JP2009195949A - Manufacturing method of joined structure - Google Patents
Manufacturing method of joined structure Download PDFInfo
- Publication number
- JP2009195949A JP2009195949A JP2008040063A JP2008040063A JP2009195949A JP 2009195949 A JP2009195949 A JP 2009195949A JP 2008040063 A JP2008040063 A JP 2008040063A JP 2008040063 A JP2008040063 A JP 2008040063A JP 2009195949 A JP2009195949 A JP 2009195949A
- Authority
- JP
- Japan
- Prior art keywords
- joining
- metal member
- groove
- joint
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 164
- 239000002184 metal Substances 0.000 claims abstract description 164
- 238000005304 joining Methods 0.000 claims abstract description 110
- 238000003756 stirring Methods 0.000 claims abstract description 62
- 238000003466 welding Methods 0.000 claims abstract description 62
- 238000000034 method Methods 0.000 claims abstract description 61
- 238000013019 agitation Methods 0.000 claims description 6
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 45
- 230000007547 defect Effects 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000007769 metal material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000009751 slip forming Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Arc Welding In General (AREA)
Abstract
Description
本発明は、摩擦攪拌を利用した接合構造物の製造方法に関する。 The present invention relates to a method for manufacturing a joint structure using friction stirring.
金属部材同士を突き合わせてなる接合構造物の製造方法としては、摩擦攪拌接合(FSW=Friction Stir Welding)を用いた方法が知られている。この摩擦攪拌接合は、回転ツールを回転させつつ金属部材同士の突合部に沿って移動させ、回転ツールと金属部材との摩擦熱により突合部の金属を塑性流動させることで、金属部材同士を固相接合させるものである。なお、回転ツールは、円柱状を呈するショルダ部の下端面に攪拌ピン(プローブ)を突設したものが一般的である。 As a manufacturing method of a joined structure formed by abutting metal members together, a method using friction stir welding (FSW = Friction Stir Welding) is known. In this friction stir welding, the metal members are fixed to each other by causing the metal at the abutting portion to flow plastically by frictional heat between the rotating tool and the metal member by moving the rotating tool along the abutting portion between the metal members while rotating the rotating tool. Phase joining is performed. In general, a rotating tool is provided with a stirring pin (probe) protruding from the lower end surface of a shoulder portion having a cylindrical shape.
ここで、回転ツールの攪拌ピンの長さに対して金属部材の肉厚が大きい場合には、金属部材の厚みに応じて攪拌ピンの長さを大きくすることで、突合部の深さ方向の全長に亘って隙間なく接合することができる。しかしながら、回転ツールは、金属部材内に攪拌ピンを埋没させて高速で回転しながら移動するため、攪拌ピンの長さを大きくすると、摩擦攪拌装置の駆動手段及び攪拌ピンに作用する負荷が増大し、装置の短寿命化を招来するという問題がある。 Here, when the thickness of the metal member is larger than the length of the stirring pin of the rotary tool, by increasing the length of the stirring pin according to the thickness of the metal member, It can join without a gap over the entire length. However, since the rotary tool moves while rotating at a high speed with the stirring pin embedded in the metal member, increasing the length of the stirring pin increases the load acting on the drive means of the friction stirrer and the stirring pin. There is a problem that the life of the apparatus is shortened.
そこで、回転ツールの攪拌ピンの長さに対して金属部材の肉厚が大きい場合には、厚みの異なる段部を備えた一対の金属部材の間に継手部材を介して段階的に摩擦攪拌を行うことで接合構造物を製造する方法が知られている。
前記した従来の製造方法に用いられる金属部材は、図15に示すように、第一金属部材110a及び第二金属部材110bの本体部101,101の縁部に、本体部101よりも肉厚の小さい段部102,102が形成されている。
Therefore, when the thickness of the metal member is larger than the length of the stirring pin of the rotary tool, frictional stirring is performed stepwise through a joint member between a pair of metal members having step portions having different thicknesses. A method of manufacturing a joined structure by performing the method is known.
As shown in FIG. 15, the metal member used in the above-described conventional manufacturing method is thicker than the
そして、従来の接合構造物の製造方法は、第一金属部材110a及び第二金属部材110bの段部102,102同士を突き合わせる突合工程と、段部102,102同士の突合部Jdに対して摩擦攪拌を行う段部摩擦攪拌工程と、突合工程で形成された凹部103に継手部材Uを配置する継手部材配置工程と、第一金属部材110aと継手部材Uとの突合部Ja及び第二金属部材110bと継手部材Uとの突合部Jbに対して摩擦攪拌を行う摩擦攪拌工程と、を備えている。この製造方法によれば、金属部材の肉厚が大きい部材であっても金属部材同士を接合することができる。
And the manufacturing method of the conventional junction structure is the butt | matching process which butt | matches step part 102,102 of the
しかしながら、前記した従来の接合構造物の製造方法では、第一金属部材110a及び第二金属部材110bと継手部材Uとの継ぎ目が接合構造物の側面に露出しており、この継ぎ目は凹部103の底面103aと継手部材Uの下面Uaとの間の未接合部に通じているため、金属部材110a,110bの接合部における気密性及び水密性が低下してしまうという問題がある。
However, in the above-described conventional method for manufacturing a joint structure, the joints of the
そこで、本発明では、前記した問題を解決し、金属部材同士の接合部における気密性及び水密性を向上させることができる接合構造物の製造方法を提供することを課題とする。 Then, this invention makes it a subject to solve the above-mentioned problem and to provide the manufacturing method of the joining structure which can improve the airtightness and watertightness in the junction part of metal members.
前記課題を解決するため、本発明は、第一金属部材及び第二金属部材の端面同士を突き合わせてなる接合構造物の製造方法であって、第一金属部材と第二金属部材との突合部に対して、接合構造物の表面から摩擦攪拌を行う第一接合工程と、第一金属部材と第二金属部材との突合部に対して、接合構造物の裏面から摩擦攪拌を行う第二接合工程と、接合構造物の側面において、第一金属部材と第二金属部材との突合部に沿って、接合構造物の表面から裏面に亘って凹溝を形成する凹溝形成工程と、凹溝に継手部材を挿入する継手部材挿入工程と、接合構造物と継手部材との突合部に対して、接合構造物の表面から摩擦攪拌を行う第三接合工程と、接合構造物と継手部材との突合部に対して、接合構造物の裏面から摩擦攪拌を行う第四接合工程と、接合構造物と継手部材との突合部において、第三接合工程で形成された塑性化領域と第四接合工程で形成された塑性化領域との間に形成された未塑性化領域に対して、接合構造物の側面から溶接を行う側面溶接工程と、を含んでいることを特徴としている。 In order to solve the above-mentioned problem, the present invention is a method for manufacturing a joined structure in which end faces of a first metal member and a second metal member are butted together, and a butt portion between the first metal member and the second metal member In contrast, the first joining step of performing frictional stirring from the surface of the bonded structure, and the second bonding of performing frictional stirring from the back surface of the bonded structure to the abutting portion between the first metal member and the second metal member A groove forming step of forming a groove from the front surface to the back surface of the bonding structure along the abutting portion between the first metal member and the second metal member on the side surface of the bonding structure; A joint member inserting step of inserting the joint member into the joint member, a third joining step of performing frictional stirring from the surface of the joint structure to the abutting portion between the joint structure and the joint member, and the joint structure and the joint member A fourth joining step in which friction agitation is performed from the back surface of the joint structure to the butt portion. The unplasticized region formed between the plasticized region formed in the third joining step and the plasticized region formed in the fourth joining step at the abutting portion between the joined structure and the joint member. And a side surface welding step of welding from the side surface of the joint structure.
この構成では、接合構造物の表面、裏面及び側面において、接合構造物と継手部材との突合部が接合され、接合構造物と継手部材との継ぎ目全体が閉じられるため、第一金属部材と第二金属部材との接合部における気密性及び水密性を向上させることができる。 In this configuration, the abutting portions of the joint structure and the joint member are joined on the front surface, the back surface, and the side surface of the joint structure, and the entire joint between the joint structure and the joint member is closed. The airtightness and watertightness at the joint with the two metal members can be improved.
前記した接合構造物の製造方法において、凹溝形成工程の後に、第一金属部材と第二金属部材との突合部において、第一接合工程で形成された塑性化領域と第二接合工程で形成された塑性化領域との間に形成された未塑性化領域に対して、凹溝内から溶接を行うように構成することができる。
また、凹溝形成工程の後に、第一金属部材と第二金属部材との突合部において、第一接合工程で形成された塑性化領域と第二接合工程で形成された塑性化領域との間に形成された未塑性化領域に沿って、凹溝内に溝部を形成し、この溝部に溶接金属を充填してもよい。
In the above-described manufacturing method of the bonded structure, after the concave groove forming step, at the abutting portion between the first metal member and the second metal member, the plasticized region formed in the first bonding step and the second bonding step are formed. It can comprise so that welding may be performed from the inside of a ditch | groove with respect to the unplasticized area | region formed between the plasticized area | regions made.
In addition, after the concave groove forming step, at the abutting portion between the first metal member and the second metal member, between the plasticized region formed in the first joining step and the plasticized region formed in the second joining step. A groove portion may be formed in the concave groove along the unplasticized region formed in the step, and the groove portion may be filled with a weld metal.
この構成では、第一金属部材と第二金属部材との突合部に形成された未塑性化領域に対して、凹溝内から溶接が行われた後に、凹溝に継手部材が挿入され、接合構造物と継手部材との突合部に対して側面から溶接が行われる。したがって、接合構造物の側部は肉厚方向において二重に溶接された状態となるため、第一金属部材と第二金属部材との接合部における気密性及び水密性を向上させることができる。
また、未塑性化領域に沿って形成された溝部に溶接金属を充填する構成では、溶接金属の充填作業を容易に行うことができるとともに、未塑性化領域を確実に閉じることができる。
In this configuration, after welding is performed from the inside of the groove to the unplasticized region formed at the abutting portion between the first metal member and the second metal member, the joint member is inserted into the groove and joined. Welding is performed from the side to the abutting portion between the structure and the joint member. Therefore, since the side part of a joining structure will be in the state welded doubly in the thickness direction, the airtightness and watertightness in the junction part of a 1st metal member and a 2nd metal member can be improved.
In the configuration in which the weld metal is filled in the groove formed along the unplasticized region, the welding metal filling operation can be easily performed, and the unplasticized region can be reliably closed.
前記した接合構造物の製造方法において、側面溶接工程では、接合構造物と継手部材との突合部において、第三接合工程で形成された塑性化領域と第四接合工程で形成された塑性化領域との間に形成された未塑性化領域に沿って、接合構造物の側面に溝部を形成し、この溝部に溶接金属を充填してもよい。 In the above-described method for manufacturing a bonded structure, in the side surface welding step, the plasticized region formed in the third bonding step and the plasticized region formed in the fourth bonding step at the abutting portion between the bonded structure and the joint member. A groove portion may be formed on the side surface of the joint structure along the unplasticized region formed between the two and the weld metal.
この構成では、接合構造物と継手部材との突合部に沿って形成された溝部に溶接金属を充填することで、溶接金属の充填作業を容易に行うことができるとともに、未塑性化領域を確実に閉じることができる。 In this configuration, the weld metal can be filled easily by filling the groove formed along the abutting portion between the joint structure and the joint member, and the unplasticized region can be reliably secured. Can be closed.
前記した接合構造物の製造方法において、凹溝内に形成された溝部に充填された溶接金属のうち凹溝の側面から突出した部分を切除することが望ましい。
この構成では、凹溝の側面が平滑に成形され、凹溝の側面と継手部材の外面とを密着させることができるため、接合構造物と継手部材との接合部における気密性及び水密性を向上させることができる。
In the above-described manufacturing method of the joined structure, it is desirable to cut out a portion protruding from the side surface of the groove in the weld metal filled in the groove formed in the groove.
In this configuration, the side surface of the concave groove is formed smoothly, and the side surface of the concave groove and the outer surface of the joint member can be brought into close contact with each other, thereby improving the air tightness and water tightness at the joint portion between the joint structure and the joint member. Can be made.
前記した接合構造物の製造方法において、接合構造物の側面に形成された溝部に充填された溶接金属のうち接合構造物の側面から突出した部分を切除することが望ましい。
この構成では、接合構造物の側面から突出した溶接金属を切除することで、接合構造物の仕上がり面を平滑に成形することができる。
In the above-described method for manufacturing a joint structure, it is desirable to cut away a portion protruding from the side surface of the joint structure of the weld metal filled in the groove formed on the side surface of the joint structure.
In this configuration, the finished surface of the joined structure can be formed smoothly by cutting away the weld metal protruding from the side surface of the joined structure.
本発明の接合構造物の製造方法によれば、接合構造物と継手部材との継ぎ目全体が閉じられるため、第一金属部材と第二金属部材との接合部における気密性及び水密性を向上させることができる。 According to the method for manufacturing a joint structure of the present invention, since the entire joint between the joint structure and the joint member is closed, the airtightness and water tightness at the joint between the first metal member and the second metal member are improved. be able to.
次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
本実施形態の接合構造物の製造方法は、図1に示すように、第一金属部材1aの端面11a(図2(a)参照)と第二金属部材1bの端面11b(図2(a)参照)とを突き合わせてなる接合構造物1の製造方法であって、接合構造物1の表面A及び裏面Bから摩擦攪拌接合を行った後に、第一側面C及び第二側面Dに形成された凹溝K1,K1に継手部材H,Hを挿入して溶接接合を行うものである。
Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1, the manufacturing method of the bonded structure of the present embodiment includes an
本実施形態の接合構造物の製造方法は、(1)突合工程、(2)第一接合工程、(3)第二接合工程、(4)凹溝形成工程、(5)第一側面溶接工程、(6)継手部材挿入工程、(7)第三接合工程、(8)第四接合工程、(9)第二側面溶接工程を含むものである。以下、各工程について詳細に説明する。なお、本実施形態における上下左右前後は、図1の矢印に従う。 The manufacturing method of the bonded structure of the present embodiment includes (1) a butt process, (2) a first bonding process, (3) a second bonding process, (4) a groove forming process, and (5) a first side surface welding process. , (6) a joint member inserting step, (7) a third joining step, (8) a fourth joining step, and (9) a second side welding step. Hereinafter, each step will be described in detail. Note that the vertical and horizontal directions in the present embodiment follow the arrows in FIG.
(1)突合工程
突合工程は、図2(a)及び(b)に示すように、第一金属部材1aの端面11aと第二金属部材1bの端面11bとを突き合わせる工程である。
第一金属部材1a及び第二金属部材1bは、図2(a)に示すように、断面視矩形の金属部材であって、略同等の形状となっている。第一金属部材1a及び第二金属部材1bは、例えば、アルミニウム、アルミニウム合金、銅、銅合金、チタン、チタン合金、マグネシウム、マグネシウム合金など摩擦攪拌可能な金属材料である。
(1) Butting process As shown in FIGS. 2 (a) and 2 (b), the butting process is a process in which the
As shown in FIG. 2A, the
突合工程では、図2(b)に示すように、第一金属部材1aの端面11aと第二金属部材1bの端面11bとを突き合わせるとともに、第一金属部材1aの表面12aと第二金属部材1bの表面12bとを面一にし、第一金属部材1aの裏面13aと第二金属部材1bの裏面13bとを面一にする。また、第一金属部材1aの側面14aと第二金属部材1bの側面14bとを面一にし、第一金属部材1aの側面15aと第二金属部材1bの側面15bとを面一にする。そして、第一金属部材1aの端面11aと第二金属部材1bの端面11aとの突合せ面には、突合部J1が形成されている。
In the abutting step, as shown in FIG. 2B, the
第一金属部材1aと第二金属部材1bとを突き合わせて形成した部材を以下、接合構造物1とする。また、図2(b)における接合構造物1の上面を表面A、下面を裏面Bとし、接合構造物1のうち、第一金属部材1aの側面14aと第二金属部材1bの側面14bとで構成される面を第一側面Cとする。また、接合構造物1のうち、第一金属部材1aの側面15aと第二金属部材1bの側面15bとで構成される面を第二側面Dとする。
なお、第一金属部材1a及び第二金属部材1bの形状・寸法は特に制限はないが、少なくとも突合部J1における厚さ寸法を同一にすることが望ましい。
A member formed by abutting the
The shape and dimensions of the
(2)第一接合工程
第一接合工程は、図6に示すように、第一金属部材1aと第二金属部材1bとの突合部J1に対して、接合構造物1の表面Aから回転ツールG(図4参照)を用いて摩擦攪拌接合を行う工程である。
第一接合工程は、接合構造物1にタブ材2,3を配置するタブ材配置工程(図3参照)と、第一金属部材1aと第二金属部材1bとの突合部J1に対して表面Aから摩擦攪拌を行う本接合工程(図6参照)と、を含むものである。
(2) First Joining Step As shown in FIG. 6, the first joining step is a rotating tool from the surface A of the joined
The first joining step is a tab material arranging step (see FIG. 3) in which the
タブ材配置工程は、図3に示すように、接合構造物1の接合部の左右両側に一対のタブ材2,3を配置する工程である。このタブ材2,3は、後記する摩擦攪拌工程において、回転ツールG(図4参照)を押圧させる開始位置、及び回転ツールGを離脱させる終了位置を設定するものである。
As shown in FIG. 3, the tab material arranging step is a step of arranging a pair of
第一タブ材2及び第二タブ材3は、直方体の金属部材であり、本実施形態では接合構造物1と同等の素材を用いている。第一タブ材2及び第二タブ材3の表面及び裏面は、接合構造物1の表面A及び裏面Bと面一に形成されている。
第一タブ材2は、接合構造物1の第一側面Cに当接して配置され、第二タブ材3は、接合構造物1の第二側面Dに当接して配置される。
第一タブ材2及び第二タブ材3と接合構造物1とは、それぞれ入り隅部において溶接により仮接合されている。
The
The
The
図4に示す回転ツールGは、工具鋼など接合構造物1よりも硬質の金属材料からなり、円柱状を呈するショルダ部G1と、このショルダ部G1の下端面G11に突設された攪拌ピン(プローブ)G2とを備えている。回転ツールGの寸法・形状は、接合構造物1の材質や厚さ等に応じて設定されている。
ショルダ部G1の下端面G11は、塑性流動化した金属を押えて周囲への飛散を防止する役割を担う部位であり、本実施形態では凹面状に成形されている。
攪拌ピンG2は、ショルダ部G1の下端面G11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。また、攪拌ピンG2の周面には、螺旋状に刻設された攪拌翼が形成されている。
The rotary tool G shown in FIG. 4 is made of a metal material harder than the joining
The lower end face G11 of the shoulder part G1 is a part that plays a role of preventing the scattering to the periphery by pressing the plastic fluidized metal, and is formed in a concave shape in this embodiment.
The stirring pin G2 hangs down from the center of the lower end surface G11 of the shoulder portion G1, and is formed into a tapered truncated cone shape in this embodiment. In addition, a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin G2.
本接合工程は、図6に示すように、摩擦攪拌の開始位置P1に挿入した回転ツールGの攪拌ピンG2を、途中で離脱させることなく終了位置P2まで移動させて、突合部J1の摩擦攪拌を行う工程である。 As shown in FIG. 6, in this joining step, the stirring pin G2 of the rotary tool G inserted at the friction stirring start position P1 is moved to the end position P2 without being removed halfway, and the friction stirring of the butt portion J1 is performed. It is a process of performing.
まず、図5(a)に示すように、第一タブ材2の適所に設けた開始位置P1の直上に回転ツールGを位置させ、続いて、回転ツールGを回転させつつ下降させて攪拌ピンG2を開始位置P1に押し付ける。
回転ツールGの回転速度は、攪拌ピンG2の寸法・形状、摩擦攪拌される接合構造物1等の材質や肉厚等に応じて設定されている。
First, as shown in FIG. 5 (a), the rotary tool G is positioned immediately above the start position P1 provided at an appropriate position on the
The rotational speed of the rotary tool G is set according to the size and shape of the stirring pin G2, the material of the
攪拌ピンG2が第一タブ材2の表面に接触すると、摩擦熱によって攪拌ピンG2の周囲にある金属が塑性流動化し、図5(b)に示すように、攪拌ピンG2が第一タブ材2に挿入される。
なお、回転ツールGの挿入予定位置に予め下穴を形成した場合には、回転ツールGを押し込む際の圧入抵抗を低減することができ、摩擦攪拌接合の精度を高めるとともに、迅速に接合作業を行うことができる。
When the stirring pin G2 comes into contact with the surface of the
In addition, when a pilot hole is formed in advance at the position where the rotary tool G is to be inserted, the press-fitting resistance when the rotary tool G is pushed in can be reduced, and the accuracy of friction stir welding can be increased and the joining operation can be performed quickly. It can be carried out.
攪拌ピンG2全体が第一タブ材2に入り込み、かつ、ショルダ部G1の下端面G11の全面が第一タブ材2の表面に接触したら、図6に示すように、回転ツールGを回転させつつ突合部J1に向けて移動させる。
回転ツールGの移動速度(送り速度)は、攪拌ピンG2の寸法・形状、摩擦攪拌される接合構造物1等の材質や肉厚等に応じて設定されている。
回転ツールGを移動させると、その攪拌ピンG2の周囲にある金属が順次塑性流動化するとともに、攪拌ピンG2から離れた位置では、塑性流動化していた金属が再び硬化して塑性化領域W1が形成される(図5(b)参照)。
When the entire stirring pin G2 enters the
The moving speed (feeding speed) of the rotary tool G is set in accordance with the size and shape of the stirring pin G2, the material and thickness of the joined
When the rotary tool G is moved, the metal around the stirring pin G2 is plastically fluidized in sequence, and at the position away from the stirring pin G2, the plastic fluidized metal is hardened again and the plasticized region W1 is formed. It is formed (see FIG. 5B).
本接合工程では、開始位置P1から第一金属部材1aと第二金属部材1bとの継ぎ目(境界線)上に設定したルートに沿って、回転ツールGを連続して移動させることで、第一金属部材1aと第二金属部材1bとの突合部J1に対して摩擦攪拌を行う。
In the main joining step, the rotating tool G is continuously moved along the route set on the joint (boundary line) between the
そして、回転ツールGが突合部J1を通過し、第二タブ材3の適所に設けた終了位置P2に達したら、回転ツールGを回転させつつ上昇させて攪拌ピンG2を終了位置P2から離脱させる。これにより、接合構造物1の表面A側の摩擦攪拌接合が完了する。
Then, when the rotary tool G passes through the abutting portion J1 and reaches the end position P2 provided at an appropriate position of the
なお、本実施形態では、第一タブ材2に開始位置P1を設け、第二タブ材3に終了位置P2設けているが、第二タブ材3に開始位置P1を設け、第一タブ材2に終了位置P2を設けてもよい。
In the present embodiment, the
(3)第二接合工程
第二接合工程は、図7に示すように、第一金属部材1aと第二金属部材1bとの突合部J1に対して、接合構造物1の裏面Bから摩擦攪拌接合を行う工程である。
第二接合工程では、第一接合工程が終了したら、接合構造物1を図示せぬ摩擦攪拌装置から一旦取り外し、裏面Bを上方に向けて再度固定する。
第二接合工程は、タブ材配置工程が含まれないこと以外は、前記した第一接合工程と同等であるため、その詳細な説明は省略する。
なお、第二接合工程で形成された塑性化領域を塑性化領域W2とする。また、第二接合工程が終了したら、接合構造物1からタブ材2,3を切削して除去する。
(3) 2nd joining process A 2nd joining process is friction stirring from the back surface B of the joining
In the second joining step, when the first joining step is completed, the joining
Since the second joining step is the same as the first joining step described above except that the tab material arranging step is not included, detailed description thereof is omitted.
In addition, the plasticization area | region formed at the 2nd joining process is made into the plasticization area | region W2. When the second joining process is completed, the
(4)凹溝形成工程
凹溝形成工程は、図8に示すように、接合構造物1の第一側面C及び第二側面Dにおいて、第一金属部材1aと第二金属部材1bとの突合部J1に沿って凹溝K1,K1を形成する工程である。本実施形態では、公知のエンドミル等の切削工具を用いて、一定の幅及び深さで表面Aから裏面Bに亘って連続して凹溝K1,K1を形成している。また、本実施形態では、両側の凹溝K1,K1の間に残された突合部J1の幅が、接合構造物1の最大幅の半分程度になるように凹溝K1の深さを設定している。
(4) Concave groove forming step In the concavity forming step, as shown in FIG. 8, the
(5)第一側面溶接工程
第一側面溶接工程は、第一金属部材1aと第二金属部材1bとの突合部J1に沿って、両側の凹溝K1,K1内に第一溝部K2を形成する溝部形成工程(図9参照)と、第一溝部K2に溶接金属を充填する溶接金属充填工程(図10参照)と、を含むものである。
(5) 1st side surface welding process The 1st side surface welding process forms the 1st groove part K2 in the concave groove K1, K1 of both sides along the abutting part J1 of the
溝部形成工程では、図9に示すように、両側の凹溝K1,K1内の側面に露出した突合部J1に沿って、凹状の第一溝部K2を形成する。本実施形態では、公知のエンドミル等の切削工具を用いて、一定の幅及び深さで表面Aから裏面Bに亘って連続して第一溝部K2を形成している。
第一溝部K2の溝幅は限定されるものではないが、本実施形態では塑性化領域W1,W2の幅よりも小さい溝幅に設定されている。なお、塑性化領域W1,W2に空洞欠陥が形成される虞がある場合には、空洞欠陥を含むように第一溝部K2内の溝幅を設定することが望ましい。
In the groove forming step, as shown in FIG. 9, a concave first groove K2 is formed along the abutting portion J1 exposed on the side surfaces of the concave grooves K1, K1 on both sides. In the present embodiment, the first groove K2 is continuously formed from the front surface A to the back surface B with a constant width and depth using a known cutting tool such as an end mill.
Although the groove width of the first groove portion K2 is not limited, in this embodiment, the groove width is set to be smaller than the width of the plasticized regions W1, W2. In addition, when there exists a possibility that a cavity defect may be formed in plasticization area | region W1, W2, it is desirable to set the groove width in the 1st groove part K2 so that a cavity defect may be included.
溶接金属充填工程では、図10に示すように、第一溝部K2にMIG溶接等の肉盛溶接を行うことで、第一溝部K2に溶接金属L1を充填する。これにより、表面A側の塑性化領域W1と裏面B側の塑性化領域W2との間に形成された未塑性化領域が閉じられる。また、第一溝部K2内に空洞欠陥が含まれる場合には、その空洞欠陥が溶接金属L1によって閉塞される。
なお、溶接金属充填工程は、MIG溶接に限定するものではなく、他の公知の溶接を行ってもよい。また、溶接材料は、接合構造物1と異なっていてもよいが、本実施形態では同一の材料を用いている。
また、第一溝部K2に溶接金属L1を充填した後に、第一溝部K2に充填された溶接金属L1のうち凹溝K1内の側面から突出している部分を切除する。
In the weld metal filling step, as shown in FIG. 10, the first groove K2 is filled with the weld metal L1 by performing overlay welding such as MIG welding in the first groove K2. Thus, the unplasticized region formed between the plasticized region W1 on the front surface A side and the plasticized region W2 on the back surface B side is closed. Moreover, when a cavity defect is contained in the 1st groove part K2, the cavity defect is obstruct | occluded with the weld metal L1.
Note that the weld metal filling step is not limited to MIG welding, and other known welding may be performed. Moreover, although the welding material may differ from the joining
In addition, after filling the first groove K2 with the weld metal L1, a portion of the weld metal L1 filled in the first groove K2 that protrudes from the side surface in the groove K1 is cut out.
(6)継手部材挿入工程
継手部材挿入工程は、図11に示すように、両側の凹溝K1,K1に継手部材Hを挿入する工程である。
継手部材Hは、直方体の金属部材であり、その上下高さ寸法、左右幅寸法、前後幅寸法を、凹溝K1の各寸法と同一にしている。本実施形態では、接合構造物1と同一組成の金属材料で継手部材Hを形成しているが、摩擦攪拌可能な金属材料であればよい。
第一側面C側の凹溝K1に挿入された継手部材Hでは、表面(上面)と接合構造物1の表面Aとを面一にし、側面と接合構造物1の側面Cとを面一にし、裏面(下面)と接合構造物1の裏面Bとを面一にする。
同様に、第二側面D側の凹溝K1に挿入された継手部材Hでは、表面(上面)と接合構造物1の表面Aとを面一にし、側面と接合構造物1の側面Dとを面一にし、裏面(下面)と接合構造物1の裏面Bとを面一にする。
(6) Joint member insertion step The joint member insertion step is a step of inserting the joint member H into the concave grooves K1, K1 on both sides, as shown in FIG.
The joint member H is a rectangular parallelepiped metal member, and the vertical height dimension, the horizontal width dimension, and the front-rear width dimension thereof are the same as the dimensions of the concave groove K1. In the present embodiment, the joint member H is formed of a metal material having the same composition as the bonded
In the joint member H inserted into the concave groove K1 on the first side surface C side, the surface (upper surface) and the surface A of the joined
Similarly, in the joint member H inserted into the concave groove K1 on the second side surface D side, the surface (upper surface) and the surface A of the bonded
(7)第三接合工程
第三接合工程は、図13に示すように、接合構造物1と各継手部材H,Hとの突合部J2,J3に対して、接合構造物1の表面Aから回転ツールG(図4参照)を用いて摩擦攪拌接合を行う工程である。
第三接合工程は、接合構造物1にタブ材4,5を配置するタブ材配置工程(図12参照)と、接合構造物1と各継手部材H,Hとの突合部J2,J3に対して表面Aから摩擦攪拌を行う本接合工程(図13参照)と、を含むものである。
(7) Third Joining Process As shown in FIG. 13, the third joining process is performed from the surface A of the joined
In the third joining step, the tab material arranging step (see FIG. 12) for arranging the
タブ材配置工程は、図12に示すように、接合構造物1の接合部の左右両側に一対のタブ材4,5を配置する工程である。このタブ材4,5は、後記する本接合工程において、回転ツールG(図4参照)を押圧させる開始位置P3,P5、及び回転ツールGを離脱させる終了位置P4,P6を設定するものである(図13参照)。
As shown in FIG. 12, the tab material arranging step is a step of arranging a pair of
第三タブ材4及び第四タブ材5は、直方体の金属部材であり、本実施形態では接合構造物1と同等の素材を用いている。第三タブ材4及び第四タブ材5の表面及び裏面は、接合構造物1の表面A及び裏面Bと面一に形成されている。
第三タブ材4は、接合構造物1の第一側面Cに当接して配置され、第四タブ材5は、接合構造物1の第二側面Dに当接して配置される。
第三タブ材4及び第四タブ材5と接合構造物1とは、それぞれ入り隅部において溶接により仮接合されている。
The 3rd tab material 4 and the
The third tab member 4 is disposed in contact with the first side surface C of the bonded
The 3rd tab material 4 and the
本接合工程では、図13に示すように、第三タブ材4の表面に設定された開始位置P3に挿入した回転ツールG(図4参照)の攪拌ピンG2を、接合構造物1と右側の継手部材Hとの継ぎ目を通過して、第三タブ材4の表面に設定された終了位置P4まで移動させることで、接合構造物1と右側の継手部材Hとの突合部J2の摩擦攪拌を行う。
同様に、第四タブ材5の表面に設定された開始位置P5に挿入した回転ツールGの攪拌ピンG2を、接合構造物1と左側の継手部材Hとの継ぎ目を通過して、第四タブ材5の表面に設定された終了位置P6まで移動させることで、接合構造物1と左側の継手部材Hとの突合部J3の摩擦攪拌を行う。
なお、第三接合工程で行われる摩擦攪拌接合は、第一接合工程及び第二接合工程で行われた摩擦攪拌接合と同等であるため、その詳細な説明は省略する。
In this joining step, as shown in FIG. 13, the stirring pin G2 of the rotary tool G (see FIG. 4) inserted at the start position P3 set on the surface of the third tab member 4 is connected to the joining
Similarly, the stirring pin G2 of the rotary tool G inserted at the start position P5 set on the surface of the
Note that the friction stir welding performed in the third joining step is equivalent to the friction stir welding performed in the first joining step and the second joining step, and thus detailed description thereof is omitted.
(8)第四接合工程
第四接合工程は、図14に示すように、接合構造物1と各継手部材H,Hとの突合部J2,J3に対して、接合構造物1の裏面Bから回転ツールG(図4参照)を用いて摩擦攪拌を行う工程である。
第四接合工程では、第三接合工程が終了したら、接合構造物1を図示せぬ摩擦攪拌装置から一旦取り外し、裏面Bを上方に向けて再度固定する。
第四接合工程は、タブ材配置工程が含まれないこと以外は、前記した第三接合工程と同等であるため、その詳細な説明は省略する。
なお、第四接合工程で形成された塑性化領域を塑性化領域W4とする。また、第四接合工程が終了したら、接合構造物1からタブ材4,5を切削して除去する。
(8) Fourth Joining Process As shown in FIG. 14, the fourth joining process starts from the back surface B of the joined
In the fourth joining step, when the third joining step is finished, the joining
Since the fourth joining step is the same as the third joining step described above except that the tab material arranging step is not included, detailed description thereof is omitted.
Note that the plasticized region formed in the fourth joining step is referred to as a plasticized region W4. When the fourth joining process is completed, the
(9)第二側面溶接工程
第二側面溶接工程は、接合構造物1の両側面C,Dにおいて、接合構造物1と継手部材Hとの突合部J2,J3に沿って、第二溝部K3・・・を形成する溝部形成工程(図14参照)と、第二溝部K3に溶接金属を充填する溶接金属充填工程(図1参照)と、を含むものである。
(9) Second side surface welding step In the second side surface welding step, on both side surfaces C and D of the joined
溝部形成工程では、図14に示すように、接合構造物1の両側面C,Dに露出した突合部J2,J3に沿って、凹状の第二溝部K3を形成する。本実施形態では、公知のエンドミル等の切削工具を用いて、一定の幅及び深さで表面Aから裏面Bに亘って連続して第二溝部K3を形成している。
第二溝部K3の溝幅は限定されるものではないが、本実施形態では塑性化領域W3,W4の幅よりも小さい溝幅に設定されている。なお、塑性化領域W3,W4に空洞欠陥が形成される虞がある場合には、空洞欠陥を含むように第二溝部K3内の溝幅を設定することが望ましい。
In the groove forming step, as shown in FIG. 14, a concave second groove K3 is formed along the abutting portions J2 and J3 exposed on both side surfaces C and D of the bonded
Although the groove width of the second groove portion K3 is not limited, in the present embodiment, the groove width is set to be smaller than the widths of the plasticized regions W3 and W4. In addition, when there exists a possibility that a cavity defect may be formed in plasticization area | region W3, W4, it is desirable to set the groove width in the 2nd groove part K3 so that a cavity defect may be included.
溶接金属充填工程では、図1に示すように、第二溝部K3にMIG溶接等の肉盛溶接を行うことで、第二溝部K3に溶接金属L2を充填する。これにより、表面A側の塑性化領域W3と裏面B側の塑性化領域W4との間に形成された未塑性化領域が閉じられる。また、第二溝部K3内に空洞欠陥が含まれる場合には、その空洞欠陥が溶接金属L2によって閉塞される。
なお、溶接金属充填工程は、MIG溶接に限定するものではなく、他の公知の溶接を行ってもよい。また、溶接材料は、接合構造物1と異なっていてもよいが、本実施形態では同一の材料を用いている。
また、第二溝部K3に溶接金属L2を充填した後に、第二溝部K3に充填された溶接金属L2のうち接合構造物1の側面C,Dから突出している部分を切除する。
In the weld metal filling step, as shown in FIG. 1, the second groove K3 is filled with weld metal L2 by performing overlay welding such as MIG welding. As a result, the unplasticized region formed between the plasticized region W3 on the front surface A side and the plasticized region W4 on the rear surface B side is closed. Moreover, when a cavity defect is contained in the 2nd groove part K3, the cavity defect is obstruct | occluded with the weld metal L2.
Note that the weld metal filling step is not limited to MIG welding, and other known welding may be performed. Moreover, although the welding material may differ from the joining
Further, after the second groove K3 is filled with the weld metal L2, portions of the weld metal L2 filled in the second groove K3 that protrude from the side surfaces C and D of the joined
以上のような各工程により、図1に示すように、第一金属部材1aの端面11a(図2(a)参照)と第二金属部材1bの端面11b(図2(a)参照)とが接合された接合構造物1が形成される。
Through the above steps, as shown in FIG. 1, the
本実施形態の接合構造物の製造方法によれば、図1に示すように、接合構造物1の表面A、裏面B及び両側面C,Dにおいて、接合構造物1と各継手部材H,Hとの突合部J2,J3が接合され、接合構造物1と各継手部材H,Hとの継ぎ目全体が閉じられるため、第一金属部材1aと第二金属部材1bとの接合部における気密性及び水密性を向上させることができる。
According to the method for manufacturing a bonded structure of the present embodiment, as shown in FIG. 1, the bonded
また、第一側面溶接工程において、第一金属部材1aと第二金属部材1bとの突合部J1に対して、凹溝K1内から溶接が行われた後に、凹溝K1に継手部材Hが挿入され、第二側面溶接工程において、接合構造物1と継手部材Hとの突合部J2,J3に対して側面C,Dから溶接が行われる。したがって、接合構造物1の側部は肉厚方向において二重に溶接された状態となるため、第一金属部材1aと第二金属部材1bとの接合部における気密性及び水密性を向上させることができる。
特に、本実施形態のように、突合部J1の幅が接合構造物1の最大幅の半分程度となるように設定した場合には、接合構造物1の中心部で溶接が行われるため、第一金属部材1aと第二金属部材1bとの接合部における気密性及び水密性を向上させることができる。
Further, in the first side surface welding step, after the welding is performed from the inside of the groove K1 to the abutting portion J1 between the
In particular, as in this embodiment, when the width of the abutting portion J1 is set to be about half of the maximum width of the bonded
また、第一側面溶接工程では、突合部J1に沿って形成された第一溝部K2に溶接金属F1を充填し、第二側面溶接工程では、突合部J2,J3に沿って形成された第二溝部K3に溶接金属L2を充填することで、溶接金属L1,L2の充填作業を容易に行うことができるとともに、各突合部J1,J2,J3を確実に閉じることができる。 Further, in the first side surface welding step, the first groove K2 formed along the abutting portion J1 is filled with the weld metal F1, and in the second side surface welding step, the second groove formed along the abutting portions J2 and J3. By filling the groove portion K3 with the weld metal L2, the work of filling the weld metals L1 and L2 can be easily performed, and the abutting portions J1, J2, and J3 can be reliably closed.
また、第一側面溶接工程では、第一溝部K2に充填された溶接金属L2のうち凹溝K1の側面から突出した部分を切除することで、凹溝K1の側面が平滑に成形され、凹溝K1の側面と継手部材Hの外面とを密着させることができるため、接合構造物1と継手部材Hとの接合部における気密性及び水密性を向上させることができる。
Further, in the first side surface welding step, the side surface of the concave groove K1 is formed smoothly by cutting away the portion of the weld metal L2 filled in the first groove portion K2 that protrudes from the side surface of the concave groove K1. Since the side surface of K1 and the outer surface of the joint member H can be brought into close contact with each other, the air tightness and water tightness at the joint portion between the
また、第二側面溶接工程では、第二溝部K3に充填された溶接金属のうち接合構造物1の側面C,Dから突出した部分を切除することで、接合構造物1の仕上がり面を平滑に成形することができる。
Further, in the second side surface welding step, the finished surface of the
以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されることなく、その趣旨を逸脱しない範囲で適宜に設計変更が可能である。
例えば、本実施形態の第一側面溶接工程では、図10に示すように、突合部J1に沿って、表面Aから裏面Bに亘って第一溝部K2を形成しているが、表面A側の塑性化領域W1と裏面B側の塑性化領域W2との間に形成された未塑性化領域に対応する部位に溝部を形成し、この溝部に溶接金属を充填することで未塑性化領域を閉じてもよい。
The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the spirit of the present invention.
For example, in the first side surface welding step of the present embodiment, as shown in FIG. 10, the first groove portion K2 is formed from the front surface A to the back surface B along the abutting portion J1, but on the front surface A side. A groove is formed in a portion corresponding to the unplasticized region formed between the plasticized region W1 and the plasticized region W2 on the back surface B side, and the unplasticized region is closed by filling the groove with weld metal. May be.
また、本実施形態の第二側面溶接工程では、図14に示すように、突合部J2,J3に沿って、表面Aから裏面Bに亘って第二溝部K3を形成しているが、表面A側の塑性化領域W3と裏面B側の塑性化領域W4との間に形成された未塑性化領域に対応する部位に溝部を形成し、この溝部に溶接金属を充填することで未塑性化領域を閉じてもよい。 Further, in the second side surface welding step of the present embodiment, as shown in FIG. 14, the second groove portion K3 is formed from the front surface A to the back surface B along the abutting portions J2 and J3. A groove portion is formed in a portion corresponding to the unplasticized region formed between the plasticizing region W3 on the side B and the plasticizing region W4 on the back surface B side, and the weld metal is filled in the groove portion to thereby form the unplasticized region. May be closed.
また、第一接合工程及び第二接合工程の前に、回転ツールG(図4参照)よりも小型の回転ツールを用いて、突合部J1を摩擦攪拌接合する仮接合工程を行ってもよい。このように、突合部J1を仮接合することで、突合部J1に回転ツールGが押し込まれたときに、目開きが生じるのを防ぐことができる。同様に、第三接合工程の前に、突合部J2,J3を仮接合することで、突合部J2,J3に回転ツールGが押し込まれたときに、目開きが生じるのを防ぐことができる。 Moreover, you may perform the temporary joining process of carrying out friction stir welding of the abutting part J1 using a rotary tool smaller than rotating tool G (refer FIG. 4) before a 1st joining process and a 2nd joining process. Thus, by temporarily joining the abutting portion J1, it is possible to prevent the opening of the mesh when the rotary tool G is pushed into the abutting portion J1. Similarly, by temporarily joining the abutting portions J2 and J3 before the third joining step, it is possible to prevent the opening from being generated when the rotary tool G is pushed into the abutting portions J2 and J3.
また、本実施形態の第一接合工程及び第二接合工程では、図6に示すように、接合構造物1の左右両側に一対のタブ材2,3を配置しているが、タブ材は必ずしも設けなくてもよい。このように、タブ材を省略する場合には、第一金属部材1aと第二金属部材1bとの突合部J1の両端部に摩擦攪拌の開始位置及び終了位置を設定し、第一側面溶接工程において、摩擦攪拌の開始位置及び終了位置が切除されるように第一溝部K2を形成することが望ましい。
同様に、第三接合工程及び第四接合工程においてもタブ材を設けることなく、突合部J2,J3の両端部に摩擦攪拌の開始位置及び終了位置を設定し、第二側面溶接工程において、開始位置及び終了位置が切除されるように第三溝部K3を形成することが望ましい。
Moreover, in the 1st joining process of this embodiment, and a 2nd joining process, as shown in FIG. 6, although a pair of
Similarly, the start and end positions of friction stirring are set at both ends of the abutting portions J2 and J3 without providing a tab material in the third joining step and the fourth joining step, and the second side welding step is started. It is desirable to form the third groove portion K3 so that the position and the end position are cut off.
また、本実施形態では、図11に示すように、凹溝K1の断面形状を矩形に形成し、この凹溝K1に直方体の継手部材Hを挿入しているが、凹溝K1及び継手部材Hの形状は限定されるものではなく、他の形状であってもよい。 Further, in this embodiment, as shown in FIG. 11, the cross-sectional shape of the concave groove K1 is formed in a rectangular shape, and a rectangular parallelepiped joint member H is inserted into the concave groove K1, but the concave groove K1 and the joint member H The shape is not limited and may be other shapes.
1 接合構造物
1a 第一金属部材
1b 第二金属部材
A 表面
B 裏面
C 第一側面
D 第二側面
H 継手部材
J1 突合部(第一金属部材と第二金属部材)
J2 突合部(接合構造物と継手部材)
J3 突合部(接合構造物と継手部材)
K1 凹溝
K2 第一溝部
K3 第二溝部
L1 溶接金属
L2 溶接金属
G 回転ツール
G2 攪拌ピン
W1 塑性化領域(表面)
W2 塑性化領域(裏面)
W3 塑性化領域(表面)
W4 塑性化領域(裏面)
DESCRIPTION OF
J2 butt (joint structure and joint member)
J3 butt (joint structure and joint member)
K1 Groove K2 First groove K3 Second groove L1 Weld metal L2 Weld metal G Rotary tool G2 Stirring pin W1 Plasticization region (surface)
W2 Plasticization region (back side)
W3 Plasticization region (surface)
W4 Plasticization region (back side)
Claims (6)
前記第一金属部材と前記第二金属部材との突合部に対して、前記接合構造物の表面から摩擦攪拌を行う第一接合工程と、
前記第一金属部材と前記第二金属部材との突合部に対して、前記接合構造物の裏面から摩擦攪拌を行う第二接合工程と、
前記接合構造物の側面において、前記第一金属部材と前記第二金属部材との突合部に沿って、前記接合構造物の表面から裏面に亘って凹溝を形成する凹溝形成工程と、
前記凹溝に継手部材を挿入する継手部材挿入工程と、
前記接合構造物と前記継手部材との突合部に対して、前記接合構造物の表面から摩擦攪拌を行う第三接合工程と、
前記接合構造物と前記継手部材との突合部に対して、前記接合構造物の裏面から摩擦攪拌を行う第四接合工程と、
前記接合構造物と前記継手部材との突合部において、前記第三接合工程で形成された塑性化領域と前記第四接合工程で形成された塑性化領域との間に形成された未塑性化領域に対して、前記接合構造物の側面から溶接を行う側面溶接工程と、を含んでいることを特徴とする接合構造物の製造方法。 It is a manufacturing method of a joined structure formed by abutting end surfaces of a first metal member and a second metal member,
A first joining step in which friction agitation is performed from the surface of the joined structure with respect to the abutting portion between the first metal member and the second metal member;
A second joining step in which friction agitation is performed from the back surface of the joined structure with respect to the abutting portion between the first metal member and the second metal member;
On the side surface of the bonded structure, along the abutting portion between the first metal member and the second metal member, a groove forming step for forming a groove from the surface to the back surface of the bonded structure;
A joint member inserting step of inserting a joint member into the concave groove;
A third joining step in which friction stir is performed from the surface of the joined structure, with respect to the abutting portion between the joined structure and the joint member;
For the abutting portion between the joint structure and the joint member, a fourth joining step of performing frictional stirring from the back surface of the joint structure;
An unplasticized region formed between the plasticized region formed in the third joining step and the plasticized region formed in the fourth joining step at the abutting portion between the joined structure and the joint member. On the other hand, the manufacturing method of the junction structure characterized by including the side surface welding process which welds from the side surface of the said junction structure.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008040063A JP2009195949A (en) | 2008-02-21 | 2008-02-21 | Manufacturing method of joined structure |
CN2008801013622A CN101772395B (en) | 2007-08-10 | 2008-07-31 | Joining method and method for manufacturing joined structure |
PCT/JP2008/063753 WO2009022543A1 (en) | 2007-08-10 | 2008-07-31 | Joining method, and joined structure manufacturing method |
KR1020107005208A KR101133361B1 (en) | 2007-08-10 | 2008-07-31 | Joining method, and joined structure manufacturing method |
TW097129802A TW200906526A (en) | 2007-08-10 | 2008-08-06 | Joining method, and joined structure manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008040063A JP2009195949A (en) | 2008-02-21 | 2008-02-21 | Manufacturing method of joined structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009195949A true JP2009195949A (en) | 2009-09-03 |
Family
ID=41140069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008040063A Pending JP2009195949A (en) | 2007-08-10 | 2008-02-21 | Manufacturing method of joined structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009195949A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101284868B1 (en) | 2011-12-22 | 2013-07-09 | 삼성중공업 주식회사 | Welding joint of steel structure and fablcating method thereof |
-
2008
- 2008-02-21 JP JP2008040063A patent/JP2009195949A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101284868B1 (en) | 2011-12-22 | 2013-07-09 | 삼성중공업 주식회사 | Welding joint of steel structure and fablcating method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5223326B2 (en) | Joining method | |
JP6052237B2 (en) | Friction stir welding method | |
TWI504459B (en) | Bonding method | |
JP5050674B2 (en) | Joining method | |
JP2010284706A (en) | Joining method and manufacturing method of lidded structure | |
JP2009136881A (en) | Joining method | |
JP2013255946A (en) | Joining method | |
JP5233557B2 (en) | Joining method | |
CN102430854B (en) | Method for manufacturing joined structure | |
JP2008188665A (en) | Joining method | |
JP6927130B2 (en) | Manufacturing method of heat transfer plate | |
JP2009195949A (en) | Manufacturing method of joined structure | |
JP2009220138A (en) | Joining method | |
JP5023909B2 (en) | Joining method | |
JP2009172650A (en) | Manufacturing method of joined structure | |
JP6090186B2 (en) | Friction stir welding method | |
JP2009279595A (en) | Joining method | |
JP5458684B2 (en) | Manufacturing method of structure | |
JP2008194732A (en) | Joining method | |
JP2009119488A (en) | Joining method | |
JP2009136884A (en) | Joining method | |
JP5435109B2 (en) | Joining method | |
JP6740963B2 (en) | Joining method | |
JP2009190044A (en) | Manufacturing method of bonded structure | |
JP2015213930A (en) | Joining method |