[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009121777A - Pressurized fluidized incineration equipment and starting operation method of the same - Google Patents

Pressurized fluidized incineration equipment and starting operation method of the same Download PDF

Info

Publication number
JP2009121777A
JP2009121777A JP2007297883A JP2007297883A JP2009121777A JP 2009121777 A JP2009121777 A JP 2009121777A JP 2007297883 A JP2007297883 A JP 2007297883A JP 2007297883 A JP2007297883 A JP 2007297883A JP 2009121777 A JP2009121777 A JP 2009121777A
Authority
JP
Japan
Prior art keywords
air
pressurized fluidized
exhaust gas
compressor
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007297883A
Other languages
Japanese (ja)
Other versions
JP5187731B2 (en
Inventor
Shuichi Ochi
修一 落
Masaaki Ozaki
正明 尾崎
Zenzo Suzuki
善三 鈴木
Tagami Koseki
多賀美 小関
Hitoshi Kihara
均 木原
Yoshihiro Iwai
良博 岩井
Takafumi Yamamoto
隆文 山本
Hidekazu Nagasawa
英和 長沢
Kazuyoshi Terakoshi
和由 寺腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Tsukishima Kikai Co Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
Sanki Engineering Co Ltd
Public Works Research Institute
National Institute of Advanced Industrial Science and Technology AIST
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Public Works Research Institute, National Institute of Advanced Industrial Science and Technology AIST, Tsukishima Kikai Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2007297883A priority Critical patent/JP5187731B2/en
Publication of JP2009121777A publication Critical patent/JP2009121777A/en
Application granted granted Critical
Publication of JP5187731B2 publication Critical patent/JP5187731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce equipment costs and running costs by improving efficiency in a starting operation of pressurized fluidized incineration equipment. <P>SOLUTION: This pressurized fluidized incineration equipment includes a pressurized fluidized furnace 10 for burning a treated object S, and a supercharger 40 having a turbine 41 driven by an exhaust gas generated by the combustion, and a compressor 42 driven by the turbine 41 and compressing the air supplied into the pressurized fluidized furnace 10. Further it includes passages 78, 79 for allowing the air from the air supply means 43 facing the compressor 42 to pass through the compressor 42 to supply the compressed air into the pressurized fluidized furnace 10, a main passage 73 for supplying the exhaust gas to the turbine 41 of the supercharger 40 through an air preheater 20 and a dust collector 30, and a bypass passage 73A for supplying the exhaust gas passing through the air preheater 20 and the dust collector 30, to an exhaust gas treatment system 74 at the downstream without passing through the supercharger 40. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加圧流動焼却設備及び加圧流動焼却設備の立ち上げ運転方法に関し、詳しくは被処理物を加圧下で流動燃焼し、この燃焼により発生した排ガスにより駆動されるタービンを備え、当該タービンによってコンプレッサーを駆動し、このコンプレッサーの駆動によって圧縮された空気を加圧流動炉内に供給する構成とされた加圧流動焼却設備及び加圧流動焼却設備の立ち上げ運転方法に関するものである。   The present invention relates to a pressurized fluidized incineration facility and a startup method of the pressurized fluidized incineration facility, and more specifically, includes a turbine driven by fluidized combustion under pressure and driven by exhaust gas generated by the combustion, The present invention relates to a pressurized fluidized incineration facility and a startup operation method of a pressurized fluidized incineration facility configured to drive a compressor by a turbine and supply air compressed by the driving of the compressor into a pressurized fluidized furnace.

加圧流動炉では石炭を燃料とする加圧流動床複合発電プラントが実用化され、通常、立上げ時において、タービンの過給機を電動機として使用して所定の圧力、温度まで起動している。ここで、過給機を使用するシステムでは過給機を起動時にブロワとして利用できないため大型の容量の起動用ブロワを使用する場合が多い。
他方、ガスタービンの排気(排ガス)を有効利用する方法として、本出願人は特許文献1を開示した。しかしながら、特許文献1には流動焼却設備の立ち上げ運転に関して開示はない。
もっとも、加圧流動焼却設備の立ち上げ運転の際の工夫として、本出願人は特許文献2を提案した。しかしながら、1年当たり1〜2回程度の立ち上げ運転における始動用バーナーについての燃焼用空気をどこから持ち込むかの点について開示はしていない。この点、当業者の通常の発想によれば、始動用バーナーについての燃焼用空気は、専用に設けた専用ブロワから送気する。
しかしながら、1年当たり1〜2回程度(多くとも数回)の立ち上げ運転だけのために、専用ブロワを用意することは、設備の高騰を招く。特に、加圧流動炉が所定の加圧状態の安定運転に達する時点まで専用ブロワによって、容量的に大きい加圧流動炉に対して燃焼用空気を送り込むことは、専用ブロワの大型化を回避できないものである。また、加圧流動焼却設備の立ち上げ運転の際のよりいっそうの効率化も望まれる。
特開平9−89232号公報 特開2007−170704号公報
In a pressurized fluidized furnace, a pressurized fluidized bed combined power plant that uses coal as fuel has been put into practical use. Normally, at the time of start-up, the turbocharger of the turbine is used as an electric motor to start up to a predetermined pressure and temperature. . Here, in a system using a supercharger, since the supercharger cannot be used as a blower at the time of start-up, a large-capacity start-up blower is often used.
On the other hand, the present applicant has disclosed Patent Document 1 as a method of effectively using the exhaust gas (exhaust gas) of a gas turbine. However, Patent Document 1 does not disclose the startup operation of the fluidized incineration facility.
However, the present applicant has proposed Patent Document 2 as a device for starting up the pressurized fluidized incineration facility. However, it does not disclose where the combustion air for the start burner in the start-up operation about once or twice per year is brought from. In this regard, according to the normal idea of those skilled in the art, the combustion air for the starting burner is supplied from a dedicated blower provided exclusively.
However, the provision of a dedicated blower only for start-up operation about once or twice a year (at most several times) causes a surge in equipment. In particular, it is not possible to avoid an increase in the size of the dedicated blower by sending combustion air to the pressurized fluidized furnace having a large capacity by a dedicated blower until the pressurized fluidized furnace reaches a stable operation in a predetermined pressurized state. Is. In addition, it is desired to further increase the efficiency of the startup operation of the pressurized fluidized incineration facility.
JP-A-9-89232 JP 2007-170704 A

発明が解決しようとする主たる課題は、加圧流動焼却設備の立ち上げ運転の際の効率化を図り、設備コストやランニングコストを低減させることにある。また、別の課題は、始動用バーナーの燃焼用空気送気用ブロワを使用しない又は小型化して、設備コストやランニングコストを低減させることにある。   The main problem to be solved by the present invention is to improve the efficiency at the time of start-up operation of the pressurized fluidized incineration facility and to reduce the equipment cost and the running cost. Another problem is to reduce the facility cost and running cost by not using or reducing the size of the combustion air supply blower of the start burner.

この課題を解決した本発明は、次のとおりである。
<請求項1記載の発明>
被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、を備えた加圧流動焼却設備であって、
前記コンプレッサーに対して設けられた空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気を供給する経路と、前記排ガスを空気予熱器及び集塵機を通して前記過給機のタービンに供給する本経路と、前記排ガスが前記空気予熱器及び前記集塵機を通った後に前記過給機を通すことなく前記過給機の下流の排ガス処理系に供給するバイパス経路と、を有し、
前記加圧流動炉の立上げの際に、前記空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気として供給し、前記排ガスを前記空気予熱器及び前記集塵機を通った後に前記本経路及び前記バイパス経路を通過させるように構成した、
ことを特徴とする加圧流動焼却設備。
The present invention that has solved this problem is as follows.
<Invention of Claim 1>
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure, a turbine driven by exhaust gas generated by the combustion, and a compressor for compressing air driven by the turbine and supplied to the pressurized fluidizing furnace. A pressurized fluidized incineration facility comprising a feeder,
A path for supplying compressed air into the pressurized fluidized furnace through the compressor and air from an air supply means provided for the compressor, and the exhaust gas to the turbocharger turbine through an air preheater and a dust collector. A main path for supplying, and a bypass path for supplying the exhaust gas to the exhaust gas treatment system downstream of the supercharger without passing through the supercharger after the exhaust gas has passed through the air preheater and the dust collector,
When starting up the pressurized fluidized furnace, the air from the air supply means was supplied as compressed air into the pressurized fluidized furnace through the compressor, and the exhaust gas passed through the air preheater and the dust collector. It was configured to pass through the main route and the bypass route later,
A pressurized fluidized incineration facility characterized by that.

<請求項2記載の発明>
被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、を備えた加圧流動焼却設備であって、
前記コンプレッサーに対して設けられた空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気を供給する経路と、この経路における前記コンプレッサーを通った後の経路から分岐して、前記加圧流動炉の始動用バーナーに連なる分岐経路と、前記排ガスを空気予熱器及び集塵機を通して前記過給機のタービンに供給する本経路と、前記排ガスが前記空気予熱器及び前記集塵機を通った後に前記過給機を通すことなく前記過給機の下流の排ガス処理系に供給するバイパス経路と、を有し、
前記加圧流動炉の立上げの際に、前記空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気として供給し、かつ、前記分岐経路を通して前記圧縮空気を前記始動用バーナーの燃焼用空気として供給し、
さらに、前記排ガスを前記空気予熱器及び前記集塵機を通った後に前記本経路及び前記バイパス経路を通過させるように構成した、
ことを特徴とする加圧流動焼却設備。
<Invention of Claim 2>
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure, a turbine driven by exhaust gas generated by the combustion, and a compressor for compressing air driven by the turbine and supplied to the pressurized fluidizing furnace. A pressurized fluidized incineration facility comprising a feeder,
The air from the air supply means provided for the compressor is branched from a path for supplying compressed air through the compressor and into the pressurized fluidized furnace, and a path after passing through the compressor in this path, A branch path connected to the starter burner of the pressurized fluidized furnace, a main path for supplying the exhaust gas to the turbine of the supercharger through an air preheater and a dust collector, and the exhaust gas passed through the air preheater and the dust collector A bypass path for supplying an exhaust gas treatment system downstream of the supercharger without passing through the supercharger later,
When starting up the pressurized fluidized furnace, the air from the air supply means is supplied as compressed air into the pressurized fluidized furnace through the compressor, and the compressed air is supplied to the startup through the branch path. Supply as burner combustion air,
Furthermore, the exhaust gas is configured to pass through the main path and the bypass path after passing through the air preheater and the dust collector.
A pressurized fluidized incineration facility characterized by that.

<請求項3記載の発明>
別途、前記始動用バーナーの燃焼用空気送気用ブロワを備えていない請求項1又は請求項2記載の加圧流動焼却設備。
<Invention of Claim 3>
Separately, the pressurized fluidized incineration equipment according to claim 1 or 2, wherein the combustion air supply blower for the start burner is not provided.

<請求項4記載の発明>
被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、を備えた加圧流動焼却設備における立ち上げ運転の際に、
前記コンプレッサーに対して設けられた空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気を供給する経路を通して圧縮空気として供給するとともに、
前記排ガスを空気予熱器及び集塵機を通った後に前記過給機のタービンに直接導く本経路及び前記過給機を通ることなく下流の排ガス処理系に導くバイパス経路を通過させる、
ことを特徴とする加圧流動焼却設備の立ち上げ運転方法。
<Invention of Claim 4>
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure, a turbine driven by exhaust gas generated by the combustion, and a compressor for compressing air driven by the turbine and supplied to the pressurized fluidizing furnace. In the start-up operation in a pressurized fluidized incineration facility equipped with a feeder,
Supplying air from an air supply means provided for the compressor as compressed air through a path for supplying compressed air into the pressurized fluidized furnace through the compressor;
The exhaust gas is passed through an air preheater and a dust collector and then passed through a main path that leads directly to the turbocharger turbine and a bypass path that leads to a downstream exhaust gas treatment system without passing through the supercharger.
A start-up operation method for a pressurized fluidized incinerator.

<請求項5記載の発明>
被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、を備えた加圧流動焼却設備における立ち上げ運転の際に、
前記コンプレッサーに対して設けられた空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気を供給する経路及びこの経路における前記コンプレッサーを通った後の経路から分岐して、前記加圧流動炉の始動用バーナーに連なる分岐経路を通して圧縮空気として供給するとともに、
前記排ガスを空気予熱器及び集塵機を通った後に前記過給機のタービンに直接導く本経路及び前記過給機を通ることなく下流の排ガス処理系に導くバイパス経路を通過させる、
ことを特徴とする加圧流動焼却設備の立ち上げ運転方法。
<Invention of Claim 5>
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure, a turbine driven by exhaust gas generated by the combustion, and a compressor for compressing air driven by the turbine and supplied to the pressurized fluidizing furnace. In the start-up operation in a pressurized fluidized incineration facility equipped with a feeder,
The air from the air supply means provided for the compressor is branched from a path for supplying compressed air through the compressor into the pressurized fluidized furnace and a path after passing through the compressor in the path, and While supplying compressed air through a branch path connected to the start-up burner of the pressurized fluidized furnace,
The exhaust gas is passed through an air preheater and a dust collector and then passed through a main path that leads directly to the turbocharger turbine and a bypass path that leads to a downstream exhaust gas treatment system without passing through the supercharger.
A start-up operation method for a pressurized fluidized incinerator.

<請求項6記載の発明>
前記加圧流動炉内又は前記過給機における温度及び圧力が所定の値に達するまでの間は、安定運転時に必要な流動媒体量の一部のみを前記加圧流動炉に投入した状態で前記空気供給手段によって流動化を図り、前記加圧流動炉内又は前記過給機における温度及び圧力が所定の値に達した時点で、前記空気供給手段を停止し、その後に安定運転時に必要な流動媒体量の追加分を投入する請求項4又は請求項5記載の加圧流動焼却設備の立ち上げ運転方法。
<Invention of Claim 6>
Until the temperature and pressure in the pressurized fluidized furnace or in the supercharger reach predetermined values, only a part of the amount of fluidized medium necessary for stable operation is charged in the pressurized fluidized furnace. Fluidization is performed by air supply means, and when the temperature and pressure in the pressurized fluidized furnace or the supercharger reach predetermined values, the air supply means is stopped, and then the flow required for stable operation. The start-up operation method of the pressurized fluidized incinerator according to claim 4 or 5, wherein an additional amount of medium is added.

(主な作用効果)
先にも触れたように、1年当たり1〜2回程度(多くとも数回)の立ち上げ運転だけのために、始動用バーナーについての燃焼用空気を送るために専用ブロワを用意することは、設備の高騰を招く。特に、加圧流動炉が所定の加圧状態の安定運転に達する時点まで専用ブロワによって、容量的に大きい加圧流動炉に対して燃焼用空気を送り込むことは、専用ブロワの大型化を回避できないものである。
後者の点についてさらに説明すると、立ち上げ当初の加圧流動炉の圧力は低圧であるが、時間の経過とともに炉内圧力は定常運転に必要な圧力に増加させる必要がある。このために、専用ブロワは、当初の低吐出圧力・低送風量から時間経過後の高吐出圧力・高送風量を確保するために容量を予めもっている必要があるために、専用ブロワの大型化を回避できないものである。
しかるに、本発明においては、コンプレッサーに対して設けられた空気供給手段からの空気を、コンプレッサーを通して加圧流動炉内に圧縮空気を供給する経路と、好ましくはこの経路におけるコンプレッサーを通った後の経路から分岐して、加圧流動炉の始動用バーナーに連なる分岐経路とを有し、加圧流動炉の立上げの際に、(加圧流動炉のほか)分岐経路を通して圧縮空気を始動用バーナーの燃焼用空気として供給するものである。
(Main effects)
As mentioned earlier, preparing a dedicated blower to send combustion air for the starter burner only for start-up operations about once or twice a year (at most several times) , Soaring equipment. In particular, it is not possible to avoid an increase in the size of the dedicated blower by sending combustion air to the pressurized fluidized furnace having a large capacity by a dedicated blower until the pressurized fluidized furnace reaches a stable operation in a predetermined pressurized state. Is.
To further explain the latter point, the pressure of the pressurized fluidized furnace at the start-up is a low pressure, but the pressure in the furnace needs to be increased to a pressure necessary for steady operation with the passage of time. For this reason, the dedicated blower needs to have a capacity in advance in order to secure high discharge pressure and high airflow after the passage of time from the initial low discharge pressure and low airflow. Cannot be avoided.
However, in the present invention, a path for supplying compressed air into the pressurized fluidized furnace through the compressor from the air supply means provided for the compressor, and preferably a path after passing through the compressor in this path. And a branch path connected to the start-up burner of the pressurized fluidized furnace, and when starting up the pressurized fluidized furnace, the compressed air is started through the branch path (in addition to the pressurized fluidized furnace). It is supplied as combustion air.

その結果、時間経過に伴う燃焼の進行によって昇温し、これに伴って、加圧流動炉内の圧力が上昇すると、コンプレッサー側での圧縮比が高くなり、コンプレッサー出口側の圧縮空気圧力は加圧流動炉内の圧力よりも常に高くなる(加圧流動炉内の流動部の圧力損失分を超える圧力)ので、加圧流動炉内の圧力上昇に伴ってコンプレッサー出口側の風量が増加する。その結果、送風能力の小さい空気供給手段であっても、時間経過後においても高吐出圧力・高送風量を確保することができる。したがって、図1に符号43Aとして仮定的に図示した始動用バーナーについての燃焼用空気を送るために専用ブロワを使用しないか、きわめて小型のもので足りるものとなり、もって、設備コストやランニングコストを低減させることができる。また、加圧流動炉内圧力と、加圧流動炉内へ燃焼用空気として吹き込む圧縮空気の圧力が連動しているので、始動用バーナーにおける燃焼用空気量制御が容易になる利点もある。   As a result, the temperature rises as the combustion progresses over time, and as a result, when the pressure in the pressurized flow furnace rises, the compression ratio on the compressor side increases and the compressed air pressure on the compressor outlet side increases. Since the pressure is always higher than the pressure in the pressurized fluidized furnace (pressure exceeding the pressure loss of the fluidized part in the pressurized fluidized furnace), the air volume on the compressor outlet side increases as the pressure in the pressurized fluidized furnace increases. As a result, even if the air supply means has a small blowing capacity, a high discharge pressure and a high blowing volume can be ensured even after a lapse of time. Accordingly, a dedicated blower is not used to send the combustion air for the starter burner assumed as the reference numeral 43A in FIG. 1, or an extremely small one is sufficient, thereby reducing the equipment cost and running cost. Can be made. In addition, since the pressure in the pressurized fluidized furnace and the pressure of the compressed air that is blown into the pressurized fluidized furnace as the combustion air are linked, there is also an advantage that it is easy to control the amount of combustion air in the starter burner.

もっとも、立ち上げ運転時においても、当初は加圧流動炉からの排ガスの量が極めて少ない。したがって、この排ガスを空気予熱器及び集塵機を通った後に過給機のタービンに直接導くと、タービン圧損となって、空気供給手段の静圧を増加させてしまう。そこで、排ガスが空気予熱器及び集塵機を通った後に過給機のタービンに直接導く本経路のほか、当該過給機を通ることなく下流の排ガス処理系に導くバイパス経路を有し、排ガスを空気予熱器及び集塵機を通った後に本経路及びバイパス経路を通過させるように構成する。これにより、タービンによる圧損を低減して空気供給手段の静圧を低減することができ、空気供給手段を小型化して、設備コストやランニングコストを低減させることができる。
一方、別途、始動用バーナーの燃焼用空気送気用ブロワを備えていないことは、設備コストの低減効果が大きいものとなる。
However, even during start-up operation, the amount of exhaust gas from the pressurized fluidized furnace is initially very small. Therefore, if the exhaust gas is directly guided to the turbocharger turbine after passing through the air preheater and the dust collector, the turbine pressure loss is caused and the static pressure of the air supply means is increased. Therefore, in addition to this route that leads exhaust gas directly to the turbocharger turbine after passing through the air preheater and dust collector, it has a bypass route that leads to the downstream exhaust gas treatment system without passing through the turbocharger. After passing through the preheater and the dust collector, the main path and the bypass path are configured to pass. Thereby, the pressure loss by a turbine can be reduced and the static pressure of an air supply means can be reduced, an air supply means can be reduced in size and an installation cost and a running cost can be reduced.
On the other hand, the absence of the combustion air supply blower for the start burner has a great effect of reducing the equipment cost.

なお、本明細書における空気供給手段とは、空気圧縮機、送風機等の単体機器や、他設備に設けられ、当該他設備で発生する空気をコンプレッサーに供給する装置等であってよく、当業者が適宜、選定するものである。   Note that the air supply means in the present specification may be a single device such as an air compressor or a blower, an apparatus provided in other equipment and supplying air generated in the other equipment to a compressor, etc. Is appropriately selected.

本発明によれば、加圧流動焼却設備の立ち上げ運転の際の効率化が図られ、設備コストやランニングコストを低減させることができる。   According to the present invention, the efficiency of the startup operation of the pressurized fluidized incineration facility can be improved, and the equipment cost and running cost can be reduced.

以下、本発明の実施の形態を説明する。
本形態に係る加圧流動焼却設備は、被処理物Sを燃焼させる加圧流動炉10と、この燃焼により発生した排ガスによって駆動されるタービン41及びこのタービン41によって駆動され、加圧流動炉10内に供給する空気を圧縮するコンプレッサー42を有する過給機40を備えている。
Embodiments of the present invention will be described below.
The pressurized fluidized incineration facility according to this embodiment includes a pressurized fluidized furnace 10 that combusts the workpiece S, a turbine 41 that is driven by exhaust gas generated by the combustion, and the turbine 41 that is driven by the exhaust gas. A supercharger 40 having a compressor 42 for compressing air to be supplied therein is provided.

加圧流動炉10には、バイオマス、都市ゴミや下水汚泥の脱水ケーキ等の被処理物Sが供給口から供給されると共に、始動時において下部の始動用バーナー12から燃焼のための燃料及び燃焼用空気が供給されるようになっている。加圧流動炉10の下部からは、後述するように、圧縮空気が吹き込まれ、その流動化エネルギーによって被処理物Sが流動されながら、燃焼焼却されるようになっている。   The pressurized fluidized furnace 10 is supplied with an object to be treated S such as biomass, dewatered cake of municipal waste or sewage sludge from the supply port, and at the time of start-up, fuel and combustion for combustion from the lower starter burner 12 Service air is supplied. As will be described later, compressed air is blown from the lower part of the pressurized fluidized furnace 10, and the workpiece S is fluidized by the fluidizing energy, and is combusted and incinerated.

その燃焼焼却排ガスは、流路71を通して空気予熱器20に送られ、その後に流路72を通してバグフィルタやセラミックフィルタなどの集塵機30を通った後に、本経路たる流路73を通して過給機40のタービン41に導かれ、また、バイパス経路たる流路73と分岐する流路73Aを通して過給機40を通ることなく下流の排ガス処理系たる流路74に導かれる。このように、バイパス経路たる流路73Aを有することにより、タービン41による圧損を低減して空気供給手段43の静圧を低減することができ、空気供給手段43を小型化して、設備コストやランニングコストを低減させることができる。特に、立ち上げ運転当初においては、加圧流動炉10からの排ガスの量が極めて少ないため、タービン圧損が大きくなり易く、そこで、本経路たる流路73を通す排ガスの量を少なくし、他方、バイパス経路たる流路73Aを通す排ガスの量を多くし、排ガスの量が増えるのに応じて、本経路たる流路73を通す排ガスの量を多くすると好ましいものとなる。この流路73に導く排ガスの量と流路73Aに導く排ガスの量との調節は、それぞれの流路73,73Aに備わる切替え弁46,47の開度を調節することによって、行うことができる。   The combustion incineration exhaust gas is sent to the air preheater 20 through the flow path 71, then passes through the dust collector 30 such as a bag filter or a ceramic filter through the flow path 72, and then passes through the flow path 73 that is the main path of the supercharger 40. The gas is guided to the turbine 41, and is guided to the flow path 74 which is the downstream exhaust gas treatment system without passing through the supercharger 40 through the flow path 73A which branches from the flow path 73 which is a bypass path. Thus, by having the flow path 73A as a bypass path, the pressure loss due to the turbine 41 can be reduced and the static pressure of the air supply means 43 can be reduced, the air supply means 43 can be downsized, and the equipment cost and running can be reduced. Cost can be reduced. In particular, at the beginning of start-up operation, the amount of exhaust gas from the pressurized fluidized furnace 10 is extremely small, so that the turbine pressure loss is likely to increase. Therefore, the amount of exhaust gas passing through the flow path 73 as the main path is reduced, It is preferable to increase the amount of exhaust gas passing through the flow path 73A serving as the bypass path and increasing the amount of exhaust gas passing through the flow path 73 serving as the main path as the amount of exhaust gas increases. The adjustment of the amount of exhaust gas guided to the flow path 73 and the amount of exhaust gas guided to the flow path 73A can be performed by adjusting the opening degree of the switching valves 46 and 47 provided in the respective flow paths 73 and 73A. .

一方、過給機40では、タービン41を駆動し、これに連結されたコンプレッサー42を駆動する。タービン41で膨張した排ガスは、流路74を通して白煙防止用予熱器50を通り、流路75を通して排煙処理塔60に導かれ、清浄化が図られた後に煙突62から大気に放出される。   On the other hand, the supercharger 40 drives the turbine 41 and drives the compressor 42 connected thereto. The exhaust gas expanded by the turbine 41 passes through the flow path 74 through the white smoke prevention preheater 50, is guided to the flue gas treatment tower 60 through the flow path 75, and is discharged from the chimney 62 to the atmosphere after being cleaned. .

他方、コンプレッサー42に対して空気供給手段43が設けられており、切替え弁44を有する流路76からの空気を、コンプレッサー42により圧縮して、流路77及び流路78を通り、空気予熱器20を巡りながら流路79を通して、加圧流動炉10内に圧縮空気を供給する経路が形成されている。
また、この経路におけるコンプレッサー42を通った後の経路77から分岐して、加圧流動炉10の始動用バーナー12に連なる分岐経路80も形成されている。
空気予熱器20は、排ガスのもっている熱により、加圧流動炉10内に供給する圧縮空気を予熱するためのものである。
白煙防止用予熱器50は、白煙防止ファン52から送り込まれる空気を予熱し、排煙処理塔60からの清浄空気を煙突62において加熱し、白煙を大気に発生させないようにするものである。排煙処理塔60は排ガスの最終的な清浄化を図るものであり、湿式集塵方式などが採用される。
On the other hand, air supply means 43 is provided for the compressor 42, and the air from the flow path 76 having the switching valve 44 is compressed by the compressor 42, passes through the flow path 77 and the flow path 78, and is an air preheater. A path for supplying compressed air into the pressurized fluidized furnace 10 is formed through the flow path 79 while going around 20.
Further, a branch path 80 branched from the path 77 after passing through the compressor 42 in this path and continuing to the starting burner 12 of the pressurized fluidized furnace 10 is also formed.
The air preheater 20 is for preheating the compressed air supplied into the pressurized fluidized furnace 10 with the heat of the exhaust gas.
The white smoke prevention preheater 50 preheats the air sent from the white smoke prevention fan 52 and heats the clean air from the smoke treatment tower 60 in the chimney 62 so that white smoke is not generated in the atmosphere. is there. The flue gas treatment tower 60 is intended to finally clean the exhaust gas, and employs a wet dust collection system or the like.

本実施の形態においては、本設備周りから外部空気Aのコンプレッサー42に対する切替え弁45を有する供給流路81が設けられ、立ち上がり運転時には空気供給手段43からコンプレッサー42に空気を送り込み、安定運転になった時点で、切替え弁44を閉じ、その代わりに切替え弁45を開として供給流路81を通して外部空気Aをコンプレッサー42に対して送り込むようになっている。   In the present embodiment, a supply flow path 81 having a switching valve 45 for the external air A to the compressor 42 is provided from around the equipment, and air is sent from the air supply means 43 to the compressor 42 during the start-up operation, so that stable operation is achieved. At that time, the switching valve 44 is closed, and instead, the switching valve 45 is opened, and the external air A is sent to the compressor 42 through the supply flow path 81.

立ち上げ運転の際には、図2に示すように、コンプレッサー42に対して設けられた空気供給手段43からの空気を、流路76を通してコンプレッサー42に送り込み(空気供給手段運転開始)、コンプレッサー42により圧縮して、流路77及び流路78を通り、空気予熱器20を巡りながら流路79を通して、加圧流動炉10内に圧縮空気として供給する。また、この経路におけるコンプレッサー42を通った後の経路77から分岐した分岐経路80を通して、加圧流動炉10の始動用バーナー12に圧縮空気を送り、燃焼用空気として供給する。   In the start-up operation, as shown in FIG. 2, the air from the air supply means 43 provided for the compressor 42 is sent to the compressor 42 through the flow path 76 (the air supply means operation starts), and the compressor 42 The compressed air is supplied as compressed air through the flow path 77 and the flow path 78, through the flow path 79 while circulating around the air preheater 20. Further, the compressed air is sent to the starting burner 12 of the pressurized fluidized furnace 10 through the branch path 80 branched from the path 77 after passing through the compressor 42 in this path, and supplied as combustion air.

立ち上がり運転時間経過に伴って、加圧流動炉10内の圧力が上昇すると、コンプレッサー側での圧縮比が高くなり、コンプレッサー42出口側の圧縮空気圧力は加圧流動炉10内の圧力よりも常に高くなる(加圧流動炉10内の流動部の圧力損失分を超える圧力)ので、加圧流動炉10内の圧力上昇に伴ってコンプレッサー42出口側の風量が増加する。その結果、容量の小さい空気供給手段43であっても、時間経過後においても高吐出圧力・高送風量を確保することができる。したがって、図1に符号43Aとして仮定的に図示した始動用バーナー12についての燃焼用空気を送るために専用ブロワを使用しないか、きわめて小型のもので足りるものとなり、もって、設備コストやランニングコストを低減させることができる。   When the pressure in the pressurized fluidized furnace 10 rises with the rising operation time, the compression ratio on the compressor side increases, and the compressed air pressure on the outlet side of the compressor 42 is always higher than the pressure in the pressurized fluidized furnace 10. Since it becomes higher (pressure exceeding the pressure loss of the fluidized part in the pressurized fluidized furnace 10), the air volume at the outlet side of the compressor 42 increases as the pressure in the pressurized fluidized furnace 10 increases. As a result, even with the air supply means 43 having a small capacity, it is possible to ensure a high discharge pressure and a high air blowing amount even after the passage of time. Accordingly, a dedicated blower is not used to send the combustion air for the starter burner 12 hypothetically shown as reference numeral 43A in FIG. 1, or an extremely small one is sufficient, thereby reducing equipment costs and running costs. Can be reduced.

所定の温度、タービン41の入口温度がたとえば350℃以上、圧力が0.11〜0.15MPaの条件を指標とした安定運転になった時点で、切替え弁44を閉じ(空気供給手段運転停止)、その代わりに切替え弁45を開として供給流路81を通して本設備周りから外部空気Aをコンプレッサー42に対して送り込む。以後、この条件が続行される。   When the stable operation is performed with the predetermined temperature, the inlet temperature of the turbine 41 being, for example, 350 ° C. or more, and the pressure being 0.11 to 0.15 MPa as an index, the switching valve 44 is closed (air supply means operation stopped). Instead, the switching valve 45 is opened, and the external air A is sent to the compressor 42 from around the equipment through the supply flow path 81. Thereafter, this condition continues.

従来、焼却に用いられている加圧を行わない気泡流動炉では、常時流動用ブロワを運転し続け、また、排煙処理塔60で煙突から強制的に排気するための誘引ファンの設置が必要なものであるのに対し、本形態に係る加圧流動焼却設備は、起動時に空気供給手段43を使用するのみで足りるのでランニングコストが低減し、誘引ファンの設置が不要となる利点がある。   Conventionally, in a bubbling flow furnace used for incineration that does not perform pressurization, it is necessary to continuously operate a flow blower and to install an induction fan for forcibly exhausting from the chimney in the flue gas treatment tower 60 On the other hand, the pressurized fluidized incineration facility according to the present embodiment has an advantage that the running cost is reduced because only the air supply means 43 is used at the time of startup, and the installation of the induction fan is unnecessary.

加圧流動炉10の運転条件に限定はないが、0.1〜0.3MPa程度の加圧にし、ダイオキシン発生防止の観点から800〜850℃程度の温度条件にすることが望ましい。   Although there are no limitations on the operating conditions of the pressurized fluidized furnace 10, it is desirable to set the pressure to about 0.1 to 0.3 MPa and to set the temperature to about 800 to 850 ° C. from the viewpoint of preventing dioxin generation.

ところで、以上の立ち上がりから安定運転に至る過程においては、図2に示すように、立ち上げ当初は、空気供給手段43の運転を開始するとともに、安定運転時に必要な砂等の流動媒体量の一部のみを加圧流動炉10に投入した状態で空気供給手段43によって流動化を図り、加圧流動炉10内又は過給機40における温度及び圧力が所定の値に達した時点で、空気供給手段43を停止し、その後に安定運転時に必要な流動媒体量の追加分を投入する。このように立ち上げ当初の流動媒体の量を少なくしておくことにより、加圧流動炉10の流動部における圧力損失が低減され、タービン41の入口における排ガスの圧力も、流動部における圧力損失が低減された分上昇する。結果、コンプレッサー42の出口における圧縮空気の昇圧速度も上昇するため、空気供給手段43をよりいっそう小型化することができるようになる。なお、加圧流動炉10からの排ガスをバイパス経路たる流路73Aに通す場合は、流動部における圧力損失を低減することによる利点は少ない。しかしながら、加圧流動炉10からの排ガスをバイパス経路たる流路73Aに通さず、全て本経路たる流路73に通す段階に至っても、いまだ安定運転の段階には至らず、空気供給手段43の運転状態が続く。したがって、流動部における圧力損失を低減しておくと、この段階から大きな利点が発揮される。   By the way, in the process from the above rising to the stable operation, as shown in FIG. 2, at the beginning of the start-up, the operation of the air supply means 43 is started, and the amount of fluid medium such as sand necessary for the stable operation is increased. Fluidization is performed by the air supply means 43 in a state where only the part is put into the pressurized fluidized furnace 10, and when the temperature and pressure in the pressurized fluidized furnace 10 or the supercharger 40 reach predetermined values, the air is supplied. The means 43 is stopped, and then an additional amount of fluid medium necessary for stable operation is added. By reducing the amount of the fluid medium at the start-up in this way, the pressure loss in the fluidized part of the pressurized fluidized furnace 10 is reduced, and the pressure loss of the exhaust gas at the inlet of the turbine 41 is also reduced in the fluidized part. Increase by reduced amount. As a result, the pressure increase speed of the compressed air at the outlet of the compressor 42 also increases, so that the air supply means 43 can be further downsized. In addition, when passing the exhaust gas from the pressurized fluidized furnace 10 through the flow path 73A which is a bypass path, there are few advantages by reducing the pressure loss in a fluidized part. However, even if the exhaust gas from the pressurized fluidized furnace 10 does not pass through the flow path 73A that is the bypass path, and passes through the flow path 73 that is the main path, it still does not reach the stable operation stage, and the air supply means 43 The driving state continues. Therefore, if the pressure loss in the fluidized part is reduced, a great advantage is exhibited from this stage.

次に、砂等の流動媒体を、加圧流動炉10内に供給し、あるいは加圧流動炉10内から抜き出す形態について、説明する。
まず、本形態においては、加圧流動炉10に、流動媒体を加圧流動炉10内に投入するための流動媒体投入装置11と、流動媒体を加圧流動炉10外に排出するための流動媒体排出装置13と、が設けられている。そして、流動媒体投入装置11は、流動媒体を貯留する貯留ホッパ11Aと、この貯留ホッパ11Aの下側に設けられたロータリバルブやスライドゲート等からなる投入手段11Bと、を有し、貯留ホッパ11A内の流動媒体は、投入手段11Bによって、例えば、加圧流動炉10の側壁を通して、加圧流動炉10内に供給される。一方、流動媒体排出装置13は、加圧流動炉10の底部に設けられた排出ゲート13Aと、この排出ゲート13Aを通して排出された流動媒体を搬送しつつ所定温度 (例えば、150〜250℃)まで冷却する冷却コンベア13Bと、この冷却コンベア13Bによって冷却された流動媒体中に含まれる不燃物等の不純物を取り除く分級機(篩い分け機)等の分離手段13Cと、この分離手段13Cによって不純物が取り除かれた再利用可能な流動媒体を貯留ホッパ11Aに搬送するフライトコンベア等の搬送手段13Dと、を有する。なお、符号13Eは、不燃物等の不純物を回収・搬送するためのコンテナである。このように、本形態においては、流動媒体投入装置11及び流動媒体排出装置13を有して、流動媒体をリサイクル可能な構成となっている。
Next, a mode in which a fluid medium such as sand is supplied into the pressurized fluidized furnace 10 or extracted from the pressurized fluidized furnace 10 will be described.
First, in the present embodiment, a fluidized medium feeding device 11 for feeding a fluidized medium into the pressurized fluidized furnace 10 and a fluid for discharging the fluidized medium out of the pressurized fluidized furnace 10 in the pressurized fluidized furnace 10. A medium discharge device 13. The fluid medium charging device 11 includes a storage hopper 11A that stores the fluid medium, and a charging means 11B that includes a rotary valve, a slide gate, and the like provided below the storage hopper 11A. The inside fluid medium is supplied into the pressurized fluidized furnace 10 by the charging means 11B, for example, through the side wall of the pressurized fluidized furnace 10. On the other hand, the fluid medium discharge device 13 conveys the fluid gate discharged through the discharge gate 13A provided at the bottom of the pressurized flow furnace 10 and the discharge gate 13A to a predetermined temperature (for example, 150 to 250 ° C.). Cooling conveyor 13B for cooling, separation means 13C such as a classifier (sieving machine) for removing impurities such as incombustibles contained in the fluid medium cooled by this cooling conveyor 13B, and impurities are removed by this separation means 13C Transporting means 13D such as a flight conveyor for transporting the reusable fluid medium to the storage hopper 11A. Reference numeral 13E denotes a container for collecting and transporting impurities such as incombustibles. Thus, in this embodiment, the fluid medium input device 11 and the fluid medium discharge device 13 are provided, and the fluid medium can be recycled.

本形態において、砂等の流動媒体の量は、特に限定されないが、例えば、定常運転終了後における立ち上げ時には、加圧流動炉10における圧力損失が、例えば、0.005〜0.007MPaとなるように、加圧流動炉10内の流動媒体を流動媒体排出装置13によって排出し、もって流動媒体の量を調節する。この際、あるいはこの調節を行った後、加圧流動炉10内へ圧縮空気の供給を行う。その後、例えば、加圧流動炉10内が所定の温度、圧力となったら、加圧流動炉10における圧力損失が、例えば、0.01〜0.015MPaとなるように、加圧流動炉10内に流動媒体を流動媒体投入装置11によって投入する。この流動媒体を投入(追加)する時期を判定するにおいては、加圧流動炉10内の圧力や温度を基準とするに限定されず、例えば、供給される圧縮空気圧力等を基準にすることもできる。   In this embodiment, the amount of the fluid medium such as sand is not particularly limited. For example, when starting up after the end of the steady operation, the pressure loss in the pressurized fluidized furnace 10 is, for example, 0.005 to 0.007 MPa. As described above, the fluid medium in the pressurized fluidized furnace 10 is discharged by the fluid medium discharge device 13 to adjust the amount of the fluid medium. At this time or after this adjustment, compressed air is supplied into the pressurized fluidized furnace 10. Thereafter, for example, when the inside of the pressurized fluidized furnace 10 reaches a predetermined temperature and pressure, the pressure loss in the pressurized fluidized furnace 10 is, for example, 0.01 to 0.015 MPa. The fluid medium is introduced into the fluid by the fluid medium feeder 11. The determination of the timing of adding (adding) the fluid medium is not limited to the pressure and temperature in the pressurized fluidized furnace 10, and may be based on, for example, the supplied compressed air pressure. it can.

加圧流動焼却設備の構成例の説明図である。It is explanatory drawing of the structural example of a pressurization fluidization incineration equipment. 加圧流動焼却設備の立ち上げ運転方法を説明するためのフロー図である。It is a flowchart for demonstrating the start-up operation method of a pressurized fluidized incinerator.

符号の説明Explanation of symbols

10…加圧流動炉、11…流動媒体投入装置、12…始動用バーナー、13…流動媒体排出装置、20…空気予熱器、30…集塵機、40…過給機、41…タービン、42…コンプレッサー、43…起動用ブロワ、50…白煙防止用予熱器、60…排煙処理塔、S…被処理物。   DESCRIPTION OF SYMBOLS 10 ... Pressurized flow furnace, 11 ... Fluid medium charging device, 12 ... Starter burner, 13 ... Fluid medium discharge device, 20 ... Air preheater, 30 ... Dust collector, 40 ... Supercharger, 41 ... Turbine, 42 ... Compressor , 43... Blower for starting, 50... Preheater for preventing white smoke, 60.

Claims (6)

被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、を備えた加圧流動焼却設備であって、
前記コンプレッサーに対して設けられた空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気を供給する経路と、前記排ガスを空気予熱器及び集塵機を通して前記過給機のタービンに供給する本経路と、前記排ガスが前記空気予熱器及び前記集塵機を通った後に前記過給機を通すことなく前記過給機の下流の排ガス処理系に供給するバイパス経路と、を有し、
前記加圧流動炉の立上げの際に、前記空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気として供給し、前記排ガスを前記空気予熱器及び前記集塵機を通った後に前記本経路及び前記バイパス経路を通過させるように構成した、
ことを特徴とする加圧流動焼却設備。
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure, a turbine driven by exhaust gas generated by the combustion, and a compressor for compressing air driven by the turbine and supplied to the pressurized fluidizing furnace. A pressurized fluidized incineration facility comprising a feeder,
A path for supplying compressed air into the pressurized fluidized furnace through the compressor and air from an air supply means provided for the compressor, and the exhaust gas to the turbocharger turbine through an air preheater and a dust collector. A main path for supplying, and a bypass path for supplying the exhaust gas to the exhaust gas treatment system downstream of the supercharger without passing through the supercharger after the exhaust gas has passed through the air preheater and the dust collector,
When starting up the pressurized fluidized furnace, the air from the air supply means was supplied as compressed air into the pressurized fluidized furnace through the compressor, and the exhaust gas passed through the air preheater and the dust collector. It was configured to pass through the main route and the bypass route later,
A pressurized fluidized incineration facility characterized by that.
被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、を備えた加圧流動焼却設備であって、
前記コンプレッサーに対して設けられた空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気を供給する経路と、この経路における前記コンプレッサーを通った後の経路から分岐して、前記加圧流動炉の始動用バーナーに連なる分岐経路と、前記排ガスを空気予熱器及び集塵機を通して前記過給機のタービンに供給する本経路と、前記排ガスが前記空気予熱器及び前記集塵機を通った後に前記過給機を通すことなく前記過給機の下流の排ガス処理系に供給するバイパス経路と、を有し、
前記加圧流動炉の立上げの際に、前記空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気として供給し、かつ、前記分岐経路を通して前記圧縮空気を前記始動用バーナーの燃焼用空気として供給し、
さらに、前記排ガスを前記空気予熱器及び前記集塵機を通った後に前記本経路及び前記バイパス経路を通過させるように構成した、
ことを特徴とする加圧流動焼却設備。
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure, a turbine driven by exhaust gas generated by the combustion, and a compressor for compressing air driven by the turbine and supplied to the pressurized fluidizing furnace. A pressurized fluidized incineration facility comprising a feeder,
The air from the air supply means provided for the compressor is branched from a path for supplying compressed air through the compressor and into the pressurized fluidized furnace, and a path after passing through the compressor in this path, A branch path connected to the starter burner of the pressurized fluidized furnace, a main path for supplying the exhaust gas to the turbine of the supercharger through an air preheater and a dust collector, and the exhaust gas passed through the air preheater and the dust collector A bypass path for supplying an exhaust gas treatment system downstream of the supercharger without passing through the supercharger later,
When starting up the pressurized fluidized furnace, the air from the air supply means is supplied as compressed air into the pressurized fluidized furnace through the compressor, and the compressed air is supplied to the startup through the branch path. Supply as burner combustion air,
Furthermore, the exhaust gas is configured to pass through the main path and the bypass path after passing through the air preheater and the dust collector.
A pressurized fluidized incineration facility characterized by that.
別途、前記始動用バーナーの燃焼用空気送気用ブロワを備えていない請求項1又は請求項2記載の加圧流動焼却設備。   Separately, the pressurized fluidized incineration equipment according to claim 1 or 2, wherein the combustion air supply blower for the start burner is not provided. 被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、を備えた加圧流動焼却設備における立ち上げ運転の際に、
前記コンプレッサーに対して設けられた空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気を供給する経路を通して圧縮空気として供給するとともに、
前記排ガスを空気予熱器及び集塵機を通った後に前記過給機のタービンに直接導く本経路及び前記過給機を通ることなく下流の排ガス処理系に導くバイパス経路を通過させる、
ことを特徴とする加圧流動焼却設備の立ち上げ運転方法。
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure, a turbine driven by exhaust gas generated by the combustion, and a compressor for compressing air driven by the turbine and supplied to the pressurized fluidizing furnace. In the start-up operation in a pressurized fluidized incineration facility equipped with a feeder,
Supplying air from an air supply means provided for the compressor as compressed air through a path for supplying compressed air into the pressurized fluidized furnace through the compressor;
The exhaust gas is passed through an air preheater and a dust collector and then passed through a main path that leads directly to the turbocharger turbine and a bypass path that leads to a downstream exhaust gas treatment system without passing through the supercharger.
A start-up operation method for a pressurized fluidized incinerator.
被処理物を加圧下で流動燃焼させる加圧流動炉と、この燃焼により発生した排ガスによって駆動されるタービン及びこのタービンによって駆動され前記加圧流動炉内に供給する空気を圧縮するコンプレッサーを有する過給機と、を備えた加圧流動焼却設備における立ち上げ運転の際に、
前記コンプレッサーに対して設けられた空気供給手段からの空気を、前記コンプレッサーを通して前記加圧流動炉内に圧縮空気を供給する経路及びこの経路における前記コンプレッサーを通った後の経路から分岐して、前記加圧流動炉の始動用バーナーに連なる分岐経路を通して圧縮空気として供給するとともに、
前記排ガスを空気予熱器及び集塵機を通った後に前記過給機のタービンに直接導く本経路及び前記過給機を通ることなく下流の排ガス処理系に導くバイパス経路を通過させる、
ことを特徴とする加圧流動焼却設備の立ち上げ運転方法。
A pressurized fluidizing furnace for fluidizing and burning a workpiece under pressure, a turbine driven by exhaust gas generated by the combustion, and a compressor for compressing air driven by the turbine and supplied to the pressurized fluidizing furnace. In the start-up operation in a pressurized fluidized incineration facility equipped with a feeder,
The air from the air supply means provided for the compressor is branched from a path for supplying compressed air through the compressor into the pressurized fluidized furnace and a path after passing through the compressor in the path, and While supplying compressed air through a branch path connected to the start-up burner of the pressurized fluidized furnace,
The exhaust gas is passed through an air preheater and a dust collector and then passed through a main path that leads directly to the turbocharger turbine and a bypass path that leads to a downstream exhaust gas treatment system without passing through the supercharger.
A start-up operation method for a pressurized fluidized incinerator.
前記加圧流動炉内又は前記過給機における温度及び圧力が所定の値に達するまでの間は、安定運転時に必要な流動媒体量の一部のみを前記加圧流動炉に投入した状態で前記空気供給手段によって流動化を図り、前記加圧流動炉内又は前記過給機における温度及び圧力が所定の値に達した時点で、前記空気供給手段を停止し、その後に安定運転時に必要な流動媒体量の追加分を投入する請求項4又は請求項5記載の加圧流動焼却設備の立ち上げ運転方法。   Until the temperature and pressure in the pressurized fluidized furnace or in the supercharger reach predetermined values, only a part of the amount of fluidized medium necessary for stable operation is charged in the pressurized fluidized furnace. Fluidization is performed by air supply means, and when the temperature and pressure in the pressurized fluidized furnace or the supercharger reach predetermined values, the air supply means is stopped, and then the flow required for stable operation. The start-up operation method of the pressurized fluidized incinerator according to claim 4 or 5, wherein an additional amount of medium is added.
JP2007297883A 2007-11-16 2007-11-16 Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment Active JP5187731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297883A JP5187731B2 (en) 2007-11-16 2007-11-16 Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297883A JP5187731B2 (en) 2007-11-16 2007-11-16 Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment

Publications (2)

Publication Number Publication Date
JP2009121777A true JP2009121777A (en) 2009-06-04
JP5187731B2 JP5187731B2 (en) 2013-04-24

Family

ID=40814110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297883A Active JP5187731B2 (en) 2007-11-16 2007-11-16 Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment

Country Status (1)

Country Link
JP (1) JP5187731B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137575A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2011137576A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2013155973A (en) * 2012-01-31 2013-08-15 Tsukishima Kikai Co Ltd Pressurized fluidized bed reactor system
JP2013204926A (en) * 2012-03-28 2013-10-07 Tsukishima Kikai Co Ltd Control valve controller of pressurized-fluidized furnace, and control method of control valve of pressurized-fluidized furnace
JP2013204898A (en) * 2012-03-28 2013-10-07 Tsukishima Kikai Co Ltd Pressurizing fluidized furnace system and method of treating odor of the pressurizing fluidized furnace system
CN104321590A (en) * 2012-05-30 2015-01-28 月岛机械株式会社 Method for transporting impurities in pressurized fluidized furnace system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6678265B1 (en) * 2019-02-28 2020-04-08 月島機械株式会社 Apparatus and method for treating flue gas

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255421A (en) * 1985-09-04 1987-03-11 Mitsubishi Electric Corp Turbo compressor system
JPH05263611A (en) * 1992-03-17 1993-10-12 Hitachi Ltd Pressurized fluidized bed plant and method for operating the same
JPH062811A (en) * 1992-06-22 1994-01-11 Ishikawajima Harima Heavy Ind Co Ltd Fuel control device for starting burner in circulating fluidized bed boiler
JPH0650509A (en) * 1992-07-31 1994-02-22 Ishikawajima Harima Heavy Ind Co Ltd Emergency operating method of pressurized fluidized bed boiler
JPH0814523A (en) * 1994-06-29 1996-01-19 Mitsubishi Heavy Ind Ltd Incinerator and controlling method therefor
JPH109512A (en) * 1996-06-24 1998-01-16 Babcock Hitachi Kk Reverse flow preventive device in starting gas turbine in pressurized fluidized bed combustion device
JPH11350974A (en) * 1998-06-10 1999-12-21 Hitachi Ltd Pressurised fluidised bed type combined power plant
JP2000080926A (en) * 1998-09-04 2000-03-21 Hitachi Ltd Thermal power plant and operating method thereof
JP2000213306A (en) * 1999-01-21 2000-08-02 Hitachi Ltd Pressure fluidized bed compound power plant
JP2000266310A (en) * 1999-03-15 2000-09-29 Babcock Hitachi Kk Pressure fluidized bed boiler and control method thereof
JP2002371860A (en) * 2001-06-15 2002-12-26 Kubota Corp Power generating method by use of pressurizing combustion furnace for burning waste
JP2006118751A (en) * 2004-10-19 2006-05-11 Chugoku Electric Power Co Inc:The Carbon residue combustion shutdown method
JP2007170704A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Pressurized fluidized incineration facility and its starting method
JP2007170703A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating waste
JP2007170702A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating sludge
JP2007170705A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Pressurized fluidized incineration facility and its starting method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255421A (en) * 1985-09-04 1987-03-11 Mitsubishi Electric Corp Turbo compressor system
JPH05263611A (en) * 1992-03-17 1993-10-12 Hitachi Ltd Pressurized fluidized bed plant and method for operating the same
JPH062811A (en) * 1992-06-22 1994-01-11 Ishikawajima Harima Heavy Ind Co Ltd Fuel control device for starting burner in circulating fluidized bed boiler
JPH0650509A (en) * 1992-07-31 1994-02-22 Ishikawajima Harima Heavy Ind Co Ltd Emergency operating method of pressurized fluidized bed boiler
JPH0814523A (en) * 1994-06-29 1996-01-19 Mitsubishi Heavy Ind Ltd Incinerator and controlling method therefor
JPH109512A (en) * 1996-06-24 1998-01-16 Babcock Hitachi Kk Reverse flow preventive device in starting gas turbine in pressurized fluidized bed combustion device
JPH11350974A (en) * 1998-06-10 1999-12-21 Hitachi Ltd Pressurised fluidised bed type combined power plant
JP2000080926A (en) * 1998-09-04 2000-03-21 Hitachi Ltd Thermal power plant and operating method thereof
JP2000213306A (en) * 1999-01-21 2000-08-02 Hitachi Ltd Pressure fluidized bed compound power plant
JP2000266310A (en) * 1999-03-15 2000-09-29 Babcock Hitachi Kk Pressure fluidized bed boiler and control method thereof
JP2002371860A (en) * 2001-06-15 2002-12-26 Kubota Corp Power generating method by use of pressurizing combustion furnace for burning waste
JP2006118751A (en) * 2004-10-19 2006-05-11 Chugoku Electric Power Co Inc:The Carbon residue combustion shutdown method
JP2007170704A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Pressurized fluidized incineration facility and its starting method
JP2007170703A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating waste
JP2007170702A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Facility and method for treating sludge
JP2007170705A (en) * 2005-12-20 2007-07-05 Public Works Research Institute Pressurized fluidized incineration facility and its starting method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137575A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2011137576A (en) * 2009-12-28 2011-07-14 Sanki Eng Co Ltd Method of operating pressurized-fluidized incinerator and pressurized-fluidized incinerator facility
JP2013155973A (en) * 2012-01-31 2013-08-15 Tsukishima Kikai Co Ltd Pressurized fluidized bed reactor system
JP2013204926A (en) * 2012-03-28 2013-10-07 Tsukishima Kikai Co Ltd Control valve controller of pressurized-fluidized furnace, and control method of control valve of pressurized-fluidized furnace
JP2013204898A (en) * 2012-03-28 2013-10-07 Tsukishima Kikai Co Ltd Pressurizing fluidized furnace system and method of treating odor of the pressurizing fluidized furnace system
CN104321590A (en) * 2012-05-30 2015-01-28 月岛机械株式会社 Method for transporting impurities in pressurized fluidized furnace system
CN104321590B (en) * 2012-05-30 2016-08-03 月岛机械株式会社 For the method transporting the impurity in pressurised fluidized bed incinerator system

Also Published As

Publication number Publication date
JP5187731B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5187731B2 (en) Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment
JP5067653B2 (en) Pressurized incinerator equipment and operating method thereof
CN101539371B (en) First flue gas dust removal and waste heat recovery system for electric stove
JP4991986B2 (en) Pressure incinerator equipment and its startup method
JP2016180528A (en) Waste treatment facility, and operating method of waste treatment facility
JP3783024B2 (en) Sludge treatment system and method
JP2006336551A (en) Gasification combined cycle power generation facility and its control method
CN102767431A (en) Method for operating a gas turbine power plant with exhaust gas recirculation
JP5187732B2 (en) Operation method of pressurized fluidized incineration equipment and pressurized fluidized incineration equipment
JP6297417B2 (en) Waste treatment facility and waste treatment method
JP4771309B2 (en) Pressurized fluidized incineration equipment and its startup method
JP5092114B2 (en) In-furnace fluidity management method for fluidized media accompanying coal type switching in fluidized bed boiler
JPH04231408A (en) Utilization of energy of furnace top gas discharged from blast furnace and blast furnace installation for practicing this method
CN106459789B (en) The starting method of gasification furnace apparatus, integrated gasification combined cycle plant and the furnace apparatus that gasifies
JP2009121779A (en) Pressurized fluidized incineration equipment
JP4714912B2 (en) Pressurized fluidized incineration equipment and its startup method
CN104006672A (en) Method for smoke discharging and dedusting of steel making electric furnace
JP2001021126A (en) Apparatus for dry distilating, thermal cracking, melting and igniting waste material
EP2833061B1 (en) Activation method for pressurized fluidized furnace system
JP5392739B2 (en) Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment
JP2001090510A (en) Power generating system having external heating type micro gas turbine
JP2004218532A (en) Gas turbine plant and its operating method
KR20150045923A (en) Operating method for pressurized fluidized furnace system
JP5960069B2 (en) Gasification furnace, combined gasification power generation facility and gasification furnace start-up method
JP7099804B2 (en) Incinerator with turbocharger and how to start it up

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250