[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009121114A - Construction bearing structure, method of constructing underground construction, and method of replacing bearing of foundation load - Google Patents

Construction bearing structure, method of constructing underground construction, and method of replacing bearing of foundation load Download PDF

Info

Publication number
JP2009121114A
JP2009121114A JP2007295630A JP2007295630A JP2009121114A JP 2009121114 A JP2009121114 A JP 2009121114A JP 2007295630 A JP2007295630 A JP 2007295630A JP 2007295630 A JP2007295630 A JP 2007295630A JP 2009121114 A JP2009121114 A JP 2009121114A
Authority
JP
Japan
Prior art keywords
foundation
underground
constructed
footing
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007295630A
Other languages
Japanese (ja)
Other versions
JP5092705B2 (en
Inventor
Shin Matsumoto
伸 松本
Makoto Kanai
誠 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007295630A priority Critical patent/JP5092705B2/en
Publication of JP2009121114A publication Critical patent/JP2009121114A/en
Application granted granted Critical
Publication of JP5092705B2 publication Critical patent/JP5092705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foundation bearing structure which enables to carry out construction work of an underground construction even immediately under a foundation of an aboveground construction. <P>SOLUTION: The construction bearing structure 100 is provided for carrying out the construction work of the underground construction 200, at a location under a footing 3 of a viaduct 1, and formed of: underground walls 30 with nodes, which are constructed at locations corresponding to both sides of the underground construction 200; and a mat slab 20 which extends between upper edges of the underground walls 30 with the nodes, constructed at the locations corresponding to both the sides of the underground construction 200, covers side surfaces and an upper surface of the footing 3, and forms a unitary body with the underground construction 200. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高架橋などの構造物の基礎の下方に地中構造物を構築する方法、及び地中構造物の支持構造に関する。   The present invention relates to a method for constructing an underground structure below a foundation of a structure such as a viaduct, and a support structure for the underground structure.

従来より、高架橋などの構造物の基礎の直下に新たな地中構造物を構築する場合には、高架橋の基礎であるフーチングを支持するように支持構造を構築し、その下方において地中構造物の構築を行っている。図7は、従来の支持構造の一例を示す図である。同図に示すように、従来は、構築すべき地中構造物200の側部に地中壁130を構築し、フーチング3の下方に、フーチング3を支持する杭4と干渉しないように地中壁130の間に仮受桁120を掛け渡し、仮受桁120によりジャッキ140を介してフーチング3からの荷重を杭4から受け替えることでフーチング3を支持し、その後、杭4を除去して地中構造物200を構築していた(例えば、非特許文献1参照)。なお、ジャッキ140は、地中構造物200を構築するために仮受桁120の下方を掘削した際に、フーチング3が沈下しないように、仮受桁120に生じた撓み、及び地中壁130の沈下を吸収するために設けられている。
中村信義、川村努 “アンダーピニングの諸形式とその選定”、月刊「基礎工」2001年6月号、総合土木研究所、2001年6月、 VOl.29、 No.6、p.2-p.5
Conventionally, when constructing a new underground structure directly under the foundation of a structure such as a viaduct, a support structure is constructed so as to support the footing that is the foundation of the viaduct, and below that Is being constructed. FIG. 7 is a diagram illustrating an example of a conventional support structure. As shown in the figure, conventionally, an underground wall 130 is constructed on the side portion of the underground structure 200 to be constructed, and the underground is installed below the footing 3 so as not to interfere with the pile 4 that supports the footing 3. The temporary support girder 120 is bridged between the walls 130, and the footing 3 is supported by replacing the load from the footing 3 from the pile 4 via the jack 140 by the temporary reception girder 120, and then the pile 4 is removed. The underground structure 200 was constructed (see, for example, Non-Patent Document 1). The jack 140 is bent in the temporary support beam 120 and the underground wall 130 so that the footing 3 does not sink when the lower part of the temporary support beam 120 is excavated to construct the underground structure 200. It is provided to absorb the sinking.
Nobuyoshi Nakamura, Tsutomu Kawamura “Underpinning Forms and Selection”, Monthly “Basic Engineering” June 2001 issue, Research Institute for Civil Engineering, June 2001, VOL.29, No.6, p.2-p .Five

しかし、上記の仮受架構では、フーチングの下方に仮受桁及びジャッキを設けるため、フーチングの直下において地中構造物の構築作業を行うことができないという問題がある。   However, in the above temporary support structure, since the temporary support girder and the jack are provided below the footing, there is a problem that the construction work of the underground structure cannot be performed directly under the footing.

