JP2009123374A - Nonaqueous electrolyte power storage device - Google Patents
Nonaqueous electrolyte power storage device Download PDFInfo
- Publication number
- JP2009123374A JP2009123374A JP2007293265A JP2007293265A JP2009123374A JP 2009123374 A JP2009123374 A JP 2009123374A JP 2007293265 A JP2007293265 A JP 2007293265A JP 2007293265 A JP2007293265 A JP 2007293265A JP 2009123374 A JP2009123374 A JP 2009123374A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- electrode
- storage device
- region
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
この発明は、炭素材料からなるシート状の正極と、チウムの吸蔵・放出が可能な材料からなるとともに前記正極とセパレータを介して対向配置されるシート状の負極と、リチウム塩を含んだ電解質とを備えて、正極、セパレータ、負極を順次積層してなる非水電解蓄電デバイスに関する。具体的には、負極にあらかじめリチウムイオンを吸蔵させておくタイプの非水電解蓄電デバイスにおいて、リチウムイオンをあらかじめドープするための技術改良に関する。 The present invention includes a sheet-like positive electrode made of a carbon material, a sheet-like negative electrode made of a material capable of occluding and releasing thium and disposed opposite to the positive electrode via a separator, and an electrolyte containing a lithium salt And a non-aqueous electrolytic electricity storage device in which a positive electrode, a separator, and a negative electrode are sequentially laminated. Specifically, the present invention relates to a technical improvement for doping lithium ions in advance in a non-aqueous electrolytic electricity storage device of a type in which lithium ions are previously stored in a negative electrode.
上記したタイプの非水電解蓄電デバイス(以下、プレドープ型蓄電デバイス)は、急速充電が可能であるとともに、リチウムイオンをあらかじめ負極に吸蔵させるため、負極の電位が下がり、大きな電圧を得ることができ、高いエネルギー容量を得ることができる。そのため、風力発電の負荷平準化装置、瞬停対策装置、自動車における回生電力の蓄電用途などに利用されることが期待されている。 The above-mentioned type of non-aqueous electrolytic electricity storage device (hereinafter referred to as pre-doped electricity storage device) is capable of rapid charging and has lithium ions stored in advance in the negative electrode, so that the potential of the negative electrode is lowered and a large voltage can be obtained. High energy capacity can be obtained. Therefore, it is expected to be used for wind power generation load leveling devices, instantaneous power failure countermeasure devices, regenerative power storage for automobiles, and the like.
従来のプレドープ型蓄電デバイスにおけるリチウムイオンの吸蔵(プレドープ)方式には、負極の一部を削ったり、負極の上にリチウム金属を貼ったりしてリチウムイオンをプレドープする方式があるが、最近では、例えば特許3485935号公報に記載されているように、メッシュ状の集電体の外側にリチウム金属を貼るとともに、内側に負極を形成し、このメッシュを通して負極にリチウムイオンをプレドープする方式が主流と成りつつある。この方式では、リチウム金属箔と負極とがメッシュ状集電体を介して対向し、リチウムイオンは、負極に対して垂直方向からプレドープされる。以下、このようなプレドープ方式を「垂直ドープ方式」と称することにする。 In the conventional lithium ion storage (pre-doping) method in the pre-doped type electricity storage device, there is a method of pre-doping lithium ions by scraping a part of the negative electrode or pasting lithium metal on the negative electrode. For example, as described in Japanese Patent No. 3485935, a method in which lithium metal is attached to the outside of a mesh current collector, a negative electrode is formed on the inside, and lithium ions are pre-doped into the negative electrode through this mesh has become the mainstream. It's getting on. In this method, the lithium metal foil and the negative electrode face each other through the mesh current collector, and lithium ions are pre-doped from the direction perpendicular to the negative electrode. Hereinafter, such a pre-doping method is referred to as a “vertical doping method”.
負極の一部を削ったり、負極の上にリチウム金属を貼ったりするプレドープ方式では、リチウム金属を貼った部分に凹凸ができ、その部分に電流が集中してリチウム金属が析出しやすくなる。周知のごとく、析出したリチウム金属がセパレータを破って正極と接触すれば、内部短絡が起こり、発火などの重篤な結果を招く可能性がある。垂直ドープ方式において、メッシュなど穴が空いた集電体を用いる方式では、複雑な形状の集電体表面にリチウムを塗布するという複雑な工程を要し、製造コストが嵩む。集電体をメッシュ状に加工すること自体も製造コストを押し上げる要因となる。メッシュなどの穴の部分では導電率が下がり抵抗が高くなる。すなわち、エネルギーの損失が大きくなる。 In the pre-doping method in which a part of the negative electrode is scraped or a lithium metal is stuck on the negative electrode, irregularities are formed on the part where the lithium metal is stuck, and current concentrates on the part, so that the lithium metal is easily deposited. As is well known, if the deposited lithium metal breaks the separator and comes into contact with the positive electrode, an internal short circuit may occur, resulting in serious consequences such as ignition. In the vertical dope method, a method using a current collector having a hole such as a mesh requires a complicated process of applying lithium to the surface of the current collector having a complicated shape, which increases the manufacturing cost. Processing the current collector into a mesh itself also increases the manufacturing cost. In the hole portion such as a mesh, the electrical conductivity decreases and the resistance increases. That is, energy loss increases.
そこで本発明者らは、製造容易性や低価格化を最も重要な要件とし、シート状集電体の表面に負極を形成するとともに、その集電体面と同じ面にリチウム金属を貼着し、リチウムイオンを集電体の表面に沿って負極にドープする「水平ドープ方式」を採用することとした。水平ドープ方式は、例えば、スラリー状の負極活物質をスキージや転写ロールを用いてシート成形(塗布)するなど、容易に負極を集電体の表面に形成することができる。もちろん、製造容易性や低価格化のみに着目していては、十分な安全性や蓄電性能を確保することができない。 Therefore, the present inventors have made manufacturing ease and cost reduction the most important requirements, and forming a negative electrode on the surface of the sheet-like current collector, sticking lithium metal on the same surface as the current collector surface, The “horizontal doping method” in which lithium ions are doped into the negative electrode along the surface of the current collector was adopted. In the horizontal dope method, for example, a negative electrode can be easily formed on the surface of the current collector by forming (applying) a slurry-like negative electrode active material using a squeegee or a transfer roll. Of course, if attention is paid only to ease of manufacture and price reduction, sufficient safety and power storage performance cannot be ensured.
本発明は、上記課題に鑑みなされたもので、その目的は、十分な安全性や蓄電性能を備えるとともに、負製造が容易で低価格化が期待できる非水電解蓄電デバイスを提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a non-aqueous electrolytic electricity storage device that has sufficient safety and electricity storage performance, can be easily manufactured negatively, and can be expected to be reduced in price. .
本発明者らは、上記目的を達成するために、リチウム金属がシート状集電体に沿って水平方向に拡散して十分に負極にプレドープするための条件、リチウム金属が析出しにくいデバイス形状などを鋭意検討し、水平ドープ方式における上記課題を解決するための最適条件を見いだし、本発明を創作した。 In order to achieve the above-mentioned object, the present inventors have made a condition for lithium metal to diffuse in the horizontal direction along the sheet-shaped current collector and sufficiently pre-dope the negative electrode, a device shape in which lithium metal is difficult to deposit, etc. And the present invention was created by finding the optimum conditions for solving the above-mentioned problems in the horizontal dope method.
本発明は、炭素材料からなるシート状の正極と、当該正極とセパレータを介して対向配置されるリチウムの吸蔵・放出が可能な材料からなるシート状の負極と、リチウム塩を支持電解質とした電解液とを備えた非水電解蓄電デバイスであって、
正極および負極は、それぞれ、一辺に外部電極部が設けられた略矩形状のシート状集電体の表面の塗布領域に、それぞれの活物質合剤が略矩形状に塗布されてなり、
正極は、前記外部電極部を除く領域に塗布領域があり、
負極は、前記略矩形状のシート状集電体の少なくとも1辺に沿って設けられた帯状の余白を未塗布領域として、当該未塗布領域と外部電極部を除く領域を塗布領域とし、
正極の塗布領域は、正極に対向配置される負極の塗布領域より内側であり、
負極の未塗布領域には、前記帯状の余白に沿って帯状のリチウム金属が貼着されているとともに、負極の塗布領域は、当該リチウム金属の貼着領域から90mm以下の距離にあることとしている。
The present invention relates to a sheet-like positive electrode made of a carbon material, a sheet-like negative electrode made of a material capable of occlusion / release of lithium arranged opposite to the positive electrode and a separator, and an electrolysis using a lithium salt as a supporting electrolyte. A non-aqueous electrolytic electricity storage device comprising a liquid,
Each of the positive electrode and the negative electrode is formed by applying each active material mixture in a substantially rectangular shape to a coating region on the surface of a substantially rectangular sheet-shaped current collector provided with an external electrode part on one side.
The positive electrode has a coating region in a region excluding the external electrode part,
The negative electrode has a strip-shaped blank provided along at least one side of the substantially rectangular sheet-shaped current collector as an uncoated region, and a region excluding the uncoated region and the external electrode portion as a coated region,
The application area of the positive electrode is inside the application area of the negative electrode arranged opposite to the positive electrode,
In the uncoated area of the negative electrode, a strip-shaped lithium metal is adhered along the strip-shaped margin, and the coated area of the negative electrode is at a distance of 90 mm or less from the lithium metal adhered area. .
前記未塗布領域が、前記略矩形状シート状集電体において互いに対向する2辺に形成され、前記リチウム金属が、当該2辺の少なくとも1辺に貼着されている非水電解質蓄電デバイスとしてもよい。当該未塗布領域が、前記外部電極部が形成された辺と当該辺に対向する辺の両辺に設けられていれば、より好ましい。 In the non-aqueous electrolyte electricity storage device, the uncoated region is formed on two sides facing each other in the substantially rectangular sheet-shaped current collector, and the lithium metal is attached to at least one of the two sides. Good. It is more preferable that the uncoated region is provided on both sides of the side where the external electrode portion is formed and the side facing the side.
また本発明は、外部電極の形成条件についても言及しており、正極の外部電極と負極のそれぞれの外部電極部が、積層方向で重複しないように設けられている非電解質蓄電デバイス、さらには、正極と負極のそれぞれの外部電極部が、それぞれのシート状集電体の同じ側の一辺の一部に突設されてなる非電解質蓄電デバイスとすることもできる。 The present invention also refers to the formation conditions of the external electrode, and the non-electrolytic power storage device provided such that the external electrode portion of the positive electrode and the external electrode portion of the negative electrode do not overlap in the stacking direction, A non-electrolyte electric storage device in which the external electrode portions of the positive electrode and the negative electrode protrude from a part of one side of the same side of each sheet-like current collector can also be provided.
上記いずれかの非電解質蓄電デバイスの製造方法も本発明の範囲であり、当該方法に係係る発明は、正極用の前記シート状集電体表面に前記塗布領域を設け、当該塗布領域に正極活物質合剤を塗布する正極塗布工程と、
負極用の前記シート状集電体表面に前記未塗布領域と前記塗布領域とを設け、当該塗布領域に負極活物質合剤を塗布する負極塗布工程と、
前記負極側のシート状集電体の未塗布領域にリチウム金属を貼着する工程と、
正極と負極をセパレータを介して対向配置させた状態で積層する積層工程と、
積層工程によって得た積層体をラミネートフィルムの外装体に封入し、所定期間保存してリチウム金属を負極に拡散させる工程と
を含み
前記負極塗布工程では、塗布領域が、未塗布領域との境界から90mm以下の距離となるように設けられ、
前記リチウム金属を貼付する工程では、当該リチウムの貼付領域が負極活物質の塗布領域から90mm以下とする
ことを特徴としている。
Any one of the above non-electrolyte power storage device manufacturing methods is also within the scope of the present invention. The invention according to the method includes providing the coating region on the surface of the sheet current collector for positive electrode, A positive electrode application step of applying a material mixture;
A negative electrode application step of providing the non-application area and the application area on the surface of the sheet-like current collector for a negative electrode, and applying a negative electrode active material mixture to the application area;
Adhering lithium metal to the uncoated area of the negative electrode sheet-shaped current collector;
A lamination step of laminating the positive electrode and the negative electrode in a state of being opposed to each other with a separator interposed therebetween;
The laminated body obtained by the laminating step is enclosed in a laminate film outer package, stored for a predetermined period of time, and diffusing lithium metal into the negative electrode. In the negative electrode applying step, the coated area is separated from the boundary with the uncoated area. Provided to be a distance of 90 mm or less,
In the step of applying the lithium metal, the lithium application region is 90 mm or less from the application region of the negative electrode active material.
また、上記非電解質蓄電デバイスの製造方法において、前記塗布プロセスでは、シート状集電体において、電極が形成されている辺に平行な方向に沿って電極活物質を塗布することとすれば、より好ましい。 Further, in the method for manufacturing a non-electrolyte electrical storage device, in the coating process, in the sheet-like current collector, if an electrode active material is applied along a direction parallel to the side on which the electrode is formed, preferable.
本発明の非水電解蓄電デバイスによれば、十分な安全性や蓄電性能を備えるとともに、低いコストでの製造が可能で、低価格化が期待できる。 According to the non-aqueous electrolytic electricity storage device of the present invention, sufficient safety and electricity storage performance are provided, manufacturing at a low cost is possible, and cost reduction can be expected.
===第1の実施例===
図1に本発明の第1の実施例における非水電解蓄電デバイス(以下、蓄電デバイス)の負極側の概略構造(A)と正極側の概略構造(B)とを示した。当該構造において、正極10pと負極10nは、それぞれ、略矩形シート状の集電体(以下、集電体シート、11p、11n)の表面に塗布されている。なお、集電体シート(11p、11n)には、正極10pと負極10nをセパレータを介して対向配置させた状態で積層して蓄電デバイスを構成した際、蓄電デバイスに蓄えられた電気を取り出すための端子となる部分(外部電極部)を設ける必要があり、当該第1の本実施例では、集電体シート(11p、11n)の略矩形の一つ辺に凸状の領域(12p、12n)を設け、その領域を外部電極部(12p、12n)としている。すなわち、正極10pと負極10nは、それぞれ、外部電極部(12p、12n)を余白として、集電体シート(11p、11n)上に塗布される。なお、以下では、矩形状集電体シート(11p,11n)において、外部電極部(12p、12n)が突設される側の辺13の延長方向を上下方向とし、その延長方向に直交する方向を左右方向として説明する。
=== First Embodiment ===
FIG. 1 shows a schematic structure (A) on the negative electrode side and a schematic structure (B) on the positive electrode side of the nonaqueous electrolytic storage device (hereinafter, storage device) in the first embodiment of the present invention. In the structure, each of the positive electrode 10p and the negative electrode 10n is applied to the surface of a substantially rectangular sheet-shaped current collector (hereinafter, current collector sheets, 11p, 11n). In addition, in order to take out the electricity stored in the electricity storage device when the electricity storage device is configured by laminating the current collector sheets (11p, 11n) with the positive electrode 10p and the negative electrode 10n arranged to face each other with a separator interposed therebetween. It is necessary to provide a portion (external electrode portion) to be a terminal of the first electrode, and in the first embodiment, a convex region (12p, 12n) on one side of a substantially rectangular shape of the current collector sheet (11p, 11n). ) And the region is used as the external electrode portion (12p, 12n). That is, the positive electrode 10p and the negative electrode 10n are applied on the current collector sheets (11p, 11n) with the external electrode portions (12p, 12n) as blanks, respectively. In the following, in the rectangular current collector sheets (11p, 11n), the extension direction of the side 13 on the side where the external electrode portions (12p, 12n) are projected is defined as the vertical direction, and the direction orthogonal to the extension direction. Is described as the left-right direction.
正極側の集電体シートは、上下左右の辺の長さが等しい略正方形の一辺を突設させてその突設した領域を外部電極部としている。そして、正極10pの塗布形状は、外部電極部12p以外のほぼ全面となる略矩形(正方形)となっている(B)。一方、負極側については、左右の長さが上下の長さより若干長い略矩形の短辺側に外部電極部12nを突設させた形状の集電体シート11nを採用している。そして負極10nは、その集電体シート11nにおいて、外部電極部12nに加え、上下方向に延長する2辺(13,14)の少なくとも一方の辺に沿って余白(15,16)が形成されるように塗布されている(A)。この例では、上下方向の両辺(13,14)に余白(15,16)が形成されている。また、当該両辺(13,14)に沿ったそれぞれの余白部分(15,16)には上下方向に延長する略矩形状のリチウム金属20が貼着されている。それによって、集電体シート11nの面に沿ってリチウムイオンがリチウム金属から左右方向に拡散し、集電体シート11n上に塗布されている負極10nにリチウムイオンがプレドープされる。 The current collector sheet on the positive electrode side protrudes from one side of a substantially square having the same length of the top, bottom, left, and right sides, and the projecting region serves as an external electrode portion. And the application | coating shape of the positive electrode 10p is a substantially rectangular (square) used as the substantially whole surface other than the external electrode part 12p (B). On the other hand, on the negative electrode side, a current collector sheet 11n having a shape in which the external electrode portion 12n is protruded on the short side of a substantially rectangular shape whose left and right lengths are slightly longer than the upper and lower lengths is employed. In the negative electrode 10n, in the current collector sheet 11n, a margin (15, 16) is formed along at least one side of two sides (13, 14) extending in the vertical direction in addition to the external electrode portion 12n. (A). In this example, margins (15, 16) are formed on both sides (13, 14) in the vertical direction. Moreover, the substantially rectangular lithium metal 20 extended in an up-down direction is affixed on each margin part (15, 16) along the said both sides (13, 14). Thereby, lithium ions diffuse from the lithium metal in the left-right direction along the surface of the current collector sheet 11n, and the negative electrode 10n applied on the current collector sheet 11n is pre-doped.
図2(A)(B)に第1の実施例の蓄電デバイスの基本構造を示し、図2(C)に蓄電デバイスにおける電流分布状態を模式的に示した。当該蓄電デバイス1aは、上述したように集電体シート(11p,11n)上に塗布形成された正極10pと負極10nをセパレータ30を介して対向配置した積層構造であり、また、正負両極(10p,10n)における外部電極部(12p,12n)が、それぞれ反対方向に突出するように積層されている。(A)は、当該蓄電デバイス1aを上面から見たときに、積層状態にある正負両極(10p,10n)の領域を比較するための図である。(B)は、当該積層構造の断面図である。このように、正負両極(10p,10n)の塗布領域は、Xp<Xn、Yp<Ynとなっており、積層状態において、正極10pの塗布領域が負極10nの塗布領域の内側に収まるようになっている。すなわち、蓄電デバイス1aにおいて、電流Iは、電極のエッジ部分17に集中し(C)、負極10nでは、このエッジ部分17nにリチウム金属が析出しやすくなる。そのため本発明では、負極10nの領域内に正極10pの領域が全て収まるように電極サイズを設定することで、負極10nのエッジ17nに電流を集中させないようにしている。そのため、リチウム金属が析出する可能性を低くしている。また、例え、負極10nのエッジ17nにリチウム金属が析出したとしても、そのエッジの対向面には正極10pが無く、ショートしないようになっている。 2A and 2B show a basic structure of the electricity storage device of the first example, and FIG. 2C schematically shows a current distribution state in the electricity storage device. The power storage device 1a has a laminated structure in which the positive electrode 10p and the negative electrode 10n applied and formed on the current collector sheets (11p, 11n) as described above are arranged to face each other with the separator 30 therebetween, and the positive and negative electrodes (10p , 10n) are laminated so that the external electrode portions (12p, 12n) protrude in opposite directions. (A) is a figure for comparing the area | region of the positive / negative bipolar | polarity (10p, 10n) in a lamination | stacking state, when the said electrical storage device 1a is seen from an upper surface. (B) is sectional drawing of the said laminated structure. Thus, the application regions of the positive and negative electrodes (10p, 10n) are Xp <Xn and Yp <Yn, and the application region of the positive electrode 10p is accommodated inside the application region of the negative electrode 10n in the stacked state. ing. That is, in the electricity storage device 1a, the current I concentrates on the edge portion 17 of the electrode (C), and in the negative electrode 10n, lithium metal tends to be deposited on the edge portion 17n. Therefore, in the present invention, the current is not concentrated on the edge 17n of the negative electrode 10n by setting the electrode size so that the entire region of the positive electrode 10p is within the region of the negative electrode 10n. Therefore, the possibility that lithium metal is deposited is reduced. For example, even if lithium metal is deposited on the edge 17n of the negative electrode 10n, there is no positive electrode 10p on the opposite surface of the edge so that no short circuit occurs.
===第2の実施例===
上記第1の実施例では、略矩形の集電体シートにおいて上下方向に延長する2つの辺のそれぞれにリチウム金属が貼着されていたが、一方の辺にのみリチウム金属を貼着する形態も考えられる。ここで、当該形態における最も好適な実施例を第2の実施例とすることとする。
=== Second Embodiment ===
In the said 1st Example, although the lithium metal was affixed on each of two sides extended in an up-down direction in the substantially rectangular collector sheet, the form which affixes lithium metal only to one side is also possible. Conceivable. Here, the most preferable example in this mode is assumed to be the second example.
図3にその第2の実施例に係る蓄電デバイスの電極形状を示した。第1の実施例では、外部電極部(12p,12n)は、集電体シート(11p,11n)をほぼ上下対象にするように突設されていたが、第2の実施例では、上下方向の1辺13の上方あるいは下方の一方に突設されている。また、上下方向(13,14)の辺に対して左右方向18の辺が短く、明らかな長方形となっている。正極10pは、第1の実施例と同様に、この外部電極部11pを除くほぼ全面に塗布される。負極10nは、リチウム金属20を貼着する余白16を残して塗布される。しかし、第2の実施例では、当該余白16は、上下方向に延長する2辺(13,14)のうち、外部電極部12nがない辺14にのみ設けられている。 FIG. 3 shows the electrode shape of the electricity storage device according to the second example. In the first embodiment, the external electrode portions (12p, 12n) are provided so as to project the current collector sheets (11p, 11n) substantially vertically, but in the second embodiment, the vertical direction It protrudes on one of the upper side or the lower side of one side 13 of the. Further, the side in the left-right direction 18 is shorter than the side in the up-down direction (13, 14), and has a clear rectangle. The positive electrode 10p is applied to almost the entire surface excluding the external electrode portion 11p, as in the first embodiment. The negative electrode 10n is applied leaving a blank 16 where the lithium metal 20 is stuck. However, in the second embodiment, the margin 16 is provided only on the side 14 where the external electrode portion 12n is not provided, out of the two sides (13, 14) extending in the vertical direction.
図4に第2の実施例における蓄電デバイスの基本構造を示した。(A)は、第2の実施例における蓄電デバイス1bを上面から見たときに、積層状態にある正負両極(10p,10n)の領域を比較するための図である。(B)は、第2の実施例における蓄電デバイス1bの積層断面図である。第2の実施例に係る蓄電デバイス1bは、第1の実施例と同様に、正極10pの領域は、負極10n領域の内側にある(Xn>Xp,Yn>Yp)。しかし、第2の実施例1bでは、第1の実施例1aと異なり、外部電極部(12p,12n)が同じ方向となるように積層されている。また、正極10pと負極10nのそれぞれの側の外部電極部(12p,12n)は積層方向において重ならないようになっており、正負両極の外部電極部(12p,12n)同士が接触しにくい構造となっている。さらにこの構成では、リチウム金属20は、外部電極部12nがない側の辺14の余白16にのみ貼着されている。したがって、リチウム金属20の対向面には、正極側の集電体シート11pもないことになり、充放電反応に伴うリチウム金属の析出に加え、貼着されているリチウム金属20による正負両極間の短絡をも防止できる構造となっている。
===電極の塗布プロセスについて===
上記各実施例における蓄電デバイスの製造方法について、とくに電極の塗布プロセスについて説明する。本発明の蓄電デバイスは水平ドープ方式を採用しているため、製造が容易であり、製造コストを削減することが可能である。以下では、製造をさらに容易とするための塗布プロセスについて説明する。図5は、電極(10p,10n)の塗布プロセスについての説明図であり、(A)は、第1の実施例に示した蓄電デバイスにおける負極10nの塗布領域であり、(B)〜(E)は、当該塗布領域に負極を塗布するための工程について、その一例を示した。
FIG. 4 shows the basic structure of the electricity storage device in the second embodiment. (A) is a figure for comparing the area | region of the positive / negative bipolar | polarity (10p, 10n) in a lamination | stacking state, when the electrical storage device 1b in a 2nd Example is seen from an upper surface. (B) is a lamination | stacking sectional drawing of the electrical storage device 1b in a 2nd Example. In the electricity storage device 1b according to the second example, as in the first example, the region of the positive electrode 10p is located inside the negative electrode 10n region (Xn> Xp, Yn> Yp). However, in the second example 1b, unlike the first example 1a, the external electrode portions (12p, 12n) are laminated so as to be in the same direction. Further, the external electrode portions (12p, 12n) on the respective sides of the positive electrode 10p and the negative electrode 10n do not overlap in the stacking direction, and the external electrode portions (12p, 12n) of both positive and negative electrodes are not easily in contact with each other. It has become. Further, in this configuration, the lithium metal 20 is attached only to the margin 16 of the side 14 on the side where the external electrode portion 12n is not provided. Therefore, there is no positive electrode current collector sheet 11p on the opposite surface of the lithium metal 20, and in addition to the deposition of the lithium metal accompanying the charge / discharge reaction, the positive and negative electrodes formed by the adhered lithium metal 20 are disposed. It has a structure that can prevent short circuit.
=== About the electrode coating process ===
The manufacturing method of the electricity storage device in each of the above embodiments will be described in particular with respect to the electrode application process. Since the electricity storage device of the present invention employs a horizontal dope method, it is easy to manufacture and can reduce manufacturing costs. Below, the application | coating process for making manufacture easier is demonstrated. FIG. 5 is an explanatory diagram of the coating process of the electrodes (10p, 10n), (A) is a coating region of the negative electrode 10n in the electricity storage device shown in the first embodiment, and (B) to (E) ) Shows an example of the process for applying the negative electrode to the application region.
負極10nを塗布プロセスにより形成する場合、外部電極部12nと、矩形状の集電体シート11nの辺(13,14)に沿った上下方向に延長する余白(15,16:40)を負極10nを塗布しない部分(未塗布部分)40とし(A)、その塗布方向には上下と左右の2方向が考えられる。(B)〜(E)は、左右方向に塗布する場合のプロセスを挙げた。当該比較例における塗布プロセスでは、未塗布部分40が選択的に塗布されないように、あらかじめその余白部分にマスク41を形成した上でスラリー状の電極活物質42をスキージ43などを用いて塗布し(B)〜(D)、塗布後にそのマスク41を剥離する(E)。 When the negative electrode 10n is formed by a coating process, the external electrode portion 12n and the margins (15, 16:40) extending in the vertical direction along the sides (13, 14) of the rectangular current collector sheet 11n are formed into the negative electrode 10n. (A), the application direction can be two directions, up and down and left and right. (B)-(E) mentioned the process in the case of apply | coating in the left-right direction. In the coating process in the comparative example, a mask 41 is formed in the blank portion in advance so that the uncoated portion 40 is not selectively coated, and then the slurry-like electrode active material 42 is coated using a squeegee 43 or the like ( B) to (D), the mask 41 is peeled off after application (E).
しかし、上記(B)〜(E)に示した工程は、マスクの形成や剥離など、複雑な工程が含まれる。また、マスク41の表面と電極活物質42が塗布される集電体シート11nの表面とに段差45が発生し(D)、マスク41のエッジ44付近で塗布ムラ45が発生する可能性がある(D,E)。一方、余白の辺(13,14)に沿う上下方向に塗布する場合では、マスク41にスキージ43を当てるだけで、幅19はマスク41で決まり、連続的に塗工が可能となり、容易に多くの電極シートの作成が可能となる。上下方向に塗布すれば、マスク41上に塗布されてしまう電極活物質42を無駄にしてしまうこともない。また、マスク41のエッジ44の延長方向と塗布方向とが平行であり、塗布ムラ45が発生することもない。このように、本発明では、蓄電デバイスにおける集電体の形状や電極形状に言及しており、当該形状により、塗布プロセスの簡略化が可能となる。そして、本発明は、その集電体や電極形状に特化した蓄電デバイスの製造方法にも及んでいる。 However, the steps shown in the above (B) to (E) include complicated steps such as mask formation and peeling. Further, a step 45 is generated between the surface of the mask 41 and the surface of the current collector sheet 11n to which the electrode active material 42 is applied (D), and there is a possibility that the coating unevenness 45 is generated near the edge 44 of the mask 41. (D, E). On the other hand, in the case of applying in the vertical direction along the marginal sides (13, 14), the width 19 is determined by the mask 41 simply by applying the squeegee 43 to the mask 41, and continuous coating is possible. The electrode sheet can be created. If applied in the vertical direction, the electrode active material 42 applied on the mask 41 is not wasted. Further, the extending direction of the edge 44 of the mask 41 and the coating direction are parallel, and the coating unevenness 45 does not occur. Thus, in the present invention, the shape of the current collector and the electrode shape in the electricity storage device are mentioned, and the application process can be simplified by the shape. The present invention also extends to a method for manufacturing an electricity storage device specialized for the current collector and electrode shape.
===蓄電デバイスの多層化について===
本実施例の蓄電デバイスの製造プロセスとしては、まず、上述した方法で正極10pおよび負極10nを集電体シート(11p,11n)上に塗布し、負極10nについては、余白(15,16)の部分にリチウム金属20を貼着する。リチウム金属20の量はプレドープする量を考慮して適宜に決定すればよい。そして、正極10pと負極10nをセパレータ30を介して対向・積層する。ここまでは、一組の正負両極からなる1層の蓄電デバイス(1a、1b)についての製造プロセスであるが、実際には、この1層の蓄電デバイス(1a、1b)をさらに積層して高容量化した多層構造の蓄電デバイス(多層蓄電デバイス)として利用される可能性が高い。
=== Multi-layered storage device ===
As a manufacturing process of the electricity storage device of this example, first, the positive electrode 10p and the negative electrode 10n were applied on the current collector sheet (11p, 11n) by the method described above, and the negative electrode 10n had a blank (15, 16). Lithium metal 20 is attached to the part. What is necessary is just to determine the quantity of the lithium metal 20 suitably in consideration of the quantity to pre-dope. Then, the positive electrode 10p and the negative electrode 10n are opposed and stacked with the separator 30 interposed therebetween. Up to this point, the manufacturing process has been described for a single-layer power storage device (1a, 1b) composed of a pair of positive and negative electrodes. There is a high possibility of being used as a power storage device having a multilayered structure (multilayer power storage device).
図6に多層化された蓄電デバイスの積層状態を断面にして示した。第1の実施例と第2の実施例の蓄電デバイスを多層化した実施形態を、それぞれ(A)と(B)に示した。正極10pと負極10nは、それぞれ一つの集電体シート(11p,11n)の両面に塗布され、正負両極間にセパレータ30を介在させている。すなわち、第1および第2実施例の構成を多層構造の各層(1a、1b)としている。第1実施例に対応した多層蓄電デバイス(A)については、同じ極の外部電極部(12p,12n)が同じ方向に突出するように各層1aが積層され、第2実施例の対応した多層蓄電デバイス(B)は、正負の外部電極部(12p,12n)が同じ方向に突出するとともに、正極10pと負極10nのそれぞれの外部電極部(12p,12n)が、異極同士で積層方向に重複しないようにしている。 FIG. 6 shows a cross-sectional view of the stacked state of the multilayered electricity storage device. Embodiments in which the electricity storage devices of the first example and the second example are multilayered are shown in (A) and (B), respectively. The positive electrode 10p and the negative electrode 10n are respectively applied to both surfaces of one current collector sheet (11p, 11n), and a separator 30 is interposed between the positive and negative electrodes. That is, the configuration of the first and second embodiments is each layer (1a, 1b) having a multilayer structure. For the multilayer power storage device (A) corresponding to the first embodiment, each layer 1a is laminated so that the external electrode portions (12p, 12n) of the same pole protrude in the same direction, and the corresponding multilayer power storage of the second embodiment In the device (B), positive and negative external electrode portions (12p, 12n) protrude in the same direction, and the external electrode portions (12p, 12n) of the positive electrode 10p and the negative electrode 10n overlap with each other in the stacking direction. I try not to.
なお、1層、多層を問わず、使用可能な蓄電デバイスにするするためには、溶接などにより外部電極部(12p,12n)に外部端子を接続する。多層構造の場合は、同じ極同士を接続して並列接続にする。このようにして、構造体としての蓄電デバイスを組み立てる。次に、組立状態にある蓄電デバイスの負極10nにリチウムイオンをプレドープする。そのために、組み立てた構造体をラミネートフィルムの中に封入する。そして、その封入状態で所定期間(本実施例では約2週間)保存し、使用可能な多層蓄電デバイスを完成させる。 In order to obtain a usable electricity storage device regardless of one layer or multiple layers, an external terminal is connected to the external electrode portion (12p, 12n) by welding or the like. In the case of a multilayer structure, the same poles are connected in parallel. In this way, an electricity storage device as a structure is assembled. Next, lithium ions are pre-doped on the negative electrode 10n of the electricity storage device in the assembled state. For this purpose, the assembled structure is enclosed in a laminate film. Then, the sealed state is stored for a predetermined period (about two weeks in this embodiment), and a usable multilayer power storage device is completed.
===リチウムイオンのプレドープ===
本発明は、リチウムイオンを水平ドープ方式によってプレドープすることとしている。しかし、水平ドープ方式では、負極11nの塗布領域において、リチウム金属20の貼着位置から遠く離れた位置では、十分にリチウムイオンが拡散されない可能性がある。あるいは、十分に拡散させるために極めて長い時間を要する場合がある。本発明は、このリチウム金属の貼着位置と負極10nの塗布領域との関係を規定することに最も大きな特徴がある。そして、当該関係における最適条件を見いだすために、貼着されたリチウム金属20における負極側の辺と負極領域との距離(以下、拡散距離)をパラメータとして、リチウムイオンの拡散状態を評価した。図7に拡散距離についての概略図を示した。第1の実施例のように負極10nの左右両側にリチウム金属20を貼着する場合、リチウム20における負極10nに対向する辺21と、負極領域を左右に2等分する線22との距離が拡散距離Lとなる(A)。第2の実施例のように片側の辺14だけにリチウム金属20を貼着する場合は、リチウム金属20における負極10nに対向する辺21と、負極10nにおけるその辺に対向しない側の辺13までの距離が拡散距離Lとなる(B)。評価には、拡散距離Lが異なる1層の蓄電デバイスをサンプルとして各種作成し、各サンプルにおいてリチウムイオンが拡散されているかどうか確認することで行った。
=== Pre-doping of lithium ions ===
In the present invention, lithium ions are pre-doped by a horizontal doping method. However, in the horizontal doping method, there is a possibility that lithium ions are not sufficiently diffused at a position far from the bonding position of the lithium metal 20 in the application region of the negative electrode 11n. Alternatively, an extremely long time may be required for sufficient diffusion. The most significant feature of the present invention is that the relationship between the lithium metal attachment position and the application region of the negative electrode 10n is defined. And in order to find the optimal condition in the said relationship, the diffusion state of lithium ion was evaluated by making into the parameter the distance (henceforth diffusion distance) of the negative electrode side and the negative electrode area | region in the lithium metal 20 stuck. FIG. 7 shows a schematic diagram of the diffusion distance. When the lithium metal 20 is attached to both the left and right sides of the negative electrode 10n as in the first embodiment, the distance between the side 21 of the lithium 20 that faces the negative electrode 10n and the line 22 that equally divides the negative electrode region into left and right parts is It becomes the diffusion distance L (A). When the lithium metal 20 is attached to only one side 14 as in the second embodiment, the side 21 of the lithium metal 20 that faces the negative electrode 10n and the side 13 of the negative electrode 10n that does not face that side Is the diffusion distance L (B). The evaluation was performed by preparing various types of single-layer electricity storage devices with different diffusion distances L as samples and confirming whether lithium ions were diffused in each sample.
以下の表1にその評価結果を示した。
当該評価結果より、拡散距離Lが90mmではリチウムイオンの拡散(リチウムイオンの存在)が確認され、100mmでは、十分に拡散されていないことが分かった。そこで本発明では、拡散距離Lを90mm以下と規定した。拡散距離Lを90mm以下とすることで、十分な蓄電性能を得ることができる。 From the evaluation result, it was found that when the diffusion distance L was 90 mm, lithium ion diffusion (presence of lithium ions) was confirmed, and when the diffusion distance L was 100 mm, it was not sufficiently diffused. Therefore, in the present invention, the diffusion distance L is defined as 90 mm or less. By setting the diffusion distance L to 90 mm or less, sufficient power storage performance can be obtained.
===塗布領域について===
本発明は、リチウムイオンを水平ドープ方式により、リチウム金属と負極の塗布領域との関係と、上記各実施例では、負極は、外部電極が形成されている辺に平行な辺に沿って帯状の余白を設け、この余白と外部電極とを未塗布領域としていた。もちろん、外部電極の形状は、凸状にかぎらず、矩形のシート状集電対の一辺にそって帯状に設けてもよい。リチウム金属を貼着するための領域も、外部電極が形成された辺やそれに対向する辺に限らない。本発明は、集電体シート上に略矩形状に塗布される正極と負極について、正極の塗布領域が対向配置される負極塗布領域の内側にあること、そして、負極の塗布領域とリチウム金属が貼着される領域とが90mm以下であることに特徴を有するものである。
=== Regarding Application Area ===
In the present invention, the lithium ions are horizontally doped, and the relationship between the lithium metal and the negative electrode coating region, and in each of the above embodiments, the negative electrode has a band-like shape along the side parallel to the side on which the external electrode is formed. A margin was provided, and the margin and the external electrode were set as an uncoated region. Of course, the shape of the external electrode is not limited to a convex shape, and may be provided in a strip shape along one side of a rectangular sheet-shaped current collector. The region for attaching the lithium metal is not limited to the side where the external electrode is formed or the side facing it. The present invention relates to a positive electrode and a negative electrode applied in a substantially rectangular shape on a current collector sheet, the positive electrode application region being inside the negative electrode application region opposed to each other, and the negative electrode application region and the lithium metal The region to be attached is characterized by being 90 mm or less.
1a、1b 非水電解質蓄電デバイス
10p 正極
10n 負極
11p、11n 集電体
12p、12n 外部電極部
20 リチウム金属
30 セパレータ
1a, 1b Nonaqueous electrolyte electricity storage device 10p Positive electrode 10n Negative electrode 11p, 11n Current collector 12p, 12n External electrode part 20 Lithium metal 30 Separator
Claims (7)
正極および負極は、それぞれ、一辺に外部電極部が設けられた略矩形状のシート状集電体の表面の塗布領域に、それぞれの活物質合剤が略矩形状に塗布されてなり、
正極は、前記外部電極部を除く領域に塗布領域があり、
負極は、前記略矩形状のシート状集電体の少なくとも1辺に沿って設けられた帯状の余白を未塗布領域として、当該未塗布領域と外部電極部を除く領域を塗布領域とし、
正極の塗布領域は、正極に対向配置される負極の塗布領域より内側であり、
負極の未塗布領域には、前記帯状の余白に沿って帯状のリチウム金属が貼着されているとともに、負極の塗布領域は、当該リチウム金属の貼着領域から90mm以下の距離にある
ことを特徴とする非水電解質蓄電デバイス。 A sheet-like positive electrode made of a carbon material, a sheet-like negative electrode made of a material capable of occluding and releasing lithium disposed opposite to the positive electrode via a separator, and an electrolyte using a lithium salt as a supporting electrolyte Non-aqueous electrolytic electricity storage device,
Each of the positive electrode and the negative electrode is formed by applying each active material mixture in a substantially rectangular shape to a coating region on the surface of a substantially rectangular sheet-shaped current collector provided with an external electrode part on one side.
The positive electrode has a coating region in a region excluding the external electrode part,
The negative electrode has a strip-shaped blank provided along at least one side of the substantially rectangular sheet-shaped current collector as an uncoated region, and a region excluding the uncoated region and the external electrode portion as a coated region,
The application area of the positive electrode is inside the application area of the negative electrode arranged opposite to the positive electrode,
A band-shaped lithium metal is adhered to the non-coated area of the negative electrode along the band-shaped margin, and the coated area of the negative electrode is at a distance of 90 mm or less from the bonded area of the lithium metal. Non-aqueous electrolyte electricity storage device.
正極用の前記シート状集電体表面に前記塗布領域を設け、当該塗布領域に正極活物質合剤を塗布する正極塗布工程と、
負極用の前記シート状集電体表面に前記未塗布領域と前記塗布領域とを設け、当該塗布領域に負極活物質合剤を塗布する負極塗布工程と、
前記負極側のシート状集電体の未塗布領域にリチウム金属を貼着する工程と、
正極と負極をセパレータを介して対向配置させた状態で積層する積層工程と、
積層工程によって得た積層体をラミネートフィルムの外装体に封入し、所定期間保存してリチウム金属を負極に拡散させる工程と
を含み
前記負極塗布工程では、塗布領域が、未塗布領域との境界から90mm以下の距離となるように設けられ、
前記リチウム金属を貼付する工程では、当該リチウムの貼付領域が負極活物質の塗布領域から90mm以下とする
ことを特徴とする非電解質蓄電デバイスの製造方法 It is a manufacturing method of the nonelectrolyte electrical storage device according to claim 1,
A positive electrode application step of providing the application region on the surface of the sheet current collector for positive electrode, and applying a positive electrode active material mixture to the application region;
A negative electrode application step of providing the non-application area and the application area on the surface of the sheet-like current collector for a negative electrode, and applying a negative electrode active material mixture to the application area;
Adhering lithium metal to the uncoated area of the negative electrode sheet-shaped current collector;
A lamination step of laminating the positive electrode and the negative electrode in a state of being opposed to each other with a separator interposed therebetween;
The laminated body obtained by the laminating step is enclosed in a laminate film outer package, stored for a predetermined period of time, and diffusing lithium metal into the negative electrode. In the negative electrode applying step, the coated area is separated from the boundary with the uncoated area. Provided to be a distance of 90 mm or less,
In the step of affixing the lithium metal, the lithium application region is 90 mm or less from the application region of the negative electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007293265A JP2009123374A (en) | 2007-11-12 | 2007-11-12 | Nonaqueous electrolyte power storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007293265A JP2009123374A (en) | 2007-11-12 | 2007-11-12 | Nonaqueous electrolyte power storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009123374A true JP2009123374A (en) | 2009-06-04 |
Family
ID=40815341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007293265A Pending JP2009123374A (en) | 2007-11-12 | 2007-11-12 | Nonaqueous electrolyte power storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009123374A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104285319A (en) * | 2013-05-06 | 2015-01-14 | 株式会社Lg化学 | Cathode for lithium secondary battery and lithium secondary battery containing same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05144473A (en) * | 1991-11-25 | 1993-06-11 | Matsushita Electric Ind Co Ltd | Secondary battery with nonaqueous electrolyte |
JP2006286919A (en) * | 2005-03-31 | 2006-10-19 | Fuji Heavy Ind Ltd | Lithium ion capacitor |
-
2007
- 2007-11-12 JP JP2007293265A patent/JP2009123374A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05144473A (en) * | 1991-11-25 | 1993-06-11 | Matsushita Electric Ind Co Ltd | Secondary battery with nonaqueous electrolyte |
JP2006286919A (en) * | 2005-03-31 | 2006-10-19 | Fuji Heavy Ind Ltd | Lithium ion capacitor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104285319A (en) * | 2013-05-06 | 2015-01-14 | 株式会社Lg化学 | Cathode for lithium secondary battery and lithium secondary battery containing same |
JP2015519710A (en) * | 2013-05-06 | 2015-07-09 | エルジー・ケム・リミテッド | Negative electrode for lithium secondary battery and lithium ion secondary battery including the same |
CN104285319B (en) * | 2013-05-06 | 2017-10-27 | 株式会社Lg 化学 | Negative electrode for lithium secondary battery and the lithium rechargeable battery comprising the negative pole |
US10050250B2 (en) | 2013-05-06 | 2018-08-14 | Lg Chem, Ltd. | Anode for lithium secondary battery and lithium ion secondary battery including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017138584A1 (en) | Power storage element and method for manufacturing power storage element | |
US20120196167A1 (en) | Electrode assembly for a battery and method for manufacturing same | |
JP6264891B2 (en) | Electrode and battery having electrode | |
JP2013016800A (en) | Lithium plate, method for lithiation of electrode and energy storage device | |
JP2008021901A5 (en) | ||
CN103069614A (en) | Current collector having built-in sealing means, and bipolar battery including such a collector | |
US8760840B2 (en) | Electrochemical device and manufacturing method thereof, circuit board and housing tray | |
JP6565000B2 (en) | Method for manufacturing electrochemical device | |
CN209981369U (en) | Cylindrical battery | |
JP2004071301A (en) | Manufacturing method of case for storage element | |
JP5896244B2 (en) | Secondary battery including electrode lead including protective layer for preventing corrosion | |
CN102667986B (en) | Electricity-storage device | |
JP2012174959A (en) | Power storage cell and manufacturing method therefor | |
JP2015088605A (en) | Method of manufacturing power storage device and power storage device | |
KR20160134331A (en) | Pouch type secondary battery and method for fabricating the same | |
CN110165275A (en) | The manufacturing method of battery and battery | |
KR20240115880A (en) | Electrode cores, battery units and electronic devices | |
JP5728263B2 (en) | Electrochemical devices | |
JP2009123374A (en) | Nonaqueous electrolyte power storage device | |
JP2009295400A (en) | Nonaqueous power storage element | |
CN219534555U (en) | Electrode plate and battery | |
JP5201757B1 (en) | Electrochemical devices | |
JP2013206705A (en) | Power storage device, secondary battery and manufacturing method of power storage device | |
JP2017130301A (en) | Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery | |
JP2009187751A (en) | Power storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20120807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131203 |