JP2009191360A - High strength steel sheet, and method for producing the same - Google Patents
High strength steel sheet, and method for producing the same Download PDFInfo
- Publication number
- JP2009191360A JP2009191360A JP2009007298A JP2009007298A JP2009191360A JP 2009191360 A JP2009191360 A JP 2009191360A JP 2009007298 A JP2009007298 A JP 2009007298A JP 2009007298 A JP2009007298 A JP 2009007298A JP 2009191360 A JP2009191360 A JP 2009191360A
- Authority
- JP
- Japan
- Prior art keywords
- less
- cooling
- temperature
- steel sheet
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、伸びおよび加工後のフランジ特性に優れ、YRが85%超えで、引張強度(TS)980MPa以上の高強度鋼板およびその製造方法に関するものである。 The present invention relates to a high-strength steel sheet excellent in elongation and flange characteristics after processing, having a YR exceeding 85% and having a tensile strength (TS) of 980 MPa or more, and a method for producing the same.
自動車の足回り部材、または、バンパーやセンターピラーといった衝突部材には、成形性(主に伸びおよび伸びフランジ特性)が必要とされるため、従来より、引張強度が590MPa級鋼が使用されてきた。しかし、近年では、自動車の環境負荷低減や衝撃特性向上の観点から、自動車用鋼板の高強度化が推進されており、引張強度が980MPa級の鋼の使用が検討され始めている。一般に、強度が上昇するに伴い、加工性が低下する。そのため、現在、高強度かつ高加工性を有する鋼板についての研究がなされている。伸びおよび伸びフランジ特性を向上させる技術として、たとえば、以下が挙げられる。 For automobile underbody members, or impact members such as bumpers and center pillars, formability (mainly stretch and stretch flange characteristics) is required, and thus, conventionally, steel with a tensile strength of 590 MPa has been used. . However, in recent years, from the viewpoint of reducing the environmental load of automobiles and improving impact characteristics, the strength of automobile steel sheets has been increased, and the use of steel having a tensile strength of 980 MPa class has begun to be studied. In general, as the strength increases, workability decreases. Therefore, research is currently being conducted on steel sheets having high strength and high workability. Examples of techniques for improving the stretch and stretch flange characteristics include the following.
特許文献1には、実質的にフェライト単相組織であり、平均10nm未満のTi,MoおよびVを含む炭化物が分散析出するとともに、該Ti,MoおよびVを含む炭化物は、原子%で表されるTi、Mo、Vが、V/(Ti+Mo+V)≧0.3を満たす平均組成を有する、引張強度が980MPa以上の高張力鋼板に関する技術が開示されている。 In Patent Document 1, carbides containing Ti, Mo, and V that are substantially ferrite single-phase structures and having an average of less than 10 nm are dispersed and precipitated, and the carbides containing Ti, Mo, and V are expressed in atomic%. A technique relating to a high-tensile steel sheet having an average composition satisfying V / (Ti + Mo + V) ≧ 0.3 and having a tensile strength of 980 MPa or more is disclosed.
特許文献2には、質量で、C:0.08〜0.20%、Si:0.001%以上、0.2%未満、Mn:1.0%超、3.0%以下、Al:0.001〜0.5%、V:0.1%超、0.5%以下、Ti:0.05%以上、0.2%未満およびNb:0.005%〜0.5%を含有し、かつ、(式1)9(Ti/48+Nb/93)×C/12≦4.5×10−5、(式2)0.5%≦(V/51+Ti/48+Nb/93)/(C/12)≦1.5、(式3)V+Ti×2+Nb×1.4+C×2+Mn×0.1≧0.80の3式を満たし、残部Feおよび不純物からなる鋼組織を有し、平均粒径5μm以下で硬度が250Hv以上のフェライトを70体積%以上含有する鋼組織を有し、880MPa以上の強度と降伏比0.80以上を有する高強度熱延鋼板に関する技術が開示されている。 In Patent Document 2, by mass, C: 0.08 to 0.20%, Si: 0.001% or more, less than 0.2%, Mn: more than 1.0%, 3.0% or less, Al: 0.001-0.5%, V: more than 0.1%, 0.5% or less, Ti: 0.05% or more, less than 0.2% and Nb: 0.005% to 0.5% (Formula 1) 9 (Ti / 48 + Nb / 93) × C / 12 ≦ 4.5 × 10 −5 , (Formula 2) 0.5% ≦ (V / 51 + Ti / 48 + Nb / 93) / (C /12)≦1.5, (Formula 3) V + Ti × 2 + Nb × 1.4 + C × 2 + Mn × 0.1 ≧ 0.80, satisfying the three formulas, having a steel structure composed of the balance Fe and impurities, and having an average particle diameter High-strength hot-rolled steel having a steel structure containing 70% by volume or more of ferrite of 5 μm or less and hardness of 250 Hv or more, having a strength of 880 MPa or more and a yield ratio of 0.80 or more. Techniques relating to plates are disclosed.
特許文献3には、質量で、C:0.05〜0.2%、Si:0.001%〜3.0%、Mn:0.5〜3.0、P:0.001〜0.2%、Al:0.001〜3%、V:0.1%を超えて1.5%までを含み、残部はFe及び不純物からなり、組織が平均粒径1〜5μmのフェライトを主相とし、フェライト粒内に平均粒径が50nm以下のVの炭窒化物が存在することを特徴とする熱延鋼板に関する技術が開示されている。 In Patent Document 3, by mass, C: 0.05 to 0.2%, Si: 0.001% to 3.0%, Mn: 0.5 to 3.0, P: 0.001 to 0.00. 2%, Al: 0.001 to 3%, V: Over 0.1% to 1.5%, the balance is composed of Fe and impurities, and the structure is mainly composed of ferrite with an average grain size of 1 to 5 μm And a technique related to a hot-rolled steel sheet characterized by the presence of V carbonitrides having an average grain size of 50 nm or less in ferrite grains.
特許文献4には、質量%で、C:0.04〜0.17%、Si:1.1%以下、Mn:1.6〜2.6%、P:0.05%以下、S:0.02%以下、Al:0.001〜0.05%、N:0.02%以下、V:0.11〜0.3%、Ti:0.07〜0.25%を含み、残部が鉄および不可避的不純物の鋼組成を有し、圧延直角方向で880MPa以上の引張り強さを有し、降伏比0.8以上を有する高強度鋼板に関する技術が開示されている。 In Patent Document 4, in mass%, C: 0.04 to 0.17%, Si: 1.1% or less, Mn: 1.6 to 2.6%, P: 0.05% or less, S: 0.02% or less, Al: 0.001 to 0.05%, N: 0.02% or less, V: 0.11 to 0.3%, Ti: 0.07 to 0.25%, the balance Discloses a technology relating to a high-strength steel sheet having a steel composition of iron and inevitable impurities, a tensile strength of 880 MPa or more in the direction perpendicular to the rolling, and a yield ratio of 0.8 or more.
特許文献5には、質量%で、C:0.04〜0.20%、Si:0.001〜1.1%、Mn:0.8%超、Ti:0.05%以上、0.15%未満、Nb:0〜0.05%、かつ、下記(1)式〜(3)式を満たし、残部Feおよび不可避的不純物からなる鋼組成を有し、880MPa以上の強度と降伏比0.80以上を有する高強度熱延鋼板が開示されている。
(1)式:(Ti/48+Nb/93)×C/12≦3.5×10−5
(2)式:0.4≦(V/51+Ti/48+Nb/93)/(C/12)≦2.0
(3)式:V+Ti×2+Nb×1.4+C×2+Si×0.2+Mn×0.1≧0.7
特許文献6には、実質的にフェライト単相組織であり、フェライト組織中にTi、MoおよびCを含む析出物が析出してなり、かつ、圧延方向に平行なベクトルに垂直な断面の板厚1/4〜3/4の領域における、隣接する各結晶粒の<110>方位コロニーの面積率が50%以下である、引張強度が950MPa以上の伸びフランジ性に優れた超高張力鋼板に関する技術が開示されている。
In Patent Document 5, in terms of mass%, C: 0.04 to 0.20%, Si: 0.001 to 1.1%, Mn: more than 0.8%, Ti: 0.05% or more, 0. Less than 15%, Nb: 0 to 0.05%, satisfying the following formulas (1) to (3), having a steel composition consisting of the balance Fe and inevitable impurities, a strength of 880 MPa or more and a yield ratio of 0 A high-strength hot-rolled steel sheet having.
(1) Formula: (Ti / 48 + Nb / 93) × C / 12 ≦ 3.5 × 10 −5
(2) Formula: 0.4 ≦ (V / 51 + Ti / 48 + Nb / 93) / (C / 12) ≦ 2.0
(3) Formula: V + Ti × 2 + Nb × 1.4 + C × 2 + Si × 0.2 + Mn × 0.1 ≧ 0.7
Patent Document 6 is substantially a ferrite single-phase structure, and precipitates containing Ti, Mo, and C are precipitated in the ferrite structure, and the thickness of the cross section perpendicular to the vector parallel to the rolling direction. Technology for ultra-high-strength steel sheets with excellent stretch flangeability with a tensile strength of 950 MPa or more, with an area ratio of <110> orientation colonies of each adjacent crystal grain in the region of 1/4 to 3/4 being 50% or less Is disclosed.
特許文献7には、質量%でC:0.10〜0.25%、Si:1.5%以下、Mn:1.0〜3.0%、P:0.10%以下、S:0.005%以下、Al:0.01〜0.5%、N:0.010%以下およびV:0.10〜1.0%を含み、かつ(10Mn+V)/C≧50を満足し、残部はFeおよび不可避的不純物の組成になり、粒径が80nm以下の析出物について求めたVを含む炭化物の平均粒径が30nm以下であることを特徴とする薄鋼板に関する技術が開示されている。 In Patent Document 7, C: 0.10 to 0.25% by mass, Si: 1.5% or less, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0 0.005% or less, Al: 0.01 to 0.5%, N: 0.010% or less and V: 0.10 to 1.0%, and (10Mn + V) / C ≧ 50 is satisfied, and the balance Has a composition of Fe and unavoidable impurities, and a technique relating to a thin steel sheet is disclosed in which the average particle diameter of carbide containing V obtained for precipitates having a particle diameter of 80 nm or less is 30 nm or less.
特許文献8には、質量%でC:0.10〜0.25%、Si:1.5%以下、Mn:1.0〜3.0%、P:0.10%以下、S:0.005%以下、Al:0.01〜0.5%、N:0.010%以下およびV:0.10〜1.0%を含み、かつ(10Mn+V)/C≧50を満足し、残部はFeおよび不可避的不純物の組成になり、焼戻しマルテンサイト相の体積占有率が80%以上で、粒径:20nm以下のVを含む炭化物の平均粒径が10nm以下であることを特徴とする自動車用部材に関する技術が開示されている。 In Patent Document 8, C: 0.10 to 0.25% by mass, Si: 1.5% or less, Mn: 1.0 to 3.0%, P: 0.10% or less, S: 0 0.005% or less, Al: 0.01 to 0.5%, N: 0.010% or less and V: 0.10 to 1.0%, and (10Mn + V) / C ≧ 50 is satisfied, and the balance Has a composition of Fe and inevitable impurities, the volume occupancy of the tempered martensite phase is 80% or more, and the average particle size of carbide containing V having a particle size of 20 nm or less is 10 nm or less A technique related to a structural member is disclosed.
特許文献9には、鋼板の表面に溶融亜鉛メッキ層を備える亜鉛メッキ鋼板において、前記鋼板の化学組成が、質量%で、C:0.02%超え0.2%以下、Si:0.01〜2.0%、Mn:0.1%〜3.0%、P:0.003〜0.10%、S:0.020%以下、Al:0.001〜1.0%、N:0.0004〜0.015%、Ti:0.03〜0.2%を含有し、残部がFeおよび不純物であるとともに、前記鋼板の金属組織がフェライトを面積率で30〜95%含有し、残部の第二相がマルテンサイト、ベイナイト、パーライト、セメンタイトを含有するときのマルテンサイトの面積率は0〜50%であり、そして、前記鋼板が粒径2〜30nmのTi系炭窒化析出物を平均粒子間距離30〜300nmで含有し、かつ粒径3μm以上の晶出系TiNを平均粒子間距離50〜500μmで含有する高張力溶融亜鉛めっき鋼板に関する技術が開示されている。 In Patent Document 9, in a galvanized steel sheet provided with a hot dip galvanized layer on the surface of the steel sheet, the chemical composition of the steel sheet is, by mass%, C: more than 0.02% and 0.2% or less, Si: 0.01 -2.0%, Mn: 0.1-3.0%, P: 0.003-0.10%, S: 0.020% or less, Al: 0.001-1.0%, N: 0.0004 to 0.015%, Ti: 0.03 to 0.2%, the balance is Fe and impurities, and the metal structure of the steel sheet contains ferrite in an area ratio of 30 to 95%, When the remaining second phase contains martensite, bainite, pearlite, and cementite, the martensite area ratio is 0 to 50%, and the steel sheet is a Ti-based carbonitride precipitate having a particle size of 2 to 30 nm. Containing at an average interparticle distance of 30 to 300 nm and having a particle size of 3 μm or more Technology regarding high-strength galvanized steel sheet containing output system TiN with an average distance between particles 50~500μm is disclosed.
特許文献10には、質量%で、C:0.01〜0.15%、Si:2.0%以下、Mn0.5〜3.0%、P:0.1%以下、S:0.02%以下、Al:0.1%以下、N:0.02%以下、Cu:0.5〜3.0%を含有する組成を有し、かつ組織がフェライト相を主相とし、面積率で2%以上のマルテンサイト相を含む相を第二相とする複合組織である薄鋼板に、粒径が10nm以下の微細析出物を生成させる歪み時効処理を施すことを特徴とする薄鋼板の耐疲労特性改善方法に関する技術が開示されている。 In Patent Document 10, in mass%, C: 0.01 to 0.15%, Si: 2.0% or less, Mn 0.5 to 3.0%, P: 0.1% or less, S: 0.0. It has a composition containing 02% or less, Al: 0.1% or less, N: 0.02% or less, Cu: 0.5 to 3.0%, and the structure has a ferrite phase as a main phase, and the area ratio A thin steel plate, which is a composite structure having a phase containing a martensite phase of 2% or more as a second phase, is subjected to a strain aging treatment that generates fine precipitates having a particle size of 10 nm or less. A technique relating to a method for improving fatigue resistance is disclosed.
特許文献11には、質量%で、C:0.18〜0.3%、Si:1.2%以下、Mn:1〜2.5%、P:0.02%以下、S:0.003%以下、Sol.Al0.01〜0.1%を含有し、これに更に、Nb:0.005〜0.030%、V:0.01〜0.10%、Ti:0.01〜0.10%の何れか1種または2種以上を合計で0.005〜0.10%の範囲で含有し、残部がFeおよび不可避的不純物よりなる鋼を、仕上げ温度Ar3点以上で熱延し、500〜650℃で捲取った後、酸洗、冷間圧延し続く連続焼鈍でAc3〜[Ac3+70℃]に加熱し30秒以上均熱した後、1次冷却でフェライトを体積占有率で3〜20%析出させ、その後噴流水中で室温まで急冷し、120〜300℃の温度で1〜15分間の過時効処理を施し、マルテンサイト体積占有率が80〜97%で残部がフェライトからなる微細な2相組織を有する、引張強度が150〜200kgf/mm2の成形性及びストリップ形状の良好な超高強度冷延鋼板の製造方法に関する技術が開示されている。 In Patent Document 11, in mass%, C: 0.18 to 0.3%, Si: 1.2% or less, Mn: 1 to 2.5%, P: 0.02% or less, S: 0.00. 00% or less, Sol.Al 0.01 to 0.1%, Nb: 0.005 to 0.030%, V: 0.01 to 0.10%, Ti: 0.01 to A steel containing either 0.10% or two or more of 0.10% in total in the range of 0.005 to 0.10%, the balance being Fe and unavoidable impurities is hot rolled at a finishing temperature of Ar3 or higher. After pickling at 500 to 650 ° C., pickling, cold rolling, heating to Ac3 to [Ac3 + 70 ° C.] by continuous annealing and soaking for 30 seconds or more, followed by primary cooling with ferrite in volume occupation ratio Precipitate 3 to 20%, then quench in jet water to room temperature and perform overaging at 120 to 300 ° C for 1 to 15 minutes Martensite volume occupancy is remainder at 80-97% having a fine two-phase structure made of ferrite, the tensile strength is excellent ultra-high strength cold rolled steel sheet formability and strip shape of 150~200kgf / mm 2 Techniques relating to manufacturing methods are disclosed.
特許文献12には、質量%で、C:0.0005〜0.3%、Si:0.001〜3.0%以下、Mn:0.01〜3.0%、Al:0.0001〜0.3%、S:0.0001〜0.1%、N:0.0010〜0.05%を含有し、残部Fe及び不可避的不純物からなり、フェライトを面積率最大の相とし、固溶炭素:Sol.C及び固溶窒素:Sol.NがSol.C/Sol.N:0.1〜100を満たし、予歪みを5〜20%付加したとき、110〜200℃で1〜60分の焼付け処理後の降伏強度および引張強度の上昇量の平均またはそれぞれの値が、予歪みを付加しない焼付け処理前の鋼板に比べ50MPa以上であることを特徴とする高予歪み時において高い焼付け硬化能を持つ高強度熱延鋼板に関する技術が開示されている。 In Patent Document 12, in mass%, C: 0.0005 to 0.3%, Si: 0.001 to 3.0% or less, Mn: 0.01 to 3.0%, Al: 0.0001 to Containing 0.3%, S: 0.0001-0.1%, N: 0.0010-0.05%, consisting of the balance Fe and inevitable impurities, with ferrite as the phase with the largest area ratio, Carbon: Sol. C and solute nitrogen: Sol. N is Sol. C / Sol. N: When satisfying 0.1 to 100 and adding 5 to 20% of pre-strain, the average or each value of the increase in yield strength and tensile strength after baking treatment at 110 to 200 ° C. for 1 to 60 minutes is A technique relating to a high-strength hot-rolled steel sheet having a high bake hardenability at the time of high pre-strain, which is characterized by being 50 MPa or more as compared with a steel sheet before baking treatment without adding pre-strain, is disclosed.
しかしながら、上述の従来技術には、次のような問題がある。
特許文献1および4では、Moを含有しているため、近年のMoの原材料価格の高騰に絡んで、著しいコスト増加を招く問題がある。さらに、自動車産業のグローバル化が進み、自動車に使用される鋼板は、外国などの厳しい腐食環境下において使用されるようになり、鋼板に対してより高い塗装後耐食性が必要とされている。これに対して、Moの添加は化成結晶の生成または成長を阻害するため、鋼板の塗装後耐食性を低下させ、上記要求に対応することができない。すなわち、特許文献1および特許文献4に記載の鋼では、近年の自動車産業の要求を十分に満たすことはできない。
However, the above prior art has the following problems.
In Patent Documents 1 and 4, since Mo is contained, there is a problem that a significant cost increase is caused in connection with a recent increase in the raw material price of Mo. Furthermore, with the globalization of the automobile industry, steel plates used in automobiles are used in severe corrosive environments such as in foreign countries, and higher post-paint corrosion resistance is required for steel plates. On the other hand, since addition of Mo inhibits the formation or growth of chemical crystals, the corrosion resistance after painting of the steel sheet is lowered, and the above-mentioned demand cannot be met. That is, the steels described in Patent Document 1 and Patent Document 4 cannot sufficiently satisfy the demands of the automobile industry in recent years.
一方、近年のプレス技術の進歩により、ドロー(絞りおよび張り出し)→トリム(穴抜き)→リストライク(穴広げ)のような加工工程が採用され始めており、このような加工工程を経て成形される鋼板の伸びフランジ部位には、ドロー・トリム後、すなわち加工後の伸びフランジ特性が必要とされる。しかし、加工後の伸びフランジ特性は、近年、注目された特性であるため、特許文献1〜12では、必ずしも十分ではない。 On the other hand, due to the recent progress in press technology, processing processes such as drawing (drawing and overhanging) → trimming (hole punching) → restriking (hole expansion) have begun to be adopted, and molding is performed through such processing processes. The stretch flange portion of the steel plate is required to have stretch flange characteristics after draw trimming, that is, after processing. However, since the stretch flange characteristic after processing is a characteristic that has attracted attention in recent years, Patent Documents 1 to 12 are not necessarily sufficient.
また、鋼の一般的な強化手法の一つとして、析出強化が挙げられる。析出強化量は、析出物の粒径に反比例し、析出量の平方根に比例することが知られている。これより、たとえば、特許文献1〜12に開示される鋼板においては、Ti、V、Nbなどの炭窒化物形成元素が添加され、特に、特許文献7、9、10では、析出物のサイズに関する研究がなされた。しかし、析出物量は必ずしも十分ではなく、析出効率が悪いために高コスト化することが問題とされている。 Moreover, precipitation strengthening is mentioned as one of the general strengthening methods of steel. It is known that the precipitation strengthening amount is inversely proportional to the particle size of the precipitate and proportional to the square root of the precipitation amount. Thus, for example, in the steel sheets disclosed in Patent Documents 1 to 12, carbonitride-forming elements such as Ti, V, and Nb are added. In particular, Patent Documents 7, 9, and 10 relate to the size of precipitates. Research has been done. However, the amount of precipitates is not always sufficient, and the problem is that the cost is increased due to poor deposition efficiency.
特許文献2、5、11に添加されるNbは、熱間圧延後のオーステナイトの再結晶を抑制する働きが高い。そのため、鋼板に未再結晶粒を残存させ、加工性を低下させる問題がある。また、熱間圧延時の圧延荷重を増加させる問題がある。 Nb added to Patent Documents 2, 5, and 11 has a high function of suppressing recrystallization of austenite after hot rolling. Therefore, there is a problem that unrecrystallized grains remain in the steel sheet and the workability is lowered. There is also a problem of increasing the rolling load during hot rolling.
本発明は、かかる事情に鑑み、伸びおよび加工後の伸びフランジ特性に優れた高強度鋼板およびその製造方法を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a high-strength steel sheet excellent in elongation and stretch flange characteristics after processing, and a method for producing the same.
本発明者等は、伸びおよび加工後の伸びフランジ特性に優れ、引張強度が980MPa以上である高強度熱延鋼板を得るべく検討したところ、以下の知見を得た。
i)高強度の鋼板を得るためには、析出物を微細化(大きさ20nm未満)し、微細な析出物(大きさ20nm未満)の割合を高め必要がある。そして、析出物を微細なまま維持するには析出物としてTi−Moを含むもの、または、Ti−Vを含むものが挙げられるが、合金コストの観点からはTiとVの複合析出が有用である。
ii)フェライト相と第二相のベイナイト相との硬度差が300以下であるとき、加工後の伸びフランジ性は向上する。また、この加工後の伸びフランジ特性に優れる組織は、第一段冷却停止温度T1および巻取り温度T2を最適範囲に制御することによって得られる。さらに、巻取り温度を300℃超え600℃以下にすることで、第二相組織が主にベイナイト相となり、YRが85%超えになる。
本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]成分組成は、mass%で、C:0.08%以上0.20%以下、Si:0.2%以上1.0%以下、Mn:0.5%以上2.5%以下、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.07%以上0.20%以下、V:0.05%以上0.20%未満を含有し、残部がFeおよび不可避的不純物からなり、金属組織は、体積占有率で60%以上95%以下のフェライトと第二相として5%以上35%以下のベイナイトを有し、大きさが20nm未満の析出物に含まれるTi量が450mass ppm以上1800mass ppm以下、V量が350 mass ppm以上1200mass ppm未満であり、ベイナイト相の硬度(HVS)とフェライト相の硬度(HVα)の差(HVS−HVα)が300以下であり、YRが85%超えであることを特徴とする高強度鋼板。
[2]前記[1]において、mass%で、さらに、Cr:0.01%以上、1.0%以下、W:0.005%以上1.0%以下、Zr:0.0005%以上0.05%以下のいずれか1種または2種以上を含有することを特徴とする高強度鋼板。
[3]mass%で、C:0.08%以上0.20%以下、Si:0.2%以上1.0%以下、Mn:0.5%以上2.5%以下、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.07%以上0.20%以下、V:0.05%以上0.20%未満を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを、1150℃以上1350℃以下の温度に加熱したのち、仕上げ圧延温度を850℃以上1000℃以下として熱間圧延を行ない、次いで、650℃以上800℃未満の温度まで、平均冷却速度30℃/s以上で第一段冷却し、1秒以上10秒未満の時間で空冷し、次いで、冷却速度20℃/s以上で第二段冷却し、300℃超え600℃以下の温度で巻取り、式(1)を満たすことを特徴とする高強度鋼板の製造方法。
T1≦0.06×T2+764 …(1)
ただし、T1:第一段冷却の停止温度、T2:巻取り温度
[4]前記[3]において、前記第二段冷却において、500℃以下の温度域では、120℃/s以上の冷却速度でかつ核沸騰冷却となる条件で冷却することを特徴とする高強度鋼板の製造方法。
[5]前記[3]または[4]において、成分組成として、mass%で、さらに、Cr:0.01%以上、1.0%以下、W:0.005%以上1.0%以下、Zr:0.0005%以上0.05%以下のいずれか1種または2種以上を含有することを特徴とする高強度鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%、ppmは、すべてmass%、mass ppmである。また、本発明における高強度鋼板とは、引張強度(以下、TSと称する場合もある)が980MPa以上の鋼板であり、熱延鋼板、さらには、これらの鋼板に例えばめっき処理等の表面処理を施した表面処理鋼板も対象とする。
さらに、本発明の目標とする特性は、伸び(El)≧13%、伸張率10%で圧延後の伸びフランジ特性(λ10)≧40%、YR>85%である。
The present inventors have studied to obtain a high-strength hot-rolled steel sheet that is excellent in elongation and stretch flange characteristics after processing and has a tensile strength of 980 MPa or more, and obtained the following knowledge.
i) In order to obtain a high-strength steel sheet, it is necessary to refine the precipitates (size less than 20 nm) and increase the proportion of fine precipitates (size less than 20 nm). In order to keep the precipitate fine, a precipitate containing Ti-Mo or a precipitate containing Ti-V can be mentioned. From the viewpoint of alloy cost, combined precipitation of Ti and V is useful. is there.
ii) When the hardness difference between the ferrite phase and the second phase bainite phase is 300 or less, the stretch flangeability after processing is improved. In addition, a structure having excellent stretch flange characteristics after processing can be obtained by controlling the first stage cooling stop temperature T1 and the winding temperature T2 to the optimum ranges. Furthermore, by setting the coiling temperature to 300 ° C. to 600 ° C. or less, the second phase structure mainly becomes a bainite phase, and YR exceeds 85%.
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Component composition is mass%, C: 0.08% to 0.20%, Si: 0.2% to 1.0%, Mn: 0.5% to 2.5%, P: 0.04% or less, S: 0.005% or less, Al: 0.05% or less, Ti: 0.07% or more and 0.20% or less, V: 0.05% or more and less than 0.20%, the balance is composed of Fe and inevitable impurities, and the metal structure is 60% or more and 95% by volume occupancy The following ferrite and the second phase have 5% or more and 35% or less bainite, and the amount of Ti contained in the precipitate with a size of less than 20 nm is 450 mass ppm or more and 1800 mass ppm or less, and the V amount is 350 mass ppm or more and 1200 mass ppm. High strength, characterized in that the difference between the hardness of the bainite phase (HV S ) and the hardness of the ferrite phase (HV α ) (HV S −HV α ) is 300 or less and the YR exceeds 85% steel sheet.
[2] In the above [1], in mass%, any one or two of Cr: 0.01% or more and 1.0% or less, W: 0.005% or more and 1.0% or less, Zr: 0.0005% or more and 0.05% or less A high-strength steel sheet characterized by containing the above.
[3] In mass%, C: 0.08% to 0.20%, Si: 0.2% to 1.0%, Mn: 0.5% to 2.5%, P: 0.04% or less, S: 0.005% or less, Al: 0.05% Hereinafter, a steel slab containing Ti: 0.07% or more and 0.20% or less, V: 0.05% or more and less than 0.20%, and the balance composed of Fe and inevitable impurities is heated to a temperature of 1150 ° C to 1350 ° C. After that, hot rolling is performed at a finish rolling temperature of 850 ° C. or higher and 1000 ° C. or lower, and then the first stage cooling is performed at an average cooling rate of 30 ° C./s or higher to a temperature of 650 ° C. or higher and lower than 800 ° C. for 1 second or longer. Air-cooled in less than 10 seconds, then second-stage cooled at a cooling rate of 20 ° C / s or higher, wound at a temperature of 300 ° C to 600 ° C, and satisfying formula (1) A method of manufacturing a steel sheet.
T1 ≦ 0.06 × T2 + 764 (1)
However, T1: First stage cooling stop temperature, T2: Winding temperature [4] In the above [3], in the second stage cooling, at a temperature range of 500 ° C. or lower, a cooling rate of 120 ° C./s or higher. And the manufacturing method of the high strength steel plate characterized by cooling on the conditions used as nucleate boiling cooling.
[5] In the above [3] or [4], the component composition is mass%, Cr: 0.01% or more, 1.0% or less, W: 0.005% or more, 1.0% or less, Zr: 0.0005% or more, 0.05% or less A method for producing a high-strength steel sheet, comprising one or more of these.
In this specification, “%” and “ppm” indicating the components of steel are mass% and mass ppm, respectively. The high-strength steel plate in the present invention is a steel plate having a tensile strength (hereinafter sometimes referred to as TS) of 980 MPa or more, a hot-rolled steel plate, and further, a surface treatment such as plating treatment is applied to these steel plates. The surface-treated steel sheets that have been applied are also targeted.
Further, the target characteristics of the present invention are elongation (El) ≧ 13%, elongation ratio of 10%, stretched flange characteristic after rolling (λ 10 ) ≧ 40%, and YR> 85%.
本発明によれば、伸びおよび加工後の伸びフランジ特性に優れ、YRが85%超え、TSが980MPa以上である高強度熱延鋼板が得られる。さらに、本発明では、Moを添加せずとも上記効果が得られるので、コスト削減がはかれることになる。
そして、例えば、本発明の高強度熱延鋼板を自動車の足回り部材やトラック用フレーム、また、耐衝突部材などに用いることにより、板厚減少が可能となり、自動車の環境負荷が低減され、衝撃特性が大きく向上することが期待される。
According to the present invention, it is possible to obtain a high-strength hot-rolled steel sheet having excellent elongation and stretched flange characteristics after processing, YR exceeding 85%, and TS being 980 MPa or more. Furthermore, in the present invention, the above effect can be obtained without adding Mo, so that the cost can be reduced.
For example, by using the high-strength hot-rolled steel sheet of the present invention for an automobile undercarriage member, a truck frame, a collision-resistant member, etc., the plate thickness can be reduced, and the environmental load of the automobile is reduced. It is expected that the characteristics will be greatly improved.
以下、本発明を詳細に説明する。
1)まず、本発明における鋼の化学成分(成分組成)の限定理由について説明する。
C:0.08%以上0.20%以下
Cは、TiやVと炭化物を形成しフェライト中に析出することで、鋼板の強度化に寄与する元素である。TSを980MPa以上とするためには、C量を0.08%以上とする必要がある。一方、C量が0.20%を超えると析出物の粗大化により伸びフランジ特性が低下する。以上より、C量は0.08%以上0.20%以下、好ましくは、0.09%以上0.18以下とする。
Hereinafter, the present invention will be described in detail.
1) First, the reasons for limiting the chemical composition (component composition) of steel in the present invention will be described.
C: 0.08% or more and 0.20% or less C is an element that contributes to strengthening of the steel sheet by forming carbides with Ti and V and precipitating in ferrite. In order to increase TS to 980 MPa or more, the C content needs to be 0.08% or more. On the other hand, if the amount of C exceeds 0.20%, the stretch flange characteristics deteriorate due to coarsening of precipitates. From the above, the C content is 0.08% or more and 0.20% or less, preferably 0.09% or more and 0.18 or less.
Si:0.2%以上、1.0%以下
Siは、フェライト変態の促進および固溶強化に寄与する元素である。そのため、Siは0.2%以上とする。ただし、その量が1.0%を超えると鋼板表面性状が著しく劣化し、耐食性が低下するため、Siの上限は1.0%とする。以上より、Si量は0.2%以上1.0%以下、好ましくは、0.3%以上0.9%以下とする。
Si: 0.2% or more, 1.0% or less
Si is an element that contributes to the promotion of ferrite transformation and solid solution strengthening. Therefore, Si is 0.2% or more. However, if the amount exceeds 1.0%, the surface properties of the steel sheet deteriorate significantly and the corrosion resistance decreases, so the upper limit of Si is 1.0%. Accordingly, the Si content is 0.2% to 1.0%, preferably 0.3% to 0.9%.
Mn:0.5%以上、2.5%以下
Mnは固溶強化に寄与する元素である。しかしながら、その量が0.5%に満たないと980MPa以上のTSが得られない。一方、その量が2.5%を越えると、溶接性を著しく低下させる。よって、Mn量は0.5%以上2.5%以下、好ましいくは0.5%以上2.0%以下である。さらに好ましくは、0.8%以上2.0%以下とする。
Mn: 0.5% or more, 2.5% or less Mn is an element contributing to solid solution strengthening. However, if the amount is less than 0.5%, TS of 980 MPa or more cannot be obtained. On the other hand, if the amount exceeds 2.5%, the weldability is significantly reduced. Therefore, the amount of Mn is 0.5% to 2.5%, preferably 0.5% to 2.0%. More preferably, it is 0.8% or more and 2.0% or less.
P:0.04%以下
Pは旧オーステナイト粒界に偏析するため、低温靭性劣化と加工性の低下を招く。そのため、P量は極力低減することが好ましく、0.04%以下とする。
P: 0.04% or less P segregates at the prior austenite grain boundaries, causing low temperature toughness deterioration and workability reduction. Therefore, the P content is preferably reduced as much as possible, and is 0.04% or less.
S:0.005%以下
Sは旧オーステナイト粒界に偏析したり、MnSとして多量に析出すると、低温靭性を低下させたり、また、加工の有無に関わらず伸びフランジ性を著しく低下させる。そのため、S量は極力低下することが好ましく、0.005%以下とする。
S: 0.005% or less S segregates at the prior austenite grain boundaries or precipitates in a large amount as MnS, which lowers the low temperature toughness and remarkably lowers the stretch flangeability regardless of the presence or absence of processing. Therefore, the amount of S is preferably reduced as much as possible, and is 0.005% or less.
Al:0.05%以下
Alは、鋼の脱酸剤として添加され、鋼の清浄度を向上させるのに有効な元素である。この効果を得るためには0.001%以上含有させることが好ましい。しかし、その量が0.05%を超えると介在物が多量に発生し、鋼板の疵の原因になるため、Al量は0.05%以下とする。より好ましいAl量は0.01%以上0.04%以下である。
Al: 0.05% or less
Al is added as a steel deoxidizer, and is an effective element for improving the cleanliness of steel. In order to acquire this effect, it is preferable to make it contain 0.001% or more. However, if the amount exceeds 0.05%, a large amount of inclusions are generated, which causes the steel sheet to become wrinkled. Therefore, the Al amount is 0.05% or less. A more preferable amount of Al is 0.01% or more and 0.04% or less.
Ti:0.07%以上、0.20%以下
Tiは、フェライトを析出強化する上で非常に重要な元素である。0.07%未満では、必要な強度を確保することが困難であり、0.20%を超えるとその効果は飽和し、コストアップとなるだけである。よって、Ti量は0.07%以上0.2%以下、好ましくは0.08%以上0.18%以下とする。
Ti: 0.07% or more, 0.20% or less Ti is an extremely important element for precipitation strengthening of ferrite. If it is less than 0.07%, it is difficult to ensure the required strength, and if it exceeds 0.20%, the effect is saturated and only the cost is increased. Therefore, the Ti content is 0.07% or more and 0.2% or less, preferably 0.08% or more and 0.18% or less.
V:0.05%以上0.20%未満
Vは、析出強化または固溶強化として強度の向上に寄与する元素であり、上記のTiと並んで本発明の効果を得る上で、重要な要件となる。適量をTiとともに複合添加することで、粒径20nm未満の微細なTi−V炭化物として析出する傾向にあり、かつ、Moのように塗装後耐食性を低下させることはない。また、Moに比べコストを低減させるこができる。V量が0.05%未満では、上記添加効果が乏しい。一方、V量が0.20%以上では、その効果は飽和し、コストアップとなるだけである。よって、V量は0.05%以上0.20%未満、好ましくは、0.06%以上0.20%未満とする。
V: 0.05% or more and less than 0.20% V is an element that contributes to improvement in strength as precipitation strengthening or solid solution strengthening, and is an important requirement for obtaining the effects of the present invention along with the above Ti. By adding an appropriate amount together with Ti, there is a tendency to precipitate as fine Ti-V carbide having a particle size of less than 20 nm, and the corrosion resistance after coating does not decrease like Mo. Further, the cost can be reduced compared to Mo. If the amount of V is less than 0.05%, the effect of addition is poor. On the other hand, when the amount of V is 0.20% or more, the effect is saturated and only the cost is increased. Therefore, the V content is 0.05% or more and less than 0.20%, preferably 0.06% or more and less than 0.20%.
以上の必須添加元素で、本発明鋼は目的とする特性が得られるが、上記の必須添加元素に加えて、以下の理由により、さらにCr:0.01%以上、1.0%以下、W:0.005%以上1.0%以下、Zr:0.0005%以上0.05%以下のいずれか1種または2種以上を添加してもよい。 With the above essential additive elements, the steel of the present invention can achieve the desired properties, but in addition to the above essential additive elements, Cr: 0.01% or more, 1.0% or less, W: 0.005% or more for the following reasons Any one or more of 1.0% or less and Zr: 0.0005% or more and 0.05% or less may be added.
Cr:0.01%以上1.0%以下、W:0.005%以上1.0%以下、Zr:0.0005%以上0.05%以下
Cr、WおよびZrは、Vと同様、析出物を形成して、あるいは固溶状態でフェライトを強化する働きを有する。Cr量が0.01%未満、W量が0.005%未満、あるいはZr量が0.0005%未満では高強度化にほとんど寄与しない。一方、Cr量が1.0%超え、W量が1.0%超え、あるいはZr量が0.05%超えでは加工性が劣化する。よって、Cr、W、Zrのいずれか1種または2種以上を添加する場合、その添加量はCr:0.01%以上1.0%以下、W:0.005%以上1.0%以下、Zr:0.0005%以上0.05%以下とする。好ましくはCr:0.1%以上0.8%以下、W:0.01以上0.8以下、Zr:0.001%以上0.04%以下である。
Cr: 0.01% to 1.0%, W: 0.005% to 1.0%, Zr: 0.0005% to 0.05%
Cr, W and Zr, like V, have the function of strengthening ferrite in the form of precipitates or in a solid solution state. If the Cr content is less than 0.01%, the W content is less than 0.005%, or the Zr content is less than 0.0005%, it hardly contributes to the increase in strength. On the other hand, if the Cr content exceeds 1.0%, the W content exceeds 1.0%, or the Zr content exceeds 0.05%, the workability deteriorates. Therefore, when adding one or more of Cr, W, and Zr, the addition amount is Cr: 0.01% to 1.0%, W: 0.005% to 1.0%, Zr: 0.0005% to 0.05% The following. Preferably, Cr: 0.1% to 0.8%, W: 0.01 to 0.8, Zr: 0.001% to 0.04%.
なお、上記以外の残部はFeおよび不可避不純物からなる。不可避不純物として、例えば、Oは非金属介在物を形成し品質に悪影響を及ぼすため、0.003%以下に低減するのが望ましい。また、本発明では、発明の作用効果を害さない微量元素として、Cu、Ni、Sn、Sbを0.1%以下の範囲で含有してもよい。 The remainder other than the above consists of Fe and inevitable impurities. As an inevitable impurity, for example, O forms non-metallic inclusions and adversely affects quality, so it is desirable to reduce it to 0.003% or less. In the present invention, Cu, Ni, Sn, and Sb may be contained in a range of 0.1% or less as trace elements that do not impair the effects of the invention.
2)次に、本発明の高強度鋼板の組織について説明する。
60%以上95%以下のフェライト、第二相として5%以上35%以下のベイナイト
加工後の伸びフランジ性の向上には、転位密度の低いフェライトが有効である。フェライトの体積占有率が60%未満の場合は、硬質第二相が過多となり、第二相の連結が生じるため、加工後の伸びフランジ性(λ)および伸び(El)が低下する。一方、フェライトの体積占有率が95%を超えた場合は、第二相が少ないために伸びが向上しない。したがって、フェライトの体積占有率は、60%以上95%以下、好ましくは、70%以上90%以下とする。
ベイナイトの体積占有率が5%未満の場合は、第二相が少ないために伸びが向上しなくなる。一方、35%を越えた場合は、硬質第二相が過多となり、鋼板が変形される際に、第二相の連結が生じるため、加工後の伸びフランジ性(λ)および伸び(El)が低下する。なお、体積率で2%以下であれば、一部マルテンサイトを含んでも良い。第二相として5%以上35%以下のベイナイトが生成した鋼板では、YRが85%越えとなる。つまり、耐衝撃特性を必要とする部材に非常に有利な鋼板が得られる。
ここで、フェライトおよびベイナイトの体積占有率は、圧延方向に平行な板厚断面のミクロ組織を3%ナイタールで現出し、走査型電子顕微鏡(SEM)を用いて1500倍で板厚1/4位置を観察し、住友金属テクノロジー株式会社製の画像処理ソフト「粒子解析II」を用いてフェライトおよびベイナイトの面積率を測定し、体積占有率とする。
2) Next, the structure of the high-strength steel sheet of the present invention will be described.
Ferrite having a low dislocation density is effective in improving the stretch flangeability after bainite processing of 60% to 95% and 5% to 35% as the second phase. When the volume occupancy of the ferrite is less than 60%, the hard second phase becomes excessive and the second phase is connected, so that the stretch flangeability (λ) and the elongation (El) after processing are lowered. On the other hand, when the volume occupancy of ferrite exceeds 95%, the elongation does not improve because the second phase is small. Accordingly, the volume occupancy of ferrite is 60% or more and 95% or less, preferably 70% or more and 90% or less.
When the volume fraction of bainite is less than 5%, the elongation is not improved because the second phase is small. On the other hand, when it exceeds 35%, the hard second phase becomes excessive, and when the steel sheet is deformed, the second phase is connected, so the stretch flangeability (λ) and the elongation (El) after processing are low. descend. If the volume ratio is 2% or less, some martensite may be included. In the steel sheet in which 5% or more and 35% or less of bainite is generated as the second phase, YR exceeds 85%. That is, it is possible to obtain a steel sheet that is very advantageous for a member that requires impact resistance.
Here, the volume occupancy ratio of ferrite and bainite is expressed by 3% nital in the thickness cross section parallel to the rolling direction, and is 1500 times using the scanning electron microscope (SEM). The area ratio of ferrite and bainite is measured using image processing software “Particle Analysis II” manufactured by Sumitomo Metal Technology Co., Ltd. to obtain the volume occupation ratio.
大きさが20nm未満の析出物にふくまれるTi量が450mass ppm以上1800mass ppm以下、V量が350mass ppm以上1200mass ppm未満(ここでTi量とV量は、鋼の全組成の合計を100mass%とした場合の濃度とする)
本発明の高強度鋼板において、Tiおよび/またはVを含む析出物は、主に炭化物としてフェライト中に析出している。これは、フェライトにおけるCの固溶限がオーステナイトの固溶限より小さく、過飽和のCがフェライト中に炭化物として析出しやすいためと考えられる。そして、こうした析出物により軟質のフェライトが硬質化(高強度化)し、980MPa以上のTSが得られることになる。
The amount of Ti contained in precipitates with a size of less than 20 nm is 450 mass ppm or more and 1800 mass ppm or less, and the V amount is 350 mass ppm or more and less than 1200 mass ppm (where Ti amount and V amount are 100 mass% of the total composition of the steel) The concentration when
In the high-strength steel sheet of the present invention, precipitates containing Ti and / or V are mainly precipitated in the ferrite as carbides. This is presumably because the solid solubility limit of C in ferrite is smaller than the solid solubility limit of austenite, and supersaturated C is likely to precipitate as carbide in the ferrite. And such a precipitate hardens (strengthens) soft ferrite, and a TS of 980 MPa or more is obtained.
高強度鋼板を得るためには、上述したように、析出物は微細化(大きさ20nm未満)し、この微細な析出物(大きさ20nm未満)の割合を高めることが重要である。析出物の大きさが20nm以上では、転位の移動を抑制する効果が小さく、フェライトを十分に硬質化できないため、強度が低下する場合がある。よって、析出物の大きさは20nm未満とすることが好ましい。この20nm未満の微細な析出物は、TiとVを共に添加することにより達成される。Vは主にTiと複合炭化物を形成する。理由は明らかではないが、これらの析出物は、本発明範囲の巻取り温度内の高温長時間下において、安定的に微細なままで存在することがわかった。
さらに、本発明では、大きさが20nm未満の析出物に含まれるTi量およびV量の制御が重要となる。20nm未満の析出物に含まれるTi量が450mass ppm未満、また、V量が350 mass ppm未満であると、析出物の数密度が小さくなり、各析出物の間隔が広くなるため、転位の移動を抑制する効果が小さくなることがわかった。そのため、フェライトを十分に硬質化できないため、TSが980MPa以上の強度が得られなくなる。また、20nm未満の析出物に含まれるTi量が450mass ppm以上で、20nm未満の析出物に含まれるV量が350mass ppm未満の時は、析出物は粗大化し易い傾向にあるため、TSが980MPa以上の強度が得られなくなる場合がある。また、20nm未満の析出物に含まれるTi量が450mass ppm未満で、20nm未満の析出物に含まれるV量が350mass ppm以上の時は、Vの析出効率が悪くなるため、TSが980MPa以上の強度が得られなくなる場合がある。一方、20nm未満の析出物に含まれるTi量が1800mass ppmを越え、または、V量が1200mass ppm以上析出すると、理由は明らかではないが、鋼板は脆性的に破壊し、目標の特性が得られなくなる。よって、大きさが20nm未満の析出物に含まれる析出Ti量および析出V量は共に満足する必要がある。
以上より、大きさが20nm未満の析出物に含まれるTi量は450mass ppm以上1800mass ppm以下、V量は350mass ppm以上1200mass ppm未満とする。
なお、析出物及び/又は介在物を、まとめて析出物等と称する。
また、大きさが20nm未満の析出物に含まれるTi量およびV量は、以下の方法により確認することができる。
試料を電解液中で所定量電解した後、試料片を電解液から取り出して分散性を有する溶液中に浸漬する。次いで、この溶液中に含まれる析出物を、孔径20nmのフィルタを用いてろ過する。この孔径20nmのフィルタをろ液と共に通過した析出物が大きさ20nm未満である。次いで、ろ過後のろ液に対して、誘導結合プラズマ(ICP)発光分光分析法、ICP質量分析法、および原子吸光分析法等から適宜選択して分析し、大きさ20nm未満での析出物における量を求める。
In order to obtain a high-strength steel plate, as described above, it is important to refine the precipitates (less than 20 nm in size) and increase the proportion of the fine precipitates (less than 20 nm in size). If the size of the precipitate is 20 nm or more, the effect of suppressing the movement of dislocations is small, and the ferrite cannot be hardened sufficiently, so that the strength may decrease. Therefore, the size of the precipitate is preferably less than 20 nm. This fine precipitate of less than 20 nm is achieved by adding both Ti and V. V mainly forms composite carbide with Ti. Although the reason is not clear, it has been found that these precipitates exist stably and finely under high temperature and long time within the coiling temperature within the range of the present invention.
Furthermore, in the present invention, it is important to control the amount of Ti and the amount of V contained in the precipitate having a size of less than 20 nm. When the amount of Ti contained in precipitates of less than 20 nm is less than 450 mass ppm and the amount of V is less than 350 mass ppm, the number density of the precipitates is reduced and the distance between the precipitates is increased, thereby suppressing dislocation movement. It turned out that the effect to do becomes small. For this reason, ferrite cannot be hardened sufficiently, so that a strength of TS of 980 MPa or more cannot be obtained. Further, when the amount of Ti contained in the precipitate of less than 20 nm is 450 mass ppm or more and the amount of V contained in the precipitate of less than 20 nm is less than 350 mass ppm, the precipitate tends to be coarsened, so TS is 980 MPa. The above strength may not be obtained. In addition, when the amount of Ti contained in the precipitate of less than 20 nm is less than 450 mass ppm and the amount of V contained in the precipitate of less than 20 nm is 350 mass ppm or more, the precipitation efficiency of V deteriorates, so TS is 980 MPa or more. Strength may not be obtained. On the other hand, if the Ti content in precipitates less than 20 nm exceeds 1800 mass ppm, or if the V content precipitates 1200 mass ppm or more, the reason is not clear, but the steel sheet breaks brittlely and the desired characteristics are obtained. Disappear. Therefore, both the amount of precipitated Ti and the amount of precipitated V contained in the precipitate having a size of less than 20 nm must be satisfied.
From the above, the amount of Ti contained in the precipitate having a size of less than 20 nm is 450 mass ppm or more and 1800 mass ppm or less, and the amount of V is 350 mass ppm or more and less than 1200 mass ppm.
In addition, precipitates and / or inclusions are collectively referred to as precipitates.
Moreover, the amount of Ti and the amount of V contained in the precipitate having a size of less than 20 nm can be confirmed by the following method.
After the sample is electrolyzed in a predetermined amount in the electrolytic solution, the sample piece is taken out of the electrolytic solution and immersed in a solution having dispersibility. Next, the precipitate contained in the solution is filtered using a filter having a pore diameter of 20 nm. The precipitate that has passed through the filter having a pore diameter of 20 nm together with the filtrate has a size of less than 20 nm. Next, the filtrate after filtration is analyzed by appropriately selecting from inductively coupled plasma (ICP) emission spectroscopy, ICP mass spectrometry, atomic absorption spectrometry, etc. Find the amount.
第二相(ベイナイト相)とフェライト相の硬度差:HVS-HVα≦300
本発明において、重要な構成用件である。第二相(ベイナイト)とフェライト相の硬度差が300以下であれば、必要とする加工後の伸びフランジ特性が得られる。第二相(ベイナイト相)とフェライト相の硬度差が300超えでは、鋼板が加工を受けた時にフェライト相と第二相(ベイナイト)の変形量の差が大きくなるため、クラックが増大し、必要とする加工後の伸びフランジ特性が得られなくなる。硬度差は、小さいほうが良く、好ましくは250以下とする。
Hardness difference between second phase (bainite phase) and ferrite phase: HV S -HV α ≦ 300
This is an important configuration requirement in the present invention. If the hardness difference between the second phase (bainite) and the ferrite phase is 300 or less, the required stretched flange characteristics after processing can be obtained. If the hardness difference between the second phase (bainite phase) and the ferrite phase exceeds 300, the difference in deformation between the ferrite phase and the second phase (bainite) increases when the steel sheet is processed, which increases cracks and is necessary. The stretched flange characteristics after processing cannot be obtained. The hardness difference should be as small as possible, preferably 250 or less.
3)次に、本発明の高強度鋼板の製造方法について説明する。
本発明の高強度鋼板は、例えば、上記化学成分範囲に調整された鋼スラブを、1150℃以上1350℃以下の温度に加熱したのち、仕上げ圧延温度を850℃以上1000℃以下として熱間圧延を行ない、次いで、650℃以上800℃未満の温度まで、平均冷却速度30℃/s以上で第一段冷却し、1秒以上10秒未満の時間で空冷し、次いで、冷却速度20℃/s以上で第二段冷却し、300℃超え600℃以下の温度で巻取り、式(1)を満たすことにより得られる。
T1≦0.06×T2+764 …(1)
ただし、T1:第一段冷却の停止温度、T2:巻取り温度
これらの条件について以下に詳細に説明する。
3) Next, the manufacturing method of the high strength steel plate of this invention is demonstrated.
The high-strength steel sheet of the present invention, for example, after heating a steel slab adjusted to the above chemical composition range to a temperature of 1150 ° C. or higher and 1350 ° C. or lower, and then hot rolling with a finish rolling temperature of 850 ° C. or higher and 1000 ° C. or lower 1st stage cooling at an average cooling rate of 30 ° C / s or higher until a temperature of 650 ° C or higher and lower than 800 ° C, air-cooled in a time of 1 second or longer and less than 10 seconds, and then a cooling rate of 20 ° C / s or higher In the second stage, and wound at a temperature exceeding 300 ° C. and not more than 600 ° C., and satisfying the formula (1).
T1 ≦ 0.06 × T2 + 764 (1)
However, T1: First stage cooling stop temperature, T2: Winding temperature These conditions will be described in detail below.
スラブ加熱温度:1150℃以上1350℃以下
TiあるいはVなどの炭化物形成元素は、鋼スラブ中ではほとんどが炭化物として存在している。熱間圧延後にフェライト中に目標どおりに析出させるためには熱間圧延前に炭化物として析出している析出物を一旦溶解させる必要がある。そのためには1150℃以上で加熱する必要がある。一方、1350℃を超えて加熱すると、結晶粒径が粗大になりすぎて加工後の伸びフランジ特性、伸び特性ともに劣化するので1350℃以下とする。よって、スラブ加熱温度は、1150℃以上1350℃以下とする。より好ましくは1170℃以上1260℃以下である。
Slab heating temperature: 1150 ° C. or higher and 1350 ° C. or lower Most carbide-forming elements such as Ti or V are present as carbides in steel slabs. In order to cause precipitation in ferrite as desired after hot rolling, it is necessary to once dissolve precipitates that have precipitated as carbides before hot rolling. For this purpose, it is necessary to heat at 1150 ° C or higher. On the other hand, if the temperature exceeds 1350 ° C., the crystal grain size becomes too coarse and the stretch flange characteristics and elongation characteristics after processing deteriorate, so the temperature is set to 1350 ° C. or less. Therefore, the slab heating temperature is 1150 ° C. or higher and 1350 ° C. or lower. More preferably, it is 1170 ° C. or higher and 1260 ° C. or lower.
熱間圧延における仕上げ圧延温度:850℃以上1000℃以下
加工後の鋼スラブは、熱間圧延の終了温度である仕上げ圧延温度850℃〜1100℃で熱間圧延される。仕上げ圧延温度が850℃未満では、フェライト+オーステナイトの領域で圧延され、展伸したフェライト組織となるため、伸びフランジ特性や伸び特性が劣化する。仕上げ圧延温度が1000℃を超えると、フェライト粒が粗大化するため、980MPaのTSが得られない。よって、仕上げ圧延温度850℃以上1000℃以下で仕上げ圧延を行う。より好ましくは870℃以上960℃以下である。
Finishing rolling temperature in hot rolling: The steel slab after processing at 850 ° C. or more and 1000 ° C. or less is hot rolled at a finishing rolling temperature of 850 ° C. to 1100 ° C., which is the end temperature of hot rolling. If the finish rolling temperature is less than 850 ° C., the ferrite structure is rolled in the ferrite + austenite region and becomes an expanded ferrite structure, so that the stretch flange characteristics and the stretch characteristics deteriorate. When the finish rolling temperature exceeds 1000 ° C., the ferrite grains become coarse, so that a TS of 980 MPa cannot be obtained. Therefore, finish rolling is performed at a finish rolling temperature of 850 ° C. or higher and 1000 ° C. or lower. More preferably, it is 870 ° C. or higher and 960 ° C. or lower.
第一段冷却:冷却停止温度650℃以上800℃未満の温度まで平均冷却速度30℃/s以上で冷却
熱間圧延後は、仕上げ圧延温度から冷却温度650℃〜800℃まで、平均冷却速度30℃/s以上で冷却を行なう必要がある。冷却停止温度が800℃以上では、核生成が起こりにくいためフェライトの体積率が60%以上にならず、Tiおよび/またはVを含む析出物の所定の析出状態が得られない。冷却停止温度が650℃未満では、C、Tiの拡散速度が低下するため、フェライトの体積率が60%以上にならず、Tiおよび/またはVを含む析出物の所定の析出状態が得られない。したがって、冷却停止温度は650℃以上800℃未満とする。また、仕上げ圧延温度から冷却停止温度までの平均冷却速度が30℃/s未満では、パーライトが生成するため加工後の伸びフランジ特性や伸び特性が劣化する。なお、冷却速度の上限は、特に限定するものではないが、上記の冷却停止温度範囲内に性格に停止させるためには、300℃/s程度とすることが好ましい。
First stage cooling: After cooling hot rolling at an average cooling rate of 30 ° C / s or higher to a cooling stop temperature of 650 ° C or higher and lower than 800 ° C, the average cooling rate of 30 to 650 ° C to 800 ° C from the finish rolling temperature It is necessary to cool at a temperature of at least ° C / s. When the cooling stop temperature is 800 ° C. or higher, nucleation is difficult to occur, so the ferrite volume fraction does not exceed 60%, and a predetermined precipitation state of precipitates containing Ti and / or V cannot be obtained. When the cooling stop temperature is less than 650 ° C., the diffusion rate of C and Ti decreases, so the ferrite volume fraction does not exceed 60%, and a predetermined precipitation state of precipitates containing Ti and / or V cannot be obtained. . Therefore, the cooling stop temperature is set to 650 ° C. or higher and lower than 800 ° C. In addition, when the average cooling rate from the finish rolling temperature to the cooling stop temperature is less than 30 ° C./s, pearlite is generated, so that stretch flange characteristics and stretch characteristics after processing deteriorate. The upper limit of the cooling rate is not particularly limited, but is preferably about 300 ° C./s in order to stop the cooling within the cooling stop temperature range.
第一段冷却後の空冷:1秒以上10秒未満
第一の冷却後、1秒以上10秒以下の間、冷却を停止して空冷する。この空冷している時間が1秒未満ではフェライトの体積占有率60%以上にならず、10秒を超えるとパーライトが生成し、伸びフランジ特性や伸び特性が劣化する。なお、空冷時の冷却速度は、おおむね15℃/s以下である。
Air cooling after the first stage cooling: 1 second or more and less than 10 seconds After the first cooling, the cooling is stopped and air cooling is performed for 1 second or more and 10 seconds or less. If this air cooling time is less than 1 second, the ferrite volume occupancy does not exceed 60%, and if it exceeds 10 seconds, pearlite is generated, and the stretch flange characteristics and stretch characteristics deteriorate. Note that the cooling rate during air cooling is approximately 15 ° C./s or less.
第二段冷却:平均冷却速度20℃/s以上で巻取り温度300℃超え600℃以下まで冷却
空冷後は、巻取り温度300℃超え600℃以下まで平均冷却速度20℃/s以上で第二の冷却を行なう。このとき、平均冷却速度が20℃/s未満では、冷却中にパーライトが生成するため、平均冷却速度は20℃/s以上、好ましくは50℃/s以上とする。なお、冷却速度の上限は、特に限定するものではないが、上記の巻取り温度範囲内に正確に停止させるためには、300℃/s程度とすることが好ましい。
また、巻取り温度が300℃以下では、第二相の主体がマルテンサイトとなり、YRが85%以下となる。一方、600℃超えでは、パーライトが生成し、伸び特性が劣化する。好ましくは、400℃以上550℃以下である。
Second-stage cooling: Cooling to an average cooling rate of 20 ° C / s or higher to a coiling temperature of 300 ° C to 600 ° C or less, then air cooling to a winding temperature of 300 ° C to 600 ° C or less to an average cooling rate of 20 ° C / s or higher. Cool down. At this time, if the average cooling rate is less than 20 ° C./s, pearlite is generated during cooling, so the average cooling rate is 20 ° C./s or more, preferably 50 ° C./s or more. The upper limit of the cooling rate is not particularly limited, but is preferably about 300 ° C./s in order to accurately stop the cooling rate within the above winding temperature range.
When the coiling temperature is 300 ° C. or lower, the main component of the second phase is martensite, and YR is 85% or lower. On the other hand, when the temperature exceeds 600 ° C., pearlite is generated and the elongation characteristics deteriorate. Preferably, they are 400 degreeC or more and 550 degrees C or less.
T1≦0.06×T2+764 ただし、T1:第一段冷却停止温度、T2:巻取り温度
第一段冷却後の空冷中に、フェライトへの微細析出が生じる。これより、大部分のフェライト相は析出強化される。析出強化されたフェライト相の硬さは、析出物が生成する温度、つまり、第一段冷却停止温度に影響される。一方、第二相(ベイナイト)の硬さは、変態温度、つまり、巻取り温度に影響される。さまざまな研究の結果により、第一段冷却停止温度をT1、巻取り温度をT2とするとT1≦0.06×T2+764を満たすとき、硬度差が300以下となることが明らかとなった。T1>0.06×T2+764では、フェライト相の硬度が低く、かつ、第二相の硬度が高いために、硬度差が300越えとなる。
T1 ≦ 0.06 × T2 + 764 However, T1: First stage cooling stop temperature, T2: Winding temperature Fine precipitation to ferrite occurs during air cooling after the first stage cooling. As a result, most of the ferrite phase is strengthened by precipitation. The hardness of the precipitation strengthened ferrite phase is affected by the temperature at which precipitates are formed, that is, the first stage cooling stop temperature. On the other hand, the hardness of the second phase (bainite) is influenced by the transformation temperature, that is, the coiling temperature. The results of various studies revealed that the hardness difference is 300 or less when T1 ≦ 0.06 × T2 + 764 is satisfied, where T1 is the first stage cooling stop temperature and T2 is the coiling temperature. When T1> 0.06 × T2 + 764, the hardness of the ferrite phase is low and the hardness of the second phase is high, so the hardness difference exceeds 300.
さらに、検討した結果、上述した第二段冷却時において、500℃以下の温度域では120℃/s以上の冷却速度で冷却すると共に核沸騰冷却となる条件で冷却すれば、鋼板内の材質変動を安定して小さくできるという効果があることが判明した。この第二段冷却工程について、以下に詳細に説明する。
第二段冷却において、500℃以下の温度域で水冷すると膜沸騰から核沸騰への遷移沸騰が起こりやすく、鋼材面内にて温度ムラの問題が生じやすい。ゆえに、膜沸騰冷却と核沸騰冷却が共存する遷移沸騰冷却となる500℃以下の温度域を、冷却速度120℃/s以上、好ましくは250℃/s以上で、かつ、核沸騰冷却となる条件で冷却すれば、温度ムラを確実に解消でき、鋼板内材質変動を安定して小さくすることができることになる。この理由は、明らかではないが、冷却速度が遅いと鋼板表面の水膜の破壊が十分ではない部分が発生するためと考えられる。
第二段冷却工程にて核沸騰冷却する場合、まず、前記空冷後の第二段冷却開始から核沸騰冷却を行うまでは平均冷却速度:20℃/s以上で冷却を行う。引き続き、核沸騰冷却を開始する。この時、冷却速度は120℃/sとする。なお、上記核沸騰冷却となる条件での冷却における冷却速度は、核沸騰冷却中の平均冷却速度である。また、発明者らが検討した結果、核沸騰冷却は、少なくとも、500℃以下の温度域を行えばよく、冷却停止後500℃以上の温度から核沸騰冷却となる条件での冷却を開始してもよい。なお、巻取温度が600℃以下から500℃以上のときは、500℃以下の水冷が不要となるので、核沸騰冷却を考慮する必要はない。
冷却速度120℃/s以上でかつ核沸騰冷却となる条件で確実に冷却するには、例えば、水量密度を2000l/(min.m2)以上とすることが好ましい。さらに、核沸騰冷却を実施するには、従来の方法、すなわち鋼板上面に対しては直進性に優れたラミナーもしくはジェット冷却を用いるのが好ましい。ノズルの形状としては、一般的に用いられている円管やスリットノズルを採用することができる。また、ラミナーもしくはジェット冷却の流速は4m/s以上とすることが好ましい。これは、冷却時に鋼板上に生成する液膜をラミナーもしくはジェット冷却により安定的に突き破るための運動量を得る必要があるためである。なお、鋼板下面に対しては重力により冷却水は落下するため、鋼板面に液膜ができないため、スプレー冷却を用いても問題ない。もちろん、鋼板上面の場合と同様なラミナーやジェット冷却を採用することもできる。
Furthermore, as a result of the examination, when the second stage cooling described above is performed, cooling at a cooling rate of 120 ° C./s or more in the temperature range of 500 ° C. or less and cooling under the condition of nucleate boiling cooling, the material fluctuations in the steel plate It was found that there is an effect that can be reduced stably. This second stage cooling step will be described in detail below.
In the second stage cooling, if water cooling is performed in a temperature range of 500 ° C. or lower, transition boiling from film boiling to nucleate boiling is likely to occur, and a problem of temperature unevenness is likely to occur in the steel surface. Therefore, a temperature range of 500 ° C. or less, which is transition boiling cooling in which film boiling cooling and nucleate boiling cooling coexist, is a cooling rate of 120 ° C./s or more, preferably 250 ° C./s or more, and conditions for nucleate boiling cooling. If it cools by, a temperature nonuniformity can be eliminated reliably and the material variation in a steel plate can be reduced stably. The reason for this is not clear, but it is considered that when the cooling rate is slow, a portion where the water film on the steel sheet surface is not sufficiently broken is generated.
When performing nucleate boiling cooling in the second stage cooling step, first, cooling is performed at an average cooling rate of 20 ° C./s or more from the start of the second stage cooling after the air cooling until nucleate boiling cooling is performed. Subsequently, nucleate boiling cooling is started. At this time, the cooling rate is 120 ° C./s. In addition, the cooling rate in the cooling under the above nucleate boiling cooling condition is an average cooling rate during nucleate boiling cooling. In addition, as a result of investigations by the inventors, nucleate boiling cooling may be performed at least in a temperature range of 500 ° C. or less, and after cooling is stopped, cooling is started under a condition of nucleate boiling cooling from a temperature of 500 ° C. or more. Also good. When the coiling temperature is 600 ° C. or lower to 500 ° C. or higher, water cooling at 500 ° C. or lower is not necessary, so there is no need to consider nucleate boiling cooling.
In order to ensure cooling under the conditions of cooling rate of 120 ° C./s or more and nucleate boiling cooling, for example, the water density is preferably 2000 l / (min.m 2 ) or more. Furthermore, in order to perform nucleate boiling cooling, it is preferable to use a conventional method, that is, laminar or jet cooling excellent in straightness with respect to the upper surface of the steel sheet. As the shape of the nozzle, a generally used circular tube or slit nozzle can be adopted. The laminar or jet cooling flow rate is preferably 4 m / s or more. This is because it is necessary to obtain a momentum for stably breaking through the liquid film formed on the steel plate during cooling by laminar or jet cooling. In addition, since cooling water falls with respect to the steel plate lower surface by gravity, since a liquid film cannot be formed on the steel plate surface, there is no problem even if spray cooling is used. Of course, the same laminar and jet cooling as in the case of the upper surface of the steel plate can be employed.
以上により、伸びおよび加工後の伸びフランジ特性に優れた高強度鋼板が得られる。
なお、本発明の鋼板には、表面に表面処理や表面被覆処理を施したものを含む。特に、本発明の鋼板には溶融亜鉛系めっき皮膜を形成し、溶融亜鉛めっき系鋼板としたものに好適に適用できる。すなわち、本発明の鋼板は良好な加工性を有することから、溶融亜鉛系めっき皮膜を形成しても良好な加工性を維持できる。ここで、溶融亜鉛系めっきとは、亜鉛および亜鉛を主体とした(すなわち約90%以上を含有する)溶融めっきであり、亜鉛のほかにAl、Crなどの合金元素を含んだものも含む、また、溶融亜鉛系めっきを施したままでも、めっき後に合金化処理を行なってもかまわない。
As described above, a high-strength steel sheet excellent in elongation and stretch flange characteristics after processing can be obtained.
In addition, the steel plate of this invention contains what gave the surface treatment and surface coating process to the surface. In particular, the steel sheet of the present invention can be suitably applied to a steel sheet obtained by forming a hot-dip galvanized coating film on the hot-dip galvanized steel sheet. That is, since the steel sheet of the present invention has good workability, good workability can be maintained even when a hot dip galvanized film is formed. Here, the hot dip galvanizing is hot dip plating mainly composed of zinc and zinc (that is, containing about 90% or more), including those containing alloy elements such as Al and Cr in addition to zinc. Moreover, even if hot dip galvanizing is performed, alloying treatment may be performed after plating.
また、鋼の溶製方法は特に限定されず、公知の溶製方法の全てを適応することができる。例えば、溶製方法としては、転炉、電気炉等で溶製し、真空脱ガス炉にて2次精錬を行なう方法が好適である。鋳造方法は、生産性、品質上の観点から、連続鋳造方が好ましい。また、鋳造後、直ちに、または補熱を目的とする加熱を施した後に、そのまま熱間圧延を行なう直送圧延を行なっても、本発明の効果に影響はない。さらに、粗圧延後に、仕上圧延前で、熱延材を加熱してもよく、粗圧延後に圧延材を接合して行なう連続熱延を行なっても、さらには、圧延材の加熱材の加熱と連続圧延を同時に行なっても、本発明の効果は損なわれない。 Moreover, the melting method of steel is not particularly limited, and all known melting methods can be applied. For example, as the melting method, a method of melting in a converter, electric furnace or the like and performing secondary refining in a vacuum degassing furnace is suitable. The casting method is preferably a continuous casting method from the viewpoint of productivity and quality. Further, the effect of the present invention is not affected even if the direct feed rolling, in which the hot rolling is performed as it is, immediately after casting or after heating for the purpose of supplementary heating is performed. Furthermore, after the rough rolling, before the finish rolling, the hot rolled material may be heated, or even if the continuous hot rolling is performed by joining the rolled material after the rough rolling, and further, the heating material of the rolled material is heated. Even if continuous rolling is performed simultaneously, the effect of the present invention is not impaired.
表1に示す組成の鋼を転炉で溶製し、連続鋳造により鋼スラブとした。次いで、これらの鋼スラブに対して、表2に示す条件で加熱、熱間圧延、冷却、巻取りを施し板厚2.0mmの熱延鋼板を作製した。 Steels having the compositions shown in Table 1 were melted in a converter and steel slabs were obtained by continuous casting. Next, these steel slabs were heated, hot-rolled, cooled and wound under the conditions shown in Table 2 to produce hot-rolled steel sheets having a thickness of 2.0 mm.
得られた熱延鋼板に対して、以下に示す方法で20nm未満の析出物に含まれるTi量およびV量を求めた。 With respect to the obtained hot-rolled steel sheet, the amount of Ti and the amount of V contained in precipitates of less than 20 nm were determined by the following method.
大きさ20nm未満の析出物に含まれるTi量およびV量の測定
上記により得られた熱延鋼板を適当な大きさに切断し、10%AA系電解液(10vol%アセチルアセトン-1mass%塩化テトラメチルアンモニウム-メタノール)中で、約0.2gを電流密度20mA/cm2で定電流電解した。
電解後の、表面に析出物が付着している試料片を電解液から取り出して、ヘキサメタリン酸ナトリウム水溶液(500mg/l)(以下、SHMP水溶液と称す)中に浸漬し、超音波振動を付与して、析出物を試料片から剥離しSHMP水溶液中に抽出した。次いで、析出物を含むSHMP水溶液を、孔径20nmのフィルタを用いてろ過し、ろ過後のろ液に対してICP発光分光分析装置を用いて分析し、ろ液中のTiとVの絶対量を測定した。次いで、TiとVの絶対量を電解重量で除して、大きさ20nm未満の析出物に含まれるTi量およびV量を得た。なお、電解重量は、析出物剥離後の試料に対して重量を測定し、電解前の試料重量から差し引くことで求めた。
Measurement of Ti content and V content in precipitates with a size of less than 20 nm The hot-rolled steel sheet obtained as described above was cut into a suitable size, and 10% AA electrolyte (10 vol% acetylacetone-1 mass% tetramethyl chloride) was obtained. (Ammonium-methanol) About 0.2 g was subjected to constant current electrolysis at a current density of 20 mA / cm 2 .
After the electrolysis, remove the sample piece with deposits on the surface from the electrolyte and immerse it in an aqueous solution of sodium hexametaphosphate (500 mg / l) (hereinafter referred to as the SHMP aqueous solution) to apply ultrasonic vibration. The precipitate was peeled off from the sample piece and extracted into an aqueous SHMP solution. Next, the SHMP aqueous solution containing the precipitate is filtered using a filter with a pore size of 20 nm, and the filtrate after filtration is analyzed using an ICP emission spectrophotometer, and the absolute amounts of Ti and V in the filtrate are determined. It was measured. Next, the absolute amounts of Ti and V were divided by the electrolytic weight to obtain the Ti amount and the V amount contained in the precipitate having a size of less than 20 nm. In addition, the electrolysis weight was calculated | required by measuring a weight with respect to the sample after deposit peeling, and subtracting from the sample weight before electrolysis.
また、コイル先端部から30mの位置で幅方向中央から、JIS5号引張試験片(圧延方向に平行方向)、穴広げ試験片および組織観察用サンプルを採取して、以下に示す方法で引張強度:TS、YR、伸び:El、加工後の伸びフランジ特性:λ10および硬度差を求め、評価した。 In addition, from the center of the width direction at a position 30 m from the coil tip, a JIS No. 5 tensile test piece (parallel to the rolling direction), a hole expanding test piece and a sample for structure observation were collected, and the tensile strength was obtained by the following method: TS, YR, elongation: El, stretch flange characteristics after processing: λ 10 and hardness difference were determined and evaluated.
引張強度:TS
圧延方向を引張り方向としてJIS5号試験片3本採取し、JIS Z 2241に準拠した方法で引張り試験を行ない、引張り強さ(TS)、降伏応力(YS)、および伸び(El)を求めた。また、YRは、下降伏応力をTSで割った値とした。
Tensile strength: TS
Three JIS No. 5 test pieces were collected with the rolling direction as the tensile direction, and a tensile test was performed by a method based on JIS Z 2241 to determine tensile strength (TS), yield stress (YS), and elongation (El). YR was a value obtained by dividing the falling yield stress by TS.
加工後の伸びフランジ特性:λ10
穴広げ試験用試験片を3枚採取し、伸張率10%で圧延後、鉄連規格JFST 1001に準じて穴広げ試験を行ない、3枚の平均からλ10を求めた。
Stretch flange characteristics after processing: λ 10
Three test pieces for hole expansion test were collected, rolled at a stretch rate of 10%, and subjected to a hole expansion test in accordance with the Iron Federation Standard JFST 1001, and λ 10 was obtained from the average of the three sheets.
硬度差:HVS−HVα
ビッカース硬さ試験に用いる試験機は、JISB7725に適合したものを用いた。組織観察用サンプルを1枚採取し、圧延方向に平行な断面について3%ナイタール溶液で組織を現出して、板厚1/4位置にて試験荷重3gでフェライト粒およびベイナイト粒にそれぞれくぼみをつけた。くぼみの対角線長さからJISZ2244にあるビッカース硬さ算出式を用い硬度を算出した。それぞれ30個のフェライト粒およびベイナイト粒の硬度を測定し、それぞれの平均値をフェライト相の硬度(HVα)およびベイナイト相の硬度(HVS)とし、硬度差(HVS−HVα)を求めた。
以上により得られた結果を表2に製造条件と併せて示す。
Hardness difference: HV S −HV α
The tester used for the Vickers hardness test was one conforming to JISB7725. Take one sample for structure observation, reveal the structure with a 3% nital solution on the cross section parallel to the rolling direction, and indent each ferrite grain and bainite grain at a test load of 3g at 1/4 thickness position. It was. The hardness was calculated from the diagonal length of the indentation using the Vickers hardness calculation formula in JISZ2244. Measure the hardness of each of 30 ferrite grains and bainite grains, and calculate the hardness difference (HV S −HV α ) by taking the average value of each as the hardness of the ferrite phase (HV α ) and the hardness of the bainite phase (HV S ). It was.
The results obtained as described above are shown in Table 2 together with the production conditions.
表2より、本発明例では、TS(強度)が980MPa以上、λ10が40%以上、YRが85%超え、El(伸び)が13%以上で加工後の伸びフランジ特性に優れた熱延鋼板が得られている。 From Table 2, in the present invention example, TS (strength) is 980 MPa or more, λ 10 is 40% or more, YR is more than 85%, El (elongation) is 13% or more, and hot rolling with excellent stretch flange characteristics after processing A steel plate is obtained.
一方、比較例は、TS、YR、El、λ10のいずれか1つ以上が劣っている。 On the other hand, the comparative example, TS, YR, El, any one or more of the lambda 10 is inferior.
表3に示す組成の鋼を転炉で溶製し、連続鋳造により鋼スラブとした。次いで、これらの鋼スラブに対して、表4に示す条件で加熱、熱間圧延、冷却、巻取りを施し板厚2.0mmの熱延鋼板を作製した。 Steel having the composition shown in Table 3 was melted in a converter, and a steel slab was formed by continuous casting. Subsequently, these steel slabs were heated, hot-rolled, cooled and wound under the conditions shown in Table 4 to produce hot-rolled steel sheets having a thickness of 2.0 mm.
得られた熱延鋼板に対して、実施例1と同様の方法で20nm未満の析出物に含まれるTi量およびV量を求めた。また、実施例1と同様の方法で引張強度:TS、YR、伸び:El、加工後の伸びフランジ特性:λ10および硬度差を求め、評価した。
以上により得られた結果を表4に示す。
With respect to the obtained hot-rolled steel sheet, the amount of Ti and the amount of V contained in precipitates of less than 20 nm were determined in the same manner as in Example 1. Further, tensile strength: TS, YR, elongation: El, stretched flange characteristic after processing: λ 10 and hardness difference were obtained and evaluated in the same manner as in Example 1.
Table 4 shows the results obtained as described above.
表4より、本発明例では、TSが980MPa以上、λ10が40%以上、YRが85%超え、El(伸び)が13%以上で加工後の伸びフランジ特性に優れた熱延鋼板が得られている。さらに、鋼No.1(表2)に比べて、Cr、WやZrを添加した鋼においては、TSが向上していることがわかる。 From Table 4, in the present invention example, a hot-rolled steel sheet having excellent stretch flange characteristics after processing with TS of 980 MPa or more, λ 10 of 40% or more, YR of over 85%, and El (elongation) of 13% or more is obtained. It has been. Furthermore, it can be seen that TS is improved in steel added with Cr, W and Zr compared to steel No. 1 (Table 2).
表1と表3に示す組成の鋼を転炉で溶製し、連続鋳造により鋼スラブとした。次いで、これらの鋼スラブに対して、表5に示す条件で加熱、熱間圧延、冷却、巻取りを施し板厚2.0mmの熱延鋼板を作製した。
なお、ここで、巻取温度は鋼帯の幅方向中央部の巻取温度を鋼帯の長手方向に計測し、それらを平均した値である。また、巻取装置の直前に鋼板表面温度を2次元的に測定可能な放射温度計[NEC三栄(株)製型式TH7800]を設置し、次のように鋼板面の温度ムラSを求め、評価した。
Steels having the compositions shown in Tables 1 and 3 were melted in a converter and steel slabs were formed by continuous casting. Subsequently, these steel slabs were heated, hot-rolled, cooled and wound under the conditions shown in Table 5 to produce hot-rolled steel sheets having a thickness of 2.0 mm.
Here, the coiling temperature is a value obtained by measuring the coiling temperature at the center in the width direction of the steel strip in the longitudinal direction of the steel strip and averaging them. In addition, a radiation thermometer (NEC Sanei Co., Ltd. Model TH7800) capable of two-dimensional measurement of the steel sheet surface temperature was installed immediately before the winding device, and the temperature unevenness S on the steel sheet surface was determined and evaluated as follows. did.
鋼鈑面の温度ムラS
放射温度計で計測された局所的に巻取温度が350℃未満となる低温部の面積を求め、その面積の鋼板全面積に対する割合を温度ムラS(下式参照)とした。
S=(低温部の面積)/(鋼板の全面積)×100(%)
Sが5%未満であれば温度ムラがないとした。
Temperature irregularity S on the steel surface
The area of the low temperature part where the coiling temperature was locally measured with a radiation thermometer was less than 350 ° C. was determined, and the ratio of the area to the total area of the steel sheet was defined as temperature unevenness S (see the following formula).
S = (area of low temperature part) / (total area of steel plate) × 100 (%)
If S was less than 5%, there was no temperature unevenness.
また、得られた熱延鋼板に対して、実施例1と同様の方法で20nm未満の析出物に含まれるTi量およびV量を求めた。また、実施例1と同様の方法で引張強度:TS、YR、伸び:El、加工後の伸びフランジ特性:λ10および硬度差を求め、評価した。 Moreover, Ti amount and V amount contained in precipitates of less than 20 nm were determined for the obtained hot-rolled steel sheet by the same method as in Example 1. Further, tensile strength: TS, YR, elongation: El, stretched flange characteristic after processing: λ 10 and hardness difference were obtained and evaluated in the same manner as in Example 1.
さらに、鋼板面内における材質変動を調査するため、TSの標準偏差を以下のように求めた。
TSの標準偏差:σ
コイル先端から長手方向に100、200、400、600、700m入った各位置で、圧延方向に平行な方向を試験片の長手方向として、鋼板の幅方向に、幅方向の両端25mの内側から25本の試験片を等間隔に採取し、合計125本のJIS5号引張試験片を採取し、上述と同様な方法でTSを求め、その標準偏差σを算出した。
以上により得られた結果を表5に製造条件と併せて示す。
Furthermore, in order to investigate the material variation in the steel plate surface, the standard deviation of TS was determined as follows.
Standard deviation of TS: σ
At each position 100, 200, 400, 600, 700 m in the longitudinal direction from the coil tip, the direction parallel to the rolling direction is the longitudinal direction of the test piece, and the width of the steel sheet is 25 from the inside of both ends 25 m in the width direction. A total of 125 JIS5 tensile test pieces were collected at regular intervals, TS was obtained by the same method as described above, and the standard deviation σ was calculated.
The results obtained as described above are shown in Table 5 together with the production conditions.
表5より、本発明例では、TS(強度)が980MPa以上、λ10が40%以上、YRが85%超え、El(伸び)が13%以上で加工後の伸びフランジ特性に優れた熱延鋼板が得られている。また、核沸騰冷却を行うことでコイル内の温度ムラがほとんどなくなり、TSの標準偏差σは30MPa以下と小さく、鋼板内材質変動が小さいことがわかる。
一方、比較例は、TS、YR、El、λ10のいずれか1つ以上が劣っている。
According to Table 5, in the present invention example, TS (strength) is 980 MPa or more, λ 10 is 40% or more, YR is more than 85%, and El (elongation) is 13% or more. A steel plate is obtained. In addition, by performing nucleate boiling cooling, the temperature unevenness in the coil is almost eliminated, and the standard deviation σ of TS is as small as 30 MPa or less, showing that the material variation in the steel sheet is small.
On the other hand, the comparative example, TS, YR, El, any one or more of the lambda 10 is inferior.
本発明の鋼板は高強度であり、かつ、優れた加工後の伸びフランジ特性を有するので、例えば、自動車やトラック用のフレーム等、伸びおよび伸びフランジ特性を必要とする部品として最適である。 Since the steel sheet of the present invention has high strength and excellent stretch flange characteristics after processing, it is optimal as a part that requires stretch and stretch flange characteristics, such as a frame for automobiles and trucks.
Claims (5)
T1≦0.06×T2+764 …(1)
ただし、T1:第一段冷却の停止温度、T2:巻取り温度 In mass%, C: 0.08% to 0.20%, Si: 0.2% to 1.0%, Mn: 0.5% to 2.5%, P: 0.04% or less, S: 0.005% or less, Al: 0.05% or less, Ti : Steel slab containing 0.07% or more and 0.20% or less, V: 0.05% or more and less than 0.20%, with the balance being composed of Fe and inevitable impurities, after heating to a temperature of 1150 ° C or more and 1350 ° C or less, Hot rolling is performed at a finish rolling temperature of 850 ° C or higher and 1000 ° C or lower, and then the first stage cooling is performed at an average cooling rate of 30 ° C / s or higher to a temperature of 650 ° C or higher and lower than 800 ° C. Air-cooled for a period of time, followed by second-stage cooling at a cooling rate of 20 ° C / s or more, winding at a temperature exceeding 300 ° C and 600 ° C or less, and satisfying formula (1). Method.
T1 ≦ 0.06 × T2 + 764 (1)
However, T1: First stage cooling stop temperature, T2: Winding temperature
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009007298A JP5359296B2 (en) | 2008-01-17 | 2009-01-16 | High strength steel plate and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008007524 | 2008-01-17 | ||
JP2008007524 | 2008-01-17 | ||
JP2009007298A JP5359296B2 (en) | 2008-01-17 | 2009-01-16 | High strength steel plate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009191360A true JP2009191360A (en) | 2009-08-27 |
JP5359296B2 JP5359296B2 (en) | 2013-12-04 |
Family
ID=41073641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009007298A Expired - Fee Related JP5359296B2 (en) | 2008-01-17 | 2009-01-16 | High strength steel plate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5359296B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009280899A (en) * | 2008-04-21 | 2009-12-03 | Jfe Steel Corp | METHOD FOR PRODUCING HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING 780 MPa OR MORE OF TENSILE STRENGTH |
JP2011140671A (en) * | 2010-01-05 | 2011-07-21 | Jfe Steel Corp | High strength hot rolled steel sheet and method for producing the same |
JP2011140699A (en) * | 2010-01-08 | 2011-07-21 | Jfe Steel Corp | Method for manufacturing high-strength hot-rolled steel sheet excellent in elongation property and stretch flanging property |
JP2013006201A (en) * | 2011-06-27 | 2013-01-10 | Jfe Steel Corp | Method for manufacturing hot rolled steel sheet |
WO2013024860A1 (en) * | 2011-08-17 | 2013-02-21 | 株式会社神戸製鋼所 | High-strength hot-rolled steel plate |
JP2013040381A (en) * | 2011-08-17 | 2013-02-28 | Kobe Steel Ltd | High-strength hot-rolled steel sheet having both formability and fatigue characteristic in base material and weld heat affected zone |
JP2015199987A (en) * | 2014-04-08 | 2015-11-12 | 新日鐵住金株式会社 | HIGH STRENGTH HOT ROLLED STEEL SHEET EXCELLENT IN LOW TEMPERATURE TOUGHNESS AND UNIFORM ELONGATION AND HOLE EXPANSIBILITY AND HAVING TENSILE STRENGTH OF 780 MPa OR MORE AND PRODUCTION METHOD THEREFOR |
US9228244B2 (en) | 2010-03-31 | 2016-01-05 | Nippon Steel & Sumitomo Metal Corporation | High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same |
WO2016143298A1 (en) * | 2015-03-06 | 2016-09-15 | Jfeスチール株式会社 | High strength steel sheet and manufacturing method therefor |
WO2018026013A1 (en) * | 2016-08-05 | 2018-02-08 | 新日鐵住金株式会社 | Steel sheet and plated steel sheet |
WO2018186273A1 (en) * | 2017-04-07 | 2018-10-11 | Jfeスチール株式会社 | Steel member, hot-rolled steel sheet for said steel member and production methods therefor |
WO2018186274A1 (en) * | 2017-04-07 | 2018-10-11 | Jfeスチール株式会社 | Steel member, hot-rolled steel sheet for said steel member and production methods therefor |
US10428409B2 (en) * | 2011-03-18 | 2019-10-01 | Nippon Steel Corporation | Hot-rolled steel sheet with excellent press formability and production method thereof |
EP3495528A4 (en) * | 2016-08-05 | 2020-01-01 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
EP3495529A4 (en) * | 2016-08-05 | 2020-01-01 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
EP3495530A4 (en) * | 2016-08-05 | 2020-01-08 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
US10689737B2 (en) | 2015-02-25 | 2020-06-23 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10752972B2 (en) | 2015-02-25 | 2020-08-25 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10913988B2 (en) | 2015-02-20 | 2021-02-09 | Nippon Steel Corporation | Hot-rolled steel sheet |
CN114480958A (en) * | 2021-12-24 | 2022-05-13 | 安阳钢铁集团有限责任公司 | Low-cost molybdenum-free non-quenched and tempered 800MPa high-strength steel and manufacturing method thereof |
US11401571B2 (en) | 2015-02-20 | 2022-08-02 | Nippon Steel Corporation | Hot-rolled steel sheet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006161111A (en) * | 2004-12-08 | 2006-06-22 | Sumitomo Metal Ind Ltd | Hot rolled steel plate and its production method |
JP2007009322A (en) * | 2005-05-30 | 2007-01-18 | Jfe Steel Kk | High strength hot rolled sheet having excellent elongation property, stretch flange formability and tensile fatigue property, and method for producing the same |
JP2009280899A (en) * | 2008-04-21 | 2009-12-03 | Jfe Steel Corp | METHOD FOR PRODUCING HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING 780 MPa OR MORE OF TENSILE STRENGTH |
-
2009
- 2009-01-16 JP JP2009007298A patent/JP5359296B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006161111A (en) * | 2004-12-08 | 2006-06-22 | Sumitomo Metal Ind Ltd | Hot rolled steel plate and its production method |
JP2007009322A (en) * | 2005-05-30 | 2007-01-18 | Jfe Steel Kk | High strength hot rolled sheet having excellent elongation property, stretch flange formability and tensile fatigue property, and method for producing the same |
JP2009280899A (en) * | 2008-04-21 | 2009-12-03 | Jfe Steel Corp | METHOD FOR PRODUCING HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING 780 MPa OR MORE OF TENSILE STRENGTH |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009280899A (en) * | 2008-04-21 | 2009-12-03 | Jfe Steel Corp | METHOD FOR PRODUCING HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING 780 MPa OR MORE OF TENSILE STRENGTH |
JP2011140671A (en) * | 2010-01-05 | 2011-07-21 | Jfe Steel Corp | High strength hot rolled steel sheet and method for producing the same |
JP2011140699A (en) * | 2010-01-08 | 2011-07-21 | Jfe Steel Corp | Method for manufacturing high-strength hot-rolled steel sheet excellent in elongation property and stretch flanging property |
US9228244B2 (en) | 2010-03-31 | 2016-01-05 | Nippon Steel & Sumitomo Metal Corporation | High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same |
US10113220B2 (en) | 2010-03-31 | 2018-10-30 | Nippon Steel & Sumitomo Metal Corporation | High strength, hot dipped galvanized steel sheet excellent in shapeability and method of production of same |
US10428409B2 (en) * | 2011-03-18 | 2019-10-01 | Nippon Steel Corporation | Hot-rolled steel sheet with excellent press formability and production method thereof |
JP2013006201A (en) * | 2011-06-27 | 2013-01-10 | Jfe Steel Corp | Method for manufacturing hot rolled steel sheet |
JP2013040381A (en) * | 2011-08-17 | 2013-02-28 | Kobe Steel Ltd | High-strength hot-rolled steel sheet having both formability and fatigue characteristic in base material and weld heat affected zone |
US9689060B2 (en) | 2011-08-17 | 2017-06-27 | Kobe Steel, Ltd. | High-strength hot-rolled steel sheet |
WO2013024860A1 (en) * | 2011-08-17 | 2013-02-21 | 株式会社神戸製鋼所 | High-strength hot-rolled steel plate |
JP2015199987A (en) * | 2014-04-08 | 2015-11-12 | 新日鐵住金株式会社 | HIGH STRENGTH HOT ROLLED STEEL SHEET EXCELLENT IN LOW TEMPERATURE TOUGHNESS AND UNIFORM ELONGATION AND HOLE EXPANSIBILITY AND HAVING TENSILE STRENGTH OF 780 MPa OR MORE AND PRODUCTION METHOD THEREFOR |
US11401571B2 (en) | 2015-02-20 | 2022-08-02 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10913988B2 (en) | 2015-02-20 | 2021-02-09 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10752972B2 (en) | 2015-02-25 | 2020-08-25 | Nippon Steel Corporation | Hot-rolled steel sheet |
US10689737B2 (en) | 2015-02-25 | 2020-06-23 | Nippon Steel Corporation | Hot-rolled steel sheet |
JPWO2016143298A1 (en) * | 2015-03-06 | 2017-04-27 | Jfeスチール株式会社 | High strength steel plate and manufacturing method thereof |
US10815547B2 (en) | 2015-03-06 | 2020-10-27 | Jfe Steel Corporation | High strength steel sheet and manufacturing method therefor |
WO2016143298A1 (en) * | 2015-03-06 | 2016-09-15 | Jfeスチール株式会社 | High strength steel sheet and manufacturing method therefor |
WO2018026013A1 (en) * | 2016-08-05 | 2018-02-08 | 新日鐵住金株式会社 | Steel sheet and plated steel sheet |
US10889879B2 (en) | 2016-08-05 | 2021-01-12 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
JPWO2018026013A1 (en) * | 2016-08-05 | 2018-08-02 | 新日鐵住金株式会社 | Steel plate and plated steel plate |
US11649531B2 (en) | 2016-08-05 | 2023-05-16 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
US11236412B2 (en) | 2016-08-05 | 2022-02-01 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
EP3495527A4 (en) * | 2016-08-05 | 2019-12-25 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
EP3495528A4 (en) * | 2016-08-05 | 2020-01-01 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
EP3495529A4 (en) * | 2016-08-05 | 2020-01-01 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
EP3495530A4 (en) * | 2016-08-05 | 2020-01-08 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
TWI629368B (en) * | 2016-08-05 | 2018-07-11 | 日商新日鐵住金股份有限公司 | Steel plate and plated steel |
JP6354916B2 (en) * | 2016-08-05 | 2018-07-11 | 新日鐵住金株式会社 | Steel plate and plated steel plate |
US11230755B2 (en) | 2016-08-05 | 2022-01-25 | Nippon Steel Corporation | Steel sheet and plated steel sheet |
JPWO2018186273A1 (en) * | 2017-04-07 | 2019-04-11 | Jfeスチール株式会社 | Steel member, hot-rolled steel sheet for the steel member, and production method thereof |
WO2018186274A1 (en) * | 2017-04-07 | 2018-10-11 | Jfeスチール株式会社 | Steel member, hot-rolled steel sheet for said steel member and production methods therefor |
JPWO2018186274A1 (en) * | 2017-04-07 | 2019-04-11 | Jfeスチール株式会社 | Steel member, hot-rolled steel sheet for the steel member, and production method thereof |
CN110494583A (en) * | 2017-04-07 | 2019-11-22 | 杰富意钢铁株式会社 | Steel member, the hot rolled steel plate of the steel member and their manufacturing method |
US11313008B2 (en) | 2017-04-07 | 2022-04-26 | Jfe Steel Corporation | Steel member and production method therefor |
WO2018186273A1 (en) * | 2017-04-07 | 2018-10-11 | Jfeスチール株式会社 | Steel member, hot-rolled steel sheet for said steel member and production methods therefor |
CN110494582A (en) * | 2017-04-07 | 2019-11-22 | 杰富意钢铁株式会社 | Steel member, the hot rolled steel plate of the steel member and their manufacturing method |
CN114480958A (en) * | 2021-12-24 | 2022-05-13 | 安阳钢铁集团有限责任公司 | Low-cost molybdenum-free non-quenched and tempered 800MPa high-strength steel and manufacturing method thereof |
CN114480958B (en) * | 2021-12-24 | 2023-04-21 | 安阳钢铁集团有限责任公司 | Low-cost molybdenum-free non-quenched and tempered 800MPa high-strength steel and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5359296B2 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5359296B2 (en) | High strength steel plate and manufacturing method thereof | |
JP5423191B2 (en) | High strength steel plate and manufacturing method thereof | |
JP6525114B1 (en) | High strength galvanized steel sheet and method of manufacturing the same | |
JP6179675B2 (en) | High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them | |
EP2243852B1 (en) | High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof | |
JP5018935B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
CN109154044B (en) | Hot-dip galvanized steel sheet | |
JP6179674B2 (en) | High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them | |
US20200291499A1 (en) | High-strength galvanized steel sheet and method for manufacturing same | |
JP5488129B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP2010065272A (en) | High-strength steel sheet and method for manufacturing the same | |
JP2009052139A (en) | High-strength steel sheet | |
JP2017048412A (en) | Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor | |
CN103764864B (en) | Cold-rolled steel sheet hot rolled steel plate, hot-dip galvanizing sheet steel hot rolled steel plate and manufacture method thereof | |
JP2014019928A (en) | High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet | |
JP3812279B2 (en) | High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same | |
JP6265108B2 (en) | Hot-rolled steel sheet for cold-rolled steel sheet or hot-dip galvanized steel sheet and method for producing the same | |
WO2017183348A1 (en) | Steel plate, plated steel plate, and production method therefor | |
WO2018092817A1 (en) | High-strength steel sheet and method for producing same | |
TW201506172A (en) | Cold-rolled steel plate, galvanized cold-rolled steel plate, and method for manufacturing said plates | |
JP5272412B2 (en) | High strength steel plate and manufacturing method thereof | |
JP6384623B2 (en) | High strength steel plate and manufacturing method thereof | |
JP2013241636A (en) | Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet | |
WO2017033222A1 (en) | Steel sheet | |
JP5655381B2 (en) | Method for producing high-tensile hot-dip galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110824 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130508 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130819 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5359296 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |