premature ignition. The change in the in-cylinder pressure due to the occurrence of this pre-ignition is detected by calculating the standard deviation σP- 40, and is used as a determination factor.

上死点前40度としたのは、ガスエンジンの着火タイミングはほぼ上死点前10度〜20度であるため、その前の過早着火を確実に判定するために上死点前40度とした。
また、標準偏差閾値βの0.1については、同一機種のエンジンで予め台上試験を行い過早着火が発生したエンジンと過早着火が発生していないエンジンとを複数台比較試験をし、標準偏差閾値を予め設定しておく、本実施形態の場合には、試験結果からβ=0.1と設定した。この試験結果の一例を表1に示す。
The reason why the temperature is set to 40 degrees before the top dead center is that the ignition timing of the gas engine is about 10 degrees to 20 degrees before the top dead center. It was.
In addition, for the standard deviation threshold β of 0.1, a bench test is performed in advance with the same model engine, and an engine in which pre-ignition has occurred and an engine in which pre-ignition has not occurred are compared. In the case of this embodiment in which a standard deviation threshold is set in advance, β = 0.1 is set from the test result. An example of the test results is shown in Table 1.

表1から分かるように、標準偏差σP−40は、過早着火が発生すると、標準偏差が10倍以上にもバラツキ、本実施形態の場合においては0.1と設定することで確実に判定することができる。 As can be seen from Table 1, when the premature ignition occurs, the standard deviation σP- 40 varies as much as 10 times or more in the standard deviation. In this embodiment, the standard deviation σP- 40 is reliably determined by setting to 0.1. be able to.

Figure 2009133284
Figure 2009133284

次に、図1のフローチャートのステップS3に進み、筒内差圧算出部54で筒内圧力検出器38からの筒内圧力検出値、およびクランク角検出器42からのクランク角検出値に基づいて基準クランク角、上死点前180度の筒内圧力P−180と、上死点における筒内圧力Pとの差圧ΔP=P−P−180を算出する。
そして、算出した前記差圧ΔPをエンジン負荷、即ちガスエンジン2によって駆動される被駆動機側の発電機44の負荷率Lで除した負荷率筒内差圧ΔP/Lを求める。負荷率Lは、発電機44の定格発電出力に対する実際の発電電力の割合から負荷率Lを算出する。
Next, the process proceeds to step S3 in the flowchart of FIG. 1, and the in-cylinder differential pressure calculation unit 54 determines the in-cylinder pressure detection value from the in-cylinder pressure detector 38 and the crank angle detection value from the crank angle detector 42. A differential pressure ΔP 0 = P 0 −P −180 between the reference crank angle, the in-cylinder pressure P −180 at 180 degrees before the top dead center, and the in-cylinder pressure P 0 at the top dead center is calculated.
Then, a load factor in-cylinder differential pressure ΔP 0 / L obtained by dividing the calculated differential pressure ΔP 0 by the engine load, that is, the load factor L of the generator 44 on the driven machine driven by the gas engine 2 is obtained. The load factor L is calculated from the ratio of the actual generated power to the rated power output of the generator 44.

そして、負荷率筒内差圧判定部56で、この負荷率筒内差圧ΔP/Lが負荷率筒内差圧閾値γ、例えば20以上であるか否かを判定する。負荷率筒内差圧ΔP/Lが負荷率筒内差圧閾値γ=20以上の場合には次のステップS4へ進み、20を超えなかった場合にはステップS8へ進み筒内圧力センサ38の異常と判定する。 Then, the load factor in-cylinder differential pressure determination unit 56 determines whether or not the load factor in-cylinder differential pressure ΔP 0 / L is a load factor in-cylinder differential pressure threshold γ, for example, 20 or more. If the load factor in-cylinder differential pressure ΔP 0 / L is greater than or equal to the load factor in-cylinder differential pressure threshold γ = 20, the process proceeds to the next step S4, and if it does not exceed 20, the process proceeds to step S8. Judged as abnormal.

負荷率筒内差圧閾値γ=20については、予め台上試験を行い過早着火が発生したエンジンと過早着火が発生していないエンジンとを比較して閾値を設定しておく、本実施形態の場合には、試験結果からγ=20と設定した。この試験結果の一例は前記表1に示す。表1の結果から分かるように、負荷率筒内差圧閾値γは、過早着火が発生すると、20を超えていることがわかるため、20以上の場合には過早着火が発生したとして判断することができる。   For the load factor in-cylinder differential pressure threshold γ = 20, a bench test is performed in advance, and a threshold is set by comparing an engine in which pre-ignition has occurred with an engine in which pre-ignition has not occurred. In the case of the form, γ = 20 was set from the test result. An example of the test results is shown in Table 1 above. As can be seen from the results of Table 1, the load factor in-cylinder differential pressure threshold γ is found to exceed 20 when premature ignition occurs, so if it is 20 or more, it is determined that premature ignition has occurred. can do.

次に、フローチャートのステップS4に進み、過早着火判定部58においてステップS3での判定結果が、YESの場合、即ち負荷率筒内差圧閾値γが20以上になったかの条件Aが満たされる場合には、このYESの発生回数が設定回数Nに達したかが判定される。
制御ルーチンは1燃焼サイクル毎に判定されるため、例えば10サイクルを判定基準ブロックとして設定し、この10サイクル中に前記YESの判定が例えば4回に達したかを判定する。達していればステップS5で過早着火と判定し、前記YESの判定が4回に達しなかった場合には、ステップS8へ進み筒内圧力センサ38の異常と判定する。
Next, the process proceeds to step S4 in the flowchart. When the determination result in step S3 is YES in the pre-ignition determination unit 58, that is, the condition A that the load factor in-cylinder differential pressure threshold γ is 20 or more is satisfied. Is determined whether the number of occurrences of this YES has reached the set number N.
Since the control routine is determined for each combustion cycle, for example, 10 cycles are set as the determination reference block, and it is determined whether the determination of YES has reached, for example, 4 times during the 10 cycles. If it has reached, it is determined in step S5 that pre-ignition has occurred, and if the determination of YES has not reached four times, the process proceeds to step S8 where it is determined that the in-cylinder pressure sensor 38 is abnormal.

このように、10サイクル中に前記ステップ3でのYESの判定が4回に達したことによって過早着火を判定するため、判定の信頼性が向上する。
また、4回には達していないが、前記両判定が共に閾値以上になったサイクルがある場合には筒内圧力センサ38の異常と判定することで、筒内圧力センサ38の異常と過早着火との判定を区別できる。
Thus, since the pre-ignition is determined when the determination of YES in step 3 reaches four times during 10 cycles, the reliability of the determination is improved.
In addition, if there is a cycle in which both of the determinations are equal to or greater than the threshold value, the abnormality of the in-cylinder pressure sensor 38 is determined to be abnormal by determining that the in-cylinder pressure sensor 38 is abnormal. It is possible to distinguish the judgment from ignition.

次にステップS6に進み、運転制御手段48では、前記ステップS5からの過早着火の判定結果を受けてから、設定時間T例えば5〜13秒の間にステップS5からの過早着火の判定結果をカウントし、過早着火の割合を算定する。算出した割合が設定基準値P=60%以上の場合には、ステップS7に進み、ガスエンジン2の燃焼状態の最終的な判定結果として過早着火を判定する。   Next, proceeding to step S6, the operation control means 48 receives the determination result of premature ignition from step S5, and then determines the result of premature ignition from step S5 for a set time T, for example, 5 to 13 seconds. To calculate the pre-ignition ratio. When the calculated ratio is equal to or greater than the set reference value P = 60%, the process proceeds to step S7, and pre-ignition is determined as the final determination result of the combustion state of the gas engine 2.

その結果、運転制御手段48は燃料制御装置36に判定対象とされた気筒へのガス燃料の供給を停止する信号を送信して対象気筒を休筒状態とする。そしてステップS10で終了してリターンする。
このように設定時間T例えば5〜13秒内に過早着火の判定結果が占める割合を基に過早着火の判定を総合的に最終判断するため、判定結果の信頼性が高まり、早期に休筒運転状態とする対応処置を適切にとることができる。
As a result, the operation control means 48 sends a signal for stopping the supply of the gas fuel to the cylinder to be determined to the fuel control device 36 so as to put the target cylinder in a cylinder deactivation state. Then, the process ends at step S10 and returns.
As described above, the determination of pre-ignition is comprehensively made based on the ratio of the determination result of pre-ignition within the set time T, for example, 5 to 13 seconds. Appropriate measures for setting the cylinder operating state can be taken.

また、ステップS6で、過早着火の占有割合が例えば設定基準値P=60%に達しないときには、ステップS8へ進み筒内圧力センサ38の異常と判定して、ステップS10で終了してリターンする。ステップS8での筒内圧力センサ38の異状を判定したときには、燃料供給停止はせずに既定の運転条件で運転を維持する。   In step S6, if the pre-ignition occupancy ratio does not reach the set reference value P = 60%, for example, the process proceeds to step S8, where it is determined that the in-cylinder pressure sensor 38 is abnormal, and the process ends in step S10 and returns. . When the abnormality of the in-cylinder pressure sensor 38 is determined in step S8, the fuel supply is not stopped and the operation is maintained under the predetermined operation conditions.

以上の実施形態の制御フローによれば、ステップS2でエンジンの着火前に相当する上死点前40度の筒内圧力の標準偏差σP−40を標準偏差閾値の0.1と比較して、筒内圧力センサ38の異常を判定することができ、さらに、ステップ3でさらに負荷率筒内差圧ΔP/Lを負荷率筒内差圧閾値20と比較して、過早着火の発生を判定することができ、筒内圧力センサ38の異状とは峻別して過早着火が発生していることが判別できる。 According to the control flow of the above embodiment, the standard deviation σP- 40 of the in-cylinder pressure at 40 degrees before top dead center corresponding to before the ignition of the engine in step S2 is compared with the standard deviation threshold value of 0.1, Abnormality of the in-cylinder pressure sensor 38 can be determined, and further, in step 3, the load factor in-cylinder differential pressure ΔP 0 / L is further compared with the load factor in-cylinder differential pressure threshold value 20 to detect the occurrence of premature ignition. It can be determined, and it can be determined that pre-ignition has occurred, distinctly from the abnormality of the in-cylinder pressure sensor 38.

さらにエンジン負荷である発電機44の負荷率Lを考慮して、判定要素として負荷率筒内差圧ΔP/Lを新たに設定して、その値を評価要素として用いて判定するので、運転状況に左右されずに広い負荷範囲で判定を可能にして信頼性の高い内燃機関の燃焼診断方法および燃焼診断装置を提供できる。 Furthermore, considering the load factor L of the generator 44, which is the engine load, the load factor in-cylinder differential pressure ΔP 0 / L is newly set as a determination factor, and the value is used as an evaluation factor for determination. It is possible to provide a highly reliable combustion diagnostic method and combustion diagnostic apparatus for an internal combustion engine by enabling determination in a wide load range regardless of the situation.

本発明によれば、過早着火の判定と筒内圧力センサ異常の判定とを明確に識別して判定可能とすると共に、シリンダ内における過早着火の発生を運転状況に左右されずに広い負荷範囲で検知可能にして信頼性を高めた内燃機関の燃焼診断方法および燃焼診断装置を提供することができるので、ガスエンジンの燃焼診断装置への適用に際して有益である。   According to the present invention, the determination of pre-ignition and the determination of abnormality of the in-cylinder pressure sensor can be clearly identified and determined, and the occurrence of pre-ignition in the cylinder is not affected by the driving situation, and a wide load It is possible to provide a combustion diagnostic method and combustion diagnostic apparatus for an internal combustion engine that can be detected in a range and have improved reliability, which is advantageous when applied to a combustion diagnostic apparatus for a gas engine.

本発明の実施形態の燃焼診断装置の制御フローチャートである。It is a control flowchart of the combustion diagnostic apparatus of embodiment of this invention. 本発明の実施形態を示すガスエンジンシの燃焼診断装置を示す全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall configuration diagram showing a combustion diagnosis device for a gas engine that shows an embodiment of the present invention. 過早着火時の筒内圧力変化状況を示す説明図である。It is explanatory drawing which shows the cylinder pressure change condition at the time of premature ignition. 低負荷時の過早着火発生時と正常時との筒内圧力変化状況を記す説明図である。It is explanatory drawing which describes the in-cylinder pressure change situation at the time of premature ignition generation | occurrence | production at the time of low load, and normal time. 高負荷時の過早着火発生時と正常時との筒内圧力変化状況を記す説明図である。It is explanatory drawing which describes the in-cylinder pressure change situation at the time of premature ignition generation | occurrence | production at the time of high load, and normal time. ガスエンジンの過早着火発生の筒内圧力変化状況を記す説明図である。It is explanatory drawing which describes the cylinder pressure change condition of the premature ignition generation | occurrence | production of a gas engine.

符号の説明Explanation of symbols

2 ガスエンジン(エンジン)
10 クランク軸
36 燃料制御装置
38 筒内圧力センサ(筒内圧力検出器)
40 燃焼診断装置
42 クランク角検出器
44 発電機
46 過早着火判定手段
48 運転制御手段
50 標準偏差算出部
52 標準偏差判定部
54 筒内差圧算出部
56 負荷率筒内差圧判定部
58 過早着火判定部
60 負荷率算出部
2 Gas engine (engine)
10 Crankshaft 36 Fuel control device 38 In-cylinder pressure sensor (in-cylinder pressure detector)
DESCRIPTION OF SYMBOLS 40 Combustion diagnostic apparatus 42 Crank angle detector 44 Generator 46 Pre-ignition determination means 48 Operation control means 50 Standard deviation calculation part 52 Standard deviation determination part 54 In-cylinder differential pressure calculation part 56 Load factor In-cylinder differential pressure determination part 58 Excessive Early ignition determination unit 60 Load factor calculation unit

Claims (10)

筒内圧力検出器により検出された筒内圧力検出値に基づいてシリンダ内の燃焼状態を診断する内燃機関(エンジン)の燃焼診断方法において、
エンジンの着火前の所定クランク角度(α)における筒内圧力の変化の標準偏差(σPα)を算出し該標準偏差(σPα)が標準偏差閾値(β)以上で、かつ基準クランク角度と上死点とにおける筒内圧力の差圧(ΔP)を算出し、該差圧(ΔP)をエンジンによって駆動される被駆動機側の負荷率(L)で除した負荷率筒内差圧(ΔP/L)が負荷率筒内差圧閾値(γ)以上であるときに過早着火が発生していると判定することを特徴とする内燃機関の燃焼診断方法。
In the combustion diagnosis method for an internal combustion engine (engine) for diagnosing the combustion state in the cylinder based on the in-cylinder pressure detection value detected by the in-cylinder pressure detector,
The standard deviation (σP α ) of the change in in-cylinder pressure at a predetermined crank angle (α) before the ignition of the engine is calculated, and the standard deviation (σP α ) is equal to or greater than the standard deviation threshold (β) and above the reference crank angle. The in-cylinder pressure differential pressure (ΔP 0 ) with respect to the dead point is calculated, and the differential pressure (ΔP 0 ) is divided by the load factor (L) on the driven machine driven by the engine. A combustion diagnosis method for an internal combustion engine, wherein it is determined that pre-ignition has occurred when (ΔP 0 / L) is equal to or greater than a load factor in-cylinder differential pressure threshold value (γ).
前記標準偏差閾値(β)以上の判定および前記負荷率筒内差圧閾値(γ)以上の判定をエンジンの1燃焼サイクル毎に行い、前記両判定が共に閾値以上の回数が基準サイクル数中に設定回数以上発生した場合に過早着火と判定することを特徴とする請求項1記載の内燃機関の燃焼診断方法。   The determination above the standard deviation threshold (β) and the determination above the load factor in-cylinder differential pressure threshold (γ) are performed for each combustion cycle of the engine. 2. The combustion diagnosis method for an internal combustion engine according to claim 1, wherein pre-ignition is determined when the occurrence occurs more than a set number of times. 前記両判定が共に閾値以上の回数が基準サイクル数中に設定回数以上発生しない場合には前記筒内圧力検出器の異常と判定することを特徴とする請求項2記載の内燃機関の燃焼診断方法。   3. The combustion diagnosis method for an internal combustion engine according to claim 2, wherein when both of the determinations do not occur more than a set number of times during the reference cycle number, a determination is made that the in-cylinder pressure detector is abnormal. . 前記過早着火の判定後の一定時間内に、前記過早着火であると判定した割合が一定値以上に達したときに、該過早着火と判定したシリンダへの燃料を停止して休筒運転状態とすることを特徴とする請求項2記載の内燃機関の燃焼診断方法。   When the ratio determined to be premature ignition reaches a predetermined value or more within a predetermined time after the determination of premature ignition, the fuel to the cylinder determined to be premature ignition is stopped and the cylinder is stopped. The combustion diagnosis method for an internal combustion engine according to claim 2, wherein the combustion state is set to an operating state. 前記エンジンがガスエンジンであり、前記被駆動機が発電機からなり、該発電機の発電出力を検出して該発電機の定格発電出力との割合から前記負荷率(L)を算出することを特徴とする請求項1記載の内燃機関の燃焼診断方法。   The engine is a gas engine, the driven machine is a generator, and the load factor (L) is calculated from a ratio with the rated power output of the generator by detecting the power generation output of the generator; The combustion diagnosis method for an internal combustion engine according to claim 1, characterized in that: 筒内圧力検出器により検出された筒内圧力検出値に基づいてシリンダ内の燃焼状態を診断する内燃機関(エンジン)の燃焼診断装置において、
前記筒内圧力検出器からの筒内圧力検出値およびクランク角検出器からのクランク角検出値に基づいてエンジンの着火前の所定クランク角度αにおける筒内圧力の変化の標準偏差(σPα)を算出する標準偏差算出部と、
前記標準偏差(σPα)が標準偏差閾値(β)以上であるか否かを判定する標準偏差判定部と、
前記筒内圧力検出器からの筒内圧力検出値およびクランク角検出器からのクランク角検出値に基づいて基準クランク角度と上死点とにおける筒内圧力の差圧(ΔP)を算出する筒内差圧算出部と、
前記差圧(ΔP)をエンジンによって駆動される被駆動機側の負荷率(L)で除した負荷率筒内差圧(ΔP/L)が負荷率筒内差圧閾値(γ)以上であるか否かを判定する負荷率筒内差圧判定部と、
前記標準偏差判定手段によって前記標準偏差(σPα)が標準偏差閾値(β)以上と判定し、前記負荷率筒内差圧判定手段によって負荷率筒内差圧(ΔP/L)が負荷率筒内差圧閾値(γ)以上であと判定したときに、エンジンの過早着火を判定する過早着火判定部と、を備えたことを特徴とする内燃機関の燃焼診断装置。
In a combustion diagnostic apparatus for an internal combustion engine (engine) for diagnosing a combustion state in a cylinder based on a cylinder pressure detection value detected by a cylinder pressure detector,
Based on the in-cylinder pressure detection value from the in-cylinder pressure detector and the crank angle detection value from the crank angle detector, the standard deviation (σP α ) of the change in in-cylinder pressure at a predetermined crank angle α before ignition of the engine is calculated. A standard deviation calculation unit to calculate,
A standard deviation determination unit for determining whether or not the standard deviation (σP α ) is equal to or greater than a standard deviation threshold (β);
A cylinder for calculating a differential pressure (ΔP 0 ) between the reference crank angle and the top dead center based on the in-cylinder pressure detection value from the in-cylinder pressure detector and the crank angle detection value from the crank angle detector. An internal differential pressure calculator,
The load factor in-cylinder differential pressure (ΔP 0 / L) obtained by dividing the differential pressure (ΔP 0 ) by the load factor (L) on the driven machine driven by the engine is equal to or greater than the load factor in-cylinder differential pressure threshold (γ). A load factor in-cylinder differential pressure determination unit that determines whether or not
The standard deviation determining means determines that the standard deviation (σP α ) is equal to or greater than a standard deviation threshold (β), and the load factor in-cylinder differential pressure determining means determines the load factor in-cylinder differential pressure (ΔP 0 / L) as a load factor. An internal combustion engine combustion diagnostic apparatus comprising: an early ignition determination unit that determines whether the engine is prematurely ignited when it is determined that the pressure difference is in-cylinder differential pressure threshold (γ) or more.
前記標準偏差判定部での標準偏差閾値(β)以上の判定、および前記負荷率筒内差圧判定部での負荷率筒内差圧閾値(γ)以上の判定をエンジンの1燃焼サイクル毎に行い、前記過早着火判定部は前記両判定が共に閾値以上の回数が基準サイクル数中に設定回数以上発生した場合に過早着火と判定することを特徴とする請求項6記載の内燃機関の燃焼診断装置。   The determination that the standard deviation determination unit is greater than or equal to the standard deviation threshold value (β) and the determination that is greater than or equal to the load factor in-cylinder differential pressure threshold value (γ) are performed for each combustion cycle of the engine. 7. The internal combustion engine according to claim 6, wherein the pre-ignition determination unit determines pre-ignition when both of the determinations occur more than a set number of times in the reference cycle number. Combustion diagnostic device. 前記過早着火判定部は前記両判定が共に閾値以上の回数が基準サイクル数中に前記設定回数以上発生しない場合には前記筒内圧力検出器の異常と判定することを特徴とする請求項7記載の内燃機関の燃焼診断装置。   The pre-ignition determination unit determines that the in-cylinder pressure detector is abnormal when the number of times that both the determinations are equal to or greater than the threshold value does not occur more than the set number of times during a reference cycle number. A combustion diagnostic apparatus for an internal combustion engine as described. エンジンの運転を制御する運転制御手段を備え、該運転制御手段は前記過早着火判定部からの過早着火であるとの判定結果を一定時間内に一定割合以上受けたとき該過早着火と判定したシリンダへの燃料を停止して休筒運転状態とすることを特徴とする請求項7記載の内燃機関の燃焼診断装置。   An operation control means for controlling the operation of the engine, and the operation control means receives the pre-ignition from the pre-ignition determination unit when the pre-ignition is received at a predetermined ratio or more within a predetermined time. 8. The combustion diagnosis apparatus for an internal combustion engine according to claim 7, wherein the determined fuel is stopped and the cylinder is rested. 前記エンジンがガスエンジンであり、前記被駆動機が発電機からなり、該発電機の発電出力を検出して該発電機の定格発電出力との割合から前記負荷率(L)を算出する負荷率算出手段を備えたことを特徴とする請求項6記載の内燃機関の燃焼診断装置。   The engine is a gas engine, the driven machine is a generator, a load factor for detecting the power generation output of the generator and calculating the load factor (L) from a ratio with the rated power generation output of the generator 7. A combustion diagnostic apparatus for an internal combustion engine according to claim 6, further comprising a calculating means.
JP2007311475A 2007-11-30 2007-11-30 Combustion diagnostic method and combustion diagnostic device of internal combustion engine Withdrawn JP2009133284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007311475A JP2009133284A (en) 2007-11-30 2007-11-30 Combustion diagnostic method and combustion diagnostic device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007311475A JP2009133284A (en) 2007-11-30 2007-11-30 Combustion diagnostic method and combustion diagnostic device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009133284A true JP2009133284A (en) 2009-06-18

Family

ID=40865393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007311475A Withdrawn JP2009133284A (en) 2007-11-30 2007-11-30 Combustion diagnostic method and combustion diagnostic device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009133284A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111145A1 (en) 2011-02-18 2012-08-23 トヨタ自動車株式会社 Device for controlling internal combustion engine
JP2014143790A (en) * 2013-01-22 2014-08-07 Nippon Sharyo Seizo Kaisha Ltd Engine generator and operation method of engine generator
CN104863729A (en) * 2014-02-20 2015-08-26 Ge延巴赫两合无限公司 Method for operating internal combustion engine
WO2018012475A1 (en) * 2016-07-12 2018-01-18 ヤンマー株式会社 Engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370520B (en) * 2011-02-18 2015-04-22 丰田自动车株式会社 Device for controlling internal combustion engine
CN103370520A (en) * 2011-02-18 2013-10-23 丰田自动车株式会社 Device for controlling internal combustion engine
EP2677151A1 (en) * 2011-02-18 2013-12-25 Toyota Jidosha Kabushiki Kaisha Device for controlling internal combustion engine
WO2012111145A1 (en) 2011-02-18 2012-08-23 トヨタ自動車株式会社 Device for controlling internal combustion engine
EP2677151A4 (en) * 2011-02-18 2014-11-05 Toyota Motor Co Ltd Device for controlling internal combustion engine
US8949003B2 (en) 2011-02-18 2015-02-03 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2014143790A (en) * 2013-01-22 2014-08-07 Nippon Sharyo Seizo Kaisha Ltd Engine generator and operation method of engine generator
CN104863729A (en) * 2014-02-20 2015-08-26 Ge延巴赫两合无限公司 Method for operating internal combustion engine
JP2015155695A (en) * 2014-02-20 2015-08-27 ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー Internal combustion engine operating method
US10161320B2 (en) 2014-02-20 2018-12-25 Ge Jenbacher Gmbh & Co Og Method of operating an internal combustion engine
WO2018012475A1 (en) * 2016-07-12 2018-01-18 ヤンマー株式会社 Engine
JP2018009475A (en) * 2016-07-12 2018-01-18 ヤンマー株式会社 engine
KR102056558B1 (en) 2016-07-12 2019-12-16 얀마 가부시키가이샤 engine
US11187163B2 (en) 2016-07-12 2021-11-30 Yanmar Power Technology Co., Ltd. Engine

Similar Documents

Publication Publication Date Title
JP5705765B2 (en) Gas engine control apparatus and method
JP4119796B2 (en) Combustion diagnosis, combustion control method and apparatus for internal combustion engine
JP4138491B2 (en) Combustion diagnosis / control device and combustion diagnosis / control method for internal combustion engine
US20160160776A1 (en) Engine System and Method
JP2007170405A (en) Combustion diagnosis/control apparatus and combustion diagnosis/control method for internal combustion engine
JP4191586B2 (en) Combustion control method and combustion control apparatus for gas engine
JP2009203883A (en) Failure cause estimating method and device for internal combustion engine
KR20140138052A (en) Method of operating a gas or dual fuel engine
JP2009133284A (en) Combustion diagnostic method and combustion diagnostic device of internal combustion engine
JP4796531B2 (en) engine
JP2009203882A (en) Combustion analysis method, combustion analysis device, and combustion analysis system for power generation engine
US10767592B2 (en) Failure diagnosis device for in-cylinder pressure sensor
JP2012031766A (en) Device and method for detecting misfire in engine
JP4823103B2 (en) Gas engine and operation method thereof when misfire occurs
JP2013104371A (en) Internal combustion engine control device
JP5881627B2 (en) Abnormal combustion detection system for internal combustion engine
JP2008082245A (en) Fuel cetane number discrimination system for compression ignition type internal combustion engine
JP5799090B2 (en) Control of internal combustion engine
JP2007162527A (en) Premixed compression ignition engine
JP2007032407A (en) Combustion diagnostic method for internal combustion engine and its device
JP5500088B2 (en) Control device for internal combustion engine
US10570846B2 (en) Internal combustion engine
WO2024154596A1 (en) Misfire determination method for internal combustion engines, control method for internal combustion engines, and control device for internal combustion engines
JP2014227975A (en) Abnormal condition detection device of auxiliary chamber type engine
JP4823246B2 (en) Abnormality diagnosis method and apparatus for gas engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201