[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009194051A - パターン生成装置およびパターン形状評価装置 - Google Patents

パターン生成装置およびパターン形状評価装置 Download PDF

Info

Publication number
JP2009194051A
JP2009194051A JP2008031314A JP2008031314A JP2009194051A JP 2009194051 A JP2009194051 A JP 2009194051A JP 2008031314 A JP2008031314 A JP 2008031314A JP 2008031314 A JP2008031314 A JP 2008031314A JP 2009194051 A JP2009194051 A JP 2009194051A
Authority
JP
Japan
Prior art keywords
pattern
data
contour
shape
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008031314A
Other languages
English (en)
Other versions
JP5276854B2 (ja
Inventor
Yasutaka Toyoda
康隆 豊田
Hideo Sakai
英雄 栄井
Ryoichi Matsuoka
良一 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008031314A priority Critical patent/JP5276854B2/ja
Priority to US12/366,196 priority patent/US8077962B2/en
Publication of JP2009194051A publication Critical patent/JP2009194051A/ja
Priority to US13/294,828 priority patent/US8363923B2/en
Priority to US13/750,761 priority patent/US8515155B2/en
Priority to US13/959,384 priority patent/US8655050B2/en
Application granted granted Critical
Publication of JP5276854B2 publication Critical patent/JP5276854B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/31813Test pattern generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/28Determining representative reference patterns, e.g. by averaging or distorting; Generating dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/772Determining representative reference patterns, e.g. averaging or distorting patterns; Generating dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30141Printed circuit board [PCB]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】
設計データや良品パターンを参照パターンとして、電子デバイスのパターン形状を評価する方法があるが、設計データや良品パターンでは、電子デバイスの製造条件に適合した形状を正確に定義することが困難であり、パターンの形状を高精度に評価することができない。
【解決手段】
電子デバイスの回路パターンの形状を評価する方法であって、少なくとも2つ以上の回路パターンの輪郭データから回路パターンの輪郭分布データを生成する手段と、前記輪郭分布データから、パターンの形状評価に用いる参照パターンを生成する手段と、前記参照パターンと評価対象パターンの比較によってパターンの形状を評価する手段を有することを特徴とする。
【選択図】図1

Description

本発明は、ウエハやレチクル等に製造された電子デバイスの回路パターンの撮影画像を利用して、回路パターンの形状を評価するパターン生成装置、およびパターン形状評価装置に関するものである。
近年、半導体デバイスの性能向上や製造コスト低減を目的とした半導体デバイスの高密度集積化が進んでいる。半導体デバイスの高密度集積化を実現するためには、微細な回路パターンをシリコンウエハ上に形成するリソグラフィ技術の進歩が必要である。リソグラフィは回路パターンの原版となるマスクを作成し、露光装置でシリコンウエハ上に塗布した感光性受光樹脂(以下、レジストとする。)にマスクの回路パターンを転写する工程であり、位相シフトマスク技術や変形照明技術、スキャン露光方式や化学増幅レジスト材料など、様々な技術革新によって微細化のトレンドが維持されてきた。しかし、回路パターンの最小寸法が露光光源の波長を下回ったあたりからは、リソグラフィのプロセス条件が最適な状態から変動した場合の許容範囲(以下、プロセスウィンドウとする)が極端に小さくなるといった問題が発生している。
プロセスウィンドウが極小化する原因は、露光光源の短波長化に伴う照明の不均一性,反射防止,ベーク,現像等のプロセス不均一性、マスク寸法の変動等多岐にわたるが、これらリソグラフィプロセスの変動要因は、露光光量の変動と同様の振る舞いをする実効ドーズ(以下、ドーズとする)と、フォーカス変動と同様の振る舞いをする実効フォーカス(以下、フォーカス)に分類することができる。このため、半導体製造メーカは、半導体の開発段階で、ドーズとフォーカスを段階的に変えてシリコンウエハ上に製造したテストパターンを測長SEMで計測し、正常なパターンを製造するためのドーズ範囲とフォーカス範囲のプロセスウィンドウを求める作業(以下、条件だし作業、特許文献1に開示)や、光学シミュレーションによるドーズ,フォーカスの変動要因解析作業を繰り返し行って、最適なリソグラフィ条件を導くことで、プロセスウィンドウの拡大を図っている。
しかしながら、65nm以降のプロセスでは、パターンの高密度化,パターン形状の複雑化により、開発段階の条件だし作業で、全てのパターン形状,パターンの配置関係において最適なプロセスウィンドウを求めることが困難になっており、量産段階でプロセス変動によるパターン形状の変形をモニタリングすることが重要になっている。
量産の段階でパターン形状の変形をモニタリングするためには、プロセス変動によるパターン形状の変形が無い、良品パターンを象ったパターン(以下、参照パターンとする)とチップ内のパターンの形状を比較して、パターンの形状変形量を求める手法が有効である。このようなパターン形状の評価手法として、電子デバイスの設計データを参照パターンとしてパターンの形状を評価する発明(特許文献2〜5)や、良品パターンを参照パターンとしてパターンの形状評価を行う発明(特許文献3)が開示されている。
特開平11−288879号公報 特願平6−49264号公報 特開平10−312461号公報 特開2002−6479号公報 特開2001−338304号公報
しかしながら、特許文献2〜5に開示の発明については、マスク製造装置や露光装置等の回路パターン製造装置の性能上の問題から、設計データの回路パターンの形状と全く等価な形状の回路パターンをシリコンウエハ上に形成することは困難であり、設計データの回路パターンを基準にした形状評価手法では、その形状の違いによって、誤った形状評価が行われるという問題がある。このような問題を対策するために特許文献4には、設計データの形状を、シリコンウエハ上に形成されるような形に予め変形させたパターンを参照パターンとし、パターンの形状評価を行う方法が開示されているが、製造パターンの形状を完全に予測することは困難であり、予測パターンと製造パターンの不一致により、誤った形状評価が行われるといった問題がある。
以上の問題から、特許文献3に開示のある製造可能な回路パターンで最も良好なパターン(良品の回路パターンの撮影画像)を基準とした形状評価手法が有効ではあるが、一方で、電子デバイスの製造過程で回路パターンの個々に生じたエッジラフネス等の回路パターンの局所的な変形部位の影響によって誤った形状評価が行われるといった問題がある。更に、微細な回路パターンの形状評価を行うためには、その回路パターンを撮影する手段として一般的にSEMが利用されるが、SEMの構造上、撮影画像には多くのノイズや輝度ムラが含まれる。これらのノイズや輝度ムラはSEMの画像からパターンの形状を抽出する画像処理の弊害となり、良品パターンの正確なパターン形状が画像から抽出できないために、その抽出に失敗した部位について正確な形状評価が行えない、といった問題がある。更に参照パターンとしてふさわしい良品パターン、すなわち、プロセス変動が生じていない良品パターンが必ずしもウエハ上に製造されているという保証はない。
上記課題を解決するために、本発明は電子デバイスの回路パターンの形状評価に利用する参照パターンを生成する装置であって、少なくとも2つ以上の回路パターンの輪郭データから回路パターンの輪郭分布データを生成する輪郭分布データ生成手段と、前記輪郭分布データから、パターン検査に用いる参照パターンを生成する参照パターン生成手段と、を有することを特徴とするものである。
また、本発明はパターン生成装置において、輪郭データと他の輪郭データのパターンマッチングを行って、輪郭データ間の重ね合わせ位置を特定する手段を有し、前記輪郭分布データ生成手段は、前記輪郭データ間の重ね合わせ位置に基づき、輪郭分布データを生成することを特徴とするものである。
また、本発明は、パターン生成装置において、設計データと輪郭データとのパターンマッチングを行って、輪郭データの重ね合わせ位置を特定する手段を有し、前記輪郭分布データ生成手段は、前記設計データと前記輪郭データ間の重ね合わせ位置に基づき、輪郭分布データを生成することを特徴とするものである。
また、本発明はパターン生成装置において、前記輪郭分布データ生成手段は、回路パターンの形状の規定値と前記輪郭データの形状を比較して、前記回路パターンの形状の規定値を満たす輪郭データのみを用いて輪郭分布データを生成することを特徴とするものである。
また、本発明は、パターン生成装置において、前記参照パターン生成手段は、前記輪郭分布データから、輪郭の分布を特定し、前記輪郭の分布範囲内に参照パターンを設定することを特徴とするものである。
また、本発明はパターン生成装置において、前記参照パターン生成手段は、回路パターンの設計データの形状を参考にして、前記輪郭分布データから前記参照パターンを生成することを特徴とするものである。
また、上記課題を解決するために、本発明はパターン形状評価装置において、前記輪郭分布データ生成手段と、参照パターン生成手段と、前記参照パターンと評価対象パターンの比較によって前記参照パターンに対する前記評価対象パターンの形状評価値を生成する形状評価手段を有することを特徴とするものである。
また、本発明はパターン形状評価装置は、前記形状評価値を用いて、前記評価対象パターンの良否判定を行う良否判定手段と、を有することを特徴とするものである。
また、本発明はパターン形状評価装置において、前記形状評価手段は、前記参照パターンと前記評価対象パターンの間隔を計測、もしくは、前記間隔の平均、もしくは、前記間隔の分散、もしくは、参照パターンに設けたパターン形状の変形を許容するための領域に対する前記評価対象パターンの内外、もしくは、前記参照パターンと前記評価対象パターンの面積のいずれかを前記評価対象パターンの形状評価値として算出することを特徴とし、前記良否判定手段は、これら前記形状評価値と、前記評価対象パターンを良否判定するための規定値の比較により、パターンの良否判定を行うことを特徴とするものである。
また、本発明はパターン形状評価装置において、前記輪郭分布データ生成手段,参照パターン生成手段,前記形状評価手段,前記良否判定手段、の全ての手段、もしくは一部の手段と、前記評価対象パターンの撮影画像や、参照パターンを生成するための前記少なくとも2つ以上の回路パターンの撮影画像を取得する画像撮影手段と、前記撮影画像から前記回路パターンの輪郭データを抽出する手段と、前記パターン形状評価による前記撮影画像や前記輪郭データや、前記輪郭分布データや、前記参照パターンや、前記形状評価値や、前記良否判定結果のデータを保存するデータ記憶手段を有することを特徴とするものである。
また、本発明はパターン形状評価装置において、前記パターン形状評価装置は、前記画像撮影手段で前記回路パターンの撮影画像を取得するためのレシピを前記回路パターンの設計データから生成する手段を有することを特徴とするものである。
また、本発明はパターン形状評価装置において、前記パターン形状評価装置は、前記輪郭分布データや、前記参照パターンや、前記形状評価結果のデータを表示する手段を有することを特徴とするものである。
また、本発明は、パターン形状評価装置において、前記パターン形状評価装置は、ユーザからの指示を前記参照パターン生成手段や、前記形状評価手段や、前記良品判定手段に反映させるためのデータ入力手段を有し、前記参照パターン生成手段や、前記形状評価手段,前記良品判定手段は、前記データ入力手段からの指示データに基づき、参照パターンの生成や形状評価を行うことを特徴とするものである。
また、上記課題を解決するために、本発明はパターン生成装置において、ユーザからの指示を前記参照パターン生成手段に反映させるためのデータ入力手段を有し、前記参照パターン生成手段は、前記データ入力手段からの指示データに基づき、参照パターンを生成することを特徴とするものである。
また、上記課題を解決するために、本発明はパターン形状評価装置において、前記形状評価値や前記良品判定結果をウエハマップに示した画像を生成し、前記データ表示手段に前記ウエハマップ画像を表示することを特徴とするものである。
本発明によれば、電子デバイスの回路パターンの形状評価に用いる参照パターンを、複数の回路パターンの撮影画像から生成することにより、回路パターンの製造条件に適合し、かつ回路パターン個々の歪みを抑えた参照パターンを生成できる。この参照パターンと評価対象パターンの比較を行うことにより、形状評価パターンの形状評価を高精度に行うことができる。
本発明の実施の形態について図面を利用しながら説明する。
図2に、本発明に係る回路パターンの画像を取得する走査型電子顕微鏡(Scanning Electron Microscope:以下、SEM)の構成概要ブロックを示す。電子光学系202は、電子線(一次電子)204を発生する電子銃203と、該電子銃203から発生した電子線204を収束させるコンデンサレンズ205と、収束された電子線204を偏向させる偏向器206と、二次電子を検出するためのExB偏向器207と、収束された電子線を半導体のウエハ201上に結像させる対物レンズ208とを備えて構成される。ウエハ201は、XYステージ217上に載置される。その結果、偏向器206および対物レンズ208は、ステージ217上に載置されたウエハ201上の任意の位置において電子線が焦点を結んで照射されるように、電子線の照射位置と絞りとを制御する。ところで、XYステージ217はウエハ201を移動させ、該ウエハ201の任意位置の画像撮像を可能にしている。そのため、XYステージ217により観察位置を変更することをステージシフト、偏向器206により電子線を偏向して観察位置を変更することをビームシフトと呼ぶ。一方、電子線が照射されたウエハ201からは、2次電子と反射電子が放出され、2次電子は二次電子検出器209により検出される。一方、反射電子は反射電子検出器210,211により検出される。なお、反射電子検出器210と211とは互いに異なる位置に設置されている。二次電子検出器209および反射電子検出器210,211で検出された2次電子および反射電子はA/D変換器212,213,214でデジタル信号に変換され、処理制御部215に入力されて画像メモリ252に格納され、CPU251や画像処理ハードウェアであるLSI253等で目的に応じた画像処理を行って回路パターンの形状評価が行われる。即ち、処理制御部215は、後述の撮像レシピ生成部225で作成された、パターンの形状評価手順を示す撮像レシピを基に形状評価ポイントを撮像するために、ステージコントローラ219や偏向制御部220に対して制御信号を送り、さらにウエハ201上の観察画像に対し各種画像処理を行う等の処理及び制御を行って回路パターンの形状評価を行う。
なお、処理制御部215は、光学顕微鏡(図示せず)等でウエハ201上のグローバルアライメントマークを観察することによりウエハ201の原点ずれやウエハの回転を補正するグローバルアライメント制御も含めてステージ217の位置及び移動を制御するステージコントローラ219と、偏向器206を制御して電子線のビームシフト(ビーム偏向)を制御する偏向制御部220と、対物レンズ208を制御してフォーカス制御するフォーカス制御部221とに接続される。さらに、処理制御部215は、入力手段を備えたディスプレイ216と接続してユーザに対して画像や形状評価結果等を表示するGUI(Graphcal User Interface)等の機能を有することになる。なお、反射電子像の検出器を2つ備えた実施例を示したが、前記反射電子像の検出器の数を増やすことも減らすことも可能である。また、処理制御部215における制御の一部又は全てを、CPUや画像の蓄積が可能なメモリを搭載した電子計算機等に割り振って処理・制御することも可能である。
処理制御部215は、更に回路パターンの座標、該座標に相当する位置決め用の設計データのテンプレート及びSEM観察の撮像条件(撮像倍率や画質等を含む)の情報等を含む撮像レシピを作成する撮像レシピ生成部225とネットワークまたはバス等を介して接続される。撮像レシピ生成部225は、設計データを取得するために、EDA(Electrnic Design Automation)ツールなどの設計システム230とネットワーク等を介して接続される。撮像レシピ生成部225は、形状評価すべきウエハ上の撮影ポイントの情報から、設計データを利用して撮影レシピを作成するものであり、例えば特開2006−3517146号に開示されている撮影レシピ作成装置がこれに相当する。設計データから撮影レシピを作成する概念は古くから提案されているものであり、設計データから撮影レシピを生成する方法,装置についてこれを限定するものではない。撮影レシピの作成は一般的にCPU,メモリ等を搭載した電子計算機のソフトウェア処理やCPU,ASIC,FPGA,メモリ等を搭載したハードウェア処理で実行する。
次に、ウエハ上の任意の形状評価ポイント(以下、EP)を観察するための撮像シーケンスについて図22を用いて説明する。また、図23に設計レイアウト2301上のEP2305に対するアドレッシングポイント(以下、AP)2303,オートフォーカスポイント(以下、FP)2302,スティグマ補正ポイントであるオートスティグマポイント(以下、SP)2306,ブライトネス,コントラスト調整ポイントであるブライトネス,コントラストポイント(以下、BP)2304、の設定例を示した図である。撮像シーケンスにおける撮像箇所ならびに撮像条件(撮像倍率や画質等を含む)、更にEPにおける形状評価条件は設計データと形状評価ポイントの情報に基づき、撮像レシピとして撮像レシピ生成部225で作成されて例えば記憶装置223に記憶されて管理される。
まず、ウエハ201をステージ217上に取り付ける(2201)。次に、光学顕微鏡(図示せず)等で試料上のグローバルアライメントマークを観察することにより処理制御部215は試料の原点ずれや回転ずれを算出し、これらのずれ量を基にステージコントローラ219を介してステージ217を制御することによって補正する(2202)。次に、処理制御部215は、ステージ217を移動して、撮像レシピ生成部225で作成された撮像ポイントの座標及び撮像条件に従って撮像位置をAPに移動してEP撮像時よりも低倍の撮像条件で撮像する(2203)。ここでAPについて説明を加えておく。直接EPを観測しようとした場合、ステージの位置決め精度等の理由により観察箇所がSEMの視野からずれてしまう問題を解決するため、一旦位置決め用として予め撮像レシピ生成部225で作成されて記憶装置223に登録された座標が既知であるAPを一旦観察し、処理制御部215は予め撮像レシピ生成部225で作成されて記憶装置223に登録されたAPにおける設計データテンプレートと前記観察したAPのSEM画像とのマッチングを行うことによって設計データテンプレートの中心座標と実際にAPを観測した際の中心座標とのずれベクトルを検出する。次に、処理制御部215は、設計データテンプレートの座標とEPの座標との相対ベクトルから上記検出されたずれベクトルを差し引いた分だけ、偏向制御部220を介して偏向器206を制御してビームシフト(ビームの入射方向を傾けて照射位置を変更)をさせて、撮像位置を移動してEPを観察することにより、高い座標精度でEPを撮像することができることになる(一般的にビームシフトの位置決め精度はステージの位置決め精度よりも高い)。次に、処理制御部215の制御及び処理に基づいてビームシフトにより撮像位置をFPに移動して撮像してオートフォーカスのパラメータを求め、該求められたパラメータに基づいてオートフォーカスを行う(2204)。
次に、処理制御部215の制御及び処理に基づいて、ビームシフトにより撮像位置をSPに移動して撮像して非点収差補正のパラメータを求め、該求められたパラメータに基づいて自動非点収差補正(オートスティグマ補正)を行う(2205)。
次に、処理制御部215の制御及び処理に基づいて、ビームシフトにより撮像位置をBPに移動して撮像してブライトネス&コントラスト調整のパラメータを求め、該求められたパラメータに基づいて自動ブライトネス&コントラスト調整を行う(2206)。なお、前述したステップ2203,2204,2205,2206におけるアドレッシング,オートフォーカス,オートスティグマ,オートブライトネス&コントラストは場合によって、一部あるいは全てが省略される、あるいは2203,2204,2205,2206の順番が任意に入れ替わる、あるいはAP,FP,SP,BP、の座標で重複するものがある(例えばオートフォーカス,オートスティグマを同一箇所で行う)等のバリエーションがある。最後に、処理制御部215の制御及び処理に基づいてビームシフトにより撮像位置をEPに移動して撮像し、記憶装置223に登録されたEPにおける設計データテンプレートと前記観察したEPのSEM画像とのマッチングを行って、SEM画像内における形状評価対象ポイントのシフト量を算出する(2207)。
次に、EPのSEM画像や、EPマッチングによるシフト量を利用して本発明のパターンの形状評価を行う。パターンの形状評価では、最初にウエハ上の製造ポイントもしくはウエハが異なる複数のパターンの撮影画像からプロセス変動によるパターンの変形や、画像に含まれたノイズの影響によるパターンの形状の歪みや、個々のパターンが有するラフネスなどの歪みを抑えた参照パターンを生成する。次に、参照パターンと評価対象パターンの形状を比較して、参照パターンの形状に対する評価対象パターンの形状評価値を生成する。なお、上記複数のパターンは設計データ上では形状が等価な複数のパターンを示している。
複数のパターンとは、例えば以下(A)〜(D)のような条件のパターンである。なお、図3は、これらA〜Dの関係を示した図であり、2枚のウエハ301,305,ウエハ301内のショットエリア302,ショットエリア内のチップ303、チップ内のパターン304の関係を示した図である。ショットとは、一度に転写できる露光エリアであり、このショット内に複数のチップが存在している。
(A)ウエハが異なる複数のパターン(例306)。
(B)ショットが異なる複数のパターン(例307)。
(C)同一ショット内でチップが異なる複数のパターン(例308)。
(D)同一チップ内で座標が異なる複数のパターン(例309)。
なお、上記条件はあくまで一例であり、これらA〜Dが混在した複数のパターンを利用して参照パターンを生成してもよい。
以下、本発明のパターン形状評価方法について詳細を説明する。
図1は本発明に係るパターン形状評価方法のフローチャートを示したものであり、処理制御部215のCPU251や画像メモリ252等を利用したソフトウェア処理で実行する。ただし、電子光学系202からの画像と撮影レシピ生成部225からの設計データテンプレートをLANやバス経由、また携帯型のメモリ、ハードディスクなどの記憶媒体経由で入力可能な電子計算機のCPU,メモリ等を利用したソフトウェア処理でも実行することもできる。以下、各ステップについて詳細を説明する。
最初に回路パターンの撮影画像を読み込む(101)。パターンの形状評価に用いる画像は、撮影レシピ生成部225で、上記A〜Dのような条件下にある、参照パターンの生成を目的とした複数のパターンと、評価対象パターンの画像を撮影するレシピを作成し、そのレシピで電子光学系202を制御することによって取得する。
次に、画像から回路パターンの輪郭線を抽出する(102)。輪郭線の抽出は様々提案がされているが、例えば特開2006−66478号等で開示の手法や「R.Matsuoka、 New method of Contour based mask shape compiler、 SPIE Proc 6730-21、2007.9.21」に開示された手法等が適用できる。SEMでパターンを撮影すると、図4(a)のように、パターンの傾斜部や突起部が白帯状の像として画像化される。上記に開示した手法等を適用することによりこの白帯像401を図4(b)のような線画の輪郭データ403として抽出することができる。画像の読み込み(101)と輪郭抽出(102)は参照パターン生成用の画像および評価対象パターンの全ての画像に対し実行する(103)。
次に、参照パターン生成用の画像から抽出した複数の輪郭データを用いて参照パターンを生成する。参照パターンの生成には、プロセス変動によるパターン形状の変形や、パターン個々に生じたラフネス等によるパターンの歪みや、画像に含まれたノイズによる輪郭の歪みを抑制するために、より多くのパターンを利用することが望ましい。
〔輪郭の合成〕
参照パターンを生成する事前準備として、図21(a)のように画像から抽出した複数の輪郭データ2101,2102を重ね合わせ、輪郭の合成像を生成する(104)。上述したようにステージの位置決め精度等の問題から、画像内におけるパターンの輪郭位置が輪郭データ毎に異なる場合は、画像内における輪郭の位置を考慮して輪郭データの重ね合わせを行う。重ね合わせ位置は、形状評価ポイントの特定に利用したEPのマッチング結果を利用することで自動的に特定できる。重ね合わせ位置を自動的に特定する方法について、図5を用いて説明する。図5(a)〜(c)は参照パターンの生成に用いる3枚の輪郭データを示している。これらはステージ位置精度等の問題で、画像内における輪郭位置が異なる。図5(d)はマッチングに利用する設計データテンプレートである。EPマッチングにより、設計データテンプレートに対するそれぞれの画像(e)(f)(g)のシフト量501〜503が検出できる。このシフト量を参考に図5(h)のように3つの輪郭データの重ね合わせ位置504を特定する。設計データと輪郭データの形状は異なるが、これらの形状差を吸収して高精度にマッチング位置を求め、シフト量を検出する手法は様々提案されおり、例えば特開2007−79982号で開示されている手法の適用より、シフト量を検出することができる。
輪郭データの重ね合わせの処理フローを図6に示す。最初に複数の輪郭データ(もしくは輪郭を抽出する前の画像)を読み込む(601)。次に、輪郭データ(もしくは輪郭を抽出する前の画像)と設計データテンプレートとのマッチングを行う(602)。マッチングによる結果から、それぞれの輪郭データと設計データテンプレートのシフト量を算出する(603)。次に、シフト量を基準とし、複数の輪郭データを重ね合わせた像を形成する(604)。輪郭合成像をメモリ等の書き込む(605)。
また、一枚の画像内に重ね合わせの対象となるパターンが複数含まれている場合も、EPマッチングによるシフト量と、設計データから導いたパターンの間隔を利用することで、容易に重ね合わせることができる。図7の処理概要図と図8のフローチャートを用いて同一画像内の複数の輪郭データを合成する例を説明する。まず、輪郭データを読み込む(801)。次に設計データテンプレートと輪郭データ(もしくは輪郭を抽出する画像)のパターンマッチングを行う(802、EPマッチングに相当)。パターンマッチング結果より、シフト量(図7(a)701)を算出する(803)。次に、シフト量701と設計データ上でのパターンの配置間隔から、輪郭データ上の輪郭合成点702〜704と、合成領域705〜707を決定する。次に輪郭合成点702〜704と合成領域705〜707に基づき、輪郭合成像を生成する805。図7(b)は輪郭合成点702〜704を輪郭合成像の座標708に対応させ、合成領域705〜707の輪郭データを重ね合わせた像を示している。最後に輪郭合成像をメモリに書き込む(806)。なお、ユーザがディスプレイ216に接続された入力手段を介して輪郭合成点と合成領域を指定することも可能である。この場合、ディスプレイ216に輪郭データを表示し、入力手段で指定された輪郭合成点と合成領域をメモリに保存する。この輪郭合成点と合成領域を元に輪郭データの合成を行ってメモリに書き込む。
輪郭合成像の例を図12(a)に示す。プロセス変動やパターン個々のラフネス等によって評価対象パターンの形状がそれぞれ異なる場合、輪郭の重ね合わせによって、図12(b)のようなパターン形状の分布(以下輪郭分布とする。)を持つ輪郭合成像が得られる。このような輪郭合成像から参照パターンを生成する(105)。
〔参照パターンの生成〕
輪郭合成像の輪郭の分布状態から所定の規則に基づき参照パターンを決定する。所定の規則とは、形状評価の目的によって変更されるべきものであり、これを限定したものではない。以下に輪郭合成像から参照パターンを生成する例を2つ説明する。
1)輪郭分布の平均形状
輪郭分布の平均的なポイントを参照パターン化する。この参照パターンと評価対象パターンの形状を比較することにより、平均的なパターン形状に対する評価対象パターンの形状評価が可能になる。図24(a)は、輪郭分布を示した図であり、輪郭分布の平均的なポイントを参照パターン(破線)化した例を示した図である。図24(c)は、輪郭分布Q−Pの直線上における輪郭の数をグラフ化した図であり、Q−P間の輪郭分布における平均的な参照パターンのポイント2401を示している。
輪郭分布の平均的なポイントを特定するためには、輪郭合成像を生成する際に輪郭が重なった数を輪郭合成像の画素値として保存しておく。更に、この輪郭合成像に対し、田村秀行著コンピュータ画像処理(以下、参考文献1とする)のP11平滑化と雑音除去の項にある移動平均フィルタ等を施すことにより、輪郭分布の平均的なポイントにピークを有する輪郭合成像が生成できる。最後に、輪郭分布内において連続したピーク位置を特定し、そのピーク位置を参照パターン(図23(a)中破線)とする。
2)輪郭分布枠の中心形状
輪郭分布の範囲枠の中心を参照パターン化する。この参照パターンと評価対象パターンの形状を比較することにより、評価対象パターンの形状変形範囲の中心に対する評価対象パターンの形状評価が可能になる。図24(b)は、図24(a)と同様の輪郭分布と輪郭分布枠の中心位置を参照パターン(実線)化した例を示した図であり、図24(d)はQ−P間の直線上における輪郭線の数をグラフ化した図であり、Q−P間の輪郭分布枠2403,2404と、その輪郭分布枠2403,2404の中心位置に相当する参照パターンのポイント2402を示している。
輪郭合成像から輪郭分布枠の中心を検出する方法についてフローチャートを図10に示す。
最初に輪郭合成像を読み込む(1001)。次に輪郭の塗りつぶしを行う1002。図12(b)は図12(a)のような輪郭合成像の輪郭分布を拡大した図である。このように輪郭分布内には、輪郭が存在するポイントと輪郭が存在しないポイントがある。塗りつぶしとは、輪郭間の領域の画素に輪郭と同様の値を書き込む処理である。例えば、輪郭合成像が二値データであり、輪郭が存在するポイントの画素値が「1」で輪郭が存在しないポイントが「0」の場合、参考文献1のP154「収縮と膨張」の項にあるようなモフォロジーフィルタ(膨張処理→収縮処理)による画像処理手法を適用することで、図12(c)のように、輪郭にはさまれた領域の画素の値を全て「1」に変更することができる。
次に、輪郭の塗りつぶし結果を用いて、輪郭分布の中心位置1203を検出する1103。中心位置の検出は、例えば参考文献1のP158の「細線化」の項にある細線化処理の適用により実現できる。細線化処理は、広範囲に分布したパターンの中心線を特定することを目的とした処理であり、塗りつぶされた輪郭分布を細線化することによって図12(d)に示すような輪郭分布の中心位置1203を求めることができる。この輪郭分布の中心位置を参照パターンとし、メモリ等に書き込む1004。
また、参照パターン位置を輪郭分布枠の中心位置ではなく、例えば、図12(f)のように、輪郭分布の中心位置1203から外枠1202方向や内枠1201方向に数画素ずらしたポイント1213,1214にすることも可能である。このような参照パターンを生成する方法について、処理フローを図11に示す。なお、1101〜1103は図10に示した処理フロー1001〜1003と処理が等価なため、説明を省略する。
輪郭分布の中心位置を特定した後、図12(d)に示すような内枠1201と外枠1202を特定する1104。塗りつぶし後の輪郭の画素値が「1」で、それ以外の領域が「0」の輪郭分布像の場合、中心線1212に対し、画素値「0」から「1」に変化する部位を内枠1201,パターン形状の中心線1212に対し、「1」から「0」に変化する部位を外枠1202とする。輪郭分布像におけるパターン形状の中心線の位置は、図12(f)に示すようなEPマッチングによる設計データ1211と輪郭データ(複数パターンのうちいずれか一つ)のシフト量と設計データの回路パターン形状の中心線1212を利用することで、特定できる。図25を利用して設計データからパターン形状の中心線位置を求める方法を説明する。
設計データは図25(a)に示したように、パターンの閉図形を構成する複数の頂点座標データ2501の集合として設計システム230等から提供される。この頂点座標を直線で接続したものが設計データのパターンである。この直線で構成されたパターンを描画し、パターンの内部を図25(b)のように塗りつぶした画像を作成する。例えば、設計データの直線と塗りつぶし領域の画素値を「1」、それ以外の領域を「0」とする。
次に設計データのパターン内部を塗りつぶした画像に対し、前述した細線化処理を施すことで図25(c)のような設計データのパターン形状の中心線位置を特定することができる。
このように特定した設計データのパターン形状の中心線位置と、EPマッチングのシフト量から、輪郭分布像における中心線1212を特定することができ、中心線1212と画素値の切り替え位置の位置関係により、内枠1201と外枠1202を特定できる。
パターン形状の中心位置を利用して、内枠1201,外枠1202を特定した後、輪郭分布の中心位置1203を基準とし、参照パターンの位置を特定する1105。「輪郭分布の中心位置に対して外枠方向にL画素のポイント」といった規定に基づき、参照パターンを特定する例を図26を用いて説明する。
最初に輪郭分布の中心位置1203のパターンに対し、上記で説明したモフォロジーフィルタ(膨張処理)を適用する。膨張処理はパターンの幅を拡張する処理である。輪郭分布の中心位置のパターンは1画素幅である。このパターンに膨張処理を1回施すことで、輪郭分布の中心位置の画素を中心とした3画素幅のパターンを生成することができる。図26に膨張処理の例を示す。図26は中心パターン2602と、輪郭分布の内枠2601,外枠2603を示した図である。中心パターン2602に対し膨張処理を1回施すと図26(a)の拡大ウィンドウのように、中心パターン2602の両サイドが1画素拡張される。膨張処理で新たに追加された画素は、中心パターン2602から1画素離れたポイントに存在する画素である。このため、1回目の膨張処理で新たに追加された画素に中心パターンからの距離値「1」を書き込む。この膨張処理と距離値の書き込みを繰り返すことによって、拡大ウィンドウ図26(b)のように輪郭分布の内枠2601と輪郭分布の外枠2603の間に存在する画素に中心パターンからの距離値を書き込むことができる。このようにして得られた輪郭分布の中心からの距離情報と、輪郭分布の内枠2601,外枠2603の関係を利用することにより、輪郭分布の中心から外枠方向にL画素のポイントを容易に特定できる。
また、設計データのパターン形状に基づき、輪郭分布枠の中心位置を参照パターン化することも可能である。図9はEPマッチングによるシフト量に基づき、設計データ900と輪郭分布の内枠905,外枠903を重ね合わせた図である。輪郭分布枠間の中心位置908は、設計データ900の中心線901に対し、法線方向(中心線の端点909,910は扇状)に引いた直線上にある、内枠905と直線の交点906と外枠903と直線の交点907の中点として求めればよい。最後に中点の分布から近似直線および近似曲線を求め、参照パターンを生成する。
また、図12(e)のように、カーソル1210の操作によってユーザがディスプレイ216に接続された入力手段を介して参照パターンの位置を決定させることもできる。このような場合、ディスプレイ216に輪郭分布像を表示することで、ユーザが輪郭分布像を確認しながら、参照パターンを決定することができる。
〔形状比較検査〕
次に輪郭合成像から生成した参照パターンと評価対象パターンの形状を比較し、参照パターンの形状に対する評価対象パターンの形状評価値を生成する106。形状評価値は、後述する評価対象パターンの良否判定に利用するデータである。
処理フローを図13に示す。最初に参照パターンを読み込む1301。続いて、評価対象パターンの輪郭データを読み込む1302。次に参照パターンを用いて、以下に例示するような手法により、参照パターンの形状に対する評価対象パターンの形状の評価値を求め1303、その形状評価値をメモリ等に書き込む1304。以下、図14を利用して形状評価値を生成する3つの方法について説明するが、評価対象パターンの良否を判定できるような形状評価値の生成方法であればよいので、この生成方法に限定するものではない。
(1)パターンの間隔
図14(a)は、参照パターン1401と、評価対象パターン1402をEPマッチングのシフト量に基づき重ね合わせた像である。
図14(b)は図14(a)のような関係にある参照パターン1401と評価対象パターン1402の間隔を計測し、その間隔値を評価対象パターンの形状評価値とする例を示した図である。間隔の計測は、例えば、参照パターン上のポイント1409における参照パターンの法線方向に存在する評価対象パターンのポイント1410とその間隔1403を計測することで求めることができる。例えば参照パターン上のポイント1画素おきにこのような間隔計測を行うことで、参照パターンに対し、評価対象パターンの形状がどの程度変形しているのかを定量化できる。また、パターン間隔の平均や分散を求めて形状評価値とすることもできる。例えば、図17(a)は、参照パターン1702とパターン1703の間隔L(n)(n:パターン1703を構成する画素数)を、計測する例を示した図である。間隔計測では、パターン1703を構成する画素、もしくはサブ画素単位で、間隔値が生成されるため、輪郭データ領域1701における間隔値L(n)が膨大となる。このため、間隔値L(n)から、間隔の平均(ΣL(n)/n))や間隔の分散(Σ(L(n)−ΣL(n)/n))^2/n)を求めることによって、形状評価値を単純化する。これにより、例えば、図17(b)のようなパターン1704は、参照パターン1702の形状に対して全体的に膨張,収縮しているため、間隔分散値が小さく、間隔平均値が大きくなるといった傾向が形状評価値に表れる。また、図17(c)のようなパターン1705は、参照パターン1702の形状に対して、局所的に歪みが発生しているため、間隔分散値が大きくなるといった傾向が形状評価値に表れる。このような間隔計測による形状評価値を図15(a)のようなテーブル情報としてメモリ等に書き込む。
(2)形状変形許容範囲
図14(c)は図14(a)のような関係にある参照パターン1401に形状変形の許容範囲を示すバンド1404を設定し、評価対象パターン1402のバンド内外判定結果を形状評価値とする例を示した図である。例えば、前述のモフォロジーフィルタによる膨張処理を参照パターンに適用し、形状変形を許容できる範囲までパターンを拡張する。これにより、参照パターン1401に対する形状変形許容範囲を示すバンド1404を生成できる。そのバンド1404と評価対象パターン1402をEPマッチングのシフト量に基づき重ね合わせ、評価対象パターン1402上の各ポイントがバンド1404の内部に存在するのか外部に存在するのかを判定する。この結果を形状評価値として図15(b)のようなテーブル情報としてメモリ等に書き込む。
(3)パターンの面積
図14(d)は参照パターン1401が取り囲む領域1407と評価対象パターン1402が取り囲む領域1408を示した図である。これらの領域の面積は、パターンが取り囲む画素の数をカウントすることで求めることができる。この参照パターン1401に対する評価対象パターン1402の面積比を形状評価値としてメモリ等に書き込む。
〔良否判定〕
以上のように求めた形状評価値を利用して、パターンの良否判定を行う108。良否判定の処理フローを図16に示す。最初にそれぞれの評価対象パターンの形状評価値を読み込む1601。次に形状評価値と、良品の形状情報を定義したデータ(規定値)と比較し、評価対象パターンの良否を判定する1602。全ての評価対象パターンに対して判定を行い1605、最後に評価結果をメモリ等に書き込む。また良品と判定されたパターンと、異常と判定されたパターンのウエハ上のポイントをユーザに分かりやすく提供するために、図18のように、ウエハ1802上におけるパターンの位置と、良品の存在するエリア1801を示すウエハマップ画像を生成し、それをディスプレイに表示する。このようなウエハマップにより、ユーザは、プロセスの変動によってパターン形状の変形が大きくなるウエハ上のポイントを把握できることができる。
形状評価値の判定方法は、生成した形状評価値によって異なる。前述した(1)〜(3)の形状比較値に対する判定方法を以下に示す。
(1)パターンの間隔
形状評価によって求めた参照パターンと評価対象パターンの間隔値と、参照パターンに対する良品パターンの間隔値の比較を行い、評価対象パターンとの間隔が、良品パターンの間隔以上の部位をパターンの異常部位とみなし、異常判定部位が存在する評価対象パターンを異常と判定する。また、形状評価値がパターン間隔の分散や平均の場合も同様に、閾値処理により、パターンの異常を判定する。
(2)形状変形許容範囲
評価対象パターンにパターンの形状変形許容範囲外のパターン部位が存在する場合、評価対象パターンを異常パターンと判定する。ただし、上述したように、画像から抽出した輪郭データにはノイズ情報が含まれており、ノイズによる輪郭の変形が原因となって、誤判定が発生する可能性がある。このため、パターンの形状変形許容範囲をはみ出したパターン部位が一定以上の場合に異常パターンと判定するような閾値判定により、画像に含まれたノイズの影響による異常パターンの誤検出を低減することができる。
(3)面積
参照パターンの領域1407の面積比がN以上、もしくはM以下(M<N)の評価対象パターンを異常なパターンとして判定する。
以上説明したように、本発明によれば、電子デバイスの回路パターンの形状評価に用いる参照パターンを、複数の回路パターンの撮影画像から生成することにより、回路パターンの製造条件に適合し、かつ回路パターン個々の歪みを抑えた参照パターンを生成できる。この参照パターンと評価対象パターンの比較を行うことにより、形状評価パターンの形状評価を高精度に行うことができる。
実施例1では、設計データと輪郭データ(もしくは、輪郭を抽出する画像)のマッチング結果に基づいて輪郭データの重ね合わせ位置を特定する例を説明したが、設計データとのマッチング後に、設計データと評価対象パターンの形状不一致による微小な位置ずれや、ウエハの回転等による微小な位置ずれを検出し、重ね合わせ位置を微調整することで重ね合わせ精度を向上させることもできる。輪郭データを用いて重ね合わせ位置を微調整し、輪郭合成像を生成する処理フローを図19に示す。
まず、実施例1で説明したように、輪郭データを読み込み1901、設計データと評価対象パターンのマッチングを行って1902、シフト量を算出する1903。このシフト量に基づき2つの輪郭データを重ね合わせた例を図20(a)に示す。これは非常に極端な例ではあるが、輪郭データ2001に対し、輪郭データ2002は傾いている。このような輪郭データ間の回転や微小な位置ずれ検出するために、輪郭データ間のマッチングを行い1904、と位置補正量を算出する1905。
具体的には評価対象パターンの輪郭データのうち、例えば輪郭データ2001をテンプレートとし、残りの評価対象パターンの輪郭データ2002に対し、輪郭データ間のマッチングを行って、位置補正量(回転角度,位置ずれ量)2003を算出する。
パターンマッチングでは、例えば、「CG−ARTS協会,ディジタル画像処理」P215に記載の一般化ハフ変換のようにテンプレートと、評価対象パターンのサイズが異なる(プロセス変動によるパターン形状変形は、一部の形状異常を除き、パターン形状を維持したまま、膨張,収縮しているケースがほとんどである。)場合や、テンプレートに対し評価対象パターンが回転している場合でも、良好にマッチングポイントを探索できるような手法を適用する。また、一般化ハフ変換以外にも、パターン間の回転角度や、パターンの変形に強健なマッチング手法は様々提案されており、輪郭データのマッチング手法について、これに限定したものではない。最後に、輪郭データ間のマッチングにより、検出した評価対象パターンの位置補正量2003に基づき評価対象パターンの回転補正を行い、重ね合わせ位置に相当するポイントで輪郭データの重ね合わせを行う。
以上説明したように、本発明では、輪郭データの重ね合わせを行う前に、一つの輪郭データをテンプレートとした輪郭データ間の変形,回転を考慮した輪郭データ間のマッチングを行うことにより、輪郭データの位置補正量を算出することができ、その位置補正量に基づき、輪郭データの位置補正を行うことで輪郭データを高精度に重ね合わせることができる。これにより、パターン形状の形状評価に用いる参照パターンをより正確に生成できるようになり、この参照パターンと評価対象パターンの形状比較によって、パターンの高精度な形状評価を行うことができる。
以下、プロセスウィンドウ計測を行う実施例について説明する。
実施例1〜2で説明した形状評価方法では、参照パターン生成用の複数のパターンと、評価対象パターンを別々のパターンとして説明したが、複数の評価対象パターンから参照パターンを生成し、その参照パターンを用いて評価対象パターンを形状評価することで、例えば、評価対象パターンの平均的な形状に対する評価対象パターンの形状の差異といった、評価対象パターンの形状バリエーションに対する相対的な形状評価を行うことができる。
例えば、設計データ上では同一形状のパターンで、チップが異なるパターンを複数撮影し、各チップの撮影画像から、輪郭データを抽出し、輪郭分布データを生成する。この輪郭分布は、チップ間に発生したプロセス変動によるパターン形状のバリエーションを示すものである。次に、輪郭分布の平均的な位置を参照パターン化する。この参照パターンはチップ間に生じたプロセス変動によるパターン形状の平均的なポイントを示す。この参照パターンと評価対象パターンの間隔を、実施例1で説明したように計測することで、評価対象パターンがプロセス変動によって生じるパターン変形の平均的なポイントから、どの程度乖離しているのかを評価できる。
また、この乖離幅と実施例1で示したようなパターン形状の変形許容範囲を比較することにより、パターンの良否判定を行うことができる。この良否判定を全ての評価対象パターンに対して行う。
本発明によれば、複数の評価対象パターンから生成した参照パターンを評価対象パターンの形状評価に用いることで、評価対象パターンの形状バリエーションに対する評価対象パターンの相対的な評価を行うことができる。
プロセス変動によるパターンの形状変形が比較的小さい複数のパターン画像を用いることにより、エッジラフネスやノイズによる小さなエッジの変形を排除した参照パターンを生成できる。近年のプロセスでは、OPC(Optical Proximity Correction)モデルのキャリブレーション向けにウエハ上に製造したパターンの輪郭データを用いるケースが増えている。OPCモデルの構築では、特に、画像に含まれたノイズによるパターンの変形を抑えることが重要とされるため、このように、プロセス変動がない複数のパターンから参照パターンを生成し、その参照パターンをキャリブレーションに利用することが有効である。
輪郭合成の方法や、生成した参照パターンによる形状評価の方法は上述の実施例のものを利用できる。ただし、本実施例の目的は、プロセス変動によるパターン形状の変形が小さいパターンを利用して参照パターンを生成検出することであり、形状が大きく変形したパターンを用いて参照パターンを生成すると、参照パターンの形状も大きく変形する可能性がある。このため、例えば、図27に示すような輪郭データの合成手順の過程で、正常パターンか異常パターンかの判定を行い2701、正常なパターンのみを輪郭の合成対象とするような処理を適用する。これにより、エッジラフネスやノイズによる小さなエッジの変形とプロセス変動等の影響により発生した大きな変形を排除した参照パターンを生成できる。具体的には、パターンの代表的なポイントの間隔や、パターンと設計データの間隔等を計測し、その計測値と、正常なパターンの場合の間隔値(規定値)と比較する。
以上説明したように、本発明では、実施例1〜3で説明した輪郭合成の前段階において、パターンが大きく歪んでいる輪郭データを、パターンの形状判定によって検出し、そのパターンを輪郭の合成対象から除外するといった処理を追加することにより、OPCのモデルキャリブレーションや、パターン形状の評価に適した参照パターンを生成できる。
本発明の技術は、ウエハやレチクル等を用いて製造される電子デバイスの回路パターンの撮影画像を利用して、この回路パターンの形状を評価する装置に広く適用することが可能である。
実施例1に記載の本発明のパターン形状評価方法を示すフローチャートである。 本発明のパターン形状評価装置の構成概要図である。 ウエハ間,ショット間,チップ間,同一チップ間に存在するパターンを示した図である。 パターンの撮影画像と撮影画像から抽出したパターンの輪郭データを示した図である。 輪郭データを重ね合わせる手順を示した図である。 輪郭合成データを生成する手順を示すフローチャートである。 同一FOV内の輪郭データの重ね合わせを行う手順を示した図である。 同一FOV内の輪郭データから輪郭合成データを生成する手順を示すフローチャートである。 設計データを基準とし、輪郭合成データから参照パターンを生成する方法を示した図である。 輪郭合成データから参照パターンを生成する一つの手法を示したフローチャートである。 輪郭合成データから参照パターンを生成する一つの手法を示したフローチャートである。 輪郭分布データから参照パターンのポイントを特定する方法を示した図である。 参照パターンと評価対象パターンの形状比較を行って評価対象パターンの形状評価値を生成する処理手順を示したフローチャートである。 参照パターンと評価対象パターンの形状比較例を示した図である。 形状評価値の結果を格納するテーブルデータを示した図である。 パターンの良否判定手順を示したフローチャートである。 パターン間隔の計測例を示した図である。 良否判定結果をユーザに提供するための画像データを示した図である。 輪郭データの重ね合わせを高精度に行うための手順を示したフローチャートである。 輪郭データの回転,位置ずれとその補正結果を示した図である。 輪郭データの合成例を示した図である。 SEMの撮影シーケンスを示したフローチャートである。 SEMの撮影シーケンスレイアウトを示した図である。 輪郭分布データから参照パターンを特定する例を示した図である。 回路パターンの設計データと、設計データのパターンの中心線の関係を示した図である。 輪郭分布データから参照パターンを生成する例を示した図である。 大きく変形したパターンを輪郭の合成対象から除外して輪郭合成データを生成する手順を示したフローチャートである。
符号の説明
201 ウエハ
202 電子光学系
203 電子銃
204 電子線
205 コンデンサレンズ
206 偏向器
207 ExB偏向器
208 対物レンズ
209 二次電子検出器
210,211 反射電子検出器
212〜214 A/D変換器
215 処理制御部
216 ディスプレイ
217 ステージ
219 ステージコントローラ
220 偏向制御部
221 フォーカス制御部
223 記憶装置
225 撮影レシピ生成部
230 設計システム
251 CPU
252 画像メモリ
253 LSI
301,305 ウエハ
302 ショット領域
303 チップ
304 チップ内パターン
306 ウエハが異なるパターンの関係
307 ショットが異なるパターンの関係
308 チップが異なるパターンの関係
309 FOV内のパターン
401 ホワイトバンド
402 背景
403 パターンの輪郭
501 シフト量A
502 シフト量B
503 シフト量C
504 輪郭の重ね合わせ位置
701 シフト量
702〜704 輪郭合成点
705〜707 合成領域
708 座標
900,1211 設計データ
901 設計データの中心線
902 設計データの中心線に対する法線
903,2603 輪郭分布の外枠
904 輪郭分布の中心
905,2601 輪郭分布の内枠
906,907,908 輪郭分布中心と法線の交点
909,910 設計データの中心線の端点
1201 内枠
1202 外枠
1203 輪郭分布の中心位置
1210 カーソル
1212 中心線
1213,1214 参照パターンの位置
1401,1702,2103 参照パターン
1402 評価対象パターン
1403 間隔
1404 バンド
1405 評価対象パターンの異常部位
1406 参照パターンに対する形状変形の許容範囲
1407,1408 領域
1409 参照パターン上のポイント
1410 ポイント
1701 輪郭データ領域
1703,1704,1705 パターン
1801 良否判定結果
2001,2002 輪郭データ
2101 輪郭データA
2102 輪郭データB
2003 位置補正量
2301 設計レイアウト
2302 フォーカスポイント
2303 アドレッシングポイント
2304 ブライトネス,コントラストポイント
2305 形状評価ポイント
2306 オートスティグマポイント
2401,2402 ポイント
2403,2404 輪郭分布枠
2501 頂点座標データ
2502 設計データの中心線
2602 中心パターン

Claims (15)

  1. 電子デバイスの回路パターンの形状評価に利用する参照パターンを生成する装置であって、少なくとも2つ以上の回路パターンの輪郭データから回路パターンの輪郭分布データを生成する輪郭分布データ生成手段と、前記輪郭分布データから、パターン検査に用いる参照パターンを生成する参照パターン生成手段と、を有することを特徴としたパターン生成装置。
  2. 請求項1に記載のパターン生成装置は、輪郭データと他の輪郭データのパターンマッチングを行って、輪郭データ間の重ね合わせ位置を特定する手段を有し、前記輪郭分布データ生成手段は、前記輪郭データ間の重ね合わせ位置に基づき、輪郭分布データを生成することを特徴としたパターン生成装置。
  3. 請求項1に記載のパターン生成装置は、設計データと輪郭データとのパターンマッチングを行って、輪郭データの重ね合わせ位置を特定する手段を有し、前記輪郭分布データ生成手段は、前記設計データと前記輪郭データ間の重ね合わせ位置に基づき、輪郭分布データを生成することを特徴としたパターン生成装置。
  4. 請求項1に記載の前記輪郭分布データ生成手段は、回路パターンの形状の規定値と前記輪郭データの形状を比較して、前記回路パターンの形状の規定値を満たす輪郭データのみを用いて輪郭分布データを生成することを特徴としたパターン生成装置。
  5. 請求項1に記載の前記参照パターン生成手段は、前記輪郭分布データから、輪郭の分布を特定し、前記輪郭の分布範囲内に参照パターンを設定することを特徴としたパターン生成装置。
  6. 請求項1に記載の前記参照パターン生成手段は、回路パターンの設計データの形状を参考にして、前記輪郭分布データから前記参照パターンを生成することを特徴としたパターン生成装置。
  7. 請求項1に記載の輪郭分布データ生成手段と、参照パターン生成手段と、前記参照パターンと評価対象パターンの比較によって前記参照パターンに対する前記評価対象パターンの形状評価値を生成する形状評価手段を有することを特徴とするパターン形状評価装置。
  8. 請求項7に記載の前記形状評価手段は、前記形状評価値を用いて、前記評価対象パターンの良否判定を行う良否判定手段と、を有することを特徴とするパターン形状評価装置。
  9. 請求項7に記載の前記パターン形状装置は、前記参照パターンと前記評価対象パターンの間隔を計測、もしくは、前記間隔の平均、もしくは、前記間隔の分散、もしくは、参照パターンに設けたパターン形状の変形を許容するための領域に対する前記評価対象パターンの内外、もしくは、前記参照パターンと前記評価対象パターンの面積のいずれかを前記評価対象パターンの形状評価値として算出することを特徴とし、前記良否判定手段は、これら前記形状評価値と、前記評価対象パターンを良否判定するための規定値の比較により、パターンの良否判定を行うことを特徴としたパターン形状評価装置。
  10. 請求項1に記載の前記輪郭分布データ生成手段,参照パターン生成手段,請求項7に記載の前記形状評価手段,前記良否判定手段、の全ての手段、もしくは一部の手段と、前記評価対象パターンの撮影画像や、参照パターンを生成するための前記少なくとも2つ以上の回路パターンの撮影画像を取得する画像撮影手段と、前記撮影画像から前記回路パターンの輪郭データを抽出する手段と、前記パターン形状評価による前記撮影画像や前記輪郭データや、前記輪郭分布データや、前記参照パターンや、前記形状評価値や、前記良否判定結果のデータを保存するデータ記憶手段を有することを特徴とするパターン形状評価装置。
  11. 請求項10に記載の前記パターン形状評価装置は、前記画像撮影手段で前記回路パターンの撮影画像を取得するためのレシピを前記回路パターンの設計データから生成する手段を有することを特徴とした、パターン形状評価装置。
  12. 請求項10に記載の前記パターン形状評価装置は、前記輪郭分布データや、前記参照パターンや、前記形状評価結果のデータを表示する手段を有することを特徴としたパターン形状評価装置。
  13. 請求項10に記載の前記パターン形状評価装置は、ユーザからの指示を前記参照パターン生成手段や、前記形状評価手段や、前記良品判定手段に反映させるためのデータ入力手段を有し、前記参照パターン生成手段や、前記形状評価手段,前記良品判定手段は、前記データ入力手段からの指示データに基づき、参照パターンの生成や形状評価を行うことを特徴としたパターン形状評価装置。
  14. 請求項1に記載の前記パターン生成装置は、ユーザからの指示を前記参照パターン生成手段に反映させるためのデータ入力手段を有し、前記参照パターン生成手段は、前記データ入力手段からの指示データに基づき、参照パターンを生成することを特徴としたパターン生成装置。
  15. 請求項12に記載のパターン形状評価装置は、前記形状評価値や前記良品判定結果をウエハマップに示した画像を生成し、前記データ表示手段に前記ウエハマップ画像を表示することを特徴としたパターン形状評価装置。
JP2008031314A 2008-02-13 2008-02-13 パターン生成装置およびパターン形状評価装置 Active JP5276854B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008031314A JP5276854B2 (ja) 2008-02-13 2008-02-13 パターン生成装置およびパターン形状評価装置
US12/366,196 US8077962B2 (en) 2008-02-13 2009-02-05 Pattern generating apparatus and pattern shape evaluating apparatus
US13/294,828 US8363923B2 (en) 2008-02-13 2011-11-11 Pattern generating apparatus and pattern shape evaluating apparatus
US13/750,761 US8515155B2 (en) 2008-02-13 2013-01-25 Pattern generating apparatus and pattern shape evaluating apparatus
US13/959,384 US8655050B2 (en) 2008-02-13 2013-08-05 Pattern generating apparatus and pattern shape evaluating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031314A JP5276854B2 (ja) 2008-02-13 2008-02-13 パターン生成装置およびパターン形状評価装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013070935A Division JP5596812B2 (ja) 2013-03-29 2013-03-29 パターン生成装置およびパターン形状評価装置

Publications (2)

Publication Number Publication Date
JP2009194051A true JP2009194051A (ja) 2009-08-27
JP5276854B2 JP5276854B2 (ja) 2013-08-28

Family

ID=40938922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031314A Active JP5276854B2 (ja) 2008-02-13 2008-02-13 パターン生成装置およびパターン形状評価装置

Country Status (2)

Country Link
US (4) US8077962B2 (ja)
JP (1) JP5276854B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158439A (ja) * 2010-02-04 2011-08-18 Hitachi High-Technologies Corp 電子線を用いた外観検査装置
JP2011220735A (ja) * 2010-04-06 2011-11-04 Hitachi High-Technologies Corp 走査電子顕微鏡
JP2012026988A (ja) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp 欠陥検出装置及びコンピュータプログラム
WO2012077271A1 (ja) * 2010-12-06 2012-06-14 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
JP2012159444A (ja) * 2011-02-02 2012-08-23 Hitachi High-Technologies Corp パターン形状評価方法及びパターン形状評価装置
JP2012237679A (ja) * 2011-05-12 2012-12-06 Ihi Corp 塗布位置検査装置及び方法並びにプログラム
US8423920B2 (en) 2010-07-02 2013-04-16 Samsung Electronics Co., Ltd. Method of forming photomask by collecting verification data based on a layout of contour patterns
WO2013089096A1 (ja) * 2011-12-16 2013-06-20 株式会社日立ハイテクノロジーズ 画像処理装置、輪郭線形成方法、及びコンピュータープログラム
JP2013243230A (ja) * 2012-05-21 2013-12-05 Hitachi High-Technologies Corp パターン評価装置、及びコンピュータープログラム
JP2014187195A (ja) * 2013-03-22 2014-10-02 Toshiba Corp パターンの重ね合わせずれ計測方法
WO2014208202A1 (ja) * 2013-06-24 2014-12-31 株式会社日立ハイテクノロジーズ パターン形状評価装置及び方法
JP2015161554A (ja) * 2014-02-27 2015-09-07 株式会社日立ハイテクノロジーズ パターン測定装置、及びパターン測定装置の管理装置
JP2017036963A (ja) * 2015-08-07 2017-02-16 株式会社東芝 パターン輪郭抽出装置、パターン輪郭抽出方法およびパターン輪郭抽出プログラム
WO2017130304A1 (ja) * 2016-01-27 2017-08-03 株式会社日立ハイテクノロジーズ 計測装置、方法および表示装置
US9846931B2 (en) 2012-03-19 2017-12-19 Hitachi High-Technologies Corporation Pattern sensing device and semiconductor sensing system
US10718611B2 (en) 2012-02-28 2020-07-21 Hitachi High-Tech Corporation Semiconductor evaluation device and computer program

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926116B2 (ja) * 2008-04-16 2012-05-09 株式会社日立ハイテクノロジーズ 画像検査装置
JP5114302B2 (ja) * 2008-06-12 2013-01-09 株式会社日立ハイテクノロジーズ パターン検査方法,パターン検査装置及びパターン処理装置
JP5500871B2 (ja) * 2009-05-29 2014-05-21 株式会社日立ハイテクノロジーズ テンプレートマッチング用テンプレート作成方法、及びテンプレート作成装置
CN102096307A (zh) * 2009-12-14 2011-06-15 鸿富锦精密工业(深圳)有限公司 测试相机镜头偏转角度的方法和装置
JP5564276B2 (ja) * 2010-01-28 2014-07-30 株式会社日立ハイテクノロジーズ パターンマッチング用画像作成装置
JP5542478B2 (ja) * 2010-03-02 2014-07-09 株式会社日立ハイテクノロジーズ 荷電粒子線顕微鏡
KR101096979B1 (ko) * 2010-05-07 2011-12-20 주식회사 하이닉스반도체 반도체 소자의 패턴 균일도 조절 방법
JP5081276B2 (ja) * 2010-06-02 2012-11-28 株式会社日立ハイテクノロジーズ パターン計測装置、パターン計測方法、およびプログラム
US8699784B2 (en) * 2010-08-10 2014-04-15 Camtek Ltd. Inspection recipe generation and inspection based on an inspection recipe
JP2012150065A (ja) * 2011-01-21 2012-08-09 Hitachi High-Technologies Corp 回路パターン検査装置およびその検査方法
FR2985066B1 (fr) * 2011-12-22 2014-02-21 Commissariat Energie Atomique Procede de caracterisation d'un motif
TWI617805B (zh) * 2012-09-14 2018-03-11 Ebara Corp Inspection device
US9057965B2 (en) * 2012-12-03 2015-06-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method of generating a set of defect candidates for wafer
US9639635B2 (en) * 2013-01-02 2017-05-02 Embodee Corp Footwear digitization system and method
US9483819B2 (en) 2013-01-29 2016-11-01 Kla-Tencor Corporation Contour-based array inspection of patterned defects
US10607334B2 (en) * 2014-12-09 2020-03-31 Asml Netherlands B.V. Method and apparatus for image analysis
US10437157B2 (en) 2014-12-09 2019-10-08 Asml Netherlands B.V. Method and apparatus for image analysis
US9846934B2 (en) 2015-04-13 2017-12-19 Anchor Semiconductor Inc. Pattern weakness and strength detection and tracking during a semiconductor device fabrication process
PL3095591T3 (pl) * 2015-05-19 2020-06-29 MTU Aero Engines AG Sposób i urządzenie do co najmniej obszarowego określania zarysu co najmniej jednej wytworzonej generatywnie warstwy elementu konstrukcyjnego
EP3133553B1 (en) * 2015-08-17 2021-08-04 Imec Vzw Method for verifying a pattern of features printed by a lithography process
JP2017134596A (ja) 2016-01-27 2017-08-03 株式会社東芝 画像処理方法及びプロセスシミュレーション装置
JP6333871B2 (ja) * 2016-02-25 2018-05-30 ファナック株式会社 入力画像から検出した対象物を表示する画像処理装置
KR102582665B1 (ko) * 2016-10-07 2023-09-25 삼성전자주식회사 집적 회로의 패턴들을 평가하는 시스템 및 방법
EP3543791A1 (en) 2018-03-23 2019-09-25 ASML Netherlands B.V. Method of metrology and associated apparatuses
US11567413B2 (en) 2019-02-25 2023-01-31 Asml Netherlands B.V. Method for determining stochastic variation of printed patterns
CN111583355B (zh) * 2020-05-09 2024-01-23 维沃移动通信有限公司 面部形象生成方法、装置、电子设备及可读存储介质
KR20220095472A (ko) 2020-12-30 2022-07-07 삼성전자주식회사 패턴 분석 시스템 및 상기 시스템을 이용한 반도체 장치 제조 방법
CN116080108B (zh) * 2023-02-17 2023-07-25 浙江恒亿达复合材料有限公司 风电玻璃纤维拉挤板材生产过程数据采集管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203621A (ja) * 1996-01-29 1997-08-05 Hitachi Ltd 被検査パターンの欠陥検査方法およびその方法を用いた半導体製造プロセス評価方法並びに複数画像の位置合わせ方法
JPH1173513A (ja) * 1997-06-25 1999-03-16 Matsushita Electric Works Ltd パターン検査方法及びその装置
JP2001338304A (ja) * 1999-08-26 2001-12-07 Nano Geometry Kenkyusho:Kk パターン検査装置、パターン検査方法および記録媒体
JP2006220644A (ja) * 2005-01-14 2006-08-24 Hitachi High-Technologies Corp パターン検査方法及びその装置
WO2007094439A1 (ja) * 2006-02-17 2007-08-23 Hitachi High-Technologies Corporation 試料寸法検査・測定方法、及び試料寸法検査・測定装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475766A (en) * 1991-09-05 1995-12-12 Kabushiki Kaisha Toshiba Pattern inspection apparatus with corner rounding of reference pattern data
JPH07260699A (ja) 1994-03-18 1995-10-13 Fujitsu Ltd 画像データ比較装置
JP3127434B2 (ja) 1997-05-14 2001-01-22 日本アビオニクス株式会社 パターン検査方法及びパターン検査装置
WO1998059213A1 (fr) 1997-06-25 1998-12-30 Matsushita Electric Works, Ltd. Procede et dispositif de controle de motifs
JPH11288879A (ja) 1998-02-04 1999-10-19 Hitachi Ltd 露光条件決定方法とその装置ならびに半導体装置の製造方法
US7796801B2 (en) * 1999-08-26 2010-09-14 Nanogeometry Research Inc. Pattern inspection apparatus and method
US6868175B1 (en) * 1999-08-26 2005-03-15 Nanogeometry Research Pattern inspection apparatus, pattern inspection method, and recording medium
JP2002006479A (ja) 2000-06-19 2002-01-09 Toppan Printing Co Ltd マスク検査方法及びマスク検査装置
US7106897B1 (en) * 2002-04-29 2006-09-12 Advanced Micro Devices, Inc. Universal spatial pattern recognition system
JP4068541B2 (ja) * 2003-09-25 2008-03-26 株式会社東芝 集積回路パターン検証装置と検証方法
JP4154374B2 (ja) * 2004-08-25 2008-09-24 株式会社日立ハイテクノロジーズ パターンマッチング装置及びそれを用いた走査型電子顕微鏡
JP2006234588A (ja) * 2005-02-25 2006-09-07 Hitachi High-Technologies Corp パターン測定方法、及びパターン測定装置
JP4769025B2 (ja) * 2005-06-15 2011-09-07 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡用撮像レシピ作成装置及びその方法並びに半導体パターンの形状評価装置
JP4585926B2 (ja) * 2005-06-17 2010-11-24 株式会社日立ハイテクノロジーズ パターンレイヤーデータ生成装置、それを用いたパターンレイヤーデータ生成システム、半導体パターン表示装置、パターンレイヤーデータ生成方法、及びコンピュータプログラム
JP4679978B2 (ja) * 2005-06-28 2011-05-11 株式会社日立ハイテクノロジーズ 荷電粒子ビーム応用装置
JP4658756B2 (ja) * 2005-09-14 2011-03-23 株式会社日立ハイテクノロジーズ 画像処理装置、画像処理方法および走査型電子顕微鏡
JP4824987B2 (ja) * 2005-10-28 2011-11-30 株式会社日立ハイテクノロジーズ パターンマッチング装置およびそれを用いた半導体検査システム
US8105418B2 (en) 2006-02-14 2012-01-31 Kagome Co., Ltd. Fungi preventing method, flying organism removing apparatus and plant protecting apparatus by adsorption of conidia using dielectric polarization
JP5010207B2 (ja) * 2006-08-14 2012-08-29 株式会社日立ハイテクノロジーズ パターン検査装置及び半導体検査システム
JP4891712B2 (ja) * 2006-09-05 2012-03-07 株式会社日立ハイテクノロジーズ 類似度分布を利用したテンプレートマッチング方法を用いた検査装置
US7961453B2 (en) * 2007-01-09 2011-06-14 Samsung Electro-Mechanics Co., Ltd. Multilayer chip capacitor
JP4659004B2 (ja) * 2007-08-10 2011-03-30 株式会社日立ハイテクノロジーズ 回路パターン検査方法、及び回路パターン検査システム
EP2472850B1 (en) 2008-12-22 2013-11-20 Mitsubishi Electric Corporation Image processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203621A (ja) * 1996-01-29 1997-08-05 Hitachi Ltd 被検査パターンの欠陥検査方法およびその方法を用いた半導体製造プロセス評価方法並びに複数画像の位置合わせ方法
JPH1173513A (ja) * 1997-06-25 1999-03-16 Matsushita Electric Works Ltd パターン検査方法及びその装置
JP2001338304A (ja) * 1999-08-26 2001-12-07 Nano Geometry Kenkyusho:Kk パターン検査装置、パターン検査方法および記録媒体
JP2006220644A (ja) * 2005-01-14 2006-08-24 Hitachi High-Technologies Corp パターン検査方法及びその装置
WO2007094439A1 (ja) * 2006-02-17 2007-08-23 Hitachi High-Technologies Corporation 試料寸法検査・測定方法、及び試料寸法検査・測定装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158439A (ja) * 2010-02-04 2011-08-18 Hitachi High-Technologies Corp 電子線を用いた外観検査装置
JP2011220735A (ja) * 2010-04-06 2011-11-04 Hitachi High-Technologies Corp 走査電子顕微鏡
US8423920B2 (en) 2010-07-02 2013-04-16 Samsung Electronics Co., Ltd. Method of forming photomask by collecting verification data based on a layout of contour patterns
JP2012026988A (ja) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp 欠陥検出装置及びコンピュータプログラム
KR101479889B1 (ko) * 2010-12-06 2015-01-06 가부시키가이샤 히다치 하이테크놀로지즈 하전 입자선 장치
WO2012077271A1 (ja) * 2010-12-06 2012-06-14 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
JP2012122730A (ja) * 2010-12-06 2012-06-28 Hitachi High-Technologies Corp 荷電粒子線装置
JP2012159444A (ja) * 2011-02-02 2012-08-23 Hitachi High-Technologies Corp パターン形状評価方法及びパターン形状評価装置
JP2012237679A (ja) * 2011-05-12 2012-12-06 Ihi Corp 塗布位置検査装置及び方法並びにプログラム
WO2013089096A1 (ja) * 2011-12-16 2013-06-20 株式会社日立ハイテクノロジーズ 画像処理装置、輪郭線形成方法、及びコンピュータープログラム
US10718611B2 (en) 2012-02-28 2020-07-21 Hitachi High-Tech Corporation Semiconductor evaluation device and computer program
US9846931B2 (en) 2012-03-19 2017-12-19 Hitachi High-Technologies Corporation Pattern sensing device and semiconductor sensing system
JP2013243230A (ja) * 2012-05-21 2013-12-05 Hitachi High-Technologies Corp パターン評価装置、及びコンピュータープログラム
JP2014187195A (ja) * 2013-03-22 2014-10-02 Toshiba Corp パターンの重ね合わせずれ計測方法
US9244365B2 (en) 2013-03-22 2016-01-26 Kabushiki Kaisha Toshiba Method for measuring pattern misalignment
WO2014208202A1 (ja) * 2013-06-24 2014-12-31 株式会社日立ハイテクノロジーズ パターン形状評価装置及び方法
JP5966087B2 (ja) * 2013-06-24 2016-08-10 株式会社日立ハイテクノロジーズ パターン形状評価装置及び方法
JPWO2014208202A1 (ja) * 2013-06-24 2017-02-23 株式会社日立ハイテクノロジーズ パターン形状評価装置及び方法
US9679371B2 (en) 2013-06-24 2017-06-13 Hitachi High-Technologies Corporation Pattern shape evaluation device and method
JP2015161554A (ja) * 2014-02-27 2015-09-07 株式会社日立ハイテクノロジーズ パターン測定装置、及びパターン測定装置の管理装置
JP2017036963A (ja) * 2015-08-07 2017-02-16 株式会社東芝 パターン輪郭抽出装置、パターン輪郭抽出方法およびパターン輪郭抽出プログラム
WO2017130304A1 (ja) * 2016-01-27 2017-08-03 株式会社日立ハイテクノロジーズ 計測装置、方法および表示装置
KR20180082575A (ko) * 2016-01-27 2018-07-18 가부시키가이샤 히다치 하이테크놀로지즈 계측 장치, 방법 및 표시 장치
US10996569B2 (en) 2016-01-27 2021-05-04 Hitachi High-Tech Corporation Measurement device, method and display device
KR102278879B1 (ko) * 2016-01-27 2021-07-19 주식회사 히타치하이테크 계측 장치, 방법 및 표시 장치

Also Published As

Publication number Publication date
US8363923B2 (en) 2013-01-29
US20120057774A1 (en) 2012-03-08
US8515155B2 (en) 2013-08-20
US20090202139A1 (en) 2009-08-13
US8077962B2 (en) 2011-12-13
US20130315468A1 (en) 2013-11-28
JP5276854B2 (ja) 2013-08-28
US20130136335A1 (en) 2013-05-30
US8655050B2 (en) 2014-02-18

Similar Documents

Publication Publication Date Title
JP5276854B2 (ja) パターン生成装置およびパターン形状評価装置
JP5639797B2 (ja) パターンマッチング方法,画像処理装置、及びコンピュータプログラム
JP5030906B2 (ja) 走査荷電粒子顕微鏡を用いたパノラマ画像合成方法およびその装置
US8507856B2 (en) Pattern measuring method and pattern measuring device
KR101623135B1 (ko) 패턴 평가 장치 및 패턴 평가 방법
JP5422411B2 (ja) 荷電粒子線装置によって得られた画像データの輪郭線抽出方法、及び輪郭線抽出装置
WO2010098017A1 (ja) パターン測定装置
JP4846635B2 (ja) パターン情報生成方法
JP5868462B2 (ja) パターン形状評価装置
WO2014208202A1 (ja) パターン形状評価装置及び方法
US20110286685A1 (en) Image formation method and image formation device
JP2009036572A (ja) パターン測定方法及びパターン測定装置
JP5596812B2 (ja) パターン生成装置およびパターン形状評価装置
JP2008242112A (ja) マスクパターン評価装置及びフォトマスクの製造方法
WO2016104342A1 (ja) 露光条件評価装置
JP2010153277A (ja) 荷電粒子線装置及び荷電粒子線装置による画像取得条件決定方法
US10346970B2 (en) Inspection method for detecting a die defect
JP5604208B2 (ja) 欠陥検出装置及びコンピュータプログラム
JP6001945B2 (ja) パターン計測装置及び方法
JP5241697B2 (ja) アライメントデータ作成システム及び方法
TW202001235A (zh) 畫像產生方法
JP2011007757A (ja) 撮像範囲間の重なり判定方法及び重なり判定対象のチップ選択方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5276854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350