JP2009109397A - Surface analysis method - Google Patents
Surface analysis method Download PDFInfo
- Publication number
- JP2009109397A JP2009109397A JP2007283332A JP2007283332A JP2009109397A JP 2009109397 A JP2009109397 A JP 2009109397A JP 2007283332 A JP2007283332 A JP 2007283332A JP 2007283332 A JP2007283332 A JP 2007283332A JP 2009109397 A JP2009109397 A JP 2009109397A
- Authority
- JP
- Japan
- Prior art keywords
- adhesive
- pressure
- analysis method
- substance
- sensitive adhesive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
【課題】本発明は、分析対象試料表面に不均一もしくは微量な状態で付着し、従来、検出下限以下で検出できなかったような付着物質であっても、検出可能とする表面分析方法を提供することを課題とする。
【解決手段】分析対象試料表面に不均一もしくは微量な状態で付着した物質を試料表面から広範囲に採取して物質を濃縮して粘着基材の粘着面に転写して、高濃度の物質が転写された粘着面を表面分析することにより前記物質を分析することを特徴とする表面分析方法である。
【選択図】図13The present invention provides a surface analysis method capable of detecting even an adhering substance that adheres to the surface of a sample to be analyzed in a non-uniform or trace state and could not be detected below the lower detection limit. The task is to do.
[Solution] Substances adhering to the sample surface in a non-uniform or trace amount are collected over a wide area from the sample surface, concentrated, and transferred to the adhesive surface of the adhesive substrate. The surface analysis method is characterized in that the substance is analyzed by surface analysis of the adhered adhesive surface.
[Selection] Figure 13
Description
本発明は、分析対象試料表面に付着した物質を粘着基材の粘着面に転写して、前記物質が転写された粘着面を表面分析することにより前記物質を分析する表面分析方法に関し、さらに詳細には、試料表面に不均一もしくは微量な状態で付着した物質を粘着基材の粘着面に、試料表面から物質を広範囲に採取して物質を濃縮して転写して、高濃度の物質が転写された粘着面を表面分析することにより物質を分析する表面分析方法に関する。 The present invention relates to a surface analysis method for analyzing a substance by transferring a substance attached to the surface of a sample to be analyzed to an adhesive surface of an adhesive substrate, and analyzing the surface of the adhesive surface to which the substance is transferred. In this case, a substance that adheres unevenly or in a trace amount to the sample surface is collected on the adhesive surface of the adhesive substrate, collected from a wide range of substances and transferred to a high concentration substance. The present invention relates to a surface analysis method for analyzing a substance by surface analysis of a bonded surface.
従来から、固体試料の表面を分析する手法として、X線光電子分光法(XPS)、オージェ電子分光法(AES)、二次イオン質量分析法(SIMS)、飛行時間型二次イオン質量分析法(TOF−SIMS)、全反射赤外分光法(FT−IR ATR法)、全反射蛍光X線分析法(TREX)が知られている。その中でも、XPSやTOF−SIMSは、固体試料面の金属、無機物、有機化合物の分析が可能であることから測定対象が広く得られるデータは表層数〜数十nm領域に限られるため、最表面の分析法として広く活用され、実際に利用される産業分野は、高分子フィルム関連、半導体関連、光学材料関連、電子デバイス関連等の多岐に渡る。 Conventionally, as a method for analyzing the surface of a solid sample, X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), time-of-flight secondary ion mass spectrometry ( TOF-SIMS), total reflection infrared spectroscopy (FT-IR ATR method), and total reflection X-ray fluorescence analysis (TREX) are known. Among them, XPS and TOF-SIMS are capable of analyzing metals, inorganic substances, and organic compounds on the surface of solid samples, so the data that can be widely measured are limited to the surface layer number to several tens of nm region. The industrial fields that are widely used as an analysis method for the above and are actually used are diverse, such as those related to polymer films, semiconductors, optical materials, and electronic devices.
近年、XPS分析装置やTOF−SIMS分析装置の技術的な動向としては、照射X線のマイクロビーム化技術や一次イオン照射技術(イオンビームの細束化や高輝度化)の発達により、より微小領域における高感度な分析能力の向上が果たされてきている。 In recent years, the technical trend of XPS analyzers and TOF-SIMS analyzers has become smaller due to the development of irradiation X-ray microbeam technology and primary ion irradiation technology (reduction of ion beams and higher brightness). Improvements in sensitive analytical capabilities in the area have been achieved.
しかしながら、実際に表面分析に供される試料の問題の多くは、試料面に付着または存在する不純物質により、シミ・ムラ・ハジキや残渣物、接着不良、表面のくもり、ぬれ性の変化、変色、印刷不良などの問題である。そのため、微小領域においての分析によって、不良原因究明に至る場合も多いが、試料面上の付着または不純物が検出不可能なレベルの超微量であったり、不均一に散在していた場合には、不良原因究明を困難にする場合も少なくない。 However, many of the problems with samples that are actually used for surface analysis are due to impurities on the sample surface, such as spots, unevenness, repellencies and residues, poor adhesion, surface cloudiness, wettability changes, and discoloration. And problems such as poor printing. Therefore, analysis in a micro area often leads to investigation of the cause of the defect, but if the adhesion or impurities on the sample surface is an extremely small amount that is undetectable or unevenly scattered, In many cases, it is difficult to investigate the cause of defects.
従来、このような課題に対しては、測定箇所を多数にするなどの対処法をとるのが実際であり、この場合、手間と時間を要するのは言うまでもなく、高価な分析装置に対して負荷も大きい等の課題がある。しかし、これまでには文献や特許等においても、この課題に対して検討例は見受けられない。 Conventionally, to deal with such problems, it has been practical to take measures such as increasing the number of measurement points. In this case, it is needless to say that time and effort are required, and it is a burden on expensive analyzers. There is a problem such as large. However, there have been no examples of studies on this issue so far in the literature and patents.
しいて、広範囲な測定試料面の不純物の表面分析方法という観点で従来の技術を見ると、半導体基板表面に含まれる金属不純物の分析方法がある(例えば、特許文献1参照)。 From the viewpoint of a surface analysis method for impurities on a wide range of measurement sample surfaces, there is a method for analyzing metal impurities contained on the surface of a semiconductor substrate (see, for example, Patent Document 1).
これは、半導体薄膜および半導体基板を分解液により分解した後、基板上で分解液を気化させて、半導体基板薄膜および基板の不純物を濃縮乾固し、この濃縮乾固された不純物を全反射蛍光X線分析法(TREX)により分析するという方法である。 This is because the semiconductor thin film and the semiconductor substrate are decomposed with the decomposition solution, and then the decomposition solution is vaporized on the substrate to concentrate and dry the impurities on the semiconductor substrate thin film and the substrate. In this method, analysis is performed by X-ray analysis (TREX).
また、前記特許内容で分析装置をTOF−SIMSに換えたものもある(例えば、特許文献2参照)。 Moreover, there exists what changed the analyzer into TOF-SIMS by the said patent content (for example, refer patent document 2).
しかし、これらの場合の不純物は金属系だけを対象としたものであり、他の製品分野への展開もできない。 However, the impurities in these cases are only for metallic materials and cannot be expanded to other product fields.
下記に公知文献を記す。
本発明は、上記の技術的背景を考慮してなされたものであって、分析対象試料表面に不均一もしくは微量な状態で付着し、従来、検出下限以下で検出できなかったような付着物質であっても、検出可能とする表面分析方法を提供することを課題とする。 The present invention has been made in consideration of the technical background described above, and is an attached substance that adheres to the surface of the sample to be analyzed in a non-uniform or trace amount state and could not be detected below the lower detection limit. Even if it exists, let it be a subject to provide the surface analysis method which enables detection.
上記の課題を解決する手段として、即ち、請求項1に係る発明は、分析対象試料表面に付着した物質を粘着基材の粘着面に転写して、前記物質が転写された粘着面を表面分析することにより前記物質を分析することを特徴とする表面分析方法である。 As means for solving the above-mentioned problem, that is, the invention according to claim 1 transfers the substance adhered to the surface of the sample to be analyzed to the adhesive surface of the adhesive substrate, and performs surface analysis on the adhesive surface to which the substance is transferred. In this case, the surface analysis method is characterized in that the substance is analyzed.
請求項2に係る発明は、分析対象試料表面に付着した物質を広範囲に採取して粘着基材の粘着面に濃縮して転写して、前記物質が高濃度で転写された粘着面を表面分析することにより前記物質を分析することを特徴とする請求項1記載の表面分析方法である。 According to the second aspect of the present invention, a material attached to the surface of the sample to be analyzed is collected over a wide range, concentrated and transferred to the adhesive surface of the adhesive base material, and the adhesive surface on which the substance is transferred at a high concentration is subjected to surface analysis. The surface analysis method according to claim 1, wherein the substance is analyzed.
請求請3に係る発明は、前記粘着基材が、感圧接着剤(粘着剤)からなる粘着面を片面、もしくは、両面に有する粘着ラベル、テープ、シートのいずれかからなり、前記粘着剤からなる粘着面には粘着剤組成成分以外の不純物を含まないことを特徴とする請求項1または2記載の表面分析方法である。 The invention according to claim 3 is that the pressure-sensitive adhesive substrate is composed of any one of a pressure-sensitive adhesive (pressure-sensitive adhesive) and a pressure-sensitive adhesive label, tape, or sheet having a pressure-sensitive adhesive surface on one side or both sides. The surface analysis method according to claim 1 or 2, wherein the adhesive surface is free of impurities other than the adhesive composition component.
請求項4に係る発明は、前記粘着基材の感圧接着剤(粘着剤)からなる粘着面に剥離性基材が積層されており、その剥離性基材は、剥離剤としてシリコーン成分を含まない剥離性基材、もしくは、剥離剤自体を含まない剥離性基材であることを特徴とする請求項1〜3のいずれか1項に記載の表面分析方法である。 In the invention according to claim 4, a peelable substrate is laminated on the pressure-sensitive adhesive surface (pressure-sensitive adhesive) of the pressure-sensitive adhesive substrate, and the peelable substrate contains a silicone component as a release agent. The surface analysis method according to any one of claims 1 to 3, wherein the surface analysis method is a non-peelable substrate or a peelable substrate that does not contain the release agent itself.
請求項5に係る発明は、前記粘着基材が、円柱状ローラーもしくは円柱や角柱部材の底面に貼着されて、分析対象試料表面にローリング、もしくは、数回押付けることにより試料表面に付着した物質を転写し、前記物質が転写された粘着面を表面分析することにより前記物質を分析することを特徴とする請求項1〜4のいずれか1項に記載の表面分析方法である。 In the invention according to claim 5, the pressure-sensitive adhesive substrate is adhered to the sample surface by being stuck to the bottom surface of a cylindrical roller or a cylinder or a prism member and rolling or pressing several times on the sample surface to be analyzed. The surface analysis method according to claim 1, wherein the substance is analyzed by transferring the substance and analyzing the surface of the adhesive surface onto which the substance is transferred.
請求項6に係る発明は、請求項1〜5のいずれか1項に記載の表面分析方法において、
XPS(X−ray PhotoelectoronSpectroscopy)分析装置とTOF−SIMS(Time−of−Flight Secondary Ion
Mass Spectorometry)分析装置とを用いることを特徴とする表面分析方法である。
The invention according to claim 6 is the surface analysis method according to any one of claims 1 to 5,
XPS (X-ray Photoelectron Spectroscopy) analyzer and TOF-SIMS (Time-of-Flight Secondary Ion)
A surface analysis method using a mass spectrometer.
本発明により、通常の方法では検出が困難な試料面上の超微量、あるいは、不均一に散在した付着物質の検出を容易にできる。即ち、分析対象試料表面の広範囲な領域を粘着基材によって転写することにより、分析対象試料表面に付着した物質を粘着基材の粘着面に、物質を濃縮して転写して、前記物質が転写された粘着面を表面分析することにより検出を容易にすることができる。 According to the present invention, it is possible to easily detect a very small amount on a sample surface, which is difficult to detect by a normal method, or non-uniformly scattered adhered substances. That is, by transferring a wide area of the sample surface to be analyzed by the adhesive base material, the substance adhered to the surface of the sample to be analyzed is concentrated and transferred to the adhesive surface of the adhesive base material, and the substance is transferred. Detection can be facilitated by surface analysis of the adhesive surface.
以下、本発明の表面分析方法についてその実施形態の一例を詳細に説明する。 Hereinafter, an example of an embodiment of the surface analysis method of the present invention will be described in detail.
本発明に用いる粘着材基材は、紙、各種プラスチックフィルム、プラスチックラミネート紙、蒸着フィルム等の複合フィルムの基材上に感圧接着剤(粘着剤)を塗布したものである。一般的に市販されている片面、あるいは両面に感圧接着剤(粘着剤)が塗布された粘着テープ、ラベル、シートでも構わない。また、粘着面に転写した物質を分析するため、使用前の粘着面は出来るだけ元素成分数が少なく既知組成であるものが良い。一般的に粘着剤はアクリル系のものが多用されており、この場合の元素成分はC(炭素)とO(酸素)であるので元素成分数も少なく好適である。 The pressure-sensitive adhesive base material used in the present invention is obtained by applying a pressure-sensitive adhesive (pressure-sensitive adhesive) on a base material of a composite film such as paper, various plastic films, plastic laminated paper, and vapor-deposited film. It may be a pressure-sensitive adhesive tape, label, or sheet in which a pressure-sensitive adhesive (pressure-sensitive adhesive) is applied on one side or both sides that are generally commercially available. Moreover, in order to analyze the substance transferred to the adhesive surface, the adhesive surface before use should have a known composition with as few element components as possible. In general, acrylic adhesives are frequently used. In this case, the element components are C (carbon) and O (oxygen), and therefore, the number of element components is small and suitable.
また、これら市販品の粘着テープ、ラベル、シートは、使用時まで粘着剤層を保護する目的で粘着剤層の表面に剥離ライナーが積層される。一般的に多く使用されている剥離ライナーとしては、前記同様な基材上にシリコーン系剥離剤を塗布したシリコーン系剥離ライナーであるが、この場合、接着剤層へのシリコーンの移行が起こってしまうため、本発明に係わる測定試料面にシリコーン系化合物の付着物質がある場合、それを転写した粘着剤面を表面分析すると解析が著しく困難になる。 In addition, these commercially available adhesive tapes, labels, and sheets have a release liner laminated on the surface of the adhesive layer for the purpose of protecting the adhesive layer until use. A release liner that is generally used is a silicone release liner in which a silicone release agent is coated on the same base material as described above, but in this case, transfer of silicone to the adhesive layer occurs. For this reason, when there is a silicone compound adhering substance on the surface of the measurement sample according to the present invention, analysis becomes extremely difficult if the surface of the pressure-sensitive adhesive to which it is transferred is subjected to surface analysis.
そこで、本発明に係わる粘着材の剥離ライナーは、剥離剤がシリコーンフリー、例えばフッ素系剥離剤やポリオレフィン系剥離剤等で粘着剤層への剥離剤の移行が無いもの、或いは剥離剤なしの基材のみの剥離ライナーを使用した粘着材を使用する。これらは、近年特にシリコーンのコンタミネーションを嫌うハードディスク(HDD)、半導体、その他の精密電子部品・機器に用いられる粘着テープ、レベル、シートに使用されている。市販品としては、日東電工(株)製の片面粘着テープ(商品名:SPAP3025T2)等が挙げられる。 Therefore, the release liner of the pressure-sensitive adhesive material according to the present invention is a silicone-free release agent, for example, a fluorine-type release agent, a polyolefin-type release agent or the like that does not transfer the release agent to the pressure-sensitive adhesive layer, or a release agent-free base. Use an adhesive with a release liner made of only material. In recent years, these are used for adhesive tapes, levels, and sheets used in hard disks (HDD), semiconductors, and other precision electronic parts / equipment that are particularly resistant to silicone contamination. As a commercial item, the single-sided adhesive tape (brand name: SPAP3025T2) by Nitto Denko Co., Ltd., etc. are mentioned.
但し、市販品では無く自ら粘着材を作成しても構わない。この場合、手間と保管上の問題があるが、剥離ライナーを設けずに、本発明の表面分析方法に使用することができる。 However, an adhesive material may be created by itself instead of a commercial product. In this case, there is a problem in labor and storage, but it can be used in the surface analysis method of the present invention without providing a release liner.
本発明において、測定試料面上の付着物質を粘着剤面への転写させる方法としては、粘着テープを巻いた円柱状ローラーか、若しくは円柱や角柱部材の底面に粘着テープを貼り付けたものを用いて、測定試料面上で円柱状ローラーをローリングさせたり(丁度、コロコロクリーナーの如く)、円柱や角柱部材の底面を適度に数回押付けたりする方法が挙げられる。これにより、容易に測定試料面上の付着物質を粘着剤面への転写させることができる。 In the present invention, as a method for transferring the adhered substance on the measurement sample surface to the pressure-sensitive adhesive surface, a cylindrical roller wound with a pressure-sensitive adhesive tape or a material in which a pressure-sensitive adhesive tape is attached to the bottom surface of a column or a prism member is used. Examples of the method include rolling a cylindrical roller on the surface of the measurement sample (just like a roller cleaner) or pressing the bottom surface of a cylinder or a prismatic member several times. Thereby, the adhered substance on the measurement sample surface can be easily transferred to the pressure-sensitive adhesive surface.
円柱状ローラーや円柱、角柱の部材素材は特に限定されないが、加工し易いステンレス等が好適である。これらの部材の大きさも特に限定されないが、出来るだけ狭い領域の粘着剤面に出来るだけ広範囲な測定試料面を転写させた方が濃縮・収集効果が大きいことから、作業性を考慮に入れて円柱状ローラーの幅や直径は数mm程度、円柱や角柱の底面サイズも数mm径、或いは数mm角が良いと考えられる。また、粘着材をこれらの部材に固定する方法としては特に限定されないが、粘着材が両面に粘着剤が塗布されているものであれば、そのまま片面を部材に接着・固定すれば良く、片面だけに粘着剤が塗布されているものであれば、部材に一般的な両面粘着テープを貼る等して、転写用の粘着材を固定すれば良い。 The material of the cylindrical roller, cylinder, or prism is not particularly limited, but stainless steel that is easy to process is suitable. The size of these members is not particularly limited, but it is more effective to transfer the measurement sample surface as wide as possible onto the adhesive surface in the narrowest possible area. It is considered that the width and diameter of the columnar roller are about several mm, and the bottom size of the cylinder or prism is preferably several mm or several mm square. In addition, the method for fixing the adhesive material to these members is not particularly limited, but if the adhesive material is coated with adhesive on both sides, it is sufficient to bond and fix one side to the member as it is, only one side. If a pressure-sensitive adhesive is applied to the material, a transfer adhesive material may be fixed by sticking a general double-sided pressure-sensitive adhesive tape to the member.
また、粘着基材の粘着層の特性としては、試料面上の付着物質を転移できる粘着力を有していれば良く、目安としては0.5N/cm(180°方向、被着体:SUS、引張速度:300mm/min、圧着方法:2kgローラー1往復)以上は必要と思われる。さらに試料面上に圧着した際に糊残りが無いものが良い。さらに言えば、転写した粘着面を表面分析する際、高真空下に置かれるため、粘着基材のアウトガス量が少ない方が、真空引きに時間を要せず測定できるため都合が良い。 Moreover, as a characteristic of the adhesive layer of the adhesive substrate, it is only necessary to have an adhesive force capable of transferring the adhered substance on the sample surface. As a guideline, 0.5 N / cm (180 ° direction, adherend: SUS) , Tensile speed: 300 mm / min, pressure bonding method: 2 kg roller 1 reciprocation) or more. Furthermore, it is preferable that there is no adhesive residue when pressure-bonded onto the sample surface. Furthermore, when the transferred adhesive surface is subjected to surface analysis, it is placed under a high vacuum, and therefore, it is advantageous that the amount of outgassing of the adhesive base material is small because it can be measured without evacuation.
本発明における表面分析装置としては、XPS(X−ray Photoelectoron Spectroscopy)分析装置とTOF−SIMS(Time−of−Flight Secondary Ion Mass Spectorometry)分析装置を用いることが好ましく、その他の表面分析装置を使用しても構わないが、例えば赤外反射法では、元素の定性分析情報は殆ど得られず、粘着層上の付着物の薄い有機層の検出は困難である。また、一般的なSIMS分析装置であるダイナミック二次イオン質量分析装置(Dynamic SIMS)では、TOF−SIMSに比べて一次イオン照射量が著しく多く、有機系試料のイオン化の際、小さいフラグメントイオンまたは粒子にまで分解してしまうため、質量スペクトルから得られる化学構造情報が限定されて適さない。 As the surface analyzer in the present invention, an XPS (X-ray Photoelectron Spectroscopy) analyzer and a TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) analyzer are preferably used, and other surface analyzers are used. However, for example, in the infrared reflection method, almost no element qualitative analysis information can be obtained, and it is difficult to detect a thin organic layer on the adhesive layer. In addition, in a dynamic secondary ion mass spectrometer (Dynamic SIMS), which is a general SIMS analyzer, the amount of primary ion irradiation is significantly larger than that of TOF-SIMS, and small fragment ions or particles are used when ionizing organic samples. Therefore, the chemical structure information obtained from the mass spectrum is limited and not suitable.
また、本発明におけるXPS分析とTOF−SIMS分析は、測定対象や測定目的により一方の装置で分析を行うか、両方の装置での分析を併用して行っても良い。XPSは、X線モノクロメータを具備していない非単色型とX線モノクロメータを具備した単色化型のいずれでも構わないが、単色化型の方が絶縁物に対して帯電し易い反面、検出感度は高い等の特徴がある。測定試料としては、金属、半導体、セラミックス、有機化合物などほとんどの固体試料が測定でき、元素情報に加えて化学状態に関する知見を得ることが可能で、定量性も表面分析の中では良いと言える。ただし、XPSでは、化学状態の差異に起因するケミカルシフトのエネルギーシフトが小さく波形分離などのデータ処理が必要な場合も多くあり、詳細な分子構造については解析できない。一方、TOF−SIMSでは、XPSと同様な測定試料に対して、より直接的な化学結合情報をフラグメントピークとして与える場合が多いため、より具体的な物質の特定、分子構造解析が可能である。ただし、TOF−SIMSでは、マススペクトル解析が複雑な場合も多く、XPSに比べて定量性に劣る等の問題がるため、総合的な表面化学状態の解析にはXPSとTOF−SIMSを組み合わせて用いることが有効である。 In addition, the XPS analysis and the TOF-SIMS analysis in the present invention may be performed by one apparatus depending on the measurement object or measurement purpose, or may be performed by using both apparatuses in combination. XPS can be either a non-monochromatic type that does not have an X-ray monochromator or a monochromatic type that has an X-ray monochromator. There are features such as high sensitivity. As a measurement sample, almost all solid samples such as metals, semiconductors, ceramics, and organic compounds can be measured. In addition to elemental information, knowledge about the chemical state can be obtained, and the quantitativeness can be said to be good in surface analysis. However, in XPS, the energy shift of the chemical shift due to the difference in chemical state is small, and there are many cases where data processing such as waveform separation is necessary, and the detailed molecular structure cannot be analyzed. On the other hand, since TOF-SIMS often gives more direct chemical bond information as a fragment peak to a measurement sample similar to XPS, more specific substance identification and molecular structure analysis are possible. However, in TOF-SIMS, mass spectrum analysis is often complicated, and there are problems such as inferior quantitativeness compared to XPS. Therefore, XPS and TOF-SIMS are combined for the analysis of comprehensive surface chemical state. It is effective to use.
XPS分析法やTOF−SIMS分析法の特徴としては、何れも試料表面の最表面を対象としており、得られるデータは何れも表層数〜数十nm領域に限られる。また、測定領域(面分解能)は、XPSで数十〜数百μm(旧型では数mmも可能だが検出感度が低い)のエリアでTOF−SIMSで数〜数百μmのエリアと言える。そのため、本発明の表面分析方法に係わる粘着剤層の表面上にある転写成分を検出するには好都合であり、測定試料面上の超微量、あるいは不均一に散在した付着物質に対して、試料面の広範囲な領域を粘着材で転写し測定する粘着剤面に濃縮・収集することによって検出を容易にできる表面分析方法である。 The features of the XPS analysis method and the TOF-SIMS analysis method are all directed to the outermost surface of the sample surface, and the obtained data is limited to the number of surface layers to several tens of nm region. Further, the measurement area (surface resolution) can be said to be an area of several tens to several hundreds of micrometers in XPS (several millimeters are possible with the old model, but detection sensitivity is low) and several to several hundreds of micrometers in TOF-SIMS. Therefore, it is convenient to detect the transfer component on the surface of the pressure-sensitive adhesive layer according to the surface analysis method of the present invention. It is a surface analysis method that allows easy detection by concentrating and collecting a wide area of the surface on an adhesive surface to be measured by transferring with an adhesive material.
次に、具体的な実施例を挙げて本発明を説明するが、本発明はこれらに限定するものではない。 Next, the present invention will be described with reference to specific examples, but the present invention is not limited thereto.
以下の実施例において、表面分析で使用したXPS分析装置とTOF−SIMS分析装置は、次に条件で使用した。 In the following examples, the XPS analyzer and the TOF-SIMS analyzer used in the surface analysis were used under the following conditions.
(装置)
model−1600 (アルバック・ファイ社製)
(測定条件)
・X線源:MgKα
・X線出力:250W(15kV)
・測定面積:800μmΦ
(装置)
TRIFT−II (PHI/EVANS社製)
(測定条件)
・一次イオン源:Au1+
・検出:Positive
・加速電圧:19kV
・測定面積:200μm
<実施例1>
シール性が不良なポリエチレンフィルムと良好なポリエチレンフィルムについて、各シール面をXPSにより測定を行った。測定の結果、何れも主にC、Oが検出され、不良品と良品の差は余りなかった(表1、図3および図4参照)。そこで、本発明に係わる市販品の粘着テープ(日東電工(株)製片面粘着テープ:SPAP3025T2)を、予め作製しておいた円柱状ローラー(幅5mm)に巻きつけて、不良品と良品の約15cm□領域上でローリングし、各フィルム上の付着物を粘着テープ面に転写させ、転写後の粘着テープ面についてXPS測定とTOF−SIMS測定を行った。結果としてXPS測定結果(表1)を見ると、転写前の粘着剤面はC、Oのみを確認し、不良品と良品の転写した粘着剤面からC、Oの他に新たにSiが検出され、Si比率は不良品の方が良品よりも約2倍高かった。Si2pナロースペクトルを見ると(図6)、ピーク位置の結合エネルギー値から、シリケート若しくはシリコーンと推察された。また、TOF−SIMS測定スペクトルを見ると(図11−1、2および図12−3)、転写前の粘着剤面には無いSi+(28)とCH3Si+(43)のシリコーン由来のフラグメントイオンピークが確認された。従って、XPSで検出されたSiはシリコーン由来と考えられた。
(apparatus)
model-1600 (manufactured by ULVAC-PHI)
(Measurement condition)
・ X-ray source: MgKα
・ X-ray output: 250W (15kV)
・ Measurement area: 800μmΦ
(apparatus)
TRIFT-II (PHI / EVANS)
(Measurement condition)
・ Primary ion source: Au1 +
・ Detection: Positive
・ Acceleration voltage: 19kV
・ Measurement area: 200μm
<Example 1>
About the polyethylene film with a bad sealing performance, and the favorable polyethylene film, each sealing surface was measured by XPS. As a result of the measurement, C and O were mainly detected in all cases, and there was not much difference between the defective product and the non-defective product (see Table 1, FIG. 3 and FIG. 4). Therefore, a commercially available adhesive tape (single-sided adhesive tape manufactured by Nitto Denko Co., Ltd .: SPAP3025T2) according to the present invention is wound around a cylindrical roller (5 mm in width) that has been prepared in advance. Rolling was performed on a 15 cm square region, and the deposit on each film was transferred to the adhesive tape surface, and XPS measurement and TOF-SIMS measurement were performed on the adhesive tape surface after transfer. As a result, looking at the XPS measurement results (Table 1), only C and O were confirmed on the adhesive surface before transfer, and Si was detected in addition to C and O from the transferred adhesive surface of defective and good products. In addition, the Si ratio was about twice as high for defective products than for non-defective products. When the Si2p narrow spectrum was observed (FIG. 6), it was inferred from the binding energy value at the peak position as silicate or silicone. Moreover, when the TOF-SIMS measurement spectrum is seen (FIGS. 11-1, 2 and 12-3), the fragment ion peaks derived from silicones of Si + (28) and CH3Si + (43) which are not present on the adhesive surface before transfer are observed. confirmed. Therefore, Si detected by XPS was considered to be derived from silicone.
以上から、シール性の不良原因は、ポリエチレンフィルム上の微量、或いは不均一に付着していたシリコーンのコンタミが起因している可能性が推察された。 From the above, it was inferred that the cause of the poor sealability may be due to a trace amount of silicone on the polyethylene film or non-uniformly adhered silicone.
シール不良・良品フィルムで検討したXPS測定結果を表1に示す。 Table 1 shows the XPS measurement results examined for defective seals and non-defective films.
<実施例2>
標準サンプルを作成して本発明の表面分析方法を検証した。標準サンプルは、市販品のシリコーン(SIGMA社製ポリジメチルシロキサン:商品名DMPS2C−100G)の10ppmヘキサン溶液を作成し、その溶液中に、PETフィルム(厚さ25μm、15cm□)を浸漬後、キムワイプに挟んで良く溶液を拭き取り、シリコーンが微量に付着したPETフィルムとした。そして、元々のPETフィルムと前記作成したPETフィルム(以下、標準サンプル)についてXPS測定を行った所、元々のPETフィルムからはC,Oのみ検出されたが、標準サンプルからは微量なSiが検出された(表2、図7、図8、図9、図10参照)。次に、本発明に係わる市販品の粘着テープ(日東電工(株)製片面粘着テープ:SPAP3025T2)を使い、実施例1と同様な操作により、PETフィルム上に付着したシリコーンを粘着テープ面に転写させ、転写後の粘着剤面についてXPS測定とTOF−SIMS測定を行った。結果として、XPS測定結果(表2)を見ると、標準サンプルに比べて標準サンプルを転写した粘着剤面のSi比率は5倍高く検出された。また、標準サンプルを転写した粘着剤面のTOF−SIMS測定スペクトルを見ると(図12−4)、Si+(28)とCH3Si+(43)のシリコーン由来のフラグメントイオンピークが確認された。
<Example 2>
A standard sample was prepared to verify the surface analysis method of the present invention. As a standard sample, a 10 ppm hexane solution of commercially available silicone (polydimethylsiloxane manufactured by SIGMA: trade name DMPS2C-100G) is prepared, and a PET film (thickness 25 μm, 15 cm □) is immersed in the solution. Then, the solution was wiped off and a PET film with a small amount of silicone attached was obtained. Then, when XPS measurement was performed on the original PET film and the prepared PET film (hereinafter, standard sample), only C and O were detected from the original PET film, but a small amount of Si was detected from the standard sample. (See Table 2, FIG. 7, FIG. 8, FIG. 9, FIG. 10). Next, using the commercially available adhesive tape according to the present invention (single-sided adhesive tape manufactured by Nitto Denko Corporation: SPAP3025T2), silicone adhered on the PET film is transferred to the adhesive tape surface in the same manner as in Example 1. The XPS measurement and the TOF-SIMS measurement were performed on the adhesive surface after transfer. As a result, when the XPS measurement result (Table 2) was observed, the Si ratio of the pressure-sensitive adhesive surface to which the standard sample was transferred was detected 5 times higher than that of the standard sample. Moreover, when the TOF-SIMS measurement spectrum of the adhesive surface which transcribe | transferred the standard sample was seen (FIG. 12-4), the fragment ion peak derived from the silicone of Si + (28) and CH3Si + (43) was confirmed.
標準サンプルで検討したXPS測定結果を表2に示す。 Table 2 shows the XPS measurement results examined with the standard sample.
以上から、本発明に表面分析方法によって測定試料面上の付着物を濃縮して検出できる
ことが確認できた。
From the above, it was confirmed that the deposits on the measurement sample surface can be concentrated and detected by the surface analysis method of the present invention.
1. 円柱状ローラーに巻いた状態の粘着テープ
1a. 円柱状ローラーから取り外された状態の粘着テープ
2. 円柱状ローラー部材(正面図)
2a. 円柱状ローラー部材(斜視図)
3. 柄
4. つまみ部
5. 粘着テープ
6. 円柱状部材
7. 粘着テープ
8. 角柱状部材
1. Adhesive tape 1a in a state of being wound around a cylindrical roller. 1. Adhesive tape removed from the cylindrical roller Cylindrical roller member (front view)
2a. Cylindrical roller member (perspective view)
3. Pattern 4. Knob part 5. 6. Adhesive tape 6. Cylindrical member Adhesive tape8. Prismatic member
Claims (6)
XPS(X−ray PhotoelectoronSpectroscopy)分析装置とTOF−SIMS(Time−of−Flight Secondary Ion
Mass Spectorometry)分析装置とを用いることを特徴とする表面分析方法。 In the surface analysis method according to any one of claims 1 to 5,
XPS (X-ray Photoelectron Spectroscopy) analyzer and TOF-SIMS (Time-of-Flight Secondary Ion)
A surface analysis method comprising using a mass spectrometer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007283332A JP2009109397A (en) | 2007-10-31 | 2007-10-31 | Surface analysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007283332A JP2009109397A (en) | 2007-10-31 | 2007-10-31 | Surface analysis method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009109397A true JP2009109397A (en) | 2009-05-21 |
Family
ID=40778024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007283332A Pending JP2009109397A (en) | 2007-10-31 | 2007-10-31 | Surface analysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009109397A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105277580A (en) * | 2015-11-26 | 2016-01-27 | 公安部物证鉴定中心 | Method for identifying electrical adhesive tape |
CN113607892A (en) * | 2021-08-18 | 2021-11-05 | 深圳市高仁电子新材料有限公司 | Method for detecting whether silicone oil of PET (polyethylene terephthalate) protective film can transfer or not |
-
2007
- 2007-10-31 JP JP2007283332A patent/JP2009109397A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105277580A (en) * | 2015-11-26 | 2016-01-27 | 公安部物证鉴定中心 | Method for identifying electrical adhesive tape |
CN113607892A (en) * | 2021-08-18 | 2021-11-05 | 深圳市高仁电子新材料有限公司 | Method for detecting whether silicone oil of PET (polyethylene terephthalate) protective film can transfer or not |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mittal | Adhesion measurement: Recent progress, unsolved problems, and prospects | |
Davis | Contamination of surfaces: origin, detection and effect on adhesion | |
JP2009109397A (en) | Surface analysis method | |
Schätz et al. | Button shear testing for adhesion measurements of 2D materials | |
WO2008111013A3 (en) | Bead assisted analyte detection | |
JP2005214918A (en) | Apparatus and method for evaluating adhesion of laminated parts | |
Ito et al. | Study of the correlation between flexible food packaging peeling resistance and surface composition for aluminum-metallized BOPP films aged at 60 C | |
JP2012073160A (en) | Dust monitoring kit and evaluation method using the same | |
Ebert et al. | Examination of clean room aerosol particle composition by total reflection X-ray analysis and electron probe microanalysis | |
CN112557431A (en) | Nondestructive detection method for pollutant components on surface of part | |
Redhwan et al. | Copper and liquid crystal polymer bonding towards lead sensing | |
JP2005249569A (en) | Thin film adhesion strength evaluation method and apparatus | |
JP5335343B2 (en) | Method for analyzing deposits | |
JP2012208080A (en) | Dust monitoring kit and evaluation method using the same | |
El-Shabasy | Perspective of adhesion of thin films | |
JP3713898B2 (en) | Thin film adhesion strength evaluation apparatus and method | |
JP2006284453A (en) | Adhesiveness evaluation method for thin film | |
US20040074293A1 (en) | Method of determining the adhesion properties of materials | |
US20070110616A1 (en) | Lead detection swab kit | |
JP7248334B2 (en) | Micro sample holder | |
Mahaffy et al. | Science priorities related to the organic contamination of martian landers | |
CN222979177U (en) | A particle collection device | |
JP2015040712A (en) | Tool for collection/conveyance of grid for electronic microscope sample | |
JP2003344264A (en) | Method and apparatus for measuring thin film material properties by detecting charged particles | |
JP5541438B2 (en) | Adhesive composition and adhesive sheet using the same |