[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009131825A - Reduced-water making catalyst and reduced-water making container - Google Patents

Reduced-water making catalyst and reduced-water making container Download PDF

Info

Publication number
JP2009131825A
JP2009131825A JP2008023464A JP2008023464A JP2009131825A JP 2009131825 A JP2009131825 A JP 2009131825A JP 2008023464 A JP2008023464 A JP 2008023464A JP 2008023464 A JP2008023464 A JP 2008023464A JP 2009131825 A JP2009131825 A JP 2009131825A
Authority
JP
Japan
Prior art keywords
catalyst
water
plate
reduced
reduced water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008023464A
Other languages
Japanese (ja)
Other versions
JP4326577B2 (en
Inventor
Hirobumi Nakajima
博文 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SECURITY KK
Original Assignee
SECURITY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SECURITY KK filed Critical SECURITY KK
Priority to JP2008023464A priority Critical patent/JP4326577B2/en
Publication of JP2009131825A publication Critical patent/JP2009131825A/en
Application granted granted Critical
Publication of JP4326577B2 publication Critical patent/JP4326577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a constitution of a reduced-water making catalyst which is an alloy primarily consisting of magnesium inhibited from undergoing quick oxidation and can efficiently make reduced-water, and a constitution of a reduced-water making container on the basis of the reduced-water making catalyst. <P>SOLUTION: A basic constitution as described below is provided for solving the above problem. (1) The reduced-water making catalyst 1 is made by shaping an alloy primarily consisting of magnesium (Mg) and made by alloying magnesium (Mg) with zinc (Zn) and/or manganese (Mn) into a plate or a pipe. (2) The reduced-water making container 2 has the reduced-water making catalyst 1, as described above (1), placed in the bottom and a lid removably attached to the top of the container. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、還元水を生成するための触媒及び容器に関するものである。   The present invention relates to a catalyst and a container for producing reduced water.

一般に、水の酸化還元電位として、銀−塩化銀電極を使用して測定した場合の酸化還元電位の値(ORP値)については、+200mVを示す場合が中間値とされ、当該中間値よりも低い電位による水は、還元水と称されている。   In general, as the oxidation-reduction potential of water, the value of the oxidation-reduction potential (ORP value) when measured using a silver-silver chloride electrode is an intermediate value when showing +200 mV, which is lower than the intermediate value. Water based on electric potential is called reduced water.

還元水は、活性酸素を減少させることなどによって健康飲料水として飲用されているが、その生成方式としては、容器内に陽極と陰極とを配置し、容器内の電位を+200mVよりも低電位とするように調整する方式が周知の技術的手法として広範に採用されている。   Reduced water is drunk as healthy drinking water by reducing active oxygen, etc., but as its generation method, an anode and a cathode are arranged in a container, and the potential in the container is set to a potential lower than +200 mV. The adjustment method is widely adopted as a well-known technical method.

このような方式は、既に様々な技術的改良が提唱されているが、陽極及び陰極を設置しなければならない点において、構成が複雑であり、しかも常時通電しなければならない点において不経済である。
更には、電解質成分の多い硬水の場合には、カルシウム(Ca)などの陽イオンが負電極に付着し、使用時間の経過と共に電解が不能となり、電極の交換という煩雑性、更にはメンテナンスの困難性が生ぜざるを得なかった。
Such a system has already been proposed for various technical improvements, but is complicated in configuration in that an anode and a cathode must be installed, and is uneconomical in that it must be energized at all times. .
Furthermore, in the case of hard water with a lot of electrolyte components, cations such as calcium (Ca) adhere to the negative electrode, and electrolysis becomes impossible with the passage of time of use, and the complexity of electrode replacement and further maintenance are difficult. Sex was unavoidable.

このような点を改良するために、特許文献1では、通電を不要とするような還元水生成装置の構成が提唱されている。   In order to improve such a point, Patent Document 1 proposes a configuration of a reduced water generator that does not require energization.

しかしながら、特許文献1の方式においても、陽極及び陰極、更にはイオン電池を必要としており、構成が複雑である点において変わりはない。   However, the method of Patent Document 1 also requires an anode and a cathode, and further an ion battery, and there is no change in that the configuration is complicated.

還元水は、触媒物質を水中に配置し、かつ水素を発生させることによって、原理的には実現可能である。   Reduced water can be realized in principle by arranging a catalytic substance in water and generating hydrogen.

従来、還元水生成用触媒としてアルミニウム又はその合金が採用されているが、水中に溶出するアルミニウムイオン(Al+++)が人体内に摂取された場合、人体に良好な影響を与えないことから、アルミニウム又はその合金は、還元水生成用触媒としては不適切である。 Conventionally, aluminum or an alloy thereof has been adopted as a catalyst for reducing water generation. However, when aluminum ions (Al +++ ) eluted in water are ingested into the human body, they do not have a favorable effect on the human body. Alternatively, the alloy is unsuitable as a catalyst for producing reduced water.

これに対し、マグネシウム(Mg)の場合には、人体において必須のミネラル成分であることから、そのイオン(Mg++)が人体内に摂取されることは、アルミニウムイオンのような悪影響を与えないばかりか、却って好ましい状況にあることから、還元水生成用触媒として本来採用可能である。 On the other hand, in the case of magnesium (Mg), since it is an essential mineral component in the human body, the ingestion of its ions (Mg ++ ) does not have an adverse effect like aluminum ions. On the contrary, since it is in a preferable situation, it can be originally employed as a catalyst for generating reduced water.

そして、Mg+2HO→Mg(OH)+H↑という化学反応に基づき、水中に水素が発生し、当該水素による還元作用によって還元水が生成され、ORP値は当然低下する。 And based on the chemical reaction of Mg + 2H 2 O → Mg (OH) 2 + H 2 ↑, hydrogen is generated in the water, reduced water is generated by the reducing action of the hydrogen, and the ORP value naturally decreases.

しかしながら、マグネシウムが水中及び空中において速やかに酸化し、酸化マグネシウム(MgO)と化し、前記のような還元水生成用触媒として実際に使用するには、当該酸化を避けるために、他の金属との合金とすることを不可欠とせざるを得ない。   However, when magnesium is rapidly oxidized in water and in the air to form magnesium oxide (MgO) and is actually used as a catalyst for generating reduced water as described above, in order to avoid the oxidation, It must be indispensable to use an alloy.

しかるに、還元水生成用触媒としてマグネシウムを主成分とする合金については、現時点では、適切な構成が提供されている訳ではない。   However, an appropriate configuration is not currently provided for an alloy containing magnesium as a main component as a reducing water generation catalyst.

特許公開2007−075752公報。Patent publication 2007-075752.

本発明は、前記の如き従来技術の状況に鑑み、マグネシウムを主成分とし、かつその急激な酸化を防止するような合金であって、しかも効率的に還元水を生成し得ると共に、長期間かつ安定した状態にて使用し得る還元水生成用触媒の構成を提供すると共に、当該還元水生成用触媒に基づく還元水生成容器の構成を提唱することを課題としている。   In view of the state of the prior art as described above, the present invention is an alloy containing magnesium as a main component and preventing its rapid oxidation, and can generate reduced water efficiently, While providing the structure of the reduced water production | generation catalyst which can be used in the stable state, it makes it the subject to propose the structure of the reduced water production | generation container based on the said catalyst for reduced water production | generation.

前記課題を解決するため、本発明の基本構成は、
(1)マグネシウム(Mg)を主成分とし、亜鉛(Zn)及び/又はマンガン(Mn)を添加したことによる合金を、板状又はパイプ状に形成したことに基づく還元水生成用触媒、
(2)前記(1)の還元水生成用触媒を底部に配置し、上側に蓋を着脱自在に配置したことに基づく還元水生成容器、
からなる。
In order to solve the above problems, the basic configuration of the present invention is as follows.
(1) A catalyst for reducing water generation based on the formation of an alloy having magnesium (Mg) as a main component and zinc (Zn) and / or manganese (Mn) added into a plate shape or a pipe shape,
(2) A reduced water production container based on the fact that the reduced water production catalyst of (1) is arranged at the bottom and the lid is detachably arranged on the upper side,
Consists of.

前記(1)による還元水生成用触媒を採用した前記(2)の還元水生成容器においては、容器内において速やかに還元水を生成することができ、しかもマグネシウムの急速な酸化を防止することができるので、長期間に亘って持続的な使用も可能となる。   In the reduced water generation container of (2) that employs the reduced water generation catalyst according to (1), reduced water can be quickly generated in the container, and rapid oxidation of magnesium can be prevented. Therefore, it can be used continuously for a long time.

前記(1)の基本構成に係る還元水生成用触媒1は、主成分であるマグネシウムに対し、亜鉛及び/又はマンガンを添加することによって、急速な酸化による腐食を防止すると共に、展伸性及び加工性を向上させている。   The catalyst for reducing water generation 1 according to the basic configuration (1) described above prevents corrosion due to rapid oxidation by adding zinc and / or manganese to magnesium as a main component, and also exhibits extensibility and Workability is improved.

このような展伸性及び加工性を向上させるには、亜鉛及びマンガンの双方を添加することが好ましい。   In order to improve such spreadability and workability, it is preferable to add both zinc and manganese.

他方、前記(1)の基本構成においては、図1(a)、(b)に示すように、板状又はパイプ状の形態を採用している。   On the other hand, in the basic configuration (1), a plate-like or pipe-like form is adopted as shown in FIGS.

このような形態を採用した根拠は、例えば、球状のような立方形状の場合に比し、前記板状及びパイプ状の方が同一の体積の場合には、形成され得る表面積が大きいため、水中における還元水の生成に寄与する程度が大きいという点にある。   The reason for adopting such a form is, for example, that the surface area that can be formed is larger when the plate and pipe have the same volume than in the case of a cubic shape such as a spherical shape. It is that the degree which contributes to the production | generation of the reduced water in is large.

尤も、板状又はパイプ状を形成する厚さと同程度の平均径を有する粒状の場合には、更に大きな表面積を形成し得るが如くにも考えられるが、このような粒状の場合には、前記基本構成(2)のように、容器内の底部に安定した状態にて配置することが不可能である一方、粒状の単位が相互に接触し合った場合には、結局、立法形状と同じような状態となり、水との表面における接触が妨げられ、還元水生成のための効率的な触媒機能を発揮することができない。   However, in the case of a granule having an average diameter comparable to the thickness forming a plate shape or a pipe shape, it can be considered that a larger surface area can be formed. As in the basic configuration (2), it is impossible to arrange the container in a stable state at the bottom of the container. On the other hand, when the granular units come into contact with each other, the result is the same as the legislative shape. Thus, contact on the surface with water is hindered, and an efficient catalytic function for producing reduced water cannot be exhibited.

かくして、板状又はパイプ状の形態を採用することによって、極めて効率的な還元水の生成の触媒機能を発揮し得ることは間違いない。   Thus, there is no doubt that by adopting a plate-like or pipe-like form, an extremely efficient catalytic function for producing reduced water can be exhibited.

請求項2に係る実施形態は、亜鉛を添加する割合を、1.5〜12.0重量%とし、マンガンを添加する割合を、0.5〜3.5重量%とすることを特徴としている。   The embodiment according to claim 2 is characterized in that the ratio of adding zinc is 1.5 to 12.0% by weight and the ratio of adding manganese is 0.5 to 3.5% by weight. .

亜鉛の添加量につき、1.5重量%の下限値は、急速な酸化による腐食を防止するための最低基準量であり、12.0重量%の上限値は、当該上限値を超えた場合には、マグネシウムと亜鉛による固溶体の形成が困難と化し、しかもマグネシウムの良好な還元水生成の触媒機能が低下することを考慮したことに由来している。
尚、固溶体を維持しながら板状又はパイプ状に形成する際、押し出し成形の場合には、亜鉛の上限値は、約8.5重量%であり、鋳造の場合には、亜鉛の上限値は、12.0重量%である。
With respect to the amount of zinc added, the lower limit of 1.5% by weight is the minimum reference amount for preventing corrosion due to rapid oxidation, and the upper limit of 12.0% by weight is when the upper limit is exceeded. This is derived from the fact that it is difficult to form a solid solution with magnesium and zinc, and that the catalytic function for producing good reduced water of magnesium is reduced.
In addition, when forming into a plate shape or a pipe shape while maintaining a solid solution, in the case of extrusion molding, the upper limit value of zinc is about 8.5% by weight. In the case of casting, the upper limit value of zinc is 12.0% by weight.

同様に、マンガンの添加量につき、0.5重量%の下限値は、急速な酸化による腐食を防止するための最低基準量であり、3.5重量%の上限値は、当該上限値を超えた場合には、マグネシウムとマンガンによる固溶体の形成が困難と化し、しかもマグネシウムの良好な還元水生成の触媒機能が低下することを考慮したことに由来している。
尚、亜鉛及びマンガンをそれぞれ12.0重量%及び3.5重量%の上限値及び下限値によって添加した場合であっても、それぞれマグネシウムとの間にて独立して固溶体を形成し得ることが実験上確認されている。
Similarly, with respect to the amount of manganese added, the lower limit of 0.5% by weight is the minimum reference amount for preventing corrosion due to rapid oxidation, and the upper limit of 3.5% by weight exceeds the upper limit. In this case, the formation of a solid solution with magnesium and manganese becomes difficult, and the catalyst function for producing good reduced water of magnesium is reduced.
In addition, even when zinc and manganese are added at an upper limit value and a lower limit value of 12.0% by weight and 3.5% by weight, respectively, a solid solution can be formed independently with magnesium. It has been confirmed experimentally.

このような数値限定によって、マグネシウムの腐食の防止、及び適切な還元作用とを両立させること、更には、良好な展伸性及び加工性を確保することが可能となる。   By such numerical limitation, it is possible to achieve both prevention of magnesium corrosion and an appropriate reduction action, and further ensure good extensibility and workability.

請求項3の実施形態は、図2(a)、(b)に示すように、板状又はパイプ状の表面に沿って、水が透過し得る長孔又は孔11を設けたことを特徴としている(尚、図2(a)は、板に孔11を設けた場合を示しており、図2(b)は、パイプに長孔11を設けた場合を示している。)。   As shown in FIGS. 2A and 2B, the embodiment of claim 3 is characterized in that a long hole or hole 11 through which water can permeate is provided along a plate-like or pipe-like surface. (FIG. 2A shows the case where the hole 11 is provided in the plate, and FIG. 2B shows the case where the long hole 11 is provided in the pipe.)

このように、水が透過し得る長孔又は孔11を設けた場合には、当該長孔又は孔11の縁もまた、水と接触し、しかも当該長孔又は孔11の付近において乱流又は渦流が生じ、水と触媒との接触の機会が増加することから、還元水生成触媒機能を更に一層助長することになる。
尚、本発明の還元水生成用触媒1は、取り扱いの便宜上、プラスチックのネットによって包む場合があるが、その場合には、水は、長孔又は孔11を通過する際には、当該ネットを通過することになる。
In this way, when the long hole or hole 11 through which water can permeate is provided, the edge of the long hole or hole 11 is also in contact with water, and turbulent or near the long hole or hole 11 Since the vortex flow is generated and the chance of contact between water and the catalyst is increased, the function of the reduced water generation catalyst is further promoted.
The reduced water generating catalyst 1 of the present invention may be wrapped with a plastic net for convenience of handling. In that case, when the water passes through the long hole or the hole 11, the net is passed through the net. Will pass.

請求項4の実施形態は、表面に、クエン酸又は酢酸の少なくとも一方を浸漬したことを特徴としている。   The embodiment of claim 4 is characterized in that at least one of citric acid and acetic acid is immersed in the surface.

このように、クエン酸又は酢酸を表面に浸漬させた場合には、合金の表面に形成されている酸化マグネシウムの薄膜(皮膜:合金であるために、酸化状態が内部まで浸透していない)を速やかに溶融し、かつ迅速な還元水生成のための触媒機能を発揮することに寄与することができる。
尚、硫酸又は塩酸もまた、前記のような溶融作用を発揮し得るが、水を飲用することとの関係上、これらの酸は採用不可能であり、クエン酸又は酢酸が好適に選択されている。
請求項5の実施形態は、図3に示すように、請求項1、2、3、4の何れか1項に記載の還元水生成用触媒1を略矩形状による板状体とし、当該板状体を順次接合することによって、各板状体が接合方向の断面において多角形辺上に位置するように形成し、かつ各板状体の隙間が接合方向と直交する方向において上側となるに従って順次狭幅となるように形成したことを特徴としている(尚、図3においては、6枚の板状体による還元水生成用触媒1を採用し、かつ接合方向の断面において、図3(a)に示すように、各板状体の断面が正六角形の各辺上に位置しているように形成されている場合を示す。)。
このような実施形態の還元水生成用触媒1は、図3(b)に示すように、接続方向と直交する方向の上側となるに従って、各板状体同士の隙間が小さくなるように設計されているため、安定した状態にて配置することができる。
このため、前記(2)の基本構成に係る色々な大きさ及び形状の還元水生成容器2中に配置し、還元水の生成に寄与することができる。
尚、各板状体の還元水生成用触媒1を生成するためには、各板状体に孔11を設け、プラスチック栓、金属栓若しくは鎖によって接続するか、又は図3(a)、(b)に示すように、上側及び下側において多角形を形成するような帯状体12によって接続する実施形態などが採用可能であり、接続方法については、特に限定される訳ではない。
Thus, when citric acid or acetic acid is immersed in the surface, the thin film of magnesium oxide formed on the surface of the alloy (coating: because it is an alloy, the oxidation state does not penetrate inside) It can contribute to exhibiting a catalytic function for rapid melting and rapid production of reduced water.
In addition, although sulfuric acid or hydrochloric acid can also exhibit the melting action as described above, these acids cannot be employed because of drinking water, and citric acid or acetic acid is preferably selected. Yes.
In the embodiment of claim 5, as shown in FIG. 3, the reduced-water generating catalyst 1 according to any one of claims 1, 2, 3, and 4 is formed into a substantially rectangular plate-like body, and the plate As the plate-like bodies are sequentially joined, the plate-like bodies are formed so as to be positioned on the polygonal sides in the cross-section in the joining direction, and the gaps between the plate-like bodies are on the upper side in the direction orthogonal to the joining direction It is characterized in that it is formed so as to become narrower one after another (in FIG. 3, the reduced water generating catalyst 1 using six plate-like bodies is adopted, and in the cross section in the joining direction, FIG. ), The case where the cross section of each plate-like body is formed so as to be located on each side of a regular hexagon is shown.).
As shown in FIG. 3B, the reduced water generating catalyst 1 according to such an embodiment is designed so that the gap between the plate-like bodies becomes smaller as it goes upward in the direction orthogonal to the connecting direction. Therefore, it can arrange | position in the stable state.
For this reason, it arrange | positions in the reduced water production | generation container 2 of the various magnitude | size and shape which concern on the basic composition of said (2), and can contribute to the production | generation of reduced water.
In addition, in order to produce | generate the reduced water production | generation catalyst 1 of each plate-shaped body, the hole 11 is provided in each plate-shaped body, and it connects with a plastic stopper, a metal stopper, or a chain | strand, or Fig.3 (a), ( As shown in b), it is possible to adopt an embodiment in which connection is made by a strip-like body 12 that forms a polygon on the upper side and the lower side, and the connection method is not particularly limited.

前記(2)の基本形態は、前記(1)の基本形態による還元水生成触媒、更には前記各実施形態による還元水生成用触媒を容器の底部に配置し、上側に蓋を着脱自在に配置したことによって、還元水を生成させている。   In the basic form of (2), the reduced water generating catalyst according to the basic form of (1) above, and further, the reduced water generating catalyst according to each of the above embodiments is disposed at the bottom of the container, and the lid is detachably disposed on the upper side. As a result, reduced water is generated.

還元水の生成の可否及びその程度は、容器内の水の量、水質、更には還元水生成用触媒の面積などによって左右されるが、この点については、個別の実験の蓄積による経験則に即して、具体的に設定することが要求される。   Whether or not reduced water can be produced depends on the amount of water in the vessel, the quality of the water, and the area of the catalyst for producing reduced water, but this is based on an empirical rule based on the accumulation of individual experiments. Accordingly, it is required to set concretely.

請求項7の実施形態は、図4に示すように、請求項3記載の板状の還元水生成用触媒1を順次接合することによって、断面多角形状に形成し、長孔又は孔11を水が通過するための駆動モータ付きのスクリュー又は循環ポンプ(図示せず)を一体形成及び設置したことを特徴としている。   In the embodiment of claim 7, as shown in FIG. 4, the plate-like reducing water generating catalyst 1 according to claim 3 is joined sequentially to form a polygonal cross section, and the long holes or holes 11 are formed in water. A screw or a circulation pump (not shown) with a drive motor for passing the water is integrally formed and installed.

このように、回転駆動源と連動したスクリュー又は循環ポンプによって、容器2内を循環させ、しかも循環している水が長孔又は孔11を通過させた場合には、極めて効率的に還元水を生成することが可能となる。
因みに、3.6Lの水を収容し得る容器において、高さ35mm×幅25mmとし、厚さ3mmとしたうえで、マグネシウムを95重量%とし、亜鉛を4重量%とし、マンガンを1重量%とする板を6枚使用し、断面略正六角形とした場合には、表裏の面積は、10500mmであるが、3.6Lの容器に、前記断面略正六角形の還元水生成用触媒を底部に配置し、かつ水を循環させた場合には、500mVのORP値から、速やかに−250mV〜−300mVの還元水を生成することが可能であることが確認されている。
In this way, when the inside of the container 2 is circulated by a screw or a circulation pump interlocked with the rotational drive source and the circulating water passes through the long hole or the hole 11, the reduced water is very efficiently supplied. Can be generated.
Incidentally, in a container capable of storing 3.6 L of water, the height is 35 mm × width is 25 mm, the thickness is 3 mm, magnesium is 95 wt%, zinc is 4 wt%, and manganese is 1 wt%. In the case where six plates are used and the cross section is approximately a regular hexagon, the area of the front and back is 10500 mm 2. When arranged and circulated, it has been confirmed that reduced water of -250 mV to -300 mV can be quickly generated from an ORP value of 500 mV.

以下、具体的な実験に即した実施例に即して説明する。   In the following, description will be given in accordance with an embodiment based on a specific experiment.

マグネシウムの添加割合を約95重量%とし、亜鉛の添加割合を約4.0重量%とし、マンガンの添加割合を約1.0重量%の矩形状としたうえで、表面にクエン酸を浸漬させ、ORP値が500mVである還元前の水を収容した場合に、3時間後にORP値が−250mVとなるような還元水生成用触媒の面積(但し、表裏の双方を含む)と、容器に収容された水量との関係は、以下の表1に示すとおりである。   The magnesium addition rate is about 95% by weight, the zinc addition rate is about 4.0% by weight, the manganese addition rate is about 1.0% by weight, and the surface is dipped in citric acid. When water before reduction with an ORP value of 500 mV is accommodated, the area of the catalyst for reducing water generation (however, including both the front and back sides) such that the ORP value becomes -250 mV after 3 hours is accommodated in the container. The relationship with the amount of water produced is as shown in Table 1 below.

Figure 2009131825
Figure 2009131825

上記表1からも明らかなように、還元水生成用触媒の面積(但し、表裏を含む)を採用した場合、所定のORP値に至ることが可能な水量とは、殆ど比例関係にあることが判明する。   As is clear from Table 1 above, when the area of the catalyst for generating reduced water (including the front and back sides) is adopted, the amount of water that can reach the predetermined ORP value is almost proportional. Prove.

このような状況は、本発明のように、還元水生成用触媒の形状を板状又はパイプ状とすることによって、容量の大きな容器の場合においても、還元水生成用触媒の表面積を増加させることによって、効率的な還元水の生成を実現させることを客観的に証明している。   Such a situation increases the surface area of the catalyst for generating reduced water even in the case of a container with a large capacity by making the shape of the catalyst for generating reduced water plate or pipe like the present invention. This objectively proves that efficient generation of reduced water can be realized.

本発明は、飲食店、事務所、家庭などにおいて飲用する還元水の生成の全てについて利用することが可能である。   The present invention can be used for all the production of reduced water to be drunk at restaurants, offices, homes and the like.

前記(1)の基本構成に基づく還元水生成用触媒の基本形状を示す見取り図であって、(a)は板状の場合を示し、(b)はパイプ状の場合を示す。It is a sketch showing the basic shape of the catalyst for reducing water generation based on the basic configuration of (1), where (a) shows a plate-like case and (b) shows a pipe-like case. 表面に沿って、水を透過し得る長孔又は孔を設けた還元水生成用触媒の見取り図であって、(a)は板状の表面に孔を形成した場合を示し、(b)はパイプ状の表面に長孔を形成した場合を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a sketch of the reduced water production | generation catalyst which provided the long hole or hole which can permeate | transmit water along the surface, Comprising: (a) shows the case where a hole is formed in a plate-shaped surface, (b) is a pipe The case where a long hole is formed on the surface of the shape is shown. 略矩形状をなす板状体の還元水生成触媒を結合したことによる実施形態を示しており、(a)は上面図を示しており、(b)は側面図を示している。The embodiment by combining the reduced water production | generation catalyst of the plate-shaped body which makes | forms a substantially rectangular shape is shown, (a) has shown the top view, (b) has shown the side view. 還元水生成容器の実施形態を示す見取り図である。It is a sketch which shows embodiment of a reducing water production | generation container.

符号の説明Explanation of symbols

1 還元水生成用触媒
11 長孔又は孔
12 板状の還元水生成用触媒を接続する帯状体
2 容器
21 容器を支える台
22 キャップ
3 注出パイプ
DESCRIPTION OF SYMBOLS 1 Reduced water production | generation catalyst 11 Long hole or hole 12 The strip | belt-shaped body which connects the plate-shaped reduced water production | generation catalyst 2 Container 21 The stand 22 which supports a container 3 Cap 3 Outflow pipe

Claims (7)

マグネシウム(Mg)を主成分とし、亜鉛(Zn)及び/又はマンガン(Mn)を添加したことによる合金を、板状又はパイプ状に形成したことに基づく還元水生成用触媒。   A catalyst for generating reduced water based on the formation of a plate-like or pipe-like alloy containing magnesium (Mg) as a main component and zinc (Zn) and / or manganese (Mn) added thereto. 亜鉛を添加する割合を、1.5〜12.0重量%とし、マンガンを添加する割合を、0.5〜3.5重量%とすることを特徴とする請求項1記載の還元水生成用触媒。   The ratio for adding zinc is 1.5 to 12.0% by weight, and the ratio for adding manganese is 0.5 to 3.5% by weight. catalyst. 板状又はパイプ状の表面に沿って、水が透過し得る長孔又は孔を設けたことを特徴とする請求項1、2の何れか1項に記載の還元水生成用触媒。   The catalyst for producing reduced water according to any one of claims 1 and 2, wherein a long hole or a hole through which water can permeate is provided along a plate-like or pipe-like surface. 表面に、クエン酸又は酢酸の少なくとも一方を浸漬したことを特徴とする請求項1、2、3の何れか1項に記載の還元水生成用触媒。   The catalyst for reducing water production according to any one of claims 1, 2, and 3, wherein at least one of citric acid or acetic acid is immersed on the surface. 請求項1、2、3、4の何れか1項に記載の還元水生成用触媒を略矩形状による板状体とし、当該板状体を順次接合することによって、各板状体が接合方向の断面において多角形辺上に位置するように形成し、かつ各板状体の隙間が接合方向と直交する方向において上側となるに従って順次狭幅となるように形成したことを特徴とする還元水生成用触媒。   The reduced water generation catalyst according to any one of claims 1, 2, 3, and 4 is formed into a substantially rectangular plate-like body, and each plate-like body is joined in a joining direction by sequentially joining the plate-like bodies. The reduced water is formed so as to be positioned on the polygonal side in the cross section of the plate, and formed so that the gaps between the plate-like bodies become narrower as the upper side in the direction orthogonal to the joining direction. Production catalyst. 請求項1〜5の何れか1項に記載の還元水生成用触媒を底部に配置し、上側に蓋を着脱自在に配置したことに基づく還元水生成容器。   A reduced water production container based on the fact that the reduced water production catalyst according to any one of claims 1 to 5 is arranged at the bottom and a lid is detachably arranged on the upper side. 請求項3記載の板状の還元水生成用触媒を順次接合することによって、断面多角形状に形成し、長孔又は孔を水が通過するための駆動モータ付きのスクリュー又は循環ポンプを一体形成及び設置したことを特徴とする請求項6記載の還元水生成容器。   The plate-shaped reducing water generating catalyst according to claim 3 is joined sequentially to form a polygonal cross section, and a screw or a circulation pump with a drive motor for allowing water to pass through the long hole or hole is integrally formed and The reduced water generation container according to claim 6, which is installed.
JP2008023464A 2007-11-01 2008-02-04 Reduced water production catalyst and reduced water production vessel Expired - Fee Related JP4326577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023464A JP4326577B2 (en) 2007-11-01 2008-02-04 Reduced water production catalyst and reduced water production vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007284673 2007-11-01
JP2008023464A JP4326577B2 (en) 2007-11-01 2008-02-04 Reduced water production catalyst and reduced water production vessel

Publications (2)

Publication Number Publication Date
JP2009131825A true JP2009131825A (en) 2009-06-18
JP4326577B2 JP4326577B2 (en) 2009-09-09

Family

ID=40613746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023464A Expired - Fee Related JP4326577B2 (en) 2007-11-01 2008-02-04 Reduced water production catalyst and reduced water production vessel

Country Status (2)

Country Link
JP (1) JP4326577B2 (en)
CN (1) CN101422729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212498A (en) * 2012-03-07 2013-10-17 Tatehiko Ogawa Reduction powder, and method of producing the same
WO2016047680A1 (en) * 2014-09-25 2016-03-31 瑛子 木下 Reduction treatment agent, reductive cosmetic, reductive food, and method for producing reduction treatment agent
JP2018030743A (en) * 2016-08-23 2018-03-01 株式会社アンノオフィス Reaction vessel for hydrogen generator

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234988A (en) * 1985-04-11 1986-10-20 Mitsumine Matsumoto Water treating and activating device
JPS6230598A (en) * 1985-08-01 1987-02-09 Matsushita Electric Ind Co Ltd Neutralization apparatus for supplying water and hot water
JPH1085766A (en) * 1996-09-16 1998-04-07 Mitsuo Wada Water quality improving material and method for improving water quality
JP3048651U (en) * 1997-11-06 1998-05-22 バイタル・ジャパン株式会社 Ceramics for water quality modification
JP2784651B2 (en) * 1988-07-27 1998-08-06 太陽 天門 Mineral water production method
JP2000308884A (en) * 1999-04-26 2000-11-07 Asahitekku Corporation:Kk Water purification accelerating method and water purifying device
JP2001029958A (en) * 1999-07-20 2001-02-06 Otsuka Kazuo Method for improving quality of water
JP2003010865A (en) * 2001-07-02 2003-01-14 Hikari Berukomu:Kk Apparatus for producing acidic and reduced water
WO2003064332A1 (en) * 2002-01-29 2003-08-07 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for activating water
JP2004174301A (en) * 2002-11-25 2004-06-24 Zendama Club:Kk Structure for making water high in hydrogen concentration
JP2004243151A (en) * 2003-02-10 2004-09-02 Yoshiro Tanaka Hydrogen-dissolved water making appliance
JP2005111037A (en) * 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd Rice cooker
JP2006044998A (en) * 2004-08-05 2006-02-16 Toshihiro Kido Hydrogen generating method and hydrogen generating device
JP2006306700A (en) * 2005-01-07 2006-11-09 Hitachi Maxell Ltd Hydrogen generating material, hydrogen generator and fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073113A1 (en) * 2005-01-07 2006-07-13 Hitachi Maxell, Ltd. Hydrogen generating material, hydrogen generator and fuel cell

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234988A (en) * 1985-04-11 1986-10-20 Mitsumine Matsumoto Water treating and activating device
JPS6230598A (en) * 1985-08-01 1987-02-09 Matsushita Electric Ind Co Ltd Neutralization apparatus for supplying water and hot water
JP2784651B2 (en) * 1988-07-27 1998-08-06 太陽 天門 Mineral water production method
JPH1085766A (en) * 1996-09-16 1998-04-07 Mitsuo Wada Water quality improving material and method for improving water quality
JP3048651U (en) * 1997-11-06 1998-05-22 バイタル・ジャパン株式会社 Ceramics for water quality modification
JP2000308884A (en) * 1999-04-26 2000-11-07 Asahitekku Corporation:Kk Water purification accelerating method and water purifying device
JP2001029958A (en) * 1999-07-20 2001-02-06 Otsuka Kazuo Method for improving quality of water
JP2003010865A (en) * 2001-07-02 2003-01-14 Hikari Berukomu:Kk Apparatus for producing acidic and reduced water
WO2003064332A1 (en) * 2002-01-29 2003-08-07 Honda Giken Kogyo Kabushiki Kaisha Method and apparatus for activating water
JP2004174301A (en) * 2002-11-25 2004-06-24 Zendama Club:Kk Structure for making water high in hydrogen concentration
JP2004243151A (en) * 2003-02-10 2004-09-02 Yoshiro Tanaka Hydrogen-dissolved water making appliance
JP2005111037A (en) * 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd Rice cooker
JP2006044998A (en) * 2004-08-05 2006-02-16 Toshihiro Kido Hydrogen generating method and hydrogen generating device
JP2006306700A (en) * 2005-01-07 2006-11-09 Hitachi Maxell Ltd Hydrogen generating material, hydrogen generator and fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212498A (en) * 2012-03-07 2013-10-17 Tatehiko Ogawa Reduction powder, and method of producing the same
WO2016047680A1 (en) * 2014-09-25 2016-03-31 瑛子 木下 Reduction treatment agent, reductive cosmetic, reductive food, and method for producing reduction treatment agent
KR20170049608A (en) 2014-09-25 2017-05-10 권옥선 Reduction treatment agent, reductive cosmetic, reductive food, and method for producing reduction treatment agent
JPWO2016047680A1 (en) * 2014-09-25 2017-08-31 瑛子 木下 Reduction treatment agent, reduction cosmetic, reduced food, and method for producing reduction treatment agent
US10639249B2 (en) 2014-09-25 2020-05-05 Eiko Kinoshita Reduction treatment agent, reduction cosmetic, reduction food and method for producing reduction treatment agent
JP2018030743A (en) * 2016-08-23 2018-03-01 株式会社アンノオフィス Reaction vessel for hydrogen generator

Also Published As

Publication number Publication date
JP4326577B2 (en) 2009-09-09
CN101422729A (en) 2009-05-06

Similar Documents

Publication Publication Date Title
JP2020510137A (en) Pulsed power supply for supplying a sustainable redox agent for hydrogen reduction during electrochemical hypochlorite production
JP6439908B2 (en) Microbial killing device in ballast water
KR20180053739A (en) An in-situ delivery system for attenuating reaction products in an electrochemical cell
EA030419B1 (en) Electrolysis tank used for aluminum electrolysis and electrolysis process using the electrolyzer
CN105793199B (en) Treatment equipment and treatment method for electrolyzing ship ballast water by using carbon dioxide
JP4326577B2 (en) Reduced water production catalyst and reduced water production vessel
TW201104022A (en) Oxygen evolving electrodes for industrial electrochemical processes
JP2012519075A (en) Ballast water treatment electrolyzer and treatment system for the same
KR20080073767A (en) Electrochemical treatment of solutions containing hexavalent chromium
JP2012111990A (en) Apparatus, system and method for electrolyzing seawater
JP6490166B2 (en) Electrolytic reduction module and water purifier
JPH07214063A (en) Production of electrolytic acidic water and producting device therefor
IL157582A (en) Method and device for recovering metals with pulsating cathode currents also combined with anode coupling processes
JP6324659B2 (en) Hydrogen water production apparatus and hydrogen water production method
JP2004010904A (en) Electrolytic cell for manufacturing hydrogen peroxide
JP2003096585A (en) Method of producing cobalt sulfate solution
US11668015B2 (en) Magnesium-based alloy and use of same in the production of electrodes and the electrochemical synthesis of struvite
JP2019198820A (en) Method for producing slightly acidic aqueous hypochlorous acid, electrolytic cell unit and production device
JPWO2009008318A1 (en) Method for suppressing electrolytically reduced water, hot water for bathing and fat mass
JP5898669B2 (en) Method for treating liquid to be treated by electrochemical reaction
JP6114335B2 (en) Seawater electrolysis system and seawater electrolysis method
CN210825558U (en) Electrochemical treatment device for water treatment
JP2005296922A (en) Sterilizing system of rainwater
WO2020049655A1 (en) Electroplating bath, method for producing electroplated product, and electroplating apparatus
JP2005279417A (en) Electrochemical water treatment apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150619

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees