[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009123544A - Lithium ion storing body, and lithium ion storing method - Google Patents

Lithium ion storing body, and lithium ion storing method Download PDF

Info

Publication number
JP2009123544A
JP2009123544A JP2007296728A JP2007296728A JP2009123544A JP 2009123544 A JP2009123544 A JP 2009123544A JP 2007296728 A JP2007296728 A JP 2007296728A JP 2007296728 A JP2007296728 A JP 2007296728A JP 2009123544 A JP2009123544 A JP 2009123544A
Authority
JP
Japan
Prior art keywords
lithium ion
carbon nanotube
ion storage
polyene compound
ion storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007296728A
Other languages
Japanese (ja)
Other versions
JP5277369B2 (en
Inventor
Yoshinori Nishikitani
禎範 錦谷
Shinji Kawasaki
晋司 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Eneos Corp
Original Assignee
Nagoya Institute of Technology NUC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC, Nippon Oil Corp filed Critical Nagoya Institute of Technology NUC
Priority to JP2007296728A priority Critical patent/JP5277369B2/en
Publication of JP2009123544A publication Critical patent/JP2009123544A/en
Application granted granted Critical
Publication of JP5277369B2 publication Critical patent/JP5277369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion storing body having a high lithium ion storing capacity. <P>SOLUTION: The lithium ion storing body is composed of carbon nanotubes and a polyene compound enveloped in the carbon nanotubes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン貯蔵体及びリチウムイオン貯蔵方法並びにリチウムイオン貯蔵体の製造方法に関する。   The present invention relates to a lithium ion storage body, a lithium ion storage method, and a method for producing a lithium ion storage body.

従来のリチウムイオン二次電池の負極材料等として利用されているのは、グラファイトやハードカーボン等である(特許文献1)。
一方、単層カーボンナノチューブのバルク試料は、多くの単層カーボンナノチューブがファン・デル・ワールス力により凝縮し、規則正しいバンドルを形成する。そのため、単層カーボンナノチューブは、バンドル表面のみでなく、バンドル間、更にはチューブ内部へのリチウムイオンの貯蔵が可能であり、リチウムイオン電池用負極材料として注目されている(非特許文献1)。
しかし、従来公知のリチウムイオン貯蔵体はLiCが飽和組成であり、リチウムイオンの貯蔵特性はこれにより限定されてしまう。また、単層カーボンナノチューブのリチウムイオン貯蔵能はグラファイトやハードカーボンより大きいとの報告があるが、その貯蔵メカニズムも含めて詳細は十分に解明されていない(非特許文献2)。
そこで本発明者らは、単層カーボンナノチューブのリチウムイオン貯蔵機構を解明する試みを実施し、その過程においてフラーレンを内包した単層カーボンナノチューブであるピーポットが、優れたリチウムイオン貯蔵能を有することを見出し、特許出願を行った(特許文献2)。また、多環芳香族化合物であるコロネンを内包した単層カーボンナノチューブも、更に優れたリチウムイオン貯蔵能を有すことを見出し、特許出願を行っている(特願2007−146705)。
特開2000−123876号公報 川崎晋司、東原秀和,「リチウムイオン電池の電極としての応用:カーボンナノチューブの合成・評価,実用化とナノ分散・配合制御技術」,技術情報協会,2003年,p.254−264 小宮山慎悟、宮脇瞳、沖野不二雄、片浦弘道、東原秀和,「ナノカーボンの構造とリチウムイオン二次電池負極特性」,炭素,2005年,No.216,p.25−33 特開2007−153682号公報
Examples of negative electrode materials used in conventional lithium ion secondary batteries include graphite and hard carbon (Patent Document 1).
On the other hand, in a bulk sample of single-walled carbon nanotubes, many single-walled carbon nanotubes are condensed by van der Waals forces to form regular bundles. Therefore, single-walled carbon nanotubes can store lithium ions not only on the bundle surface but also between the bundles and further inside the tube, and are attracting attention as negative electrode materials for lithium ion batteries (Non-Patent Document 1).
However, in the conventionally known lithium ion storage body, LiC 6 has a saturated composition, and the storage characteristics of lithium ions are limited thereby. Moreover, although it has been reported that the lithium ion storage capacity of single-walled carbon nanotubes is larger than that of graphite and hard carbon, details including the storage mechanism have not been sufficiently elucidated (Non-patent Document 2).
Therefore, the present inventors have conducted an attempt to elucidate the lithium ion storage mechanism of single-walled carbon nanotubes, and that the peapot, which is a single-walled carbon nanotube encapsulating fullerene in the process, has an excellent lithium ion storage capacity. A headline and patent application were filed (Patent Document 2). Further, a single-walled carbon nanotube encapsulating coronene, which is a polycyclic aromatic compound, has been found to have further excellent lithium ion storage ability, and a patent application has been filed (Japanese Patent Application No. 2007-146705).
JP 2000-123876 A Koji Kawasaki, Hidekazu Higashihara, “Application as Lithium Ion Battery Electrode: Synthesis / Evaluation of Carbon Nanotubes, Practical Use and Nano-Dispersion / Composition Control Technology”, Technical Information Association, 2003, p. 254-264 Shingo Komiyama, Hitomi Miyawaki, Fujio Okino, Hiromichi Kataura, Hidekazu Higashihara, "Nanocarbon Structure and Lithium Ion Secondary Battery Anode Characteristics", Carbon, 2005, No. 1 216, p. 25-33 JP 2007-153682 A

以上のような状況に鑑み、本発明者らは更にフラーレンやコロネンに代わる分子の探索を行い、ポリエン化合物を内包した単層カーボンナノチューブが高いリチウムイオン貯蔵能を有することを見出し、本発明を完成するに至った。   In view of the above situation, the present inventors further searched for a molecule to replace fullerene and coronene, and found that the single-walled carbon nanotube encapsulating the polyene compound has a high lithium ion storage ability, and completed the present invention. It came to do.

すなわち本発明は、カーボンナノチューブと該カーボンナノチューブに内包されたポリエン化合物とからなることを特徴とするリチウムイオン貯蔵体に関する。
また本発明は、ポリエン化合物が、カロテノイド化合物およびその誘導体から選択される化合物であることを特徴とする前記のリチウムイオン貯蔵体に関する。
また本発明は、カーボンナノチューブと該カーボンナノチューブに内包されたポリエン化合物とからなるポリエン化合物内包カーボンナノチューブによりリチウムイオンを貯蔵することを特徴とするリチウムイオン貯蔵方法に関する。
また本発明は、ポリエン化合物が、カロテノイド化合物およびその誘導体から選択される化合物であることを特徴とする前記のリチウムイオン貯蔵方法に関する。
さらに本発明は、カーボンナノチューブを酸化性ガス雰囲気下に加熱処理して両端を開口させたのち、カーボンナノチューブに対して10〜70質量倍のポリエン化合物を含む有機溶媒中で還流しながら加熱処理することを特徴とするカーボンナノチューブにポリエン化合物が内包されたリチウムイオン貯蔵体の製造方法に関する。
That is, the present invention relates to a lithium ion storage body comprising a carbon nanotube and a polyene compound encapsulated in the carbon nanotube.
The present invention also relates to the above lithium ion reservoir, wherein the polyene compound is a compound selected from carotenoid compounds and derivatives thereof.
The present invention also relates to a lithium ion storage method, characterized in that lithium ions are stored by a polyene compound-encapsulated carbon nanotube comprising a carbon nanotube and a polyene compound encapsulated in the carbon nanotube.
The present invention also relates to the above lithium ion storage method, wherein the polyene compound is a compound selected from carotenoid compounds and derivatives thereof.
Furthermore, in the present invention, the carbon nanotubes are heat-treated in an oxidizing gas atmosphere to open both ends, and then heat-treated while refluxing in an organic solvent containing 10 to 70 mass times of the polyene compound with respect to the carbon nanotubes. The present invention relates to a method for producing a lithium ion storage body in which a polyene compound is encapsulated in carbon nanotubes.

本発明のリチウムイオン貯蔵体は、可逆容量が大きく、リチウム二次電池の負極材料、スーパーキャパシタ、センサの検出素子等に利用可能である。   The lithium ion storage body of the present invention has a large reversible capacity and can be used for a negative electrode material of a lithium secondary battery, a supercapacitor, a sensor detection element, and the like.

以下に本発明を詳述する。
本発明のリチウムイオン貯蔵体は、カーボンナノチューブと該カーボンナノチューブに内包されたポリエン化合物とからなる。
本発明に用いるカーボンナノチューブとしては、単層カーボンナノチューブ、複層カーボンナノチューブ、ナノホーン等が挙げられる。
また、カーボンナノチューブに内包されるポリエン化合物としては、ブタジエン、ヘキサトリエン、カロテノイド化合物(例えば、β−カロテンなど)、1−フェニル−1,3−ブタジエンおよびこれらのアルキル置換体、アリール置換体、ハロゲン置換体等の誘導体が挙げられる。なかでも、β−カロテン、β−カロテンのアルキル置換体、β−カロテンのアリール置換体、β−カロテンのハロゲン置換体等のβ−カロテンの誘導体を好ましい例として挙げることができる。
The present invention is described in detail below.
The lithium ion storage body of the present invention comprises a carbon nanotube and a polyene compound encapsulated in the carbon nanotube.
Examples of the carbon nanotube used in the present invention include single-walled carbon nanotubes, multi-walled carbon nanotubes, and nanohorns.
Examples of the polyene compound included in the carbon nanotube include butadiene, hexatriene, carotenoid compounds (for example, β-carotene, etc.), 1-phenyl-1,3-butadiene, and alkyl-substituted products, aryl-substituted products, halogens thereof. Derivatives such as substitution products are listed. Of these, β-carotene derivatives such as β-carotene, alkyl-substituted β-carotene, aryl-substituted β-carotene, and halogen-substituted β-carotene can be mentioned as preferred examples.

上記アルキル基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル等の炭素数1〜12、好ましくは炭素数1〜6のアルキル基が挙げられ、上記アリール基としては、フェニル、ナフチル等が挙げられ、ハロゲンとしては、フッ素、臭素、塩素、ヨウ素等が挙げられる。   Examples of the alkyl group include alkyl groups having 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, and hexyl. Examples of the aryl group include phenyl and naphthyl. Examples of the halogen include fluorine, bromine, chlorine, iodine and the like.

次に、カーボンナノチューブにポリエン化合物を内包する方法について述べる。
先ず、図1(A)に示すように、両端が閉口しているカーボンナノチューブ1の試料を空気等の酸化性ガス雰囲気下で加熱処理して、両端を開口させる(図1(B))。
加熱処理温度は、予めTG−DTA(示差熱熱重量同時)測定を行い、急激に質量減少が始まる(単層カーボンナノチューブが燃え出す)ところに設定することが好ましい。加熱処理温度は、通常420℃以下、好ましくは410℃以下であり、370℃以上、好ましく380℃以上である。加熱処理時間は、短すぎると開口が不十分となり、長すぎるとチューブ本体も燃焼してしまい収率が悪くなるため好ましくなく、通常20分〜30分である。
Next, a method for encapsulating a polyene compound in a carbon nanotube will be described.
First, as shown in FIG. 1A, a sample of the carbon nanotube 1 having both ends closed is heat-treated in an oxidizing gas atmosphere such as air to open both ends (FIG. 1B).
The heat treatment temperature is preferably set at a point where mass reduction starts rapidly (single-walled carbon nanotubes start to burn) by measuring TG-DTA (differential thermothermal weight simultaneously) in advance. The heat treatment temperature is usually 420 ° C. or lower, preferably 410 ° C. or lower, and is 370 ° C. or higher, preferably 380 ° C. or higher. If the heat treatment time is too short, the opening is insufficient, and if it is too long, the tube body also burns and the yield deteriorates, which is not preferable, and is usually 20 minutes to 30 minutes.

チューブ内部へポリエン化合物を導入する方法としては、両端が開口したカーボンナノチューブをポリエン化合物を溶解した有機溶媒中で還流しながら加熱処理する方法が好ましく採用される。このときの、カーボンナノチューブ:ポリエン化合物の仕込み質量比は、1:10〜1:70である。加熱処理時間は、通常24〜48時間である。加熱処理後、有機溶媒でカーボンナノチューブ表面に付着した多環芳香族化合物を洗浄除去する。有機溶媒としては、テトラヒドロフラン、ヘキサン等を挙げることができる。   As a method for introducing the polyene compound into the inside of the tube, a method is preferably employed in which the carbon nanotubes having both ends opened are heat-treated while refluxing in an organic solvent in which the polyene compound is dissolved. At this time, the charged mass ratio of carbon nanotube: polyene compound is 1:10 to 1:70. The heat treatment time is usually 24 to 48 hours. After the heat treatment, the polycyclic aromatic compound adhering to the carbon nanotube surface is washed away with an organic solvent. Examples of the organic solvent include tetrahydrofuran and hexane.

かくして得られるポリエン化合物を内包したカーボンナノチューブは、リチウムイオン貯蔵性が優れているのが特徴である。
すなわち、本発明のリチウムイオン貯蔵体は、中空のカーボンナノチューブに比べ、単位重量当りのリチウムイオン貯蔵量、単位体積当りのリチウムイオン貯蔵量を増加させることができる。
これらを二次電池、キャパシタ等に応用する場合は、可逆容量が大きいことが要求されるが、本発明のリチウムイオン貯蔵体は、可逆容量が、中空のカーボンナノチューブの1.5倍以上になるのが特徴である。
The carbon nanotube encapsulating the polyene compound thus obtained is characterized by excellent lithium ion storage properties.
That is, the lithium ion storage body of the present invention can increase the lithium ion storage amount per unit weight and the lithium ion storage amount per unit volume as compared with the hollow carbon nanotube.
When these are applied to secondary batteries, capacitors, etc., the reversible capacity is required to be large, but the lithium ion storage body of the present invention has a reversible capacity 1.5 times or more that of hollow carbon nanotubes. Is the feature.

以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらの実施例になんら制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1]
単層カーボンナノチューブ(レーザー蒸発法により合成)を精製した後、空気中で400℃、20分処理し、チューブ両端を開口した。
図2に示す装置に、開口した単層カーボンナノチューブ(5)16mgを取り、β−カロテン(4)の粉末試料188mgを100mlのヘキサン(6)に溶かした溶液に入れ還流しながら70℃で加熱処理を24時間行った後、ろ取した。ろ取した試料をテトラヒドロフランで洗浄し、試料表面に付着したβ−カロテンの除去を行った。この一連の操作により、チューブ内部にのみβ−カロテンが導入された単層カーボンナノチューブ試料を得た。この試料のβ−カロテンの含有量は重量増加より11wt%と見積もられた。
図3に示すように、この試料を作用極(10)、リチウム金属を対極(11)、参照極(12)とするテストセルを構築した。電解液にはキシダ化学(株)製の1MのLiClOを含むエチレンカーボネート(EC)/ジエチルカーボネート(DEC)=1/1(体積比)の混合溶液を用いた。このテストセルを用いて、定電流(100mA/g)充放電測定(カットオフ電圧:0−3.0V)を行い、結果を図4に示した。測定された第1充電曲線(図中(a))より、可逆容量は586mAh/gと求められた。ナノチューブの重量あたりに換算すると658mAh/gとなり、中空のチューブ(比較例1(図中(b))に比べ、チューブ1本あたり約2.1倍のリチウムを貯蔵していることに相当する。
[Example 1]
Single-walled carbon nanotubes (synthesized by laser evaporation) were purified and then treated in air at 400 ° C. for 20 minutes to open both ends of the tube.
In the apparatus shown in FIG. 2, 16 mg of the opened single-walled carbon nanotube (5) is taken, and 188 mg of a powder sample of β-carotene (4) is placed in a solution of 100 ml of hexane (6) and heated at 70 ° C. while refluxing. The treatment was performed for 24 hours and then collected by filtration. The sample collected by filtration was washed with tetrahydrofuran to remove β-carotene adhering to the sample surface. By this series of operations, a single-walled carbon nanotube sample in which β-carotene was introduced only into the tube was obtained. The β-carotene content of this sample was estimated to be 11 wt% from the weight increase.
As shown in FIG. 3, a test cell having this sample as a working electrode (10), lithium metal as a counter electrode (11), and a reference electrode (12) was constructed. As the electrolytic solution, a mixed solution of ethylene carbonate (EC) / diethyl carbonate (DEC) = 1/1 (volume ratio) containing 1M LiClO 4 manufactured by Kishida Chemical Co., Ltd. was used. Using this test cell, constant current (100 mA / g) charge / discharge measurement (cutoff voltage: 0 to 3.0 V) was performed, and the results are shown in FIG. From the measured first charging curve ((a) in the figure), the reversible capacity was determined to be 586 mAh / g. When converted to the weight of the nanotube, it is 658 mAh / g, which corresponds to storing about 2.1 times as much lithium per tube as compared to the hollow tube (Comparative Example 1 ((b) in the figure)).

[比較例1]
単層カーボンナノチューブを精製した後、空気中で400℃、20分処理し、チューブ両端を開口した。この試料を作用極、リチウム金属を対極、参照極とする図3に示すテストセルを構築した。電解液にはキシダ化学(株)製の1MのLiClOを含むエチレンカーボネート(EC)/ジエチルカーボネート(DEC)=1/1(体積比)の混合溶液を用いた。このテストセルを用いて、定電流(100mA/g)充放電測定(カットオフ電圧:0−3.0V)を行い、結果を図4に示した。測定された第1充電曲線(図中(b))より、可逆容量は310mAh/gと求められた。
[Comparative Example 1]
After purifying the single-walled carbon nanotube, it was treated in air at 400 ° C. for 20 minutes, and both ends of the tube were opened. A test cell shown in FIG. 3 was constructed using this sample as a working electrode, lithium metal as a counter electrode, and a reference electrode. As the electrolytic solution, a mixed solution of ethylene carbonate (EC) / diethyl carbonate (DEC) = 1/1 (volume ratio) containing 1M LiClO 4 manufactured by Kishida Chemical Co., Ltd. was used. Using this test cell, constant current (100 mA / g) charge / discharge measurement (cutoff voltage: 0 to 3.0 V) was performed, and the results are shown in FIG. From the measured first charging curve ((b) in the figure), the reversible capacity was determined to be 310 mAh / g.

本発明のリチウムイオン貯蔵体の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the lithium ion storage body of this invention. 実施例1のリチウムイオン貯蔵体の製造方法を示す模式図である。3 is a schematic diagram showing a method for producing a lithium ion storage body of Example 1. FIG. 充放電測定を行うためのテストセルの模式断面図である。It is a schematic cross section of the test cell for performing charge / discharge measurement. 実施例1および比較例1の充放電結果を示すグラフであり、(a)β−カロテン内包、(b)中空単層カーボンナノチューブの第1充電曲線である。It is a graph which shows the charging / discharging result of Example 1 and Comparative Example 1, and is a 1st charge curve of (a) (beta) -carotene inclusion and (b) hollow single-walled carbon nanotube.

符号の説明Explanation of symbols

1 単層カーボンナノチューブ
2 開口した単層カーボンナノチューブ
2a ポリエン化合物
3 ポリエン化合物を内包したリチウムイオン貯蔵体
4 β−カロテン
5 開口した単層カーボンナノチューブ
6 ヘキサン溶液
7 反応容器
8 還流菅
9 加熱および攪拌装置
10 作用極(β−カロテン内包単層カーボンナノチューブ)
11 対極(リチウム金属)
12 参照極(リチウム金属)
13 電解液
1 Single-walled carbon nanotube
2 Open single-walled carbon nanotubes
2a Polyene compounds
3 Lithium ion storage body containing polyene compound 4 β-carotene 5 Opened single-walled carbon nanotube 6 Hexane solution 7 Reaction vessel 8 Reflux bowl 9 Heating and stirring device 10 Working electrode (β-carotene-containing single-walled carbon nanotube)
11 Counter electrode (lithium metal)
12 Reference electrode (lithium metal)
13 Electrolytic solution

Claims (5)

カーボンナノチューブと該カーボンナノチューブに内包されたポリエン化合物とからなることを特徴とするリチウムイオン貯蔵体。   A lithium ion storage body comprising a carbon nanotube and a polyene compound encapsulated in the carbon nanotube. ポリエン化合物が、カロテノイド化合物およびその誘導体から選択される化合物であることを特徴とする請求項1記載のリチウムイオン貯蔵体。   The lithium ion reservoir according to claim 1, wherein the polyene compound is a compound selected from carotenoid compounds and derivatives thereof. カーボンナノチューブと該カーボンナノチューブに内包されたポリエン化合物とからなるポリエン化合物内包カーボンナノチューブによりリチウムイオンを貯蔵することを特徴とするリチウムイオン貯蔵方法。   A lithium ion storage method characterized by storing lithium ions by a polyene compound-encapsulating carbon nanotube comprising a carbon nanotube and a polyene compound encapsulated in the carbon nanotube. ポリエン化合物が、カロテノイド化合物およびその誘導体から選択される化合物であることを特徴とする請求項3記載のリチウムイオン貯蔵方法。   4. The lithium ion storage method according to claim 3, wherein the polyene compound is a compound selected from carotenoid compounds and derivatives thereof. カーボンナノチューブを酸化性ガス雰囲気下に加熱処理して両端を開口させたのち、カーボンナノチューブに対して10〜70質量倍のポリエン化合物を含む有機溶媒中で還流しながら加熱処理することを特徴とするカーボンナノチューブにポリエン化合物が内包されたリチウムイオン貯蔵体の製造方法。   The carbon nanotube is heat-treated in an oxidizing gas atmosphere to open both ends, and then heat-treated while refluxing in an organic solvent containing a polyene compound 10 to 70 times by mass with respect to the carbon nanotube. A method for producing a lithium ion storage body in which a polyene compound is encapsulated in carbon nanotubes.
JP2007296728A 2007-11-15 2007-11-15 Lithium ion storage body and lithium ion storage method Expired - Fee Related JP5277369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296728A JP5277369B2 (en) 2007-11-15 2007-11-15 Lithium ion storage body and lithium ion storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007296728A JP5277369B2 (en) 2007-11-15 2007-11-15 Lithium ion storage body and lithium ion storage method

Publications (2)

Publication Number Publication Date
JP2009123544A true JP2009123544A (en) 2009-06-04
JP5277369B2 JP5277369B2 (en) 2013-08-28

Family

ID=40815477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296728A Expired - Fee Related JP5277369B2 (en) 2007-11-15 2007-11-15 Lithium ion storage body and lithium ion storage method

Country Status (1)

Country Link
JP (1) JP5277369B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179049A (en) * 1990-11-09 1992-06-25 Ricoh Co Ltd Negative electrode for battery
JP2007084393A (en) * 2005-09-26 2007-04-05 National Institute Of Advanced Industrial & Technology Carotenoid including structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179049A (en) * 1990-11-09 1992-06-25 Ricoh Co Ltd Negative electrode for battery
JP2007084393A (en) * 2005-09-26 2007-04-05 National Institute Of Advanced Industrial & Technology Carotenoid including structure

Also Published As

Publication number Publication date
JP5277369B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
US6422450B1 (en) Nanotube-based high energy material and method
Shi et al. In situ carbon‐doped Mo (Se0. 85S0. 15) 2 hierarchical nanotubes as stable Anodes for high‐performance sodium‐ion batteries
Udomvech et al. First principles study of Li and Li+ adsorbed on carbon nanotube: Variation of tubule diameter and length
Chen et al. The nanocomposites of carbon nanotube with Sb and SnSb0. 5 as Li-ion battery anodes
Jouguelet et al. Controlling the electronic properties of single-wall carbon nanotubes by chemical doping
JP5099299B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
Xu et al. Large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage properties
Ge et al. Electrochemical Conversion of CO2 into Negative Electrode Materials for Li‐Ion Batteries
Chen et al. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites
JP7372690B2 (en) Silicon-based negative electrode material for lithium ion batteries, its manufacturing method, and batteries
Beltran-Huarac et al. Highly-crystalline γ-MnS nanosaws
Ren et al. Boron and nitrogen co-doped CNT/Li4Ti5O12 composite for the improved high-rate electrochemical performance of lithium-ion batteries
Lou et al. Coaxial Carbon/Metal Oxide/Aligned Carbon Nanotube Arrays as High‐Performance Anodes for Lithium Ion Batteries
Li et al. Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries
Yang et al. Charge–discharge characteristics of raw acid-oxidized carbon nanotubes
Du et al. One-step detonation-assisted synthesis of Fe 3 O 4-Fe@ BCNT composite towards high performance lithium-ion batteries
Koh et al. Li adsorption on a Fullerene–Single wall carbon nanotube hybrid system: Density functional theory approach
Fan et al. Synthesis of TiOx Nanotubular Arrays with Oxygen Defects as High‐Performance Anodes for Lithium‐Ion Batteries
CN103626149A (en) Carbon fibers, catalyst for production of carbon fibers, and method for evaluation of carbon fibers
Huang et al. Ultrahigh Capacity from Complexation‐Enabled Aluminum‐Ion Batteries with C70 as the Cathode
Ganji et al. Lithium absorption on single-walled boron nitride, aluminum nitride, silicon carbide and carbon nanotubes: A first-principles study
JP5046156B2 (en) Lithium ion storage body and lithium ion storage method
Kawasaki et al. Electrochemical lithium ion storage property of C60 encapsulated single-walled carbon nanotubes
Boaretto et al. Revealing the mechanism of electrochemical lithiation of carbon nanotube fibers
JP5277369B2 (en) Lithium ion storage body and lithium ion storage method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees