[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009103252A - Fluid bearing device and motor having the same - Google Patents

Fluid bearing device and motor having the same Download PDF

Info

Publication number
JP2009103252A
JP2009103252A JP2007276682A JP2007276682A JP2009103252A JP 2009103252 A JP2009103252 A JP 2009103252A JP 2007276682 A JP2007276682 A JP 2007276682A JP 2007276682 A JP2007276682 A JP 2007276682A JP 2009103252 A JP2009103252 A JP 2009103252A
Authority
JP
Japan
Prior art keywords
bearing sleeve
housing
bearing
outer peripheral
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007276682A
Other languages
Japanese (ja)
Inventor
Tatsuo Nakajima
達雄 中島
Fumihiro Isobe
史浩 磯部
Kenichi Nashida
健一 梨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007276682A priority Critical patent/JP2009103252A/en
Publication of JP2009103252A publication Critical patent/JP2009103252A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively improve joining strength between a housing and a bearing sleeve. <P>SOLUTION: This fluid bearing device 1 has the bearing sleeve 8 and the housing 7 with the bearing sleeve 8 arranged on the inner periphery. The housing 7 is injectably molded by a melting resin by inserting the bearing sleeve 8, and also has integrally engaging parts 7e and 7f engaging in the axial direction with an outer peripheral corner part of the bearing sleeve 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は流体軸受装置およびこれを備えるモータに関する。   The present invention relates to a hydrodynamic bearing device and a motor including the same.

流体軸受装置は、軸受隙間を満たす流体の潤滑膜で回転側の部材を固定側の部材に対して回転自在に支持する軸受装置である。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等のディスク駆動装置に搭載されるスピンドルモータ、レーザビームプリンタ(LBP)に搭載されるポリゴンスキャナモータ、PCに搭載されるファンモータなどに組み込まれる軸受装置として好適に使用されている。   The hydrodynamic bearing device is a bearing device that rotatably supports a rotation-side member with respect to a fixed-side member with a fluid lubricating film that fills the bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, the hydrodynamic bearing device has been utilized as a motor bearing device for motors mounted on various electrical devices including information devices. More specifically, it is suitable as a bearing device incorporated in a spindle motor mounted on a disk drive device such as an HDD, a polygon scanner motor mounted on a laser beam printer (LBP), a fan motor mounted on a PC, or the like. in use.

上記モータのうち、例えばディスク駆動装置用のスピンドルモータに組み込まれる流体軸受装置は、回転側の部材(例えば軸部材)をラジアル方向に支持するラジアル軸受部と、スラスト方向に支持するスラスト軸受部とを有する。そして、流体軸受装置に対する益々の高回転精度化の要請に対応すべく、近時においては、ラジアル軸受部およびスラスト軸受部の双方を、軸受隙間(ラジアル軸受隙間およびスラスト軸受隙間)を介して対向する二面のうち、少なくとも何れか一方に動圧溝等の動圧発生部を備えた動圧軸受で構成する場合が多い。   Among the above motors, for example, a hydrodynamic bearing device incorporated in a spindle motor for a disk drive device includes a radial bearing portion that supports a rotating member (for example, a shaft member) in a radial direction, and a thrust bearing portion that supports in a thrust direction. Have In recent years, both the radial bearing portion and the thrust bearing portion are opposed to each other through bearing gaps (radial bearing gap and thrust bearing gap) in order to meet the demand for higher rotational accuracy of the hydrodynamic bearing device. In many cases, at least one of the two surfaces is configured with a dynamic pressure bearing having a dynamic pressure generating portion such as a dynamic pressure groove.

この種の流体軸受装置は、一般に、内周面でラジアル軸受隙間を形成する軸受スリーブと、この軸受スリーブを内周に配設したハウジングとを備える。従来、ハウジングは金属材料の機械加工品とされる場合が多かったが、流体軸受装置の低コスト化を図るべくハウジングを樹脂の射出成形品に置換する試みがなされている(例えば、特許文献1を参照)。
特開2006−46461号公報
This type of fluid dynamic bearing device generally includes a bearing sleeve that forms a radial bearing gap on the inner peripheral surface thereof, and a housing in which the bearing sleeve is disposed on the inner peripheral surface. Conventionally, the housing is often a metal machined product, but attempts have been made to replace the housing with a resin injection molded product in order to reduce the cost of the hydrodynamic bearing device (for example, Patent Document 1). See).
JP 2006-46461 A

近時においては、情報機器の高性能化(高容量化)や低価格化が急速に進展しているため、ハウジングをはじめとする流体軸受装置の各構成部品を一層高精度化、また低コスト化する必要が生じているが、各構成部品の材料変更だけでは低コスト化にも限度があるため、一層の低コスト化を図るためには組立工程の効率化が重要なポイントとなる。組立工程を効率化するための手段として、軸受スリーブをインサート部品としてハウジングを樹脂で射出成形することが考えられる。しかしながら、軸受スリーブをインサート部品としてハウジングを樹脂で射出成形するだけでは、両者の間に高い結合強度を確保するのが難しい。近年、モバイル用情報機器が急速に普及しているが、この種の情報機器では従来よりも高い耐衝撃性を求められるため、ハウジングと軸受スリーブの間の結合強度を一層高めることが望まれている。   Recently, high performance (high capacity) and low prices of information equipment are rapidly progressing, so each component part of the hydrodynamic bearing device including the housing is made more accurate and low cost. However, there is a limit to reducing the cost only by changing the material of each component. Therefore, in order to further reduce the cost, the efficiency of the assembly process is an important point. As a means for improving the efficiency of the assembly process, it is conceivable to injection-mold the housing with resin using the bearing sleeve as an insert part. However, it is difficult to ensure a high bond strength between the two by simply molding the housing with resin using the bearing sleeve as an insert part. In recent years, mobile information devices have rapidly spread. However, since this type of information device is required to have higher impact resistance than before, it is desired to further increase the coupling strength between the housing and the bearing sleeve. Yes.

そこで、本発明は、低コストにハウジングと軸受スリーブの間の結合強度を高めた流体軸受装置の提供を目的とする。   Accordingly, an object of the present invention is to provide a hydrodynamic bearing device in which the coupling strength between the housing and the bearing sleeve is increased at a low cost.

上記の目的を達成すべく、本発明では、ハウジングと、ハウジングの内周に配設された軸受スリーブとを備え、軸受スリーブの内周面が面するラジアル軸受隙間に形成される流体の潤滑膜で支持すべき軸をラジアル方向に支持する流体軸受装置において、ハウジングが、軸受スリーブをインサートして溶融材料で射出成形され、かつ軸受スリーブの外周角部と軸方向で係合する係合部を一体に有することを特徴とする流体軸受装置を提供する。   In order to achieve the above object, the present invention includes a housing and a bearing sleeve disposed on the inner periphery of the housing, and a fluid lubricating film formed in a radial bearing gap facing the inner peripheral surface of the bearing sleeve. In the hydrodynamic bearing device for supporting the shaft to be supported in the radial direction, the housing includes an engaging portion which is injection-molded with a molten material by inserting the bearing sleeve and engages with an outer peripheral corner portion of the bearing sleeve in the axial direction. Provided is a hydrodynamic bearing device characterized by having a single body.

上記のように、軸受スリーブをインサートしてハウジングを溶融材料で射出成形すれば、ハウジングの成形、および軸受スリーブとハウジングの組み付けを一工程で完了することができる。また、ハウジングは、軸受スリーブの外周角部と軸方向で係合する係合部を一体に有するものであるから、ハウジングを射出成形するのと同時に形成される係合部によってハウジングに対する軸受スリーブの軸方向の相対移動を規制することができ、ハウジングと軸受スリーブの間の結合強度、特に軸方向の結合強度(抜け強度)を高めることが可能となる。なお、溶融材料としては溶融樹脂、溶融金属(例えば、マグネシウムやアルミニウム等の低融点金属)を挙げることができるが、これらは要求特性に応じて選択使用すれば良い。例えば、軽量化を図るには溶融樹脂が好適であり、高強度化を図るには溶融金属が好適である。   As described above, if the bearing sleeve is inserted and the housing is injection-molded with a molten material, the molding of the housing and the assembly of the bearing sleeve and the housing can be completed in one step. Further, since the housing integrally includes an engaging portion that engages with the outer peripheral corner portion of the bearing sleeve in the axial direction, the engaging sleeve that is formed at the same time as the housing is injection-molded is used. The relative movement in the axial direction can be restricted, and the coupling strength between the housing and the bearing sleeve, particularly the coupling strength (disengagement strength) in the axial direction can be increased. Note that examples of the molten material include a molten resin and a molten metal (for example, a low melting point metal such as magnesium or aluminum), and these may be selectively used according to required characteristics. For example, a molten resin is preferable for reducing the weight, and a molten metal is preferable for increasing the strength.

具体的な構成の一例として、軸受スリーブの外周にテーパ面(面取り)を形成し、このテーパ面に係合部を密着させることが考えられる。このようにテーパ面と係合部とを密着させることにより、ハウジングと軸受スリーブの軸方向の相対移動が規制されるので、軸受スリーブとハウジングの間に高い抜け強度を付与することができる。また、テーパ面の一端側に大径外周面を形成すると共に、テーパ面の他端側に大径外周面よりも小径の小径外周面を形成し、係合部を小径外周面およびテーパ面に密着させることができる。これにより、軸受スリーブの外周角部が段付き円筒面状に形成されるので、係合部が軸受スリーブの大径外周面と小径外周面の間の領域で軸受スリーブと軸方向で係合し、軸受スリーブとハウジングの間で軸方向の抜け止めがなされる。なお、前者の構成は、軸受スリーブの成形性の点で後者の構成に比べて有利であり、後者の構成は、係合部の係り代(係合部と軸受スリーブの接触面積)が前者に比べて大きくなる分、ハウジングと軸受スリーブの間の結合強度を高める上で有利である。   As an example of a specific configuration, it is conceivable that a tapered surface (chamfering) is formed on the outer periphery of the bearing sleeve, and the engaging portion is brought into close contact with the tapered surface. Since the taper surface and the engaging portion are brought into close contact with each other in this manner, the relative movement of the housing and the bearing sleeve in the axial direction is restricted, so that a high pulling strength can be provided between the bearing sleeve and the housing. In addition, a large-diameter outer peripheral surface is formed on one end side of the tapered surface, a small-diameter outer peripheral surface having a smaller diameter than the large-diameter outer peripheral surface is formed on the other end side of the tapered surface, and the engaging portion is formed on the small-diameter outer peripheral surface and the tapered surface. It can be adhered. As a result, the outer peripheral corner portion of the bearing sleeve is formed into a stepped cylindrical surface, so that the engaging portion engages with the bearing sleeve in the axial direction in the region between the large diameter outer peripheral surface and the small diameter outer peripheral surface of the bearing sleeve. In the axial direction, the bearing sleeve and the housing are prevented from coming off. The former configuration is more advantageous than the latter configuration in terms of formability of the bearing sleeve. In the latter configuration, the engagement margin of the engaging portion (contact area between the engaging portion and the bearing sleeve) is less than the former configuration. This is advantageous in increasing the coupling strength between the housing and the bearing sleeve.

テーパ面の一端側に大径外周面を設けると共に、テーパ面の他端側に小径外周面を設ける場合、テーパ面の傾斜方向は任意である。すなわち、テーパ面は、軸受スリーブの端部側に向けて漸次縮径するもの、あるいは漸次拡径するものの何れの形態も採用可能である。前者の構成は、後者の構成に比べて溶融材料の充填性が良好であるという利点があり、後者の構成は、前者の構成に比べて抜け強度の点で有利である。   When a large-diameter outer peripheral surface is provided on one end side of the tapered surface and a small-diameter outer peripheral surface is provided on the other end side of the tapered surface, the inclination direction of the tapered surface is arbitrary. That is, the taper surface may be of any form that gradually decreases in diameter toward the end of the bearing sleeve or that gradually increases in diameter. The former configuration has an advantage that the filling property of the molten material is better than that of the latter configuration, and the latter configuration is advantageous in terms of pull-out strength as compared with the former configuration.

係合部は、軸受スリーブの外周角部と周方向で係合させることもでき、このようにすれば、ハウジングに対する軸受スリーブの周方向の相対移動も規制することができ、ハウジングと軸受スリーブの間の結合強度が一層高まる。かかる構成は、例えば、軸受スリーブに設けるべき上記のテーパ面や小径外周面を、円周方向で間欠的に設けることで得られる。   The engaging portion can be engaged with the outer peripheral corner portion of the bearing sleeve in the circumferential direction, and in this way, the relative movement of the bearing sleeve in the circumferential direction with respect to the housing can also be restricted. The bond strength between them is further increased. Such a configuration can be obtained, for example, by intermittently providing the tapered surface or the small-diameter outer peripheral surface to be provided in the bearing sleeve in the circumferential direction.

軸受スリーブの形成材料は特に問わず、黄銅等の軟質金属材料や、焼結金属や多孔質樹脂等の多孔質材料で形成することが可能であるが、多孔質材料で形成すれば、ハウジングの射出成形時に軸受スリーブの表面気孔への溶融材料の入り込みによっていわゆるアンカー効果が発現され、ハウジングと軸受スリーブの間の結合強度が一層向上する。   The material for forming the bearing sleeve is not particularly limited, and it can be made of a soft metal material such as brass, or a porous material such as sintered metal or porous resin. A so-called anchor effect is exhibited by the penetration of the molten material into the surface pores of the bearing sleeve at the time of injection molding, and the coupling strength between the housing and the bearing sleeve is further improved.

上述した流体軸受装置は、ステータコイルと、ロータマグネットとを有するモータ、例えばHDD等の情報機器用スピンドルモータに組み込んで好適に使用可能である。   The above-described hydrodynamic bearing device can be suitably used by being incorporated in a motor having a stator coil and a rotor magnet, for example, a spindle motor for information equipment such as an HDD.

以上に示すように、本発明によれば、低コストにハウジングと軸受スリーブの間の結合強度を高めることができ、従って、耐衝撃性に富む流体軸受装置を低コストに提供することができる。   As described above, according to the present invention, the coupling strength between the housing and the bearing sleeve can be increased at a low cost, and therefore, a hydrodynamic bearing device rich in impact resistance can be provided at a low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、流体軸受装置を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を有する回転部材3を回転自在に支持する流体軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、流体軸受装置1を内周に固定したブラケット6とを備えている。ステータコイル4はブラケット6の外径側円筒部の内周に取付けられ、ロータマグネット5は回転部材3を構成するディスクハブ9の外周に取付けられる。ディスクハブ9には、磁気ディスク等のディスクが一又は複数枚保持される(図示は省略)。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、回転部材3およびこれに保持されたディスクが一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device. This spindle motor is used in a disk drive device such as an HDD, and is a stator coil that is opposed to a hydrodynamic bearing device 1 that rotatably supports a rotating member 3 having a shaft member 2 via a radial gap, for example. 4 and the rotor magnet 5, and a bracket 6 that fixes the hydrodynamic bearing device 1 to the inner periphery. The stator coil 4 is attached to the inner periphery of the outer diameter side cylindrical portion of the bracket 6, and the rotor magnet 5 is attached to the outer periphery of the disk hub 9 constituting the rotating member 3. The disk hub 9 holds one or more disks such as a magnetic disk (not shown). When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the rotating member 3 and the disk held by the rotor member 5 are rotated together.

図2は、図1に示す流体軸受装置1を拡大して示すもので、本発明に係る流体軸受装置の第1実施形態を示すものである。同図に示す流体軸受装置1は、軸部材2と、軸部材2の一端に設けられたディスクハブ9と、内周に軸部材2が挿入された軸受スリーブ8と、軸受スリーブ8を内周に配設したハウジング7と、ハウジング7の一端開口を閉塞する蓋部材10とを主要な構成部材として備える。なお、説明の便宜上、ディスクハブ9の側を上側、蓋部材10の側を下側として、以下説明を進める。   FIG. 2 is an enlarged view of the hydrodynamic bearing device 1 shown in FIG. 1, and shows a first embodiment of the hydrodynamic bearing device according to the present invention. The hydrodynamic bearing device 1 shown in FIG. 1 includes a shaft member 2, a disk hub 9 provided at one end of the shaft member 2, a bearing sleeve 8 having the shaft member 2 inserted into the inner periphery, and an inner periphery of the bearing sleeve 8. And a lid member 10 that closes one end opening of the housing 7 as main components. For convenience of explanation, the following description will be given with the disk hub 9 side as the upper side and the lid member 10 side as the lower side.

軸部材2は、例えばステンレス鋼等の金属材料で全長に亘って略同径の軸状に形成される。軸部材2の下端には、抜け止めとしてのフランジ11が例えばねじ結合される。また、軸部材2の上端部内周には、図示しないクランパをねじ結合するためのねじ穴が設けられる。   The shaft member 2 is formed of a metal material such as stainless steel, for example, in the shape of a shaft having substantially the same diameter over the entire length. A flange 11 as a retainer is screwed to the lower end of the shaft member 2, for example. Further, a screw hole for screwing a clamper (not shown) is provided on the inner periphery of the upper end portion of the shaft member 2.

軸部材2の上端には、半径方向外側(外径側)に突出したディスクハブ9が設けられる。本実施形態において、ディスクハブ9は、ステンレス鋼等の金属材料で形成され、軸部材2の上端部に設けた段部に係合させるようにして、接着、圧入、溶接等の適宜の手段で固定される。ディスクハブ9は、ハウジング7の上端を覆う円盤部9aと、円盤部9aの外径端から下方に延びる円筒部9bと、円筒部9bから外径側に突出する鍔部9dとを一体に備え、鍔部9dにはディスク搭載面9cが設けられる。円筒部9bの下端外周面に、接着等適宜の手段によってロータマグネット5が固定される(図1を参照)。なお、ディスクハブ9は、軸部材2をインサート部品として溶融材料で射出成形することもできる。   At the upper end of the shaft member 2, a disk hub 9 protruding outward in the radial direction (outer diameter side) is provided. In the present embodiment, the disc hub 9 is formed of a metal material such as stainless steel, and is engaged with a step provided at the upper end of the shaft member 2 by an appropriate means such as adhesion, press-fitting, or welding. Fixed. The disk hub 9 is integrally provided with a disk portion 9a that covers the upper end of the housing 7, a cylindrical portion 9b that extends downward from the outer diameter end of the disk portion 9a, and a flange portion 9d that protrudes outward from the cylindrical portion 9b. The flange portion 9d is provided with a disk mounting surface 9c. The rotor magnet 5 is fixed to the outer peripheral surface of the lower end of the cylindrical portion 9b by an appropriate means such as adhesion (see FIG. 1). The disk hub 9 can also be injection-molded with a molten material using the shaft member 2 as an insert part.

軸受スリーブ8は、銅を主成分とする焼結金属の多孔質体で円筒状に形成される。もちろん、軸受スリーブ8の形成材料はこれに限定されるものではなく、例えば、鉄を主成分とする焼結金属の多孔質体、黄銅等の軟質金属材料、焼結金属ではない他の多孔質材料(多孔質樹脂等)で形成することもできる。   The bearing sleeve 8 is made of a sintered metal porous body mainly composed of copper and is formed in a cylindrical shape. Of course, the material for forming the bearing sleeve 8 is not limited to this. For example, a porous body of sintered metal mainly composed of iron, a soft metal material such as brass, and other porous materials that are not sintered metal. It can also be formed of a material (porous resin or the like).

軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる円筒状領域が軸方向に離隔した上下二箇所に設けられ、該円筒状領域には、ラジアル動圧発生部として、例えば図3(a)に示すように、ヘリングボーン形状に配列された複数の動圧溝8a1、8a2がそれぞれ形成されている。本実施形態において、上側の動圧溝8a1は、軸方向中心mに対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。一方、下側の動圧溝8a2は軸方向対称に形成され、その上下領域の軸方向寸法はそれぞれ上記軸方向寸法X2と等しくなっている。軸受スリーブ8の上端側および下端側の外周角部には、全周に亘って、軸受スリーブ8の軸方向外側に向かって漸次縮径したテーパ面(面取り)81,82がそれぞれ形成されている。なお、動圧溝は、軸部材2の外周面2aに形成することもでき、またその形状は、スパイラル形状等公知のその他の形状とすることもできる。   On the inner peripheral surface 8a of the bearing sleeve 8, cylindrical regions serving as radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 are provided at two upper and lower positions separated in the axial direction. As shown in FIG. 3A, for example, a plurality of dynamic pressure grooves 8a1 and 8a2 arranged in a herringbone shape are formed as radial dynamic pressure generating portions. In the present embodiment, the upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m, and the axial dimension X1 of the upper region from the axial center m is the axial dimension X2 of the lower region. Is bigger than. On the other hand, the lower dynamic pressure groove 8a2 is formed symmetrically in the axial direction, and the axial dimensions of the upper and lower regions thereof are respectively equal to the axial dimension X2. Tapered surfaces (chamfers) 81 and 82 that are gradually reduced in diameter toward the outside in the axial direction of the bearing sleeve 8 are formed on the outer peripheral corners on the upper end side and the lower end side of the bearing sleeve 8 respectively. . The dynamic pressure groove may be formed on the outer peripheral surface 2a of the shaft member 2, and the shape thereof may be other known shapes such as a spiral shape.

軸受スリーブ8の下側端面8bには、第2スラスト軸受部T2のスラスト軸受面となる環状領域が設けられ、該環状領域には、スラスト動圧発生部として、例えば図3(b)に示すように、スパイラル形状に配列された複数の動圧溝8b1が形成されている。なお、動圧溝8b1は、後述するフランジ11の上側端面11aに形成することもでき、またその形状は、ヘリングボーン形状等公知のその他の形状とすることもできる。   An annular region serving as a thrust bearing surface of the second thrust bearing portion T2 is provided on the lower end surface 8b of the bearing sleeve 8, and a thrust dynamic pressure generating portion is provided in the annular region, for example, as shown in FIG. As described above, a plurality of dynamic pressure grooves 8b1 arranged in a spiral shape are formed. The dynamic pressure groove 8b1 can also be formed on the upper end surface 11a of the flange 11, which will be described later, and the shape thereof may be other known shapes such as a herringbone shape.

ハウジング7は、両端を開口させた円筒状を呈する。ハウジング7の内周面は、軸方向で小径内周面9aと大径内周面9bとに区画される。大径内周面9bには圧入、接着、溶着等適宜の手段で蓋部材10が固定され、これによりハウジング7の下端開口部が封止される。   The housing 7 has a cylindrical shape with both ends opened. The inner peripheral surface of the housing 7 is divided into a small diameter inner peripheral surface 9a and a large diameter inner peripheral surface 9b in the axial direction. The lid member 10 is fixed to the large-diameter inner peripheral surface 9b by appropriate means such as press-fitting, adhesion, and welding, and the lower end opening of the housing 7 is thereby sealed.

ハウジング7の上側端面7cには、第1スラスト軸受部T1のスラスト軸受面となる環状領域が設けられ、該環状領域には、図示は省略するが、スラスト動圧発生部として、スパイラル形状に配列された複数の動圧溝が形成されている。なお、動圧溝は、対向するディスクハブ9の円盤部下側端面9a1に形成することもでき、またその形状は、ヘリングボーン形状等、公知のその他の形状とすることもできる。   The upper end surface 7c of the housing 7 is provided with an annular region serving as a thrust bearing surface of the first thrust bearing portion T1, and although not shown, the annular region is arranged in a spiral shape as a thrust dynamic pressure generating portion. A plurality of dynamic pressure grooves are formed. The dynamic pressure groove can also be formed in the disk portion lower end surface 9a1 of the opposing disk hub 9, and the shape thereof can be other known shapes such as a herringbone shape.

ハウジング7の外周面のうち、上部側には、上方に向かって漸次拡径するテーパ面7dが形成され、このテーパ面7dは、ディスクハブ9の円筒部9bの内周面9b1との間に、上方に向かって半径方向寸法が漸次縮小する環状のシール空間Sを形成する。シール空間Sは、軸部材2(回転部材3)の回転時、第1スラスト軸受部T1のスラスト軸受隙間の外径側と連通する。   A tapered surface 7d that gradually increases in diameter upward is formed on the upper side of the outer peripheral surface of the housing 7, and this tapered surface 7d is formed between the inner peripheral surface 9b1 of the cylindrical portion 9b of the disk hub 9. An annular seal space S in which the radial dimension gradually decreases upward is formed. The seal space S communicates with the outer diameter side of the thrust bearing gap of the first thrust bearing portion T1 when the shaft member 2 (rotating member 3) rotates.

ハウジング7の大径内周面7aのうち、軸受スリーブ8の上端側および下端側の外周角部と半径方向に対向する部分には、内径側に突出し、軸受スリーブ8の外周角部と軸方向で係合する係合部7e、7fがそれぞれ設けられている。上側の係合部7eは、軸受スリーブ8のテーパ面81と全周に亘って密着し、下側の係合部7fは、軸受スリーブ8のテーパ面82と全周に亘って密着している。従って、係合部7e,7fはそれぞれリング状を呈する。上側の係合部7eの上側端面は、軸受スリーブ8の上側端面8dと面一に設けられ、下側の係合部7fの下側端面は、軸受スリーブ8の下側端面8bと面一に設けられている。   A portion of the large-diameter inner peripheral surface 7a of the housing 7 that protrudes radially inward from the outer peripheral corners on the upper end side and the lower end side of the bearing sleeve 8 protrudes toward the inner diameter side, and the outer peripheral corner portion of the bearing sleeve 8 and the axial direction Engagement portions 7e and 7f that are engaged with each other are provided. The upper engaging portion 7e is in close contact with the tapered surface 81 of the bearing sleeve 8 over the entire circumference, and the lower engaging portion 7f is in close contact with the tapered surface 82 of the bearing sleeve 8 over the entire periphery. . Therefore, the engaging portions 7e and 7f each have a ring shape. The upper end surface of the upper engaging portion 7e is flush with the upper end surface 8d of the bearing sleeve 8, and the lower end surface of the lower engaging portion 7f is flush with the lower end surface 8b of the bearing sleeve 8. Is provided.

図示は省略するが、上記のハウジング7は、係合部7e,7fも含め、軸受スリーブ8をインサートして溶融樹脂で射出成形される。ハウジング7の成形に用いられる射出成形型のうち、ハウジング7の上側端面7cと対向する部分にはスラスト動圧発生部(動圧溝)形状に対応した溝型が設けられており、動圧溝はハウジング7の射出成形と同時に型成形される。射出成形型のキャビティ内に溶融樹脂を射出するゲートの形状および配置態様に特段の限定はないが、溶融樹脂の射出圧等によって軸受スリーブ8が変形しないようにするのが望ましく、本実施形態では、射出成形型のうち、ハウジング7の上端側の外周縁部(上側端面7cとテーパ面7dとが交わる部分)と対向する部分の周方向3箇所に点ゲートを等配した。   Although not shown in the drawings, the housing 7 including the engaging portions 7e and 7f is inserted into the bearing sleeve 8 and injection molded with a molten resin. Of the injection mold used to mold the housing 7, a groove mold corresponding to the shape of the thrust dynamic pressure generating portion (dynamic pressure groove) is provided at a portion facing the upper end surface 7c of the housing 7, and the dynamic pressure groove Is molded simultaneously with the injection molding of the housing 7. There is no particular limitation on the shape and arrangement of the gate for injecting the molten resin into the cavity of the injection mold, but it is desirable to prevent the bearing sleeve 8 from being deformed by the injection pressure of the molten resin. In the injection mold, the point gates are equally arranged at three locations in the circumferential direction of the portion facing the outer peripheral edge portion (the portion where the upper end surface 7c and the tapered surface 7d intersect) on the upper end side of the housing 7.

なお、ハウジング7の射出成形に使用される溶融樹脂は、熱可塑性樹脂をベース樹脂とした樹脂組成物である。ベース樹脂として使用可能な熱可塑性樹脂に特段の限定はなく、例えば、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアセタール(POM)、ポリアミド(PA)等に代表される結晶性樹脂や、ポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)等に代表される非晶性樹脂が使用可能で、これらは単独で、またあるいは二種以上混合して使用される。本実施形態では、ポリフェニルサルフォン(PPSU)をベース樹脂としている。   The molten resin used for the injection molding of the housing 7 is a resin composition using a thermoplastic resin as a base resin. There is no particular limitation on the thermoplastic resin that can be used as the base resin. For example, liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyacetal (POM), polyamide (PA) and the like are representative. Crystalline resins such as polyphenylsulfone (PPSU), polyethersulfone (PES), polyetherimide (PEI), and polyamideimide (PAI) can be used. Are used alone or in admixture of two or more. In this embodiment, polyphenylsulfone (PPSU) is used as the base resin.

上記のベース樹脂には、必要に応じて、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の各種充填材を一又は複数種充填(添加)することもできる。   For the above base resin, if necessary, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, scaly filler such as mica, carbon fiber, carbon black, graphite, carbon nanomaterial One or more kinds of fillers in the form of fibers or powders such as metal powder can be filled (added).

以上の構成からなる流体軸受装置1の内部空間には、軸受スリーブ8の内部気孔も含め潤滑油が充満される。なお、上記のシール空間Sは、ハウジング7の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で潤滑油の油面は常にシール空間S内にある。   The internal space of the hydrodynamic bearing device 1 having the above configuration is filled with lubricating oil including the internal pores of the bearing sleeve 8. The above-described seal space S has a buffer function for absorbing a volume change amount associated with a temperature change of the lubricating oil filled in the internal space of the housing 7, and the lubricating oil is within the range of the assumed temperature change. The face is always in the seal space S.

以上の構成からなる流体軸受装置1において、回転部材3が回転すると、軸受スリーブ8の内周面8aに軸方向に離隔して設けたラジアル軸受面となる領域が、軸部材2の外周面2aとラジアル軸受隙間を介してそれぞれ対向する。そして、回転部材3の回転に伴って、ラジアル軸受隙間に形成される油膜は、ラジアル軸受面に形成された動圧溝8a1,8a2の動圧作用によってその油膜剛性を高められ、この圧力によって回転部材3がラジアル方向に回転自在に非接触支持される。これにより、回転部材3をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離隔形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the rotating member 3 rotates, a region that becomes a radial bearing surface provided on the inner peripheral surface 8a of the bearing sleeve 8 in the axial direction is an outer peripheral surface 2a of the shaft member 2. And the radial bearing gap. As the rotary member 3 rotates, the oil film formed in the radial bearing gap has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2 formed on the radial bearing surface, and is rotated by this pressure. The member 3 is supported in a non-contact manner so as to be rotatable in the radial direction. As a result, the radial bearing portions R1 and R2 that support the rotary member 3 in a non-contact manner so as to be rotatable in the radial direction are spaced apart at two locations in the axial direction.

また、回転部材3が回転すると、ハウジング7の上側端面7cに形成されたスラスト軸受面となる領域が、ディスクハブ9の下側端面9a1と所定のスラスト軸受隙間を介して対向し、これと同時に、軸受スリーブ8の下側端面8bに形成されたスラスト軸受面となる領域が、フランジ11の上側端面11aと所定のスラスト軸受隙間を介して対向する。そして回転部材3の回転に伴って、両スラスト軸受隙間に形成される油膜は、スラスト軸受面に形成された動圧溝の動圧作用によってその油膜剛性が高められ、この圧力によって回転部材3が両スラスト方向に回転自在に非接触支持される。これにより、回転部材3を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1および第2スラスト軸受部T2が形成される。   When the rotating member 3 rotates, the thrust bearing surface region formed on the upper end surface 7c of the housing 7 faces the lower end surface 9a1 of the disk hub 9 via a predetermined thrust bearing gap, and at the same time. A region serving as a thrust bearing surface formed on the lower end surface 8b of the bearing sleeve 8 is opposed to the upper end surface 11a of the flange 11 with a predetermined thrust bearing gap therebetween. As the rotating member 3 rotates, the oil film formed in the thrust bearing gaps has its oil film rigidity increased by the dynamic pressure action of the dynamic pressure grooves formed on the thrust bearing surface. It is supported in a non-contact manner so as to be rotatable in both thrust directions. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the rotation member 3 so that rotation in both thrust directions is possible without contact are formed.

また、潤滑油の外部への漏れは、シール空間Sの毛細管力と、第1スラスト軸受部T1の動圧溝による潤滑油の引き込み力(ポンピング力)によって、効果的に防止される。   Further, the leakage of the lubricating oil to the outside is effectively prevented by the capillary force of the seal space S and the lubricating oil drawing force (pumping force) by the dynamic pressure groove of the first thrust bearing portion T1.

以上に示すように、本発明では、軸受スリーブ8をインサートしてハウジング7を樹脂で射出成形したので、ハウジング7の成形、および軸受スリーブ8とハウジング7の組み付けを一工程で完了することができる。また、ハウジング7は軸受スリーブ8の外周角部と軸方向で係合する係合部7e,7fを一体に有するものであり、このハウジング7は射出成形されるものであるから、ハウジング7を射出成形するのと同時に形成される係合部7e,7fによってハウジング7に対する軸受スリーブ8の軸方向の相対移動を規制することができ、ハウジング7と軸受スリーブ8の間の結合強度、特に軸方向の結合強度(抜け強度)を高めることができる。   As described above, in the present invention, since the bearing sleeve 8 is inserted and the housing 7 is injection-molded with resin, the molding of the housing 7 and the assembly of the bearing sleeve 8 and the housing 7 can be completed in one step. . Further, the housing 7 is integrally provided with engaging portions 7e and 7f that are engaged with the outer peripheral corners of the bearing sleeve 8 in the axial direction. Since the housing 7 is injection-molded, the housing 7 is injected. The axial movement of the bearing sleeve 8 relative to the housing 7 can be restricted by the engaging portions 7e and 7f formed at the same time as the molding, and the coupling strength between the housing 7 and the bearing sleeve 8, particularly in the axial direction. Bond strength (stripping strength) can be increased.

また、軸受スリーブ8を焼結金属の多孔質体で形成したので、ハウジング7の射出成形時には、軸受スリーブ8の表面気孔への溶融樹脂の入り込みによっていわゆるアンカー効果が発現され、ハウジング7と軸受スリーブ8の間の結合強度を一層高めることができる。   Further, since the bearing sleeve 8 is formed of a sintered metal porous body, at the time of injection molding of the housing 7, a so-called anchor effect is expressed by the penetration of the molten resin into the surface pores of the bearing sleeve 8, and the housing 7 and the bearing sleeve The bond strength between 8 can be further increased.

ちなみに、ハウジング7と軸受スリーブ8の間の結合強度(抜け強度)は、例えば、軸受スリーブ8がハウジング7の内周面7aから抜け落ちる軸方向の押圧力で評価することができ、本発明の構成を採用しない従来品では、軸受スリーブ8の一端面に付与した軸方向の押圧力が60N程度になった時点で軸受スリーブ8が抜け落ちたのに対し、本発明品では軸方向の押圧力が200Nを超えた時点ではじめて軸受スリーブ8が抜け落ちた。   Incidentally, the coupling strength (disengagement strength) between the housing 7 and the bearing sleeve 8 can be evaluated by, for example, the axial pressing force at which the bearing sleeve 8 falls off the inner peripheral surface 7a of the housing 7, and the configuration of the present invention. In the conventional product that does not employ the bearing sleeve 8, the bearing sleeve 8 falls off when the axial pressing force applied to one end surface of the bearing sleeve 8 reaches about 60N, whereas in the present product, the axial pressing force is 200N. The bearing sleeve 8 fell out only when the value exceeded.

以上では、軸受スリーブ8の上端および下端外周角部にそれぞれ形成したテーパ面81,82にハウジング7の係合部7e,7fをそれぞれ密着させた形態について説明を行ったが係合部7e、7fの形態は上記に限定されない。例えば、ハウジング7の上側の係合部7eは、図4(a)又は図5(a)に示すように、軸受スリーブ8の上端外周に形成したテーパ面81の下端側に大径外周面83(ここでは図2に示す外周面8cと同義)を形成すると共に、テーパ面81の上端側に小径外周面84を形成し、テーパ面81および小径外周面84に密着させることもできる。また、ハウジング7の下側の係合部7fは、図4(b)又は図5(b)に示すように、軸受スリーブ8の下端外周に形成したテーパ面82の上端側に大径外周面83(ここでは図2に示す外周面8cと同義)を形成すると共に、テーパ面82の下端側に小径外周面84を形成し、テーパ面82および小径外周面84に密着させることもできる。   Although the embodiment has been described above in which the engaging portions 7e and 7f of the housing 7 are in close contact with the tapered surfaces 81 and 82 formed at the upper and lower peripheral corners of the bearing sleeve 8, respectively, the engaging portions 7e and 7f are described. The form of is not limited to the above. For example, the upper engaging portion 7e of the housing 7 has a large-diameter outer peripheral surface 83 on the lower end side of a tapered surface 81 formed on the outer periphery of the upper end of the bearing sleeve 8 as shown in FIG. 4 (a) or 5 (a). (Here, it is synonymous with the outer peripheral surface 8c shown in FIG. 2), and a small-diameter outer peripheral surface 84 can be formed on the upper end side of the tapered surface 81 and can be brought into close contact with the tapered surface 81 and the small-diameter outer peripheral surface 84. Further, as shown in FIG. 4B or 5B, the lower engaging portion 7f of the housing 7 has a large-diameter outer peripheral surface on the upper end side of the tapered surface 82 formed on the outer periphery of the lower end of the bearing sleeve 8. 83 (here, synonymous with the outer peripheral surface 8 c shown in FIG. 2), and a small-diameter outer peripheral surface 84 can be formed on the lower end side of the tapered surface 82, and can be brought into close contact with the tapered surface 82 and the small-diameter outer peripheral surface 84.

なお、図4に示す形態と図5に示す形態との差異は、テーパ面81,82の傾斜方向を異ならせた点にある。詳細には、図4(a)(b)に示す形態は、大径外周面83と小径外周面84とを相互にオーバーラップしないように形成し、両外周面83,84間に、軸受スリーブ8の軸方向内側ほど軸線(中心軸線)との半径方向離間距離が大きくなるようなテーパ面81,82を介在させたものであるのに対し、図5(a)(b)に示す形態は、大径外周面83の一部と小径外周面84の一部とがオーバーラップするように両外周面83,84を形成し、両外周面83,84間に、軸受スリーブ8の軸方向内側ほど中心軸線との半径方向離間距離が小さくなるようなテーパ面81,82を介在させたものである。   The difference between the configuration shown in FIG. 4 and the configuration shown in FIG. 5 is that the inclined directions of the tapered surfaces 81 and 82 are different. Specifically, in the embodiment shown in FIGS. 4A and 4B, the large-diameter outer peripheral surface 83 and the small-diameter outer peripheral surface 84 are formed so as not to overlap each other, and a bearing sleeve is provided between the outer peripheral surfaces 83 and 84. 5A and 5B, the taper surfaces 81 and 82 are interposed such that the radial separation distance from the axis (center axis) increases toward the inner side in the axial direction of FIG. Both outer peripheral surfaces 83 and 84 are formed so that a part of the large-diameter outer peripheral surface 83 and a part of the small-diameter outer peripheral surface 84 overlap, and the axially inner side of the bearing sleeve 8 is formed between both the outer peripheral surfaces 83 and 84. Tapered surfaces 81 and 82 are interposed so that the radial distance from the central axis becomes smaller.

このようにすれば、図示例からも明らかなように、各係合部7e、7fの断面形状が台形となる分、係合部7e,7f自体の強度が向上する。また、軸受スリーブ8に対する各係合部7e,7fの係り代(係合部と軸受スリーブ8との接触面積)が図2に示す形態よりも大きくなる。従って、ハウジング7と軸受スリーブ8の間の結合強度を一層高めることができ、ハウジング7に対する軸受スリーブ8の軸方向の相対移動をより効果的に規制することが可能となる。   In this way, as is clear from the illustrated example, the strength of the engaging portions 7e and 7f themselves is improved by the fact that the cross-sectional shapes of the engaging portions 7e and 7f are trapezoidal. Further, the engagement margin (the contact area between the engagement portion and the bearing sleeve 8) of the engagement portions 7e and 7f with respect to the bearing sleeve 8 is larger than that shown in FIG. Therefore, the coupling strength between the housing 7 and the bearing sleeve 8 can be further increased, and the relative movement in the axial direction of the bearing sleeve 8 with respect to the housing 7 can be more effectively regulated.

なお、図4に示す形態は、図5に示す形態に比べ、ハウジング7をインサート成形する際における溶融樹脂の充填性が良好になり、高精度な係合部7e、7fを形成することが容易であるという利点がある。一方、図5に示す形態は、図4に示す形態に比べ、抜け強度の点で有利である。   The form shown in FIG. 4 is better in filling with molten resin when the housing 7 is insert-molded than the form shown in FIG. 5, and it is easy to form highly accurate engaging portions 7e and 7f. There is an advantage of being. On the other hand, the form shown in FIG. 5 is more advantageous in terms of missing strength than the form shown in FIG.

図示は省略するが、以上で説明した各形態の係合部7e,7fを種々組み合わせた構成とすることも可能である。例えば、軸受スリーブ8の上端外周角部に係合する係合部7eを図4(a)に示す形態とする一方、軸受スリーブ8の下端外周角部に係合する係合部7fを図5(b)に示す形態とすることができる。   Although illustration is omitted, it is possible to employ various combinations of the engaging portions 7e and 7f described above. For example, the engaging portion 7e that engages with the outer peripheral corner of the upper end of the bearing sleeve 8 is configured as shown in FIG. 4A, while the engaging portion 7f that engages with the outer peripheral corner of the lower end of the bearing sleeve 8 is shown in FIG. It can be set as the form shown in (b).

また、本発明を適用可能な流体軸受装置1も上記の実施形態に限定されない。以下、本発明を適用可能な流体軸受装置1の他の実施形態について説明を行うが、上述した構成に準ずる部材、部分には同一の参照番号を付し、重複説明を省略する。   Further, the hydrodynamic bearing device 1 to which the present invention is applicable is not limited to the above embodiment. Hereinafter, other embodiments of the hydrodynamic bearing device 1 to which the present invention can be applied will be described. However, the same reference numerals are assigned to the members and portions according to the above-described configuration, and the duplicate description will be omitted.

図6は、本発明に係る流体軸受装置の第2実施形態を示すものである。同図に示す流体軸受装置1が図2に示すものと異なる主な点は、まず、軸受スリーブ8の両端に位置するように、軸部材2の上下二箇所に離隔して半径方向に突出したシール部材19,20を設けた点にある。また、第1スラスト軸受部T1が、シール部材19の下側端面19bと軸受スリーブ8の上側端面8dとの間に設けられ、第2スラスト軸受部T2が、シール部材20の上側端面20bと軸受スリーブ8の下側端面8bとの間に設けられる。さらに、シール空間S1,S2がハウジング7の両端開口部、すなわち、シール部材19の外周面19aとハウジング7の内周面7aとの間、およびシール部材20の外周面20aとハウジング7の内周面7aとの間にそれぞれ設けられる。   FIG. 6 shows a second embodiment of the hydrodynamic bearing device according to the present invention. The main difference of the hydrodynamic bearing device 1 shown in FIG. 2 from that shown in FIG. 2 is that the shaft member 2 is protruded in the radial direction at two upper and lower positions so as to be positioned at both ends of the bearing sleeve 8. The seal members 19 and 20 are provided. The first thrust bearing portion T1 is provided between the lower end surface 19b of the seal member 19 and the upper end surface 8d of the bearing sleeve 8, and the second thrust bearing portion T2 is provided with the upper end surface 20b of the seal member 20 and the bearing. It is provided between the lower end surface 8 b of the sleeve 8. Further, the seal spaces S1 and S2 are open at both ends of the housing 7, that is, between the outer peripheral surface 19a of the seal member 19 and the inner peripheral surface 7a of the housing 7, and between the outer peripheral surface 20a of the seal member 20 and the inner periphery of the housing 7. It is provided between each surface 7a.

図7は、本発明に係る流体軸受装置の第3実施形態を示すものである。同図に示す流体軸受装置1が図2に示すものと異なる主な点は、ハウジング7の内周面7aに別途設けたシール部材30を固定し、このシール部材30の内周面30aと軸部材2の外周面2aとの間にシール空間Sを設けた点、軸受スリーブ8の下側端面8bと軸部材2の下端に設けたフランジ11の上側端面11aとの間に第1スラスト軸受部T1を設けた点、およびフランジ11の下側端面11bと蓋部材10の上側端面10aとの間に第2スラスト軸受部T2を設けた点にある。   FIG. 7 shows a third embodiment of a hydrodynamic bearing device according to the present invention. The main difference of the hydrodynamic bearing device 1 shown in FIG. 2 from that shown in FIG. 2 is that a seal member 30 provided separately on the inner peripheral surface 7a of the housing 7 is fixed, and the inner peripheral surface 30a of the seal member 30 and the shaft A first thrust bearing portion between the outer peripheral surface 2a of the member 2 and the lower end surface 8b of the bearing sleeve 8 and the upper end surface 11a of the flange 11 provided at the lower end of the shaft member 2 is provided. The second thrust bearing portion T2 is provided between the lower end surface 11b of the flange 11 and the upper end surface 10a of the lid member 10 at the point where T1 is provided.

図示は省略するが、図6および図7に示す実施形態においても、図4や図5に示す構成を採用することができるのはもちろんのことである。   Although illustration is omitted, it is needless to say that the configuration shown in FIGS. 4 and 5 can also be adopted in the embodiments shown in FIGS.

なお、図2や図6に示す流体軸受装置1のように、ハウジング7の外周面や内周面でシール空間Sが形成され、図7に記載の流体軸受装置1のような軸受スリーブ8の抜け止めとしても機能するシール部材30が設けられない構成の流体軸受装置においては、軸受スリーブ8が軸方向上側へ相対移動するのを効果的に防止することが可能となるため、本発明は好適である。もちろん、図7に示す流体軸受装置においては、ハウジング7と軸受スリーブ8の間の結合強度がより一層向上するので、更なる高強度化を図る上で好適である。   In addition, like the hydrodynamic bearing device 1 shown in FIGS. 2 and 6, a seal space S is formed on the outer peripheral surface and the inner peripheral surface of the housing 7, and the bearing sleeve 8 like the hydrodynamic bearing device 1 shown in FIG. 7 is formed. In the hydrodynamic bearing device having a configuration in which the seal member 30 that also functions as a retaining member is not provided, the bearing sleeve 8 can be effectively prevented from relatively moving upward in the axial direction. It is. Of course, in the hydrodynamic bearing device shown in FIG. 7, the coupling strength between the housing 7 and the bearing sleeve 8 is further improved, which is suitable for further increasing the strength.

以上では、軸受スリーブ8の両端外周角部に、全周に亘ってテーパ面81,82等を設け、これに対応するかたちで係合部7e、7fを全周に亘って設けた(リング状に設けた)場合について説明を行ったが、係合部7e、7fは間欠的に設ける(円弧状に設ける)ことも可能である。かかる構成は、外周にテーパ面81,82や小径外周面84を間欠的に設けた軸受スリーブ8をインサートしてハウジング7を射出成形することによって得られる。このようにすれば、ハウジング7と軸受スリーブ8とが軸方向および円周方向の双方で係合し、ハウジング7に対する軸受スリーブ8の軸方向および周方向の相対移動が規制されるため、ハウジング7と軸受スリーブ8の間の結合強度が一層高まる。   In the above, the tapered surfaces 81, 82 and the like are provided on the outer peripheral corners of the both ends of the bearing sleeve 8 over the entire circumference, and the engaging portions 7e, 7f are provided over the entire circumference in a manner corresponding to this (ring shape). The engaging portions 7e and 7f can be provided intermittently (provided in an arc shape). Such a configuration can be obtained by inserting the bearing sleeve 8 having the tapered surfaces 81 and 82 and the small-diameter outer peripheral surface 84 provided intermittently on the outer periphery and injection-molding the housing 7. In this way, the housing 7 and the bearing sleeve 8 are engaged in both the axial direction and the circumferential direction, and the relative movement in the axial direction and the circumferential direction of the bearing sleeve 8 with respect to the housing 7 is restricted. The coupling strength between the bearing sleeve 8 and the bearing sleeve 8 is further increased.

また、以上では、軸受スリーブ8の両端外周角部と軸方向で係合するように、ハウジング7に係合部7e、7fを設けた場合について説明を行ったが、係合部7e、7fは何れか一方のみ設けることもできる。係合部を軸受スリーブ8の一端側にのみ設けるか、両端側に設けるかは、例えば軸受スリーブ8に作用する軸方向の押圧力の方向性等を考慮して決定すれば良い。   In the above description, the case where the housing 7 is provided with the engaging portions 7e and 7f so as to be engaged with the outer peripheral corner portions of the both ends of the bearing sleeve 8 has been described. Only one of them can be provided. Whether the engaging portion is provided only on one end side or both end sides of the bearing sleeve 8 may be determined in consideration of the directionality of the axial pressing force acting on the bearing sleeve 8, for example.

また、以上では、ハウジング7を溶融樹脂で射出成形した場合について説明を行ったが、ハウジング7は溶融金属で射出成形することも可能である。この場合に使用可能な金属材料(溶融金属)としては、マグネシウム合金やアルミニウム合金等の低融点金属が挙げられる。また、ハウジング7は、いわゆるMIM成形品とすることも可能である。このように、ハウジング7を金属の射出成形品とすれば、これを樹脂の射出成形品とした上記実施形態に比べて若干の重量増は生じるものの、係合部7e,7fを含むハウジング7を高強度化することができ、従ってハウジング7と軸受スリーブ8との間の結合強度を一層高めることが可能である。   Moreover, although the case where the housing 7 was injection-molded with a molten resin was demonstrated above, the housing 7 can also be injection-molded with a molten metal. Examples of the metal material (molten metal) that can be used in this case include low melting point metals such as magnesium alloys and aluminum alloys. The housing 7 can also be a so-called MIM molded product. Thus, if the housing 7 is a metal injection-molded product, the weight of the housing 7 including the engaging portions 7e and 7f is slightly increased as compared with the above-described embodiment in which this is a resin injection-molded product. The strength can be increased, and therefore, the coupling strength between the housing 7 and the bearing sleeve 8 can be further increased.

また、以上では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、ヘリングボーン形状やスパイラル形状の動圧溝により軸受隙間を満たす潤滑油に動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆるステップ軸受、多円弧軸受、あるいは非真円軸受を、スラスト軸受部T1、T2として、いわゆるステップ軸受や波型軸受を採用しても良い。また、ラジアル軸受部R1、R2のように、2つのラジアル軸受部を軸方向に離隔して設けた構成とする他、軸受スリーブ8の内周側の上下領域に亘って1つのラジアル軸受部を設けた構成や3つ以上のラジアル軸受部を軸方向に離隔して設けた構成としても良い。また、ラジアル軸受部R1,R2として、動圧発生部を有しない真円軸受を採用しても良いし、スラスト軸受部として、軸部材2の一端を接触支持するピボット軸受を採用しても良い。   Further, in the above, as the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2, a configuration in which a dynamic pressure action is generated in the lubricating oil that fills the bearing gap by a herringbone-shaped or spiral-shaped dynamic pressure groove is illustrated. However, so-called step bearings, multi-arc bearings, or non-circular bearings may be used as the radial bearing portions R1 and R2, and so-called step bearings and wave bearings may be employed as the thrust bearing portions T1 and T2. In addition to the configuration in which the two radial bearing portions are separated from each other in the axial direction as in the radial bearing portions R1 and R2, one radial bearing portion is provided over the upper and lower regions on the inner peripheral side of the bearing sleeve 8. It is good also as a structure which provided the structure provided and three or more radial bearing parts spaced apart in the axial direction. Further, as the radial bearing portions R1 and R2, a perfect circular bearing having no dynamic pressure generating portion may be adopted, and as the thrust bearing portion, a pivot bearing that contacts and supports one end of the shaft member 2 may be adopted. .

また、以上では、軸部材2を回転側、ハウジング7等を固定側とした流体軸受装置1について説明を行ったが、これとは逆に、軸部材2を固定側、ハウジング7等を回転側とした流体軸受装置1についても本発明の構成を好適に適用することが可能である。   In the above description, the hydrodynamic bearing device 1 with the shaft member 2 as the rotation side and the housing 7 or the like as the fixed side has been described, but conversely, the shaft member 2 as the fixed side and the housing 7 or the like as the rotation side. The configuration of the present invention can also be suitably applied to the hydrodynamic bearing device 1 described above.

また、以上では、流体軸受装置1の内部に充満する潤滑流体として潤滑油を例示しているが、潤滑油以外にも、空気等の気体や、グリースを使用することもできる。   In the above, the lubricating oil is exemplified as the lubricating fluid that fills the inside of the hydrodynamic bearing device 1. However, in addition to the lubricating oil, a gas such as air or grease can also be used.

情報機器用スピンドルモータの一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the spindle motor for information devices. 本発明に係る流体軸受装置の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. (a)図は軸受スリーブの断面図、(b)図は軸受スリーブの下側端面を示す図である。(A) is a sectional view of the bearing sleeve, and (b) is a diagram showing a lower end surface of the bearing sleeve. (a)図は図2中のX部の他の構成例を示す断面図、(b)図は図2中のY部の他の構成例を示す断面図である。(A) The figure is sectional drawing which shows the other structural example of the X section in FIG. 2, (b) The figure is sectional drawing which shows the other structural example of the Y section in FIG. (a)図は図2中のX部の他の構成例を示す断面図、(b)図は図2中のY部の他の構成例を示す断面図である。(A) The figure is sectional drawing which shows the other structural example of the X section in FIG. 2, (b) The figure is sectional drawing which shows the other structural example of the Y section in FIG. 本発明に係る流体軸受装置の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る流体軸受装置の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the hydrodynamic bearing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
3 回転部材
7 ハウジング
7e、7f 係合部
8 軸受スリーブ
81、82 テーパ面
83 大径外周面
84 小径外周面
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 3 Rotating member 7 Housing 7e, 7f Engagement part 8 Bearing sleeve 81, 82 Tapered surface 83 Large diameter outer peripheral surface 84 Small diameter outer peripheral surface R1, R2 Radial bearing part T1, T2 Thrust bearing part S Seal space

Claims (6)

ハウジングと、ハウジングの内周に配設された軸受スリーブとを備え、軸受スリーブの内周面が面するラジアル軸受隙間に形成される流体の潤滑膜で支持すべき軸をラジアル方向に支持する流体軸受装置において、
ハウジングが、軸受スリーブをインサートして溶融材料で射出成形され、かつ軸受スリーブの外周角部と軸方向で係合する係合部を一体に有することを特徴とする流体軸受装置。
A fluid that includes a housing and a bearing sleeve disposed on the inner periphery of the housing, and that supports a shaft to be supported in a radial direction by a fluid lubricating film formed in a radial bearing gap that faces the inner peripheral surface of the bearing sleeve In the bearing device,
A hydrodynamic bearing device, wherein the housing is integrally formed with an insertion portion that is inserted into the bearing sleeve and injection-molded with a molten material, and that engages with an outer peripheral corner portion of the bearing sleeve in the axial direction.
係合部を、軸受スリーブの外周に形成したテーパ面に密着させた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the engaging portion is in close contact with a tapered surface formed on the outer periphery of the bearing sleeve. テーパ面の一端側に大径外周面を形成すると共に、テーパ面の他端側に大径外周面よりも小径の小径外周面を形成し、係合部を小径外周面およびテーパ面に密着させた請求項2記載の流体軸受装置。   A large-diameter outer peripheral surface is formed on one end side of the tapered surface, and a small-diameter outer peripheral surface having a smaller diameter than the large-diameter outer peripheral surface is formed on the other end side of the tapered surface, and the engaging portion is brought into close contact with the small-diameter outer peripheral surface and the tapered surface. The hydrodynamic bearing device according to claim 2. 係合部を、軸受スリーブの外周角部と周方向で係合させた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the engaging portion is engaged with an outer peripheral corner portion of the bearing sleeve in a circumferential direction. 軸受スリーブが、多孔質材料で形成された請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the bearing sleeve is formed of a porous material. 請求項1〜5の何れか記載の流体軸受装置と、ステータコイルと、ロータマグネットとを有するモータ。   A motor comprising the hydrodynamic bearing device according to claim 1, a stator coil, and a rotor magnet.
JP2007276682A 2007-10-24 2007-10-24 Fluid bearing device and motor having the same Withdrawn JP2009103252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007276682A JP2009103252A (en) 2007-10-24 2007-10-24 Fluid bearing device and motor having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007276682A JP2009103252A (en) 2007-10-24 2007-10-24 Fluid bearing device and motor having the same

Publications (1)

Publication Number Publication Date
JP2009103252A true JP2009103252A (en) 2009-05-14

Family

ID=40705122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276682A Withdrawn JP2009103252A (en) 2007-10-24 2007-10-24 Fluid bearing device and motor having the same

Country Status (1)

Country Link
JP (1) JP2009103252A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060993A (en) * 2011-09-12 2013-04-04 Ntn Corp Fluid dynamic pressure bearing device
CN104675741A (en) * 2013-12-03 2015-06-03 王炳麟 Integrated structural body of thin cooling fan frame and manufacturing method thereof
JP2015108368A (en) * 2013-12-03 2015-06-11 桐本 和雄 Matching structure for thin type heat radiation fan motor frame and its process of manufacture
KR101783480B1 (en) * 2010-12-27 2017-09-29 엘지이노텍 주식회사 Motor and manufacturing method of the same, and housing of the motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101783480B1 (en) * 2010-12-27 2017-09-29 엘지이노텍 주식회사 Motor and manufacturing method of the same, and housing of the motor
JP2013060993A (en) * 2011-09-12 2013-04-04 Ntn Corp Fluid dynamic pressure bearing device
CN104675741A (en) * 2013-12-03 2015-06-03 王炳麟 Integrated structural body of thin cooling fan frame and manufacturing method thereof
JP2015108368A (en) * 2013-12-03 2015-06-11 桐本 和雄 Matching structure for thin type heat radiation fan motor frame and its process of manufacture

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
US8128289B2 (en) Fluid dynamic bearing device
KR101244275B1 (en) Fluid bearing device
US7798721B2 (en) Fluid dynamic bearing device
JP4994687B2 (en) Hydrodynamic bearing device
JP2008069805A (en) Dynamic pressure bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP2009103252A (en) Fluid bearing device and motor having the same
US20070104400A1 (en) Dynamic bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP5220339B2 (en) Hydrodynamic bearing device
JP2010043666A (en) Dynamic pressure bearing device
JP4689283B2 (en) Hydrodynamic bearing device
JP2009228873A (en) Fluid bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP5335311B2 (en) Fluid dynamic bearing device
JP2006200666A (en) Dynamic-pressure bearing device
JP2011074959A (en) Fluid bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2007263225A (en) Fluid bearing device
JP4522869B2 (en) Hydrodynamic bearing device
JP5284172B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2007255646A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104