本発明は、上記の問題に鑑みなされたものであり、その目的は、フーチングの下方に設けられたジャッキ及び仮受桁を不要にすることにより、地上構造物の基礎の直下においても、地中構造物の構築作業を行うことができる基礎の支持構造を提供することである。   The present invention has been made in view of the above problems, and its purpose is to eliminate the need for a jack and a temporary support girder provided below the footing, so that even under the foundation of the ground structure, It is to provide a support structure of a foundation that can perform a construction work of a structure.

本発明の構造物の支持構造は、構造物の基礎である杭基礎又は直接基礎の下方において、地中構造物の構築作業を行うための構造物の支持構造であって、前記地中構造物に当たる位置の両側に構築された地中壁又は杭と、前記両側に構築された地中壁又は杭の上部の間に亘って、前記杭基礎のフーチング又は前記直接基礎と一体になるように構築された支持部材と、を備えることを特徴とする。   The structure support structure of the present invention is a structure support structure for constructing an underground structure under a pile foundation or a direct foundation, which is the foundation of the structure. It is constructed so that it is integrated with the footing of the pile foundation or the direct foundation between the underground wall or pile constructed on both sides of the position where it hits and the underground wall or pile constructed on the both sides. And a supported member.

上記の構造物の支持構造において、前記支持部材は、前記杭基礎のフーチング又は前記直接基礎の側方及び上方を覆うように構築された鉄筋コンクリート部材、鉄骨コンクリート部材又は鉄骨鉄筋コンクリート部材であってもよく、さらに、前記支持部材は、板状に構築されていてもよい。
また、前記地中壁又は杭は、節付き地中壁又は節付き杭であってもよい。
In the structure support structure described above, the support member may be a footing of the pile foundation or a reinforced concrete member, a steel concrete member, or a steel reinforced concrete member constructed so as to cover the side and the upper side of the direct foundation. Furthermore, the support member may be constructed in a plate shape.
The underground wall or pile may be a knotted underground wall or a knotted pile.

また、本発明の地中構造物の構築方法は、構造物の基礎である杭基礎又は直接基礎の下方において、地中構造物を構築する方法であって、前記地中構造物に当たる位置の両側に地中壁又は杭を構築し、前記両側に構築された地中壁又は杭の上部の間に亘って、前記杭基礎のフーチング又は前記直接基礎と一体になるように支持部材を構築し、前記杭基礎のフーチング又は前記直接基礎の下方を掘削し、前記掘削することにより形成された空間において前記地中構造物を構築することを特徴とする。   The underground structure construction method of the present invention is a method of constructing an underground structure below a pile foundation or a direct foundation, which is the foundation of the structure, on both sides of the position corresponding to the underground structure. Constructing underground walls or piles, and constructing support members so as to be integrated with the footings of the pile foundation or the direct foundation between the underground walls or piles constructed on both sides, The underground structure is constructed in a space formed by excavating the footing of the pile foundation or the lower side of the direct foundation and excavating the pile foundation.

また、本発明の基礎荷重の受け替え工法は、構造物の基礎である杭基礎又は直接基礎に前記構造物から作用する荷重を別の基礎構造に受け替える受け替え工法であって、前記杭基礎のフーチング又は前記直接基礎と一体に支持部材を構築すると共に、前記別の基礎構造を構築し、前記構造物から前記支持部材に作用する荷重を前記別の基礎構造に伝達させることを特徴とする。   The foundation load replacement method of the present invention is a pile foundation that is a foundation of a structure or a replacement method that transfers a load acting on the foundation directly from the structure to another foundation structure, the pile foundation The support member is constructed integrally with the footing or the direct foundation, and the other foundation structure is constructed, and the load acting on the support member from the structure is transmitted to the other foundation structure. .

本発明によれば、構造物の基礎の側方及び上方を覆うように基礎と一体に構築された板状のコンクリート部材により荷重を受け、この荷重を地中壁又は杭により地盤に伝達するため、仮受桁やジャッキをフーチングや直接基礎の下方に設けなくても、基礎の直下において地中構造物の構築作業を行うことができる。   According to the present invention, a load is received by a plate-like concrete member that is constructed integrally with the foundation so as to cover the side and upper side of the foundation of the structure, and this load is transmitted to the ground by an underground wall or a pile. Even if provisional girders and jacks are not provided under the footing or directly under the foundation, the construction work of the underground structure can be performed directly under the foundation.

以下、本発明の構造物の支持構造をフーチングを備える高架橋の下方に地中構造物を構築する場合に適用した実施形態について、図面を参照しながら詳細に説明する。
図1は、本実施形態の支持構造100を示す断面図である。本実施形態の支持構造100は、既設の高架橋1のフーチング3の下方に、例えば、地下鉄などの地中構造物200を構築する際に、フーチング3を下方より支持するための構造である。図1に示すように、支持構造100は、構築される地中構造物200の両側に当たる位置に構築された節付き地中壁30と、フーチング3と一体に構築された耐圧板20とを備える。
Hereinafter, an embodiment in which the structure support structure of the present invention is applied to a case where an underground structure is constructed below a viaduct provided with a footing will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing a support structure 100 of the present embodiment. The support structure 100 of the present embodiment is a structure for supporting the footing 3 from below when the underground structure 200 such as a subway is constructed below the existing footing 3 of the viaduct 1. As shown in FIG. 1, the support structure 100 includes a knotted underground wall 30 constructed at a position corresponding to both sides of the underground structure 200 to be constructed, and a pressure plate 20 constructed integrally with the footing 3. .

節付き地中壁30は地中壁本体の表面に外側に突出する突出部31が形成された地中壁である。節付き地中壁30に鉛直下方に向かう押し込み荷重が作用した場合には、地中壁本体の表面摩擦力に加えて、突出部31に地盤より作用する支圧力により抵抗することができる。このように、節付き地中壁30は通常の地中壁に比べて押し込み荷重に対する抵抗力を備えている。   The knotted underground wall 30 is an underground wall in which a protruding portion 31 protruding outward is formed on the surface of the underground wall main body. When a pushing load directed vertically downward acts on the knotted underground wall 30, it can be resisted by the supporting pressure acting on the protruding portion 31 from the ground in addition to the surface frictional force of the underground wall body. Thus, the knotted underground wall 30 is provided with a resistance force against the pushing load as compared with a normal underground wall.

耐圧板20は、フーチング3の上面及び側面を覆うように構築された鉄筋コンクリート造、鉄骨コンクリート造又は鉄骨鉄筋コンクリート造の板状部材であり、両側の節付き地中壁30の上部に亘って構築されている。フーチング3の表面にはアンカー筋21が打設されており、耐圧板20はこのアンカー筋21を埋設するように構築されており、フーチング3と耐圧板20とは一体の構造体として機能する。   The pressure plate 20 is a reinforced concrete, steel concrete, or steel reinforced concrete plate-like member constructed so as to cover the upper surface and side surfaces of the footing 3, and is constructed over the upper portions of the nodal underground walls 30 on both sides. ing. Anchor bars 21 are provided on the surface of the footing 3, and the pressure plate 20 is constructed so as to embed the anchor bars 21, and the footing 3 and the pressure plate 20 function as an integral structure.

以下、上記の支持構造100を構築し、構築した支持構造100を用いて地中構造物200の構築する方法を説明する。図2〜図6は、支持構造100を構築し、構築した支持構造100を用いて地中構造物200の構築する方法を説明するための鉛直方向断面図である。   Hereinafter, a method for constructing the above-described support structure 100 and constructing the underground structure 200 using the constructed support structure 100 will be described. 2 to 6 are vertical sectional views for explaining a method for constructing the underground structure 200 using the constructed support structure 100 by constructing the support structure 100.

まず、図2に示すように、構築する地中構造物200の両側部にあたる部分に節付き地中壁30を構築する。すなわち、掘削装置で地盤の節付き地中壁30にあたる位置を鉛直方向に掘削するとともに、突出部31にあたる部分を掘削することにより節付き地中壁30の形状に合わせた掘削孔を形成する。そして、掘削孔内に芯材として鉄筋かごを建て込み、コンクリートを打設する。この際、図2に示すように、節付き地中壁30は上端が耐圧板20の下面にあたる高さとなるように構築しておき、その上部より耐圧板20と接続するための鉄筋を突出させておく。   First, as shown in FIG. 2, the underground wall 30 with a node is constructed at the portions corresponding to both sides of the underground structure 200 to be constructed. That is, the excavation device excavates the position corresponding to the grounded subterranean wall 30 in the vertical direction and excavates the portion corresponding to the projecting portion 31 to form a drilling hole that matches the shape of the subterranean underground wall 30. Then, a reinforcing steel cage is built as a core material in the excavation hole, and concrete is placed. At this time, as shown in FIG. 2, the knotted underground wall 30 is constructed so that the upper end is at a height corresponding to the lower surface of the pressure plate 20, and a reinforcing bar for connecting to the pressure plate 20 is protruded from the upper part. Keep it.

次に、図3に示すように、フーチング3の上面及び側面が露出するように耐圧板20にあたる部分の地盤を掘削する。そして、フーチング3の上面及び側面にアンカー21を打設する。   Next, as shown in FIG. 3, the ground corresponding to the pressure plate 20 is excavated so that the upper surface and side surfaces of the footing 3 are exposed. Then, anchors 21 are placed on the upper surface and side surfaces of the footing 3.

次に、図4に示すように、耐圧板20を構築する。すなわち、まず、耐圧板20を鉄筋コンクリート造とする場合には鉄筋の配筋作業を、耐圧板20を鉄骨コンクリート造とする場合には、鉄骨の建て込み作業を、耐圧板20を鉄骨鉄筋コンクリート造とする場合には、鉄骨の建て込み作業及び鉄筋の配筋作業を行う。そして、耐圧板20を構成するコンクリートを打設する。打設したコンクリートが硬化すると、アンカー筋21によりフーチング3と耐圧板20とが一体となる。以上の工程により、支持構造100が構築される。   Next, as shown in FIG. 4, a pressure plate 20 is constructed. That is, first, when the pressure plate 20 is made of reinforced concrete, the reinforcing bar is arranged. When the pressure plate 20 is made of steel-concrete, the steel is built, and the pressure plate 20 is made of steel-reinforced concrete. When doing so, the construction work of the steel frame and the reinforcement work of the reinforcement are performed. And the concrete which comprises the pressure-resistant board 20 is laid. When the cast concrete is hardened, the footing 3 and the pressure plate 20 are united by the anchor bars 21. The support structure 100 is constructed by the above steps.

次に、図5に示すように、節付き地中壁30を土留壁として利用して、両側の節付き地中壁30の間に必要に応じて切梁を掛け渡しながら、耐圧板20の下方の地盤を掘削する。この際、フーチング3の下部の地盤を掘削することにより、フーチング3が地盤より受けていた反力及び杭4の周面に作用していた周面摩擦力が作用しなくなり、高架橋1から耐圧板20に伝達された荷重は節付き地中壁30に押し込み荷重として伝達されることになる。これに対して、上記のように節付き地中壁30は通常の地中壁に比べて押し込み荷重に対する抵抗力が向上されているので、フーチング3及び耐圧板20を沈下させることなく支持することができる。このように、支持構造100により高架橋1の荷重を支持することができるので、フーチング3の下部の杭4が構築する地中構造物と干渉する場合には杭4を切除してもよい。   Next, as shown in FIG. 5, using the knotted underground wall 30 as a retaining wall, the cutting plate 20 Drill the ground below. At this time, by excavating the ground below the footing 3, the reaction force received by the footing 3 from the ground and the peripheral frictional force acting on the peripheral surface of the pile 4 do not act, and the pressure plate from the viaduct 1 The load transmitted to 20 is transmitted to the knotted underground wall 30 as a pushing load. On the other hand, as described above, the knotted underground wall 30 has improved resistance to the indentation load as compared with the normal underground wall, so that the footing 3 and the pressure plate 20 are supported without sinking. Can do. Thus, since the load of the viaduct 1 can be supported by the support structure 100, when the pile 4 under the footing 3 interferes with the underground structure to be constructed, the pile 4 may be cut off.

次に、図6に示すように、両側の節付き地中壁30の間を掘削して形成した空間内で配筋作業、型枠設置作業、及びコンクリートの打設作業を行うことにより、地中構造物200を構築する。
なお、地中構造物200の構築後は上記の支持構造100により高架橋1を支持することとしてもよいし、新たな基礎構造を構築し、この基礎構造により高架橋1を支持することとしてもよい。
Next, as shown in FIG. 6, by performing the bar arrangement work, the formwork installation work, and the concrete placement work in the space formed by excavating between the ground walls 30 with the nodes on both sides, The middle structure 200 is constructed.
In addition, after construction of the underground structure 200, the viaduct 1 may be supported by the support structure 100 described above, or a new foundation structure may be constructed and the viaduct 1 may be supported by this foundation structure.

以上説明したように、本実施形態の支持構造200によれば、高架橋1の荷重をフーチング3の側面及び上面を覆うように構築された耐圧板20により受け、この耐圧板20が受けた荷重を節付き地中壁30に伝達する構成としたため、フーチング3の直下に仮受桁やジャッキなどの支持構造が存在せず、フーチング3の直下においても地中構造物200の構築作業を行うことができる。このため、地中構造物200を構築する際の施工性を向上することができるとともに、例えば、地中構造物200の上面がフーチング3の直下に位置するように設計することが可能となり、設計の自由度が向上される。   As described above, according to the support structure 200 of the present embodiment, the load of the viaduct 1 is received by the pressure plate 20 constructed so as to cover the side surface and the upper surface of the footing 3, and the load received by the pressure plate 20 is received. Since it is configured to transmit to the underground wall 30 with a node, there is no support structure such as a temporary girder or a jack directly under the footing 3, and the construction work of the underground structure 200 can be performed directly under the footing 3. it can. For this reason, while being able to improve the workability at the time of constructing the underground structure 200, for example, it is possible to design the upper surface of the underground structure 200 to be located directly below the footing 3. The degree of freedom is improved.

また、耐圧板20をフーチング3の側面及び上面を覆うように構築することとしたため、地上において構築できるので、施工性を向上することができる。さらに、このように耐圧板20をフーチング3の上方及び側方を覆うように構築することにより、耐圧板20を厚くしても地中構造物200を構築する際の障害とならないため、耐圧板20を必要に応じて厚くし、耐圧板20に十分な曲げ耐力を持たせることができる。   Further, since the pressure plate 20 is constructed so as to cover the side surface and the upper surface of the footing 3, it can be constructed on the ground, so that the workability can be improved. Further, by constructing the pressure plate 20 so as to cover the upper side and the side of the footing 3 as described above, even if the pressure plate 20 is thickened, it does not become an obstacle when the underground structure 200 is constructed. 20 can be thickened as necessary, and the pressure-resistant plate 20 can have sufficient bending strength.

また、従来は、図7に示すように、フーチング3の下方にフーチング3を支持する仮受桁120を構築していた。このように、フーチング3を支持する部材を桁状としたのは、支持構造300を構築する際に、フーチング3の下方の地盤全てを掘削してしまうと沈下の恐れがあるため、フーチング3の下部の地盤を一部しか掘削できないからである。これに対して、本実施形態によれば、耐圧板20をフーチング3の上方及び側方を覆うような形状としたため、上記のようにフーチング3の下方を掘削することなく板状の耐圧板20を構築することができる。このようにフーチング3の荷重を受ける耐圧板20を板状とすることができるため、この耐圧板20の曲げ耐力を向上することができる。   Conventionally, as shown in FIG. 7, a provisional girder 120 that supports the footing 3 is constructed below the footing 3. As described above, the members supporting the footing 3 are formed in the shape of a girder because, when the support structure 300 is constructed, if all the ground below the footing 3 is excavated, there is a risk of subsidence. This is because only a part of the lower ground can be excavated. On the other hand, according to this embodiment, since the pressure plate 20 is shaped to cover the upper side and the side of the footing 3, the plate-like pressure plate 20 is not excavated below the footing 3 as described above. Can be built. Thus, since the pressure plate 20 that receives the load of the footing 3 can be formed into a plate shape, the bending strength of the pressure plate 20 can be improved.

また、図7に示す従来の支持構造300では、仮受桁120の下方において地中壁130の間の地盤を掘削すると、杭4に作用していた周面摩擦力がなくなり高架橋1の荷重は仮受桁120を介して地中壁130に伝達されることとなる。しかしながら、地中壁130の間の地盤を掘削した状態で、仮受桁120に高架橋1の荷重が作用すると、仮受桁120の中央部が下方に撓み、これに伴って、地中壁130が内側に変形してしまう。その結果、地中壁130と外側の地盤との間の周面摩擦力が低下し、十分な支持力を得られずに高架橋1及び支持構造300全体が沈下してしまう虞がある。これに対して、本実施形態では、上記のように耐圧板20に十分な曲げ耐力を持たせることにより、耐圧板20に生じる撓みを抑えることができる。さらに、耐圧板20を節付き壁30により下方から支持する構成としたため、耐圧板20に高架橋1の荷重が下向きに作用しても、節付き壁30が内側に向かって変形するのを抑え、これにより節付き壁30が地盤から受ける周面摩擦力が低下するのを抑えることができる。さらに、節付き壁30が突出部31を備えることにより、押込荷重に対する抵抗力が向上されているので、高架橋1が沈下するのをより効果的に抑制できる。   Further, in the conventional support structure 300 shown in FIG. 7, when the ground between the underground walls 130 is excavated below the provisional girder 120, the peripheral friction force acting on the pile 4 disappears and the load of the viaduct 1 is It will be transmitted to the underground wall 130 via the provisional girder 120. However, when the load of the viaduct 1 acts on the temporary support girder 120 in the state where the ground between the underground walls 130 is excavated, the central portion of the temporary support beam 120 bends downward, and accordingly, the underground wall 130. Will be deformed inward. As a result, the peripheral frictional force between the underground wall 130 and the outer ground is lowered, and there is a possibility that the viaduct 1 and the entire support structure 300 may sink without obtaining sufficient support force. On the other hand, in this embodiment, the bending which arises in the pressure plate 20 can be suppressed by giving the pressure plate 20 sufficient bending strength as described above. Further, since the pressure plate 20 is supported from below by the knotted wall 30, even if the load of the viaduct 1 acts on the pressure plate 20 downward, the knotted wall 30 is prevented from being deformed inward. Thereby, it can suppress that the peripheral surface frictional force which the wall 30 with a node receives from a ground falls. Furthermore, since the knurled wall 30 is provided with the protrusion 31, the resistance force against the indentation load is improved, so that the viaduct 1 can be more effectively prevented from sinking.

また、従来は、上記のように仮受桁130に撓みが生じた際に、高架橋1が沈下しないように、高架橋1のフーチング3と荷重を支持する仮受桁120との間にジャッキ140を介在させ、このジャッキ140を伸長させることにより、この撓みを吸収させていた。これに対して、本実施形態では、上記のように、耐圧板20の変形を抑えることができるため、撓みを吸収するためのジャッキが不要となる。これにより、ジャッキを設けるためのスペースが不要となり、また、ジャッキの設置等の作業を省くことができ、施工性を向上することができる。   Further, conventionally, the jack 140 is provided between the footing 3 of the viaduct 1 and the temporary support 120 supporting the load so that the viaduct 1 does not sink when the temporary support 130 is bent as described above. By interposing and extending this jack 140, this bending was absorbed. On the other hand, in this embodiment, since the deformation | transformation of the pressure | voltage resistant board 20 can be suppressed as mentioned above, the jack for absorbing a bending becomes unnecessary. Thereby, the space for providing a jack becomes unnecessary, and work such as installation of a jack can be omitted, and workability can be improved.

なお、上記の実施形態では、節付き地中壁30により地盤反力を得て、耐圧板20を支持するものとしたが、これに限らず、節付き地中壁30に変えて節付き杭を用いることもでき、さらに、十分な地盤反力を得ることができれば、通常の地中壁及び杭を用いてもよい。   In the above embodiment, the ground reaction force is obtained by the knotted underground wall 30 and the pressure plate 20 is supported. However, the present invention is not limited to this, and the knotted pile is changed to the knotted underground wall 30. As long as a sufficient ground reaction force can be obtained, ordinary underground walls and piles may be used.

また、本実施形態では、下方に杭を備えたフーチングを備えた高架橋の下方に地中構造物を構築する場合を例として説明したが、これに限らず、杭を備えていないフーチング、又はべた基礎などの基礎構造を有する構造物の下方に地中構造物を構築する場合にも本発明を適用することができる。   In the present embodiment, the case where the underground structure is constructed below the viaduct provided with the footing provided with the pile below is described as an example. However, the present invention is not limited thereto. The present invention can also be applied to a case where an underground structure is constructed below a structure having a foundation structure such as a foundation.

本実施形態の支持構造を示す断面図である。It is sectional drawing which shows the support structure of this embodiment. 支持構造を構築する方法を説明するための図であり、地中構造物の両側部にあたる部分に節付き地中壁を構築した状態を示す。It is a figure for demonstrating the method of constructing | supporting a structure, and shows the state which constructed | assembled the underground wall with a node in the part which hits the both sides of an underground structure. 支持構造を構築する方法を説明するための図であり、地盤の耐圧板にあたる部分を掘削し、アンカーを打設した状態を示す。It is a figure for demonstrating the method of constructing | supporting a support structure, and shows the state which excavated the part which corresponds to the pressure plate of a ground, and laid the anchor. 支持構造を構築する方法を説明するための図であり、耐圧板を構成するコンクリートを打設した状態を示す。It is a figure for demonstrating the method to construct | support a support structure, and shows the state which laid concrete which comprises a pressure | voltage resistant board. 地中構造物を構築する方法を説明するための図であり、下方の地盤を掘削している状態を示す図である。It is a figure for demonstrating the method to construct | assemble an underground structure, and is a figure which shows the state which is excavating the lower ground. 地中構造物の構築が完了した状態を示す図である。It is a figure showing the state where construction of the underground structure was completed. 従来の支持構造を示す断面図である。It is sectional drawing which shows the conventional support structure.

符号の説明Explanation of symbols

1 高架橋
2 橋脚
3 フーチング
4 杭
20 耐圧板
21 アンカー
30 節付き地中壁
31 突出部
100 支持構造
200 地中構造物
DESCRIPTION OF SYMBOLS 1 Viaduct 2 Pier 3 Footing 4 Pile 20 Pressure-proof board 21 Anchor 30 Underground wall 31 with a node Projection part 100 Support structure 200 Underground structure

Claims (6)

構造物の基礎である杭基礎又は直接基礎の下方において、地中構造物の構築作業を行うための構造物の支持構造であって、
前記地中構造物に当たる位置の両側に構築された地中壁又は杭と、
前記両側に構築された地中壁又は杭の上部の間に亘って、前記杭基礎のフーチング又は前記直接基礎と一体になるように構築された支持部材と、を備えることを特徴とする構造物の支持構造。
A structure supporting structure for constructing an underground structure below a pile foundation or direct foundation, which is the foundation of the structure,
Underground walls or piles constructed on both sides of the position hitting the underground structure,
A support member constructed so as to be integrated with the footing of the pile foundation or directly with the direct foundation across the underground wall or the upper part of the pile constructed on both sides. Support structure.
前記支持部材は、前記杭基礎のフーチング又は前記直接基礎の側方及び上方を覆うように構築された鉄筋コンクリート部材、鉄骨コンクリート部材又は鉄骨鉄筋コンクリート部材であることを特徴とする請求項1記載の構造物の支持構造。   2. The structure according to claim 1, wherein the support member is a reinforced concrete member, a steel concrete member, or a steel reinforced concrete member constructed so as to cover a footing of the pile foundation or a side and an upper side of the direct foundation. Support structure. 前記支持部材は、板状に構築されていることを特徴とする1又は2記載の構造物の支持構造。   3. The structure support structure according to claim 1 or 2, wherein the support member is constructed in a plate shape. 前記地中壁又は杭は、節付き地中壁又は節付き杭であることを特徴とする請求項1から3のうち何れかに記載の構造物の支持構造。   The structure support structure according to any one of claims 1 to 3, wherein the underground wall or pile is a noded underground wall or a noded pile. 構造物の基礎である杭基礎又は直接基礎の下方において、地中構造物を構築する方法であって、
前記地中構造物に当たる位置の両側に地中壁又は杭を構築し、
前記両側に構築された地中壁又は杭の上部の間に亘って、前記杭基礎のフーチング又は前記直接基礎と一体になるように支持部材を構築し、
前記杭基礎のフーチング又は前記直接基礎の下方を掘削し、
前記掘削することにより形成された空間において前記地中構造物を構築することを特徴とする地中構造物の構築方法。
A method of constructing an underground structure below a pile foundation or direct foundation, which is the foundation of the structure,
Build underground walls or piles on both sides of the position hitting the underground structure,
A support member is constructed so as to be integrated with the footing of the pile foundation or the direct foundation across the underground wall or the upper part of the pile constructed on both sides,
Excavating the footing of the pile foundation or below the direct foundation;
A construction method for an underground structure, wherein the underground structure is constructed in a space formed by the excavation.
構造物の基礎である杭基礎又は直接基礎に前記構造物から作用する荷重を別の基礎構造に受け替える受け替え工法であって、
前記杭基礎のフーチング又は前記直接基礎と一体に支持部材を構築すると共に、前記別の基礎構造を構築し、前記構造物から前記支持部材に作用する荷重を前記別の基礎構造に伝達させることを特徴とする基礎荷重の受け替え工法。
It is a replacement method for transferring the load acting on the pile foundation which is the foundation of the structure or the direct foundation to another foundation structure,
While constructing a support member integrally with the footing of the pile foundation or the direct foundation, constructing the other foundation structure, and transmitting the load acting on the support member from the structure to the other foundation structure A characteristic foundation load replacement method.
JP2007295630A 2007-11-14 2007-11-14 Support structure of structure, construction method of underground structure, replacement method of foundation load Expired - Fee Related JP5092705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007295630A JP5092705B2 (en) 2007-11-14 2007-11-14 Support structure of structure, construction method of underground structure, replacement method of foundation load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007295630A JP5092705B2 (en) 2007-11-14 2007-11-14 Support structure of structure, construction method of underground structure, replacement method of foundation load

Publications (2)

Publication Number Publication Date
JP2009121114A true JP2009121114A (en) 2009-06-04
JP5092705B2 JP5092705B2 (en) 2012-12-05

Family

ID=40813560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007295630A Expired - Fee Related JP5092705B2 (en) 2007-11-14 2007-11-14 Support structure of structure, construction method of underground structure, replacement method of foundation load

Country Status (1)

Country Link
JP (1) JP5092705B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106065577A (en) * 2016-08-08 2016-11-02 福州轨道交通设计院有限公司 The structure of a kind of new pile foundation underpinning and method
CN107869257A (en) * 2017-10-17 2018-04-03 青岛静力工程股份有限公司 Interior arch underpins boom device
JP2018062744A (en) * 2016-10-11 2018-04-19 清水建設株式会社 Structure with composite underground wall and construction method for constructing structure with composite underground wall
WO2018145623A1 (en) * 2017-02-13 2018-08-16 中铁十九局集团有限公司 U-shaped structural underpinning transfer system for bridge pile foundation and construction method therefor
CN113373750A (en) * 2021-06-30 2021-09-10 中铁二院工程集团有限责任公司 Steep slope high-fill-section roadbed structure and construction method thereof
KR102554659B1 (en) * 2022-09-16 2023-07-12 롯데건설(주) A Construction method of retaining wall using foundations of existing structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864710U (en) * 1981-10-24 1983-05-02 株式会社クボタ Connection structure of built-in columns used for reverse pouring method
JPS58123925A (en) * 1982-01-19 1983-07-23 Tekken Kensetsu Co Ltd Method of constructing new structure in ground below existing structure and filling body used in said method
JP2004124493A (en) * 2002-10-02 2004-04-22 Yukitake Shioi Aseismatic reinforcement construction of structure
JP2004360252A (en) * 2003-06-03 2004-12-24 Ohbayashi Corp Underground concrete structure and construction method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864710U (en) * 1981-10-24 1983-05-02 株式会社クボタ Connection structure of built-in columns used for reverse pouring method
JPS58123925A (en) * 1982-01-19 1983-07-23 Tekken Kensetsu Co Ltd Method of constructing new structure in ground below existing structure and filling body used in said method
JP2004124493A (en) * 2002-10-02 2004-04-22 Yukitake Shioi Aseismatic reinforcement construction of structure
JP2004360252A (en) * 2003-06-03 2004-12-24 Ohbayashi Corp Underground concrete structure and construction method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106065577A (en) * 2016-08-08 2016-11-02 福州轨道交通设计院有限公司 The structure of a kind of new pile foundation underpinning and method
CN106065577B (en) * 2016-08-08 2017-08-25 福州轨道交通设计院有限公司 A kind of structure and method of new pile foundation underpinning
JP2018062744A (en) * 2016-10-11 2018-04-19 清水建設株式会社 Structure with composite underground wall and construction method for constructing structure with composite underground wall
WO2018145623A1 (en) * 2017-02-13 2018-08-16 中铁十九局集团有限公司 U-shaped structural underpinning transfer system for bridge pile foundation and construction method therefor
CN107869257A (en) * 2017-10-17 2018-04-03 青岛静力工程股份有限公司 Interior arch underpins boom device
CN107869257B (en) * 2017-10-17 2019-02-05 青岛静力工程股份有限公司 Interior arch underpins boom device
WO2019075770A1 (en) * 2017-10-17 2019-04-25 青岛静力工程股份有限公司 Inner arched underpinning beam device
CN113373750A (en) * 2021-06-30 2021-09-10 中铁二院工程集团有限责任公司 Steep slope high-fill-section roadbed structure and construction method thereof
CN113373750B (en) * 2021-06-30 2022-05-24 中铁二院工程集团有限责任公司 Steep slope high-fill-section roadbed structure and construction method thereof
KR102554659B1 (en) * 2022-09-16 2023-07-12 롯데건설(주) A Construction method of retaining wall using foundations of existing structure

Also Published As

Publication number Publication date
JP5092705B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP2013136922A (en) Earth retaining wall supporting method, earth retaining wall supporting structure, and underground skeleton constructing method
JP5092705B2 (en) Support structure of structure, construction method of underground structure, replacement method of foundation load
KR20080105509A (en) Concrete retaining wall with dual wall jointed by anchor and construction method using the same
JP6650257B2 (en) Mountain retaining structure and construction method thereof
JP5634931B2 (en) Construction method of underground structure
KR100876853B1 (en) Construction method of unsupported underground structure using deck plate
KR20060092552A (en) The non-strut down framework construction method of having used cast in place concrete pile
JP2009287172A (en) Method for constructing base-isolated building by inverted construction method
KR100625115B1 (en) downward reinforced-concrete underground structure using temporary assistant columns
KR20120122024A (en) Uniting Method of Temporary earth wall with basement exterior Wall using Couplers and Bolts.
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
JP2012031678A (en) Foundation for structure and method for constructing the same
JP2009270358A (en) Structure
JP2004027727A (en) Foundation pile and construction method for foundation pile
JP3899307B2 (en) Cast-in-place concrete filled steel pipe pile and method for constructing cast-in-place concrete filled steel pipe pile
JP2020007735A (en) Method for reinforcing foundation structure and structure for reinforcing foundation structure
JP5852475B2 (en) Pile foundation reconstruction method
JP2004044303A (en) Connection structure for foundation pile and superstructure, pile head joint member, and connecting method for foundation pile and superstructure
JP2005146849A (en) Reinforcing method for retaining wall and the retaining wall
KR20100076404A (en) Metal tubing picket with reinforced tip for auger-drilled piling method
JP5480745B2 (en) Reinforcement method for existing foundations for structures
JP2010059622A (en) Underground structure and method for constructing the same
JP7230312B2 (en) Foundation structure and foundation construction method
JP3832845B2 (en) Steel sheet pile combined direct foundation and construction method of steel sheet pile combined direct foundation
JP6895740B2 (en) Horizontal force restraint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees