JP2009125975A - Method of removing foreign substance contained in thermoplastic resin - Google Patents
Method of removing foreign substance contained in thermoplastic resin Download PDFInfo
- Publication number
- JP2009125975A JP2009125975A JP2007300290A JP2007300290A JP2009125975A JP 2009125975 A JP2009125975 A JP 2009125975A JP 2007300290 A JP2007300290 A JP 2007300290A JP 2007300290 A JP2007300290 A JP 2007300290A JP 2009125975 A JP2009125975 A JP 2009125975A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- thermoplastic resin
- supercritical fluid
- extruder
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/76—Venting, drying means; Degassing means
- B29C48/762—Vapour stripping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/9218—Weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92333—Raw material handling or dosing, e.g. active hopper or feeding device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0022—Combinations of extrusion moulding with other shaping operations combined with cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/286—Raw material dosing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/375—Plasticisers, homogenisers or feeders comprising two or more stages
- B29C48/385—Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/375—Plasticisers, homogenisers or feeders comprising two or more stages
- B29C48/387—Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/69—Filters or screens for the moulding material
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、異物を含有する熱可塑性樹脂より前記異物を除去して物理的特性、光学的特性に優れた熱可塑性樹脂を製造することができる、熱可塑性樹脂に含有された異物の除去方法に関するものである。 The present invention relates to a method for removing foreign matter contained in a thermoplastic resin, which can produce a thermoplastic resin having excellent physical properties and optical properties by removing the foreign matter from a thermoplastic resin containing foreign matter. Is.
熱可塑性樹脂には、製造工程やリサイクル工程における未反応物質や不純物質に起因するゲル状物質やフィラーの凝集体などの異物が含有されることがある。熱可塑性樹脂に異物が含有されていると、強度の低下などの物理的特性の低下や、透過度の低下などの光学特性の低下を引き起こす。そこで、優れた特性を有する熱可塑性樹脂を製造するために、熱可塑性樹脂に含有された異物を除去する方法が開発されている。 The thermoplastic resin may contain foreign substances such as an unreacted substance and an agglomerate of fillers due to impurities in the manufacturing process and the recycling process. If the thermoplastic resin contains a foreign substance, it causes a decrease in physical properties such as a decrease in strength and a decrease in optical properties such as a decrease in transmittance. Therefore, in order to produce a thermoplastic resin having excellent characteristics, a method for removing foreign substances contained in the thermoplastic resin has been developed.
例えば、特開2001−293723号公報(特許文献1)には、リサイクルボトルを粉砕したフレーク状のポリエステルを原料として、押出機で溶融してフィルターを通してろ過を行って混入した異物を除去したのち、ストランドとして押し出してぺレットに切断する再生ポリエステル系樹脂ぺレットの製造方法が開示されている。 For example, in JP 2001-293723 A (Patent Document 1), a flake polyester obtained by pulverizing a recycle bottle is used as a raw material, and melted in an extruder and filtered through a filter to remove mixed foreign matters. A method for producing a regenerated polyester resin pellet which is extruded as a strand and cut into pellets is disclosed.
また、特開2000−219737号公報(特許文献2)には、溶融したポリカーボネットを保留粒子径が20μm以下のフィルターを通して20kg/cm2以上の差圧でろ過することにより異物を除去する方法が開示されている。 Japanese Patent Laid-Open No. 2000-219737 (Patent Document 2) discloses a method for removing foreign substances by filtering molten polycarbonate through a filter having a retention particle diameter of 20 μm or less with a differential pressure of 20 kg / cm 2 or more. It is disclosed.
しかしながら、溶融した熱可塑性樹脂を目の細かいフィルターを通してろ過する方法では、溶融樹脂の粘度が高い場合、フィルターの上流側の溶融樹脂圧力が高圧になる。このため、吐出量を極端に少なくしなければ装置を運転することができなかったり、フィルターの交換を頻繁に行う必要があったり、場合によってはフィルターが破れ、長時間の連続運転ができない。また、フィルター通過時に高いせん断力を受けるため、溶融樹脂の温度が上昇し、劣化にもつながってしまう。さらには、フィルターの上流側の溶融樹脂圧力が高圧になるため、フィルターチェンジャーなどの可動部から溶融樹脂が漏れるという不具合が生じていた。 However, in the method of filtering the molten thermoplastic resin through a fine filter, the molten resin pressure on the upstream side of the filter becomes high when the viscosity of the molten resin is high. For this reason, the apparatus cannot be operated unless the discharge amount is extremely reduced, or the filter needs to be frequently replaced. In some cases, the filter is broken and continuous operation for a long time cannot be performed. Moreover, since it receives a high shearing force when passing through the filter, the temperature of the molten resin rises, leading to deterioration. Furthermore, since the molten resin pressure on the upstream side of the filter becomes high, there is a problem that the molten resin leaks from a movable part such as a filter changer.
本発明は、上記のような課題を解決するためになされたものであり、異物を含有する熱可塑性樹脂を溶融させてフィルターを通してろ過する際、フィルターにかかる負荷を低減してフィルターの寿命を長くすることにより生産性を向上させた、熱可塑性樹脂に含有された異物の除去方法を提供することを目的としている。 The present invention has been made to solve the above problems, and when a thermoplastic resin containing foreign substances is melted and filtered through a filter, the load on the filter is reduced and the life of the filter is extended. It is an object of the present invention to provide a method for removing foreign substances contained in a thermoplastic resin, which has improved productivity.
上記目的を達成するため、本発明に係る熱可塑性樹脂に含有された異物の除去方法は、
異物を含有する熱可塑性樹脂を溶融させ、溶融した前記熱可塑性樹脂に超臨界流体を添加して、臨界温度以上および臨界圧力以上での混合・混練を行うことにより溶融した熱可塑性樹脂の粘度を低下させ、ついで、フィルターを通してろ過することによって前記異物を除去したのち、樹脂圧力を低下させることにより含浸された超臨界流体を気化させて除去することを特徴とする。
In order to achieve the above object, the method for removing foreign matter contained in the thermoplastic resin according to the present invention comprises:
The melted thermoplastic resin is melted, a supercritical fluid is added to the molten thermoplastic resin, and mixing and kneading at a critical temperature or higher and a critical pressure or higher is performed to reduce the viscosity of the molten thermoplastic resin. Then, after removing the foreign matter by filtering through a filter, the impregnated supercritical fluid is vaporized and removed by lowering the resin pressure.
本発明は、上述のとおり構成されているので次に記載するような効果を奏する。 Since this invention is comprised as mentioned above, there exists an effect as described below.
異物を含有した熱可塑性樹脂を溶融させてフィルターを通してろ過することにより前記異物を除去する際に、溶融樹脂がフィルターを通過し易くなり、またフィルターの上流側と下流側との圧力差が小さくなるので、フィルターの寿命を長くすることができる。 When the foreign material is removed by melting the thermoplastic resin containing the foreign material and filtering through the filter, the molten resin easily passes through the filter, and the pressure difference between the upstream side and the downstream side of the filter is reduced. Therefore, the lifetime of the filter can be extended.
本発明に係る熱可塑性樹脂に含有された異物の除去方法の実施の形態について説明する。 An embodiment of a method for removing foreign matter contained in a thermoplastic resin according to the present invention will be described.
図1は、本発明の実施に用いられる装置の一例を示す説明図である。 FIG. 1 is an explanatory view showing an example of an apparatus used for carrying out the present invention.
第1の押出機E1は、二軸スクリュ押出機であり、シリンダー1の上流側端に設けられた供給口2から重量式フィーダー9を介して異物を含有した熱可塑性樹脂が一定の割合で供給される。
The first extruder E1 is a twin screw extruder, and a thermoplastic resin containing foreign matters is supplied from a
供給された異物を含有した熱可塑性樹脂は、可塑化ゾーン4aで溶融されたのち、超臨界流体混合・混練・含浸ゾーン4bへ送られて、超臨界流体注入ノズル12より注入された超臨界流体と混合・混練されて含浸される。超臨界流体注入ノズル12は、ストップバルブ11aが介在された管路11を介して超臨界流体を定量供給できる超臨界流体供給装置10に接続されている。
The supplied thermoplastic resin containing the foreign matter is melted in the plasticizing
第1の押出機E1の下流側には、順次、ギアポンプ13、ダイバータポンプ14、フィルターチェンジャー15が接続されており、フィルターチェンジャー15の出口側が第2の押出機E2の供給口17に吐出管路16を介して接続されている。
The gear pump 13, the
第2の押出機E2は、減圧ベント口19を有する二軸又は単軸押出機である。減圧ベント口19には減圧トラップ20が介在された減圧管路24の一端が接続されており、減圧管路24の他端側に配設された真空ポンプ22を介して減圧することにより、溶融樹脂圧力を低下させて含浸された超臨界流体を気化させて除去する。
The second extruder E2 is a twin-screw or single-screw extruder having a
また、第2の押出機E2の下流には、異物が除去された溶融熱可塑性樹脂をストランドの形状で押し出すダイ25と、ストランドを冷却するストランドバス21と、ストランドを切断してペレット状にするストランドカッター23が順次設置されている。
Further, downstream of the second extruder E2, a
図2は、本発明の実施に用いられる装置の他の例を示す説明図である。図2に示すように、異物を含有した熱可塑性樹脂は、第1の押出機E1のスクリュ回転により可塑化ゾーンにて可塑化・圧縮された後、溶融樹脂中に超臨界流体を注入するための超臨界流体注入ノズル12とシリンダー1内の圧力を臨界圧力以上に保たれている溶融樹脂と超臨界流体とを混合・混練し、超臨界流体を含浸させるため、溝深さを深く加工してある超臨界流体混合・混練・含浸ゾーンを備えた第1の押出機Elに投入される。超臨界流体注入ノズル12の上流には超臨界流体の供給をON/OFFするためのストップバルブ11aと超臨界流体を定量的に供給する超臨界流体供給装置10が設置されている。
FIG. 2 is an explanatory view showing another example of an apparatus used for carrying out the present invention. As shown in FIG. 2, the thermoplastic resin containing foreign substances is plasticized and compressed in the plasticizing zone by the screw rotation of the first extruder E1, and then injected with a supercritical fluid into the molten resin. In order to impregnate the supercritical fluid, the groove depth is deeply processed to mix and knead the supercritical fluid with the supercritical
第1の押出機Elの下流側には、ダイバーターボンプ14、フィルター(スクリーン)18を順次備えたフィルターチェンジャー15、第2の押出機E2が接続されいる。第2の押出機E2の減圧ベント口19には、減圧トラップ20と、真空ポンプ22とが順次介在された減圧管路24が接続されている。また、第2の押出機E2の下流には、ダイ25と、ストランドバス21と、ストランドカッター23が順次設置されている。
On the downstream side of the first extruder El, a
本発明に係る熱可塑性樹脂に含有された異物の除去方法の実施の形態を詳細に説明する。 An embodiment of a method for removing foreign matter contained in a thermoplastic resin according to the present invention will be described in detail.
本発明において、熱可塑性樹脂は、硬質、軟質いずれでも良く、特に限定されない。熱可塑性樹脂の例としては、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレン、ABS(アクリルニトリルブタジエンスチレン共重合体)、AS(アクリルニトリルスチレン共重合体)、ポリメチルメタクリレート、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリサルフォン、ポリエーテルサルフォン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド、天然ゴム、イソプレンゴム、クロロプレンゴム、スチレンゴム、ニトリルゴム、エチレンプロピレンゴム、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、エピリロルヒドリンゴム、アクリルゴム、ウレタンゴム、フッ素ゴム、シリコーンゴム等の2種類以上の混合・混練物(エチレンープロピレン共重合体等)、無水マレイン酸グラフトポリプロピレンのようなグラフト重合物などがあげられる。これらの熱可塑性樹脂は単品でも複数種類の混合物でもかまわない。また、未使用の材料でも良いが、使用済みのリサイクル熱可塑性樹脂材料でもかまわない。 In the present invention, the thermoplastic resin may be either hard or soft and is not particularly limited. Examples of thermoplastic resins include polypropylene, polyethylene, polyvinyl chloride, polyvinylidene chloride, polyethylene terephthalate, polybutylene terephthalate, polystyrene, ABS (acrylonitrile butadiene styrene copolymer), AS (acrylonitrile styrene copolymer), Polymethyl methacrylate, polyamide, polyacetal, polycarbonate, polyphenylene sulfide, polyphenylene ether, polyether ether ketone, polysulfone, polyether sulfone, polyamideimide, polyetherimide, thermoplastic polyimide, natural rubber, isoprene rubber, chloroprene rubber, styrene rubber , Nitrile rubber, ethylene propylene rubber, butadiene rubber, styrene butadiene rubber, butyl rubber, epipyrrolol Ringomu, acrylic rubber, urethane rubber, fluorine rubber, mixed and kneaded material of two or more such as silicone rubber (ethylene-propylene copolymer, etc.), a graft polymer, such as maleic anhydride grafted polypropylene. These thermoplastic resins may be a single product or a mixture of a plurality of types. In addition, an unused material may be used, but a used recycled thermoplastic resin material may also be used.
また、熱可塑性樹脂に含有される異物としては、低分子量オリゴマーや未反応残留モノマー反応物などが出発原料として生じるゲル状物質、フィラーの分散不足凝集体または再凝集体、リサイクル原料に含有される金属、鉱物、熱硬化性樹脂などが挙げられる。 In addition, the foreign material contained in the thermoplastic resin is a gel-like substance produced as a starting material, such as a low molecular weight oligomer or an unreacted residual monomer reactant, an agglomerated or re-agglomerated filler, or a recycled material. Examples include metals, minerals, and thermosetting resins.
ゲル状物質としては、樹脂の製造工程で生じる架橋体や、熱劣化によって生じる低分子量有機物、金属化合物などが挙げられる。 Examples of the gel-like substance include a crosslinked product produced in the resin production process, a low molecular weight organic material produced by thermal degradation, and a metal compound.
フィラーとしては、本発明の方法により樹脂組成物の特性に影響を与える性状のものであれば特に限定されない。微細フィラーの例としては、層状珪酸アルカリ金属塩や層状チタン酸塩といった陽イオン型層状化合物、層状複水酸化物塩、バーミュキュライト、ハロサイト、炭酸カルシウム、炭酸カルシウムウイスカー、硫酸マグネシウム、硫酸バリウム、水酸化マグネシウム、ドロマイト、珪灰石、球状酸化珪素粒子、セリサイト、カーボンブラック、炭素繊維、カーボンナノチューブ、カーボンウイスカー、ガラス繊維、アラミド繊維等があげられる。この中で、層状珪酸アルカリ金属塩の例としては、モンモリロナイト、マグネシアンモンモリロナイト、鉄モンモリロナイト、鉄マグネシアンモンモリロナイト、ヘクトライト、サボナイト、スチブンサイト、バイデライト、ノントロナイト、ソーコナイト等の天然物、化学的に合成された合成スクメナイト、合成雲母等が挙をずられる。これらは単独で用いても、複数を混合して用いてもかまわない。また、これらの微細フィラーは脂肪酸などの有機化物で一部を置換されたものや、誘導体でも構わない。さらに、何ら処理していない無処理の微細フィラーでも良い。 The filler is not particularly limited as long as it has properties that affect the properties of the resin composition by the method of the present invention. Examples of fine fillers include cationic layered compounds such as layered alkali metal silicates and layered titanates, layered double hydroxide salts, vermiculite, halosite, calcium carbonate, calcium carbonate whiskers, magnesium sulfate, sulfuric acid Examples thereof include barium, magnesium hydroxide, dolomite, wollastonite, spherical silicon oxide particles, sericite, carbon black, carbon fiber, carbon nanotube, carbon whisker, glass fiber, and aramid fiber. Among these, examples of layered alkali metal silicates include natural products such as montmorillonite, magnesia montmorillonite, iron montmorillonite, iron magnesia montmorillonite, hectorite, sabonite, stevensite, beidellite, nontronite, and soconite, chemically. Synthesized synthetic sukumenite, synthetic mica, etc. are listed. These may be used alone or in combination. These fine fillers may be partially substituted with organic compounds such as fatty acids or derivatives. Further, an untreated fine filler that has not been treated at all may be used.
金属としては、鉄、銅、銀、金、鉛、アルミニウム、マグネシウムなどや、それらの合金などが挙げられる。 Examples of the metal include iron, copper, silver, gold, lead, aluminum, magnesium, and alloys thereof.
熱硬化性樹脂としては、フェノール樹脂、メラニン樹脂、エポキシ樹脂等が挙げられる。 Examples of the thermosetting resin include a phenol resin, a melanin resin, and an epoxy resin.
これらの異物を含有する熱可塑性樹脂は、第1の押出機E1の可塑化ゾーン4aにて可塑化されて溶融状態となり、スクリュの推進力とシール部5により超臨界流体の臨界圧力、臨界温度を越える条件に調整される。この際、臨界圧力よりも低い圧力に調整されていても良いが、超臨界流体が注入された後は臨界圧力になる圧力であることが好ましい。
The thermoplastic resin containing these foreign substances is plasticized in the plasticizing
本発明においては、異物を含有する熱可塑性樹脂を溶融して臨界温度以上および臨界圧以上に調整する手段は、上述の押出機に限らず、同様の機能を持つものであれば特に制限は無い。例えば、加熱できる撹拌機能付きの耐圧容器に溶融樹脂を封入して、注入する流体の臨界温度以上の温度に加熱しながら窒素ガスなどの不活性ガスの雰囲気を加圧し、注入する流体の臨界圧力以上に加圧する方法がある。また、単軸押出機や二軸押出機などの押出機に固体または溶融状態の熱可塑性樹脂を投入し、ヒーターとスクリュの推進力により注入する流体の臨界温度以上および臨界圧力以上に調整する方法などがある。その中でも押出機を用いる方法は、熱可塑性樹脂の可塑化から昇温・昇圧まで連続的に行うことができることから、生産性や品質保持の面から最も望ましい。また、単軸押出機を用いる場合は押出機の先端圧力を高くすることができるため、ろ過に有利となる。 In the present invention, the means for melting the thermoplastic resin containing foreign substances and adjusting the temperature to the critical temperature or higher and the critical pressure or higher is not particularly limited as long as it has the same function as the above-described extruder. . For example, the molten resin is sealed in a pressure-resistant container with a stirring function that can be heated, and the atmosphere of an inert gas such as nitrogen gas is pressurized while heating to a temperature higher than the critical temperature of the fluid to be injected, and the critical pressure of the fluid to be injected There is a method of applying pressure as described above. In addition, a solid or molten thermoplastic resin is introduced into an extruder such as a single-screw extruder or a twin-screw extruder, and the temperature is adjusted to be higher than the critical temperature and higher than the critical pressure of the fluid to be injected by the driving force of the heater and screw. and so on. Among them, the method using an extruder is most desirable from the viewpoint of productivity and quality maintenance because it can be continuously performed from plasticization of a thermoplastic resin to temperature rise and pressure increase. Further, when a single-screw extruder is used, the tip pressure of the extruder can be increased, which is advantageous for filtration.
熱可塑性樹脂に添加する超臨界流体は、臨界温度以上および臨界圧力以上の状態で気体と液体の中間的な性質を有している第3の流体であり、液体に比べ大きな拡散係数を有している。比較的容易に超臨界流体を作りうる物質としては、二酸化炭素、メタン、窒素などが挙げられる。本発明においては、熱可塑性樹脂の溶融温度以上、分解温度以下の温度領域で超臨界流体となり得るものが好ましい。また、熱可塑性樹脂中に含浸して溶融樹脂の粘度を低下させることができるものが好ましい。本発明に使用する超臨界流体としては、効果が最も大きく、不活性で熱可塑性樹脂に対する悪影響が少なく、取り扱いが容易な二酸化炭素が最も好ましい。 The supercritical fluid added to the thermoplastic resin is a third fluid that has an intermediate property between gas and liquid above the critical temperature and above the critical pressure, and has a larger diffusion coefficient than liquid. ing. Carbon dioxide, methane, nitrogen, etc. are listed as materials that can make a supercritical fluid relatively easily. In the present invention, those capable of becoming a supercritical fluid in a temperature range from the melting temperature of the thermoplastic resin to the decomposition temperature are preferred. Moreover, what can impregnate in a thermoplastic resin and can reduce the viscosity of molten resin is preferable. The supercritical fluid used in the present invention is most preferably carbon dioxide, which has the greatest effect, is inert, has little adverse effect on the thermoplastic resin, and is easy to handle.
超臨界二酸化炭素は、31℃以上、7.4Mpa以上の圧力にコントロールされた超臨界状態の二酸化炭素のことを指す。超臨界二酸化炭素は、液体に近い密度と、気体に近い拡散係数を持つことから、気体の二酸化炭素に比べて多量の二酸化炭素を液体の二酸化炭素より速く他の物質と共存させることができる。 Supercritical carbon dioxide refers to carbon dioxide in a supercritical state controlled at a pressure of 31 ° C. or higher and 7.4 Mpa or higher. Since supercritical carbon dioxide has a density close to that of liquid and a diffusion coefficient close to that of gas, a larger amount of carbon dioxide can coexist with other substances faster than liquid carbon dioxide as compared with gaseous carbon dioxide.
超臨界二酸化炭素の製造方法については、特に制限はない。例えば、チラーで十分冷却した液体の二酸化炭素を、プランジャー方式やダイヤフラム方式のポンプで加圧すると同時に加温し、温度、圧力をそれぞれ31℃以上、7.4MPa以上の超臨界状態にする液体加圧方式や、加圧された窒素ガスやエアーを使用して、気体の二酸化炭素を加圧し、温度、圧力をそれぞれ31℃以上、7.4MPa以上の超臨界状態にする気体加圧方式などが知られている。 There is no restriction | limiting in particular about the manufacturing method of supercritical carbon dioxide. For example, liquid carbon dioxide that has been sufficiently cooled with a chiller is pressurized with a plunger-type or diaphragm-type pump and heated at the same time to bring the temperature and pressure to a supercritical state of 31 ° C. or higher and 7.4 MPa or higher, respectively. Pressurization method or gas pressurization method that uses pressurized nitrogen gas or air to pressurize gaseous carbon dioxide to bring the temperature and pressure to 31 ° C or higher and 7.4 MPa or higher, respectively. It has been known.
液体加圧方式は、加圧前の流体が液体である必要があり、二酸化炭素のボンベとポンプとの間を常に液体に保つための冷却機構が必要になることや、ポンプ内でキャビテーションが発生し、加圧能力が低下する恐れがあることから、少量の超臨界流体を供給する場合には気体加圧方式で超臨界流体を製造する方法がより好ましい。一方、多量の超臨界流体を供給する場合には、供給量を幅広く高精度で制御でき、またメンテナンスの頻度も少なくて済む液体加圧方式で超臨界流体を製造する方法がより好ましい。 In the liquid pressurization method, the fluid before pressurization must be liquid, and a cooling mechanism is always required to keep the liquid between the carbon dioxide cylinder and the pump, and cavitation occurs in the pump. In addition, since the pressurization capacity may be reduced, a method of producing a supercritical fluid by a gas pressurization method is more preferable when supplying a small amount of supercritical fluid. On the other hand, in the case of supplying a large amount of supercritical fluid, a method of producing a supercritical fluid by a liquid pressurization method that can control the supply amount widely and with high accuracy and requires less frequent maintenance is more preferable.
本発明における超臨界流体の共存量は、本発明の樹脂組成物の合計量に対し、0.5〜50重量部、好ましくは1.0〜20重量部、より好ましくは2.0〜15重量部である。熱可塑性樹脂と共存状態にある超臨界流体は、熱可塑性樹脂中に拡散し、膨潤させて溶融樹脂の粘度を低下させる。例えば、ポリプロピレン樹脂に対し超臨界状態の二酸化炭素を3wt%添加すると溶融樹脂のせん断粘度は1.1〜14%低下し、さらに7wt%添加すると11〜44%低下することから、フィルターの上流側の樹脂圧力を低下させることができる。 The coexistence amount of the supercritical fluid in the present invention is 0.5 to 50 parts by weight, preferably 1.0 to 20 parts by weight, more preferably 2.0 to 15 parts by weight based on the total amount of the resin composition of the present invention. Part. The supercritical fluid coexisting with the thermoplastic resin diffuses into the thermoplastic resin and swells to lower the viscosity of the molten resin. For example, when 3 wt% of carbon dioxide in a supercritical state is added to polypropylene resin, the shear viscosity of the molten resin is reduced by 1.1 to 14%, and when 7 wt% is added, it is reduced by 11 to 44%. The resin pressure can be reduced.
しかし、共存量を0.5重量部より少なくすると、溶融樹脂の粘度や密度に変化が生じないため、フィルターの上流側の樹脂圧力を低下させることはできない。また、添加量を50質量%よりも多くすると、溶融樹脂の粘度や密度が下がりすぎて、共存させる場所の圧力を臨界圧以上に保つことが難しくなったり、熱可塑性樹脂組成物と超臨界二酸化炭素が分離するばかりでなく、ベント口にて溶融樹脂を巻き込んで噴出したり、溶融樹脂の低粘度化に寄与せずに放出されるので好ましくない。 However, if the coexistence amount is less than 0.5 parts by weight, the viscosity and density of the molten resin do not change, so the resin pressure on the upstream side of the filter cannot be reduced. Further, if the addition amount is more than 50% by mass, the viscosity and density of the molten resin are excessively lowered, and it becomes difficult to keep the pressure in the coexisting place above the critical pressure, or the thermoplastic resin composition and the supercritical dioxide. This is not preferable because not only carbon is separated but also the molten resin is entrained and ejected from the vent port, or released without contributing to lowering the viscosity of the molten resin.
本発明においては、超臨界二酸化炭素と共に、低分子有機化合物を助剤として添加することも可能である。ここに示す助剤は、超臨界二酸化炭素の極性を変化させる作用を持つため、得られる熱可塑性樹脂組成物の構造をより広範囲にまたは/かつ細かく制御することができ、特性を広範囲にまたは/かつ細かく制御することが可能となる。 In the present invention, a low molecular organic compound can be added as an auxiliary agent together with supercritical carbon dioxide. Since the auxiliary agent shown here has an action of changing the polarity of supercritical carbon dioxide, the structure of the resulting thermoplastic resin composition can be controlled over a wider range or / and finely, and the properties can be controlled over a wide range or / In addition, fine control is possible.
本発明に使用する低分子有機化合物は、アルコール類、エーテル類、ケトン類、飽和炭化水素類から選択される少なくとも1種類の炭素数1〜10の低分子有機化合物であることが好ましい。具体的にはアルコール類としてメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、エーテル類としてはジエチルエーテル、メチルエチルエーテル、エチルブチルエーテル、エチルプロピルエーテル、メチルプロピルエーテル、ケトン類としてはアセトン、メチルエチルケトン、飽和炭化水素類としてはヘキサン、へプタン、ペンタンなどが挙げられる。これらの中でもエタノールは、超臨界二酸化炭素の極性を変化させる効果があり、かつ有害性も少ないことから最も好ましい。 The low molecular organic compound used in the present invention is preferably at least one low molecular organic compound having 1 to 10 carbon atoms selected from alcohols, ethers, ketones, and saturated hydrocarbons. Specifically, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol as alcohols, diethyl ether, methyl ethyl ether, ethyl butyl ether, ethyl propyl ether, methyl propyl ether as ethers, acetone as ketones Examples of methyl ethyl ketone and saturated hydrocarbons include hexane, heptane, pentane and the like. Among these, ethanol is most preferable because it has an effect of changing the polarity of supercritical carbon dioxide and has little harmfulness.
低分子有機化合物は、単独でも2種類以上を組み合わせて使用しても良い。2種類以上の低分子有機化合物を組み合わせた方が極性をより細かく制御することが可能となるため、より好ましい。 Low molecular organic compounds may be used alone or in combination of two or more. The combination of two or more kinds of low-molecular organic compounds is more preferable because the polarity can be controlled more finely.
低分子有機化合物の添加量は本発明で得られる熱可塑性樹脂組成物の合計量に対し、0.1〜50質量%、好ましくは2.0〜30質量%さらに好ましくは3.0〜20質量%である。上記範囲の低分子有機化合物は前述の超臨界二酸化炭素の極性を変化させるのに最も効果的であり、結果的に本発明の熱可塑性樹脂組成物の特性をさらに広範囲に制御することができる。 The addition amount of the low molecular organic compound is 0.1 to 50% by mass, preferably 2.0 to 30% by mass, more preferably 3.0 to 20% by mass, based on the total amount of the thermoplastic resin composition obtained in the present invention. %. The low molecular weight organic compound in the above range is most effective in changing the polarity of the supercritical carbon dioxide, and as a result, the characteristics of the thermoplastic resin composition of the present invention can be controlled in a wider range.
本発明においては、上記した超臨界二酸化炭素の極性を調整する助剤の他に、本発明の目的を損なわない範囲で酸化防止剤、塩酸吸収剤、耐熱安定剤、光安定剤、紫外線吸収剤、内部滑剤、外部滑剤、耐電防止剤、難燃剤、顔料、染料、分散剤、銅害防止剤、中和剤、可塑剤、発泡剤、気泡防止剤、架橋剤、過酸化物などの添加剤を添加することができる。 In the present invention, in addition to the above-mentioned auxiliary for adjusting the polarity of supercritical carbon dioxide, an antioxidant, a hydrochloric acid absorbent, a heat stabilizer, a light stabilizer, and an ultraviolet absorber as long as the object of the present invention is not impaired. , Internal lubricants, external lubricants, antistatic agents, flame retardants, pigments, dyes, dispersants, copper damage inhibitors, neutralizers, plasticizers, foaming agents, antifoaming agents, crosslinking agents, peroxides and other additives Can be added.
押出機内で臨界温度、臨界圧力付近まで昇圧された溶融樹脂に、超臨界流体供給装置から供給される超臨界流体を、超臨界流体注入のノズルを通じて注入する。そして注入された流体は押出機のシリンダー内で回転するスクリュによって混合・混練され、微細かつ均一に溶融樹脂中に分散された超臨界流体は次第に樹脂中に拡散し、やがて全量又は一部が溶融樹脂に含浸する。 The supercritical fluid supplied from the supercritical fluid supply device is injected into the molten resin whose pressure has been increased to near the critical temperature and critical pressure in the extruder through a supercritical fluid injection nozzle. The injected fluid is mixed and kneaded by a screw rotating in the cylinder of the extruder, and the supercritical fluid finely and uniformly dispersed in the molten resin gradually diffuses into the resin, and eventually all or part of the fluid melts. Impregnate resin.
本発明において、超臨界流体を熱可塑性樹脂に注入し、混合・混練、含浸させるための手段に特に制限は無いが、連続して熱可塑性樹脂を溶融し、効率良く混合・混練することが可能な単軸押出機や二軸押出機などの押出機を用いるとよい。その場合は、押出機の内圧を超臨界流体の臨界圧力以上に上げておき、そこに逆流防止機構の付いた注入ノズルを通じて超臨界流体を注入し、スクリュの分散・薄膜化機能を利用して樹脂中に超臨界流体の全量又は一部を含浸させる。 In the present invention, there is no particular limitation on the means for injecting the supercritical fluid into the thermoplastic resin, mixing, kneading, and impregnation, but it is possible to melt the thermoplastic resin continuously and to mix and knead efficiently. An extruder such as a single screw extruder or a twin screw extruder may be used. In that case, raise the internal pressure of the extruder above the critical pressure of the supercritical fluid, inject the supercritical fluid through an injection nozzle with a backflow prevention mechanism, and use the screw dispersion / thinning function. The resin is impregnated with all or part of the supercritical fluid.
超臨界流体を注入する際、押出機のシリンダーの一カ所または複数箇所に注入ノズルを設置したり、米国特許第6169122号明細書に示されているように、微細な穴が多数空いているノズルを設置するなどして超臨界流体を溶融樹脂中に速やかに分配・分散させると樹脂に含浸するまでの時間が短縮される。 When injecting a supercritical fluid, an injection nozzle is installed at one or a plurality of locations in the cylinder of the extruder, or a nozzle having many fine holes as shown in US Pat. No. 6,169,122. If the supercritical fluid is quickly distributed and dispersed in the molten resin, for example, by installing, the time until the resin is impregnated is shortened.
また、混合・混練の条件としては、押出機内に滞留する時間を長くし、スクリュ回転数を早くして混合・混練能力を上げる方が超臨界流体を確実に溶融樹脂に含浸させることができる。しかし、溶融樹脂が受けるエネルギーが多くなるため劣化などが生じやすくなるため、適度な条件が好ましい。 As mixing and kneading conditions, it is possible to impregnate the molten resin with the supercritical fluid more reliably by increasing the residence time in the extruder and increasing the screw rotation speed to increase the mixing and kneading ability. However, since the energy received by the molten resin is increased, deterioration and the like are likely to occur, so that appropriate conditions are preferable.
もう1つの例としては、回分式の圧力容器に溶融樹脂を充填し、その中に流体を注入して臨界圧力・臨界温度以上の条件として一定時間保持し、超臨界流体を含浸させる方法もあるが、押出機を用いた場合に比べて単位時間あたりの処理量が少なくなる。溶融樹脂に含浸した超臨界流体によって溶融樹脂の粘度は低下して流動しやすくなる。そしてこの粘度が低下した溶融樹脂を、除去したい異物のサイズよりも小さな開口サイズを持ったフィルターを少ない抵抗で通過させ、異物を除去する。 As another example, there is a method in which a batch type pressure vessel is filled with a molten resin, a fluid is injected into the pressure vessel, and the fluid is held for a certain period of time as a condition above the critical pressure / temperature, and impregnated with a supercritical fluid. However, the processing amount per unit time is smaller than when an extruder is used. Due to the supercritical fluid impregnated in the molten resin, the viscosity of the molten resin is lowered and becomes easy to flow. Then, the molten resin having the reduced viscosity is passed through a filter having an opening size smaller than the size of the foreign material to be removed with a small resistance, thereby removing the foreign material.
本発明において、溶融樹脂に含有されている異物をフィルターでろ過し、除去する手段としては、特に制限されない。例えば、熱可塑性樹脂を可塑化して超臨界流体を含浸させる機能を持った上流側の押出機と、含浸した超臨界流体を溶融樹脂から除去するための下流側の押出機の間に、フィルターを設置したブレーカープレートを挟み、そのフィルターで溶融樹脂の中の異物をろ過する方法が一般的に広く行われている。ブレーカープレートは板状であったり、ろ過面積を増やすために筒状であったりするが、ろ過の効率を上げるためには筒状のものが好ましい。また、フィルターの開口面積が異物の集積により減少してきたときに溶融樹脂の流れを止めることなくフィルターの交換が可能なフィルターチェンジャーが設置されているとなお好ましい。また、フィルターの目が細かい場合はフィルターの上流側に高い圧力が生じ、溶融樹脂の流れが悪くなるため、フィルターの上流側にギアポンプなどの昇圧手段を設けるとさらに好ましい。また、フィルターが閉塞した場合に押出機を停止させることが無いように、ギアポンプとフィルターの間にダイバーターボンプなどを設けるとさらに好ましい。 In the present invention, the means for filtering and removing foreign substances contained in the molten resin is not particularly limited. For example, a filter is placed between an upstream extruder that functions to plasticize a thermoplastic resin and impregnate the supercritical fluid, and a downstream extruder that removes the impregnated supercritical fluid from the molten resin. In general, a method of sandwiching an installed breaker plate and filtering foreign matter in the molten resin with the filter is widely used. The breaker plate is plate-shaped or cylindrical to increase the filtration area, but is preferably cylindrical to increase the efficiency of filtration. In addition, it is more preferable that a filter changer is provided that can replace the filter without stopping the flow of the molten resin when the opening area of the filter has decreased due to the accumulation of foreign matter. Further, when the filter has a fine mesh, a high pressure is generated on the upstream side of the filter and the flow of the molten resin is deteriorated. Therefore, it is more preferable to provide a pressure increasing means such as a gear pump on the upstream side of the filter. Further, it is more preferable to provide a diverter pump or the like between the gear pump and the filter so that the extruder is not stopped when the filter is blocked.
なお、ブレーカープレートにフィルターを設置する場合は、フィルターが破れるのを防ぐため、最も目の細かいフィルターの上流と下流に目が粗く強度の高いフィルターを設置するとともに、溶融樹脂がフィルターとブレーカープレートの間をショートパスすることを防ぐため、それらのフィルターをユニット化したフィルターを隙間無く設置することが好ましい。フィルターを通して異物を除去された溶融樹脂は、圧力調整手段によって減圧される。 When installing a filter on the breaker plate, in order to prevent the filter from being broken, install a filter with coarse and high strength upstream and downstream of the finest filter, and a molten resin between the filter and breaker plate. In order to prevent a short path between them, it is preferable to install a filter in which these filters are unitized without any gap. The molten resin from which foreign matter has been removed through the filter is decompressed by the pressure adjusting means.
本発明において溶融樹脂の圧力を臨界圧力から所定の圧力へと減圧する圧力調整手段としては、上流と下流に圧力差を生じさせるものであれば特に制限されない。例えば、流路の狭いオリフイス、ギアポンプ、押出機等が挙げられる。その中でもギアポンプや押出機はギアやスクリュの回転数により圧力差を微調整できるために好ましい。押出機は減圧により溶融樹脂が発泡しても発泡体内のガスを速やかに外に排出することができ、さらにはその下流側で熱可塑性樹脂を希望する形状に加工することもできるので好ましい。その中でも二軸スクリュ押出機は発泡体内のガスを外に排出する能力が高いために最も好ましい。 In the present invention, the pressure adjusting means for reducing the pressure of the molten resin from the critical pressure to a predetermined pressure is not particularly limited as long as it causes a pressure difference between upstream and downstream. For example, an orifice having a narrow flow path, a gear pump, an extruder and the like can be mentioned. Among them, a gear pump and an extruder are preferable because the pressure difference can be finely adjusted by the rotation speed of the gear and screw. The extruder is preferable because even if the molten resin is foamed by decompression, the gas in the foam can be quickly discharged to the outside, and further, the thermoplastic resin can be processed into a desired shape on the downstream side thereof. Among them, the twin screw extruder is most preferable because of its high ability to discharge the gas in the foam.
調整する圧力差に特に制限はないが、フィルターの前後で圧力差が大きいと、差圧でフィルターが破れやすくなり、寿命が短くなるため、差圧は処理量を維持できる範囲でなるべく小さくなるように調整することが好ましい。 The pressure difference to be adjusted is not particularly limited, but if the pressure difference is large before and after the filter, the filter will be easily broken by the differential pressure and the life will be shortened. Therefore, the differential pressure should be as small as possible while maintaining the throughput. It is preferable to adjust to.
また、臨界圧力よりも低い圧力に減圧すると超臨界流体が気泡に変化し、体積が急速に拡大して取り扱いが難しくなることもあるため、臨界圧力以上とすることが好ましい。 In addition, when the pressure is reduced to a pressure lower than the critical pressure, the supercritical fluid changes to bubbles, and the volume rapidly expands, making it difficult to handle.
次に、溶融樹脂はさらに減圧され、最終的には常圧または減圧状態に調整され、熱可塑性樹脂に含浸していた超臨界流体は気体の状態で系外に除去される。 Next, the molten resin is further depressurized and finally adjusted to a normal pressure or a depressurized state, and the supercritical fluid impregnated in the thermoplastic resin is removed from the system in a gaseous state.
本発明において、熱可塑性樹脂中に混合および/または含浸している超臨界流体を除去する手段としては、熱可塑性樹脂を溶融状態で放置して超臨界流体を除去しても良いが、一部が残存するため、雰囲気を減圧して強制的に超臨界流体を除去することが好ましい。また、押出機を使って熱可塑性樹脂を薄膜化した上で減圧処理すると、超臨界流体が効率良く除去されるためにさらに好ましい。特に表面更新性能が高い2軸スクリュ押出機を用いると、最も効率良く超臨界流体を除去できるので最も好ましい。 In the present invention, as a means for removing the supercritical fluid mixed and / or impregnated in the thermoplastic resin, the supercritical fluid may be removed by leaving the thermoplastic resin in a molten state. Therefore, it is preferable to forcibly remove the supercritical fluid by reducing the atmosphere. Further, it is more preferable to reduce the thickness of the thermoplastic resin using an extruder and then to reduce the pressure because the supercritical fluid is efficiently removed. In particular, it is most preferable to use a twin screw extruder having a high surface renewal performance because the supercritical fluid can be removed most efficiently.
超臨界流体が除去された後の熱可塑性樹脂は、ダイを通じて押出機の外に排出される。排出後の形状付与方法については、例えばダイを通じてストランドの形状にして冷却し、それをストランドカッターを用いて切断してペレットにしても良いし、水中ホットカッターを装着してペレットにしても良い。また、ギアポンプを接続した後、Tダイ又は丸ダイを通じてシートやフイルムに成形してもよい。 The thermoplastic resin after the supercritical fluid is removed is discharged out of the extruder through a die. As for the shape imparting method after discharging, for example, it may be cooled in the form of a strand through a die and cut into pellets using a strand cutter, or may be pelletized by mounting an underwater hot cutter. Moreover, after connecting a gear pump, you may shape | mold into a sheet | seat or a film through a T die or a round die.
図1に示した装置と同様の装置を用いる。超臨界状態の二酸化炭素が注入できる日本製鋼所製二軸スクリュ押出機TEX44αIIL/D77(第1の押出機E1)と、その下流側にギアポンプ、ダイバータポンプ、フィルターチェンジャーを配置し、さらにその下流に二酸化炭素を溶融樹脂から除去するための日本製鋼所製二軸スクリュ押出機TEX30L/D42(第2の押出機E2)を配置した。 A device similar to that shown in FIG. 1 is used. A twin screw extruder TEX44αIIL / D77 (first extruder E1) made by Nippon Steel Works, which can inject supercritical carbon dioxide, and a gear pump, a diverter pump, and a filter changer are arranged downstream, and further downstream A twin screw extruder TEX30L / D42 (second extruder E2) manufactured by Nippon Steel Works for removing carbon dioxide from the molten resin was disposed.
粒径約20μm〜150μmの粒子が混入しているリサイクルポリカーボネートのペレットを50kg/hで二軸スクリュ押出機TEX44αIIL/D77に投入し、可塑化後、超臨界流体供給装置(昭和炭酸製)で製造した超臨界状態の二酸化炭素を注入ノズルを介して二軸スクリュ押出機に定量注入した。そして、ダイバータポンプを開放した状態でギアポンプで吐出量および押出機内の圧力を調整した後、ダイバータポンプを閉じてフィルターチェンジャー内のフィルターに溶融樹脂を通し、フィルターが破けるまでの時間を計測した。さらに、フィルターを通過した溶融樹脂は、さらに下流の二軸スクリュ押出機TEX30L/D42に導入され、減圧雰囲気下で二酸化炭素を除去した後、ダイからストランド形状で吐出され、ストランドバスで冷却された後、ストランドカッターでペレットに加工した。 Recycled polycarbonate pellets containing particles with a particle size of about 20μm to 150μm are put into a twin screw extruder TEX44αIIL / D77 at 50kg / h, and after plasticization, manufactured with a supercritical fluid supply device (Showa Carbon Dioxide) Carbon dioxide in the supercritical state was quantitatively injected into a twin screw extruder through an injection nozzle. And after adjusting the discharge amount and the pressure in an extruder with a gear pump in the state which opened the diverter pump, the diverter pump was closed, molten resin was passed through the filter in the filter changer, and the time until the filter was broken was measured. Further, the molten resin that passed through the filter was further introduced into the downstream twin screw extruder TEX30L / D42, and after removing carbon dioxide in a reduced-pressure atmosphere, it was discharged in the form of a strand from the die and cooled by a strand bath. Then, it processed into the pellet with the strand cutter.
表1に示す条件でポリカーボネートを処理し、フィルターの上流側の圧力とフィルターが破れるまでの時間を計測すると共に、得られたペレットに含有される100μm以上の粒子の割合と100μm未満の粒子の割合を顕微鏡で観察・計量した。得られた結果を表2、表3および図3に示す。 Treat the polycarbonate under the conditions shown in Table 1, measure the pressure upstream of the filter and the time until the filter breaks, and the proportion of particles of 100 μm or more and the proportion of particles less than 100 μm contained in the obtained pellets Were observed and weighed with a microscope. The obtained results are shown in Table 2, Table 3 and FIG.
(比較例)
実施例と同様にして表1に示すように超臨界流体を注入しない条件を比較例とした。得られた結果を表2および図3に示す。
(Comparative example)
The conditions for not injecting the supercritical fluid as shown in Table 1 in the same manner as in the examples were used as comparative examples. The obtained results are shown in Table 2 and FIG.
図3に示されるとおり、1400メッシュのフィルターをバックアップフィルターで挟んだだけのフィルターを使用した場合、超臨界二酸化炭素の添加の有無がフィルターの上流側の内圧力に与える影響は明確に現れなかったが、フィルターが破れるまでの時間は超臨界二酸化炭素の添加によって延長されていることが明らかである。超臨界二酸化炭素の添加量が3重量部のとき、1重量部添加したときに比べてフィルターが破れるまでの時間が短くなっているが、これは川部修太郎、斎藤拓、成形加工‘07第18回年次大会講演予稿集P93(2007)に示されるように、溶融樹脂に溶解する超臨界二酸化炭素の量が増加し、ポリマー鎖の絡み合い点数が減少すると共にポリマー鎖とフィルターとの摩擦が大きくなり、破れるまでの時間が短くなったと推測できる。 As shown in FIG. 3, when a filter in which a 1400 mesh filter was simply sandwiched between backup filters was used, the effect of the addition of supercritical carbon dioxide on the internal pressure upstream of the filter did not appear clearly. However, it is clear that the time until the filter breaks is extended by the addition of supercritical carbon dioxide. When the amount of supercritical carbon dioxide added is 3 parts by weight, the time until the filter breaks is shorter than when 1 part by weight is added. This is due to Shutaro Kawabe, Taku Saito, Molding '07 As shown in Proceedings of the 18th Annual Conference P93 (2007), the amount of supercritical carbon dioxide dissolved in the molten resin increases, the number of entanglement points of the polymer chain decreases and the friction between the polymer chain and the filter It can be inferred that the time until tearing has shortened.
図4に示されるとおり、300メッシュのフィルターと1400メッシュのフィルターを重ねてバックアップフィルターに挟んで使用した場合、超臨界二酸化炭素を添加しない系では、14分後にはフィルターの上流側の内圧力が38MPaを越え、危険なために運転を継続することができなかった。 As shown in FIG. 4, when a 300-mesh filter and a 1400-mesh filter are stacked and sandwiched between backup filters, the internal pressure on the upstream side of the filter is 14 minutes later in a system without adding supercritical carbon dioxide. Over 38 MPa, the operation could not be continued due to danger.
超臨界二酸化炭素を添加した系では到達圧力が低下し、テスト期間中にフィルターが破れることはなかった。また、途中で超臨界二酸化炭素の添加を中止したところ、内圧力が上昇し、15分後にフィルターが破れた。このことからも、超臨界二酸化炭素の添加により、フィルターの上流側と下流側の圧力差が小さくなると共に、フィルターの寿命が長くなっていることが明らかである。 In the system to which supercritical carbon dioxide was added, the ultimate pressure decreased, and the filter was not broken during the test period. Moreover, when addition of supercritical carbon dioxide was stopped on the way, the internal pressure increased and the filter was broken after 15 minutes. From this, it is clear that the addition of supercritical carbon dioxide reduces the pressure difference between the upstream side and the downstream side of the filter and increases the lifetime of the filter.
図5に、粘度の異なる熱可塑性樹脂を図1と同様に300メッシュのフィルターと1400メッシュのフィルターを重ねてバックアップフィルターに挟んで使用した場合のフィルターの上流側の内圧力(フィルター前圧力)とろ過時間の関係を示す。MFR=40およびMFR=120の樹脂は、超臨界二酸化炭素の添加によりフィルター寿命の延命効果が認められるが、MFR=15の樹脂は延命効果が認められなかった。 Fig. 5 shows the internal pressure (pre-filter pressure) on the upstream side of the filter when a thermoplastic resin having a different viscosity is used with a 300-mesh filter and a 1400-mesh filter overlapped with each other in the same way as in Fig. 1. The relationship of filtration time is shown. The resins with MFR = 40 and MFR = 120 showed an effect of extending the filter life by adding supercritical carbon dioxide, but the resins with MFR = 15 showed no effect of extending the life.
表3にろ過前後の100μm以上の異物割合の変化を示す。いずれの原料を使った系においても超臨界二酸化炭素を添加したろ過後の溶融樹脂の中には、100μm以上のサイズの異物の割合が低下していることが確認できた。 Table 3 shows the change in the ratio of foreign matters of 100 μm or more before and after filtration. In any system using any raw material, it was confirmed that the ratio of foreign matters having a size of 100 μm or more decreased in the molten resin after filtration to which supercritical carbon dioxide was added.
1 シリンダー
2 供給口
3 回転駆動機械
4a 可塑化ゾーン
4b 超臨界流体混合・混練・含浸ゾーン
5 シール部
9 重量式フィーダー
10 超臨界流体供給装置
11 管路
11a ストップバルプ
12 超臨界流体注入ノズル
13 ギアポンプ
14 ダイバータポンプ
15 フィルターチェンジャー
16 吐出管路
17 供給口
18 フィルター
19 減圧ヘント口
20 減圧トラップ
21 ストランドバス
22 真空ポンプ
23 ストランドカッター
24 減圧管路
DESCRIPTION OF SYMBOLS 1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007300290A JP2009125975A (en) | 2007-11-20 | 2007-11-20 | Method of removing foreign substance contained in thermoplastic resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007300290A JP2009125975A (en) | 2007-11-20 | 2007-11-20 | Method of removing foreign substance contained in thermoplastic resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009125975A true JP2009125975A (en) | 2009-06-11 |
Family
ID=40817377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007300290A Pending JP2009125975A (en) | 2007-11-20 | 2007-11-20 | Method of removing foreign substance contained in thermoplastic resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009125975A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101278570B1 (en) | 2013-03-22 | 2013-06-25 | 주식회사 창영기계 | Apparatus and method of recycling for polymer |
WO2013118566A1 (en) * | 2012-02-08 | 2013-08-15 | コニカミノルタアドバンストレイヤー株式会社 | Process for producing optical film |
JP2013188938A (en) * | 2012-03-13 | 2013-09-26 | National Institute Of Advanced Industrial Science & Technology | Method and device for high-pressure pulverizing molten resin lowered in viscosity by mixing carbon dioxide thereto |
CN106715066A (en) * | 2014-09-10 | 2017-05-24 | 史太林格有限责任公司 | Device and method for producing a filled polymeric composite material |
CN111391273A (en) * | 2020-04-17 | 2020-07-10 | 濮阳市中原石化实业有限公司 | Thermoplastic plastic extrusion device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1176716A (en) * | 1997-09-03 | 1999-03-23 | Toray Ind Inc | Method of filtering polyester, production of polyester film, and polyester film |
JPH11263858A (en) * | 1998-03-18 | 1999-09-28 | Asahi Chem Ind Co Ltd | Processing of thermoplastic resin |
JP2002273777A (en) * | 2001-03-16 | 2002-09-25 | Japan Steel Works Ltd:The | Kneading/mixing-extruding-molding device utilizing supercritical fluid |
JP2007130990A (en) * | 2005-10-12 | 2007-05-31 | Konica Minolta Opto Inc | Method for manufacturing optical cellulose ester film for display, optical cellulose ester film for display, polarizing plate and liquid crystal display device |
-
2007
- 2007-11-20 JP JP2007300290A patent/JP2009125975A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1176716A (en) * | 1997-09-03 | 1999-03-23 | Toray Ind Inc | Method of filtering polyester, production of polyester film, and polyester film |
JPH11263858A (en) * | 1998-03-18 | 1999-09-28 | Asahi Chem Ind Co Ltd | Processing of thermoplastic resin |
JP2002273777A (en) * | 2001-03-16 | 2002-09-25 | Japan Steel Works Ltd:The | Kneading/mixing-extruding-molding device utilizing supercritical fluid |
JP2007130990A (en) * | 2005-10-12 | 2007-05-31 | Konica Minolta Opto Inc | Method for manufacturing optical cellulose ester film for display, optical cellulose ester film for display, polarizing plate and liquid crystal display device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013118566A1 (en) * | 2012-02-08 | 2013-08-15 | コニカミノルタアドバンストレイヤー株式会社 | Process for producing optical film |
JP2013188938A (en) * | 2012-03-13 | 2013-09-26 | National Institute Of Advanced Industrial Science & Technology | Method and device for high-pressure pulverizing molten resin lowered in viscosity by mixing carbon dioxide thereto |
KR101278570B1 (en) | 2013-03-22 | 2013-06-25 | 주식회사 창영기계 | Apparatus and method of recycling for polymer |
CN106715066A (en) * | 2014-09-10 | 2017-05-24 | 史太林格有限责任公司 | Device and method for producing a filled polymeric composite material |
CN111391273A (en) * | 2020-04-17 | 2020-07-10 | 濮阳市中原石化实业有限公司 | Thermoplastic plastic extrusion device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101448824B1 (en) | Method for recycling plastic materials | |
US4970043A (en) | Process for forming thermoplastic material from granular scrap material | |
JP3998374B2 (en) | Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method | |
EP1998948B1 (en) | Method and device for granulating polymer melts containing blowing agent | |
JP4790517B2 (en) | Method for producing thermoplastic resin composition | |
JP2009125975A (en) | Method of removing foreign substance contained in thermoplastic resin | |
JP5497410B2 (en) | Foam and production method thereof | |
RU2440385C2 (en) | Polymer compounding method | |
JP4191510B2 (en) | Thermoplastic resin composition for foam and foam thereof | |
WO2007066505A1 (en) | Method for applying ultrasonic oscillation, and resin composition | |
CN111253677A (en) | Low-density polypropylene bead foam, and preparation method and application thereof | |
JP4285323B2 (en) | Polymer compound treatment method and apparatus | |
JP2007276321A (en) | Tandem type extrusion foaming molding process | |
JP4081454B2 (en) | Polymer compound treatment method and treatment apparatus | |
EA025534B1 (en) | Method to start-up a process to make expandable vinyl aromatic polymers | |
JP6608306B2 (en) | Resin composition molding machine and molding method of resin composition | |
JP5660700B2 (en) | Inorganic nanocomposite production equipment | |
JPWO2004072158A1 (en) | Polymer composite material and method for producing the same | |
JP5009876B2 (en) | Manufacturing method of fibrous filler-containing resin composite material | |
JPH04139202A (en) | Method for twin-screw type compression and dehydration of hydrous polymer containing rubber component and the same dehydrator | |
JP2005029669A (en) | Method and apparatus for treating polymer | |
JP2002187192A (en) | Extrusion molding machine | |
JP7261045B2 (en) | METHOD FOR MANUFACTURING FILTER-CONTAINING RESIN COMPOSITE | |
JP3178249B2 (en) | Continuous regeneration treatment of resin with foamed polyurethane | |
JP4244912B2 (en) | Polymer compound treatment method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090618 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091222 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120327 |