JP2009190957A - Method of manufacturing conductive carbon material and conductive body - Google Patents
Method of manufacturing conductive carbon material and conductive body Download PDFInfo
- Publication number
- JP2009190957A JP2009190957A JP2008036409A JP2008036409A JP2009190957A JP 2009190957 A JP2009190957 A JP 2009190957A JP 2008036409 A JP2008036409 A JP 2008036409A JP 2008036409 A JP2008036409 A JP 2008036409A JP 2009190957 A JP2009190957 A JP 2009190957A
- Authority
- JP
- Japan
- Prior art keywords
- wood
- charcoal
- iron
- conductive
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、導電性炭素材料の製造方法および導電体の製造方法に関する。さらに詳しくは、本発明は、鉄を触媒として、木材を炭化して導電性炭素材料を製造する方法において、触媒として利用される鉄を回収し、再利用することを含む方法に関する。さらに本発明は、木材を炭化して得られた導電性炭素材料から導電性の成形体を得る導電体の製造方法に関する。 The present invention relates to a method for producing a conductive carbon material and a method for producing a conductor. More specifically, the present invention relates to a method for recovering and reusing iron used as a catalyst in a method for producing a conductive carbon material by carbonizing wood using iron as a catalyst. Furthermore, this invention relates to the manufacturing method of the conductor which obtains an electroconductive molded object from the electroconductive carbon material obtained by carbonizing wood.
通常炭化温度を400-500℃として製造される木炭の電気導電性は低いが、板状等に成形すれば電磁波シールド(EMSと略記)性が付与される。備長炭のように処理温度を1000℃近くまで増加すれば導電性が向上することなどが期待され、実際EMS機能や導電性能を謳った木炭製品がいくつか登場している(非特許文献1-3)。しかし、400-500℃木炭の低導電性は非晶炭素から成ることに起因し、1000℃程度で炭化しても木材炭素の結晶化は効果的には進行しない。したがって、これらの木炭製品が、既存の導電性カーボン(アセチレンブラックDB(非特許文献4)、ケッチェンブラックKB(非特許文献5)、人造グラファイトLO等)に匹敵するほど高い導電性を持つとは考えにくい。 Normally, charcoal produced at a carbonization temperature of 400-500 ° C. has low electrical conductivity, but if formed into a plate shape or the like, electromagnetic shielding (abbreviated as EMS) is imparted. Like Bincho charcoal, it is expected that the conductivity will improve if the processing temperature is increased to nearly 1000 ° C. Actually, several charcoal products with EMS function and conductivity performance have appeared (Non-Patent Document 1 3). However, the low conductivity of charcoal at 400-500 ° C is due to the fact that it consists of amorphous carbon. Even if carbonized at about 1000 ° C, crystallization of wood carbon does not proceed effectively. Therefore, these charcoal products have high conductivity comparable to existing conductive carbon (acetylene black DB (Non-Patent Document 4), Ketjen Black KB (Non-Patent Document 5), artificial graphite LO, etc.) Is hard to think.
他方1500℃以上で炭化すると黒鉛(グラファイト)構造が発達して木炭は良好な導電体となる(非特許文献6)が、このような高温熱処理は操業コストが高く、価格面でDB(約600円/kg)やKB(約2,000円/kg)には太刀打ちできない。 On the other hand, when carbonized at 1500 ° C or higher, the graphite (graphite) structure develops and charcoal becomes a good conductor (Non-patent Document 6), but such high-temperature heat treatment is expensive to operate and has a DB (about 600) in terms of price. Yen / kg) and KB (approximately 2,000 yen / kg) cannot be beaten.
それ故900℃のニッケル触媒炭化(ニッケル原料はNi(CH3COO)2・4H2O)が結晶炭素(T成分)を効果的に生成させて実用レベルのEMS性能(30dB)を備える(非特許文献7,8)、DBに匹敵する高導電性の木炭(非特許文献9)を与えるという事実は注目に値する。しかし、実用化の観点でより興味を抱かせるのは800-850℃の鉄触媒炭化(鉄原料として酢酸鉄(III)塩基性、Fe(OH)(CH3COOH)2を使用)がより高導電性の木炭を与える(非特許文献9)ことである。
文 献
Literature
鉄は概してニッケルより安価であり、かつ前述のように、酢酸鉄Fe(OH) (CH3COO)2を水溶液含浸によりFeとして3%添加した木材を850℃炭化すると良好な導電性木炭が得られる。この塩を原料として用いた理由は(1)低温で熱分解する結果Fe粒子が木材中に高分散する、(2)分解時に有害ガスを発生しない、の2点にあり、特に(1)は木炭の高導電化に大きな役割を果たすと考えられる。 Iron is generally cheaper than nickel, and as mentioned above, good conductive charcoal can be obtained by carbonizing 850 ° C wood containing Fe (OH) (CH 3 COO) 2 containing 3% Fe as an aqueous solution. It is done. There are two reasons for using this salt as a raw material: (1) Fe particles are highly dispersed in wood as a result of thermal decomposition at low temperatures, and (2) no harmful gases are generated during decomposition. It is thought to play a major role in increasing the conductivity of charcoal.
しかし、導電性木炭の実用製造に際してはコスト低減から鉄分を回収、再使用することが望まれる。そこで本発明者らは、得られた鉄炭を粉砕し、その後1M酢酸に室温浸漬した。その結果、鉄除去率は約90%となり、大部分が回収可能であることがわかった。また、この酢酸洗浄により鉄炭の結晶性は増大して導電性は体積抵抗率の点で10%程度向上することも判明した。 However, in practical production of conductive charcoal, it is desired to recover and reuse iron for cost reduction. Therefore, the present inventors pulverized the obtained iron charcoal and then immersed in 1M acetic acid at room temperature. As a result, the iron removal rate was about 90%, and it was found that most of the iron was recoverable. It was also found that this acetic acid cleaning increased the crystallinity of the iron and charcoal and improved the conductivity by about 10% in terms of volume resistivity.
しかし、酢酸鉄には次の欠点がある。上記の酢酸鉄組成は概略値で、明確な一定組成物を調製することは困難である。処理条件等によって組成が異なるため、(3)対応する酸による洗浄時に元の組成が再現されるという保証はない。また、(4)水に対する溶解度が小さい(詳細データは存在しない)ので、含浸用の均一水溶液とするには鉄濃度を相当に低くしなければならない(実験室における目視試験では、溶解度は約1.0gFe/25℃水100g)。換言すれば、水溶液含浸では炭化前に木材から過剰の水を除去する必要があり、操作的にもエネルギー的にも酢酸鉄の使用は好ましいものではなく、回収・再使用時に組成が不明ではFe濃度の調整に支障をきたす。 However, iron acetate has the following disadvantages. The above iron acetate composition is an approximate value, and it is difficult to prepare a clear and constant composition. Since the composition varies depending on the processing conditions and the like, (3) there is no guarantee that the original composition will be reproduced when washing with the corresponding acid. (4) Since the solubility in water is small (detailed data does not exist), the iron concentration has to be considerably reduced in order to obtain a uniform aqueous solution for impregnation. gFe / 25 ° C water 100g). In other words, it is necessary to remove excess water from wood before carbonization in aqueous solution impregnation, and it is not preferable to use iron acetate in terms of operation and energy, and if the composition is unknown at the time of recovery and reuse, It will interfere with the adjustment of concentration.
上記の900℃ニッケル触媒炭化炭(U-Ni炭)については、ニッケル回収のために希硝酸で洗浄すると導電性能が向上することは知られている(非特許文献9)。しかし、酸洗浄により回収されたニッケルを再度、炭化触媒として用いるためには、少なくともアニオンを硝酸から酢酸に変えるなどの追加の操作が必要であると推測される。 As for the above-mentioned 900 ° C. nickel catalyst carbonized carbon (U-Ni charcoal), it is known that the conductivity performance is improved when washed with dilute nitric acid for nickel recovery (Non-patent Document 9). However, in order to use nickel recovered by acid washing again as a carbonization catalyst, it is presumed that an additional operation such as changing at least the anion from nitric acid to acetic acid is necessary.
そこで本発明は、鉄触媒を用いて木材を炭化して導電性の炭素材料(木炭)を製造する方法であって、高い導電性を示す炭素材料(木炭)が得られると同時に、触媒として用いる鉄を高い回収率で回収して、木材の炭化に再利用できる方法を提供することを目的とする。さらに本発明は、木材を炭化して得られた導電性炭素材料から導電性の成形体を得る導電体の製造方法を提供することも目的とする。 Therefore, the present invention is a method for producing a conductive carbon material (charcoal) by carbonizing wood using an iron catalyst, and at the same time, a carbon material (charcoal) exhibiting high conductivity is obtained and used as a catalyst. An object is to provide a method in which iron can be recovered at a high recovery rate and reused for carbonization of wood. Another object of the present invention is to provide a method for producing a conductor that obtains a conductive molded body from a conductive carbon material obtained by carbonizing wood.
本発明者らは、鉄触媒の原料として、硝酸鉄(例えば、Fe(NO3)3・9H2O)を使用することで、高い導電性を示す炭素材料(木炭)が得られること、および炭素材料(木炭)から硝酸を用いて鉄を高い回収率で回収できること、さらに回収した硝酸鉄を鉄触媒の原料として容易に再利用できることを見出して、本発明を完成させた。 The present inventors can obtain a carbon material (charcoal) exhibiting high conductivity by using iron nitrate (for example, Fe (NO 3 ) 3 · 9H 2 O) as a raw material for an iron catalyst, and The present invention was completed by finding that iron can be recovered from a carbon material (charcoal) using nitric acid at a high recovery rate, and that the recovered iron nitrate can be easily reused as a raw material for an iron catalyst.
具体的には、Fe(NO3)3・9H2Oをカラマツ木粉に添加して850℃の鉄触媒炭化を行なったところ、U-Ni炭の導電特性を上回る木炭(U-Fe炭)が製造でき、鉄回収のために行った希硝酸洗浄では炭素の結晶性が向上し、この酸洗浄木炭(A-Fe炭)の熱圧成形体は市販の最高級導電性カーボンであるKBを配合した成形体に近い非常に優れた導電特性を有することが判明した。 Specifically, when Fe (NO 3 ) 3 · 9H 2 O was added to larch wood flour and subjected to iron-catalyzed carbonization at 850 ° C, charcoal exceeding the conductive properties of U-Ni charcoal (U-Fe charcoal) In the dilute nitric acid cleaning performed to recover the iron, the crystallinity of the carbon is improved, and the hot-pressed body of this acid-washed charcoal (A-Fe charcoal) is made of KB, which is the highest grade conductive carbon on the market It has been found that it has very good conductive properties close to the blended molded body.
硝酸第二鉄Fe(NO3)3・9H2Oは易水性(化学便覧によれば、6.25gFe/25℃水100g)で、1M硝酸による洗浄によって元の組成に再生されるので、酢酸鉄の欠点(3)、(4)は克服される。さらに(1)の点では酢酸鉄よりむしろ有利と推測される(鈴木勉他、1988、木材学会誌, 34, 537-542)。しかし、その一方(2)に関してはNOx発生の懸念がある。そこでFe(NO3)3・9H2Oを所定量担持した木材を850℃前後で炭化し、発生ガスの組成をガスクロで調査したがNOxは検出されなかった。NOx非検出の理由は、この鉄塩添加では300℃以下でH2とCO発生が促進され、N2への還元が効果的に進行するためと考えられる。850℃で調製した木炭の導電特性は酢酸鉄と硝酸鉄では対応する酸による洗浄後は同等であり、酸洗浄によるFe回収率の点では硝酸がやや高いという結果を総合すれば、硝酸塩の使用が実用上有利と結論される。 Ferric nitrate Fe (NO 3 ) 3 · 9H 2 O is easily water-soluble (according to chemical handbooks, 6.25 g Fe / 25 ° C water 100 g) and is regenerated to its original composition by washing with 1M nitric acid. Disadvantages (3) and (4) are overcome. Furthermore, it is presumed that (1) is more advantageous than iron acetate (Tsuzuki Suzuki et al., 1988, Journal of the Wood Society, 34, 537-542). However, regarding (2), there is a concern about the generation of NOx. Therefore, wood carrying a predetermined amount of Fe (NO 3 ) 3 · 9H 2 O was carbonized at around 850 ° C., and the composition of the generated gas was investigated by gas chromatography, but NOx was not detected. The reason for the non-detection of NOx is considered to be that the addition of iron salt promotes the generation of H 2 and CO at 300 ° C. or less, and the reduction to N 2 proceeds effectively. The charcoal conductivity of charcoal prepared at 850 ° C is the same for iron acetate and iron nitrate after washing with the corresponding acid, and the combined use of nitric acid is the result of the slightly higher nitric acid in terms of Fe recovery by acid washing. It is concluded that is practically advantageous.
本発明は以下のとおりである。
[1]導電性炭素材料の製造方法であって、
木材に硝酸鉄水溶液を含浸し、
硝酸鉄水溶液を含浸した木材を炭化し、
炭化した材料を硝酸水溶液で洗浄して、炭化した材料から鉄を硝酸鉄として回収し、
回収した硝酸鉄水溶液を木材の含浸に再利用する、
ことを含む、上記製造方法。
[2]木材は、1〜5%の濃度の硝酸鉄水溶液に含浸する、[1]に記載の製造方法。
[3]炭化は、800〜900℃で行う、[1]または[2]に記載の製造方法。
[4]洗浄は、0.1〜1Mの濃度の硝酸水溶液で行う、[1]〜[3]のいずれかに記載の製造方法。
[5]洗浄は、炭化した材料を粉砕した後に行う、[1]〜[4]のいずれかに記載の製造方法。
[6]回収した硝酸鉄水溶液をそのまま木材の含浸に再利用する、[1]〜[5]のいずれかに記載の製造方法。
[7]回収した硝酸鉄水溶液を、新たに調製した硝酸鉄水溶液と混合した後に、木材の含浸に再利用する、[1] 〜[5]のいずれかに記載の製造方法。
[8][1]〜[7]のいずれかに記載の製造方法で得られた炭化した材料を木粉と混合し、得られた混合物を熱圧成形して導電性の成形体を得る、導電体の製造方法。
The present invention is as follows.
[1] A method for producing a conductive carbon material,
Impregnating wood with iron nitrate aqueous solution,
Carbonize wood impregnated with iron nitrate aqueous solution,
The carbonized material is washed with an aqueous nitric acid solution, and iron is recovered from the carbonized material as iron nitrate.
Reusing the recovered iron nitrate aqueous solution for impregnation of wood,
The said manufacturing method including this.
[2] The method according to [1], wherein the wood is impregnated with an aqueous iron nitrate solution having a concentration of 1 to 5%.
[3] The production method according to [1] or [2], wherein the carbonization is performed at 800 to 900 ° C.
[4] The production method according to any one of [1] to [3], wherein the washing is performed with an aqueous nitric acid solution having a concentration of 0.1 to 1M.
[5] The production method according to any one of [1] to [4], wherein the washing is performed after pulverizing the carbonized material.
[6] The production method according to any one of [1] to [5], wherein the recovered aqueous iron nitrate solution is reused as it is for impregnation of wood.
[7] The method according to any one of [1] to [5], wherein the recovered aqueous iron nitrate solution is mixed with a newly prepared aqueous iron nitrate solution and then reused for impregnation of wood.
[8] The carbonized material obtained by the production method according to any one of [1] to [7] is mixed with wood flour, and the resulting mixture is hot-press molded to obtain a conductive molded body. A method for producing a conductor.
本発明によれば、鉄触媒を用いて木材を炭化して導電性の炭素材料(木炭)を製造する方法であって、高い導電性を示す炭素材料(木炭)が得られると同時に、触媒として用いる鉄を高い回収率で回収して、木材の炭化に再利用できる方法を提供することができる。 According to the present invention, a method of producing a conductive carbon material (charcoal) by carbonizing wood using an iron catalyst, a carbon material (charcoal) exhibiting high conductivity is obtained, and at the same time as a catalyst. It is possible to provide a method capable of recovering iron to be used at a high recovery rate and reusing it for carbonization of wood.
本発明は、木材の用途を拡大して木材工業の進展に寄与するが、従来のプラスチックス(ポリエチレン、エポキシ樹脂等)代替として生の木粉をマトリックスとして使用したことも意義深く、次の1)、2)の特長を併せ持つことも強調されてよい。1)熱可塑性に乏しく熱圧成形しにくい生木材の欠点を克服している、2)バイオマスの利活用を推進して脱石油を図るので、時代のニーズに叶っている。 Although the present invention contributes to the development of the wood industry by expanding the use of wood, the use of raw wood flour as a matrix as a substitute for conventional plastics (polyethylene, epoxy resin, etc.) is significant. ) And 2) may be emphasized. 1) Overcoming the shortcomings of raw wood, which is poor in thermoplasticity and difficult to hot-press, 2) Promoting the utilization of biomass and removing oil, meeting the needs of the times.
本発明は、導電性炭素材料の製造方法であって、
木材に硝酸鉄水溶液を含浸し[硝酸鉄水溶液含浸工程]、
硝酸鉄水溶液を含浸した木材を炭化し[炭化工程]、
炭化した材料を硝酸水溶液で洗浄して、炭化した材料から鉄を硝酸鉄として回収し[洗浄工程]、
回収した硝酸鉄水溶液を木材の含浸に再利用する[再利用工程]、
ことを含む。
The present invention is a method for producing a conductive carbon material,
Impregnating wood with iron nitrate aqueous solution [Iron nitrate aqueous solution impregnation step]
Carbonize wood impregnated with aqueous iron nitrate solution [carbonization process]
The carbonized material is washed with an aqueous nitric acid solution, and iron is recovered from the carbonized material as iron nitrate [washing process]
Reusing the recovered iron nitrate aqueous solution for impregnation of wood [reuse process]
Including that.
本発明の導電性炭素材料の製造方法および導電性炭素材料からの導電体の製造方法を図1に示す。 FIG. 1 shows a method for producing a conductive carbon material and a method for producing a conductor from the conductive carbon material of the present invention.
[硝酸鉄水溶液含浸工程]
本工程では、木材を硝酸鉄[Fe(NO3)3・9H2O]水溶液に含浸させる。
使用する木材は、材質としては、樹種に限定はないが、例えば、カラマツ、エゾマツ、トドマツ、スギ、シラカンバ、ダケカンバなどが適している。形態としては、粉末、チップまたは小径木であることができる。
[Iron nitrate aqueous solution impregnation process]
In this step, the wood is impregnated with an iron nitrate [Fe (NO 3 ) 3 · 9H 2 O] aqueous solution.
The wood to be used is not limited to tree species, but, for example, larch, spruce, todomatsu, cedar, white birch, and birch are suitable. The form can be powder, chip or small diameter wood.
硝酸鉄水溶液の濃度は、使用される木材の樹種や形態、炭化触媒としての最適量(濃度)等を考慮して適宜決定できるが、例えば、1〜5%の濃度範囲であることができる。但し、この範囲に限定されるものではない。尚、炭化触媒として木材に含有される鉄の最適量(濃度)は、例えば、0.5-3%の濃度範囲である。 The concentration of the iron nitrate aqueous solution can be appropriately determined in consideration of the tree species and form of the wood used, the optimum amount (concentration) as a carbonization catalyst, etc., and can be, for example, a concentration range of 1 to 5%. However, it is not limited to this range. The optimum amount (concentration) of iron contained in the wood as the carbonization catalyst is, for example, in the concentration range of 0.5-3%.
木材は、硝酸鉄水溶液に浸漬し、硝酸鉄を含浸させる。硝酸鉄水溶液への浸漬時間や温度は、含浸させる硝酸鉄水溶液量に応じて適宜決定でき、例えば、室温(10〜30℃)で6〜24時間とすることができる。 Wood is immersed in an iron nitrate aqueous solution and impregnated with iron nitrate. The immersion time and temperature in the iron nitrate aqueous solution can be appropriately determined according to the amount of iron nitrate aqueous solution to be impregnated, and can be, for example, 6 to 24 hours at room temperature (10 to 30 ° C.).
[炭化工程]
次いで、硝酸鉄水溶液を含浸した木材を炭化する。
炭化は、例えば、N2気流中、800〜900℃で、例えば、30分〜2時間加熱処理することで行うことができる。N2気流の代わりに、他の不活性ガス雰囲気で加熱処理することもできる。
[Carbonization process]
Next, the wood impregnated with the iron nitrate aqueous solution is carbonized.
Carbonization can be performed, for example, by performing a heat treatment at 800 to 900 ° C. in an N 2 stream for 30 minutes to 2 hours, for example. Instead of the N 2 air flow, heat treatment can be performed in another inert gas atmosphere.
一般に、高濃度の硝酸(水溶液)に浸漬した乾燥木材を加熱すると200℃以下で褐色ガスの発生が観測される。従って、硝酸を含む木材を加熱する場合に、相当量のNO2が硝酸ガスと共に発生することが予想されるが、含有硝酸量が少なければ、NO2発生量は少なくなる。本発明の製造方法では、Fe炭を希硝酸に浸漬し、Fe(NO3)3・9H2Oとして回収した後に、木材に浸漬する場合について以下のように操作する。回収液には硝酸がある程度残存するので、基本的には減圧濃縮しながら大部分の硝酸を気化、回収することが適当である。この濃縮過程で木材にFe(NO3)3・9H2Oが担持されるが、同時に若干量の硝酸も吸収される。炭化は、通常、N2気流中で行うので、NO2(NOx)が検出限界以下になるようにN2流量を設定することが好ましい。 In general, when dry wood immersed in highly concentrated nitric acid (aqueous solution) is heated, generation of brown gas is observed below 200 ° C. Therefore, when heating wood containing nitric acid, a considerable amount of NO 2 is expected to be generated together with the nitric acid gas. However, if the amount of nitric acid contained is small, the amount of NO 2 generated will be small. In the production method of the present invention, Fe charcoal is immersed in dilute nitric acid, recovered as Fe (NO 3 ) 3 .9H 2 O, and then immersed in wood as follows. Since some amount of nitric acid remains in the recovered liquid, it is basically appropriate to vaporize and recover most of the nitric acid while concentrating under reduced pressure. During this concentration process, Fe (NO 3 ) 3 · 9H 2 O is supported on the wood, but at the same time, some amount of nitric acid is also absorbed. Since carbonization is usually performed in an N 2 gas stream, it is preferable to set the N 2 flow rate so that NO 2 (NOx) is below the detection limit.
検出限界以下の濃度であっても、Fe(NO3)3・9H2OからNO2(NOx)が全く発生しない訳ではない。しかし、硝酸よりは、Fe(NO3)3・9H2Oからの方が、NO2(NOx)は発生しにくい。そこで、硝酸とFe(NO3)3・9H2OからのNO2(NOx)量を見込んでN2流量を設定するのが適当である。Fe(NO3)3・9H2OからのNO2(NOx)の発生量については、実施例で測定している。 Even concentration below the detection limit, Fe (NO 3) 3 · 9H 2 O from NO 2 (NOx) is not the not generated. However, NO 2 (NOx) is less likely to be generated from Fe (NO 3 ) 3 · 9H 2 O than nitric acid. Therefore, it is appropriate to set the N 2 flow rate in consideration of the amount of NO 2 (NOx) from nitric acid and Fe (NO 3 ) 3 · 9H 2 O. The amount of NO 2 (NOx) generated from Fe (NO 3 ) 3 · 9H 2 O is measured in Examples.
[洗浄工程]
炭化した材料を硝酸水溶液で洗浄して、炭化した材料から鉄を硝酸鉄として回収する。
炭化した材料の硝酸水溶液での洗浄には、例えば、0.2〜4Mの濃度の硝酸水溶液を用いることができる。洗浄は、炭化した材料を硝酸水溶液に浸漬し、室温で3時間以上撹拌することで行うことができる。洗浄後、硝酸水溶液から炭化した材料を濾別、水洗して回収する。濾液として得られる硝酸水溶液には、炭化した材料から溶出した鉄が硝酸鉄として含まれる。
[Washing process]
The carbonized material is washed with an aqueous nitric acid solution, and iron is recovered from the carbonized material as iron nitrate.
For cleaning the carbonized material with an aqueous nitric acid solution, for example, an aqueous nitric acid solution having a concentration of 0.2 to 4M can be used. Cleaning can be performed by immersing the carbonized material in an aqueous nitric acid solution and stirring at room temperature for 3 hours or more. After washing, the carbonized material from the aqueous nitric acid solution is collected by filtration, washed with water. The aqueous nitric acid solution obtained as the filtrate contains iron eluted from the carbonized material as iron nitrate.
洗浄は、炭化した材料を粉砕した後に行うこともできる。粉砕品を洗浄することで、鉄の回収率を挙げることもできる。洗浄後の炭化した材料は、常温または加熱して乾燥することができる。炭化した材料の粉砕は、チップ材であれば最初に一般の粉砕機で数mm粒径(粗粉)とし、次いでボールミル処理を行って粒子径を10μm以下(微粉)に調節する。粉末であれば、初めの粗粉砕を省略できる。微粉は、その後接着剤と練り混ぜて熱圧成形するが、この成形体作成をより簡単化するために、粗粉に適当なバインダー用粒子と溶剤を加えた湿式のボールミル粉砕で行うこともできる。 Cleaning can also be performed after grinding the carbonized material. By recovering the pulverized product, the iron recovery rate can also be raised. The carbonized material after washing can be dried at room temperature or by heating. For the pulverization of the carbonized material, first, if it is a chip material, the particle size is reduced to a few mm (coarse powder) with a general pulverizer, and then ball milling is performed to adjust the particle diameter to 10 μm or less (fine powder). If it is a powder, the first coarse pulverization can be omitted. The fine powder is then kneaded with an adhesive and hot-press molded, but in order to make the molding easier, it can also be performed by wet ball milling with suitable binder particles and solvent added to the coarse powder. .
[再利用工程]
回収した硝酸鉄水溶液は、木材の含浸に再利用することができる。再利用の際には、回収した硝酸鉄水溶液をそのまま用いることも、回収した硝酸鉄水溶液に新たに、硝酸鉄または硝酸鉄水溶液を添加して、濃度を調整することもできる。
[Reuse process]
The recovered iron nitrate aqueous solution can be reused for the impregnation of wood. At the time of reuse, the recovered iron nitrate aqueous solution can be used as it is, or the concentration can be adjusted by newly adding iron nitrate or an iron nitrate aqueous solution to the recovered iron nitrate aqueous solution.
本発明では、硝酸鉄を使用するが、(塩基性)酢酸鉄Fe(OH)(CH3COO)2を鉄として同量用いた場合より硝酸鉄の使用が有利と言えるのは、水溶液含浸と再生・回収がより容易に実施できるためである。 In the present invention, iron nitrate is used, but the use of iron nitrate is more advantageous than the case of using (basic) iron acetate Fe (OH) (CH 3 COO) 2 in the same amount as iron. This is because regeneration and recovery can be performed more easily.
さらに、硝酸洗浄では鉄回収率が高いので炭素の結晶性改善効果が大きく、炭素の導電性はより大きく向上するという利点もある。 Furthermore, since the iron recovery rate is high in the nitric acid cleaning, the effect of improving the crystallinity of carbon is great, and there is an advantage that the conductivity of carbon is further improved.
さらに、硝酸鉄の再生は容易で定量性がある。また、水に対する溶解度が高いので回収後の木材への含浸添加操作は酢酸鉄に比べて有利である。
酢酸鉄の化学組成はおおよそFe(OH)(CH3COO)2であり、酢酸洗浄液中の鉄の化学形態は不明確で一定組成を持たせることは困難である。これは鉄濃度のコントロールが難しいことを意味し、また水に対する溶解度が低いので木材に対する水溶液含浸は低濃度で実施する必要がある。これに対して硝酸洗浄液中の鉄はFe(NO3)3・9H2Oという一定組成で存在し、水に対する溶解度が高いので高濃度での水溶液含浸が可能である。含浸後、炭化の前に、木材からある程度の水を除去することが炭化に必要な熱エネルギーを抑制するという観点から好ましいが、水の除去量を少なくできる硝酸鉄の方が手間もエネルギーも少なくて済むという利点もある。
Furthermore, the regeneration of iron nitrate is easy and quantitative. Moreover, since the solubility with respect to water is high, the impregnation addition operation to the wood after collection | recovery is advantageous compared with iron acetate.
The chemical composition of iron acetate is approximately Fe (OH) (CH 3 COO) 2 , and the chemical form of iron in the acetic acid cleaning solution is unclear and it is difficult to have a constant composition. This means that it is difficult to control the iron concentration. Since the solubility in water is low, it is necessary to impregnate the wood with an aqueous solution at a low concentration. In contrast, iron in the nitric acid cleaning solution has a constant composition of Fe (NO 3 ) 3 · 9H 2 O and has high solubility in water, so that it can be impregnated with an aqueous solution at a high concentration. It is preferable to remove some water from the wood after impregnation and before carbonization, from the viewpoint of suppressing the thermal energy required for carbonization, but iron nitrate that can reduce the amount of water removal requires less labor and energy. There is also an advantage that it can be done.
さらに本発明は、上記本発明の製造方法で得られた炭化した材料を木粉と混合し、得られた混合物を熱圧成形して導電性の成形体を得る、導電体の製造方法に関する。 Furthermore, this invention relates to the manufacturing method of the conductor which mixes the carbonized material obtained with the manufacturing method of the said invention with wood flour, and heat-press-forms the obtained mixture and obtains an electroconductive molded object.
上記本発明の製造方法で得られた炭化した材料は木粉と混合される。炭化した材料は、粉砕し、かつ適宜、分級して所定の粒子径を有するように調整された粉砕品であることが適当である。炭化した材料の所定の粒子径は、0.1〜5 mmの範囲であることが成形性の観点から適当である。 The carbonized material obtained by the production method of the present invention is mixed with wood flour. The carbonized material is suitably a pulverized product that is pulverized and appropriately classified to have a predetermined particle size. The predetermined particle diameter of the carbonized material is suitably in the range of 0.1 to 5 mm from the viewpoint of moldability.
木粉は、材質としては、樹種に限定はないが、例えば、カラマツ、エゾマツ、トドマツ、スギ、シラカンバ、ダケカンバなどが適している。木粉の粒子径は、0.3〜0.6mmの範囲であることが成形性の観点から適当である。さらに木粉は、成形性の観点から、水分が 3〜20%、好ましくは5〜8%の範囲に調整されたものであることが適当である。 The material of the wood powder is not limited to tree species, but for example, larch, spruce, todomatsu, cedar, white birch, and birch are suitable. The particle size of the wood powder is suitably in the range of 0.3 to 0.6 mm from the viewpoint of moldability. Furthermore, it is appropriate that the wood flour is adjusted to a moisture content of 3 to 20%, preferably 5 to 8%, from the viewpoint of moldability.
炭化した材料の粉砕品と木粉の混合割合は、成形性と成形体の導電性等を考慮して、適宜決定できるが、例えば、炭化した材料の粉砕品100質量部に対して木粉10〜1000質量部、好ましくは50〜500質量部の範囲であることが適当である。 The mixing ratio of the pulverized product of the carbonized material and the wood powder can be appropriately determined in consideration of the moldability, the conductivity of the molded body, etc. It is appropriate to be in the range of ~ 1000 parts by mass, preferably 50 to 500 parts by mass.
炭化した材料の粉砕品と木粉の混合物にはさらに水を添加することができる。水を添加することは、均質な導電性の成形体を得るという観点から好ましい。水の添加量は、炭化した材料の粉砕品と木粉の混合物100質量部に対して10〜50質量部、好ましくは20〜40質量部の範囲であることが適当である。 Water can be further added to the mixture of the carbonized material and the wood flour. Addition of water is preferable from the viewpoint of obtaining a homogeneous conductive molded body. The amount of water added is suitably in the range of 10 to 50 parts by weight, preferably 20 to 40 parts by weight with respect to 100 parts by weight of the mixture of the pulverized carbonized material and wood flour.
炭化した材料と木粉との混合物を熱圧成形して導電性の成形体を得る。熱圧成形は、以下のように実施できる。例えば、金属の中空容器に上記混合物の適量を採り、同質の金属底板と上板で挟んだ後ホットプレスにて室温にて数10分数10kgf/cm2で圧縮し、次いで120-160℃に昇温して100-300kgf/cm2で10-30分保持する。この加熱圧縮(熱圧)の好ましい条件は、140℃前後、200kgf/cm2前後の20分前後保持である。 A mixture of the carbonized material and wood powder is hot-press molded to obtain a conductive molded body. Hot pressing can be performed as follows. For example, an appropriate amount of the above mixture is taken in a metal hollow container, sandwiched between a metal base plate and a top plate of the same quality, compressed with a hot press at room temperature for several tens of minutes to 10 kgf / cm 2 , and then raised to 120-160 ° C. Warm and hold at 100-300 kgf / cm 2 for 10-30 minutes. The preferable conditions for this heat compression (hot pressure) are holding at around 140 ° C. and around 200 kgf / cm 2 for about 20 minutes.
1 ニッケル塩、鉄塩の添加と炭化
粒径0.3−2.0mmカラマツ木粉に(CH3COO)2Ni・4H2OとFe(NO3)3・9H2Oをそれぞれ金属として2wt%、3wt%含まれるように水溶液含浸で添加し、その後N2気流中で900℃-1h処理してU-Ni炭を、850℃-1h処理してU-Fe炭を得た。参考までに無添加木粉を900℃-1h炭化し、得られた木炭をNone炭と記した。
1 Addition of nickel salt and iron salt and carbonization Particle size 0.3-2.0mm To larch wood flour (CH 3 COO) 2 Ni ・ 4H 2 O and Fe (NO 3 ) 3・ 9H 2 O as metal respectively 2wt%, 3wt % Was added by impregnation with an aqueous solution, and then U-Ni charcoal was treated at 900 ° C. for 1 h in a N 2 stream to obtain U-Fe charcoal at 850 ° C. for 1 h. For reference, the additive-free wood powder was carbonized at 900 ° C. for 1 h, and the obtained charcoal was described as None charcoal.
2 酸洗浄と金属含有量
U-Ni炭、U-Fe炭を1M硝酸中に室温で24h攪拌、浸漬した後蒸留水で洗浄し、50℃で減圧乾燥したものをA-Ni炭、A-Fe炭とした。酸洗浄前後のNi、Fe含有量は、各炭の800℃燃焼残渣を王水に溶解し、原子吸光法により各金属濃度を測定して求めた。
2 Acid cleaning and metal content
U-Ni charcoal and U-Fe charcoal were stirred and immersed in 1M nitric acid at room temperature for 24 hours, washed with distilled water, and dried under reduced pressure at 50 ° C. to obtain A-Ni charcoal and A-Fe charcoal. The contents of Ni and Fe before and after the acid cleaning were determined by dissolving the 800 ° C. combustion residue of each charcoal in aqua regia and measuring each metal concentration by atomic absorption method.
3 X線回折
上記木炭にCu-Kα線を照射して3-70°の回折パターンを測定し、結晶炭素(T成分)に由来する26°付近の回折線から厚さ方向の平均結晶子径Lcとその層間距離d002を算出した。もう一つの結晶性パラメータとして、その回折線強度をLOのそれで割った値(比強度、RPI8))も計算した。また、ニッケル、鉄のピークからその存在形態を同定した。DB、KB、ROについても同様の測定を行い、Lc、d002、RPIを計算した。
3 X-ray diffraction The above charcoal is irradiated with Cu-Kα rays to measure a diffraction pattern of 3-70 °, and the average crystallite diameter in the thickness direction from the diffraction line near 26 ° derived from crystalline carbon (T component) Lc and its interlayer distance d002 were calculated. As another crystallinity parameter, a value obtained by dividing the intensity of the diffraction line by that of LO (specific intensity, RPI 8) ) was also calculated. Moreover, the existence form was identified from the peak of nickel and iron. The same measurement was performed for DB, KB, and RO, and Lc, d002, and RPI were calculated.
4 炭素と木粉の配合比と粉砕
上記の5種木炭0.5-2.0gに0.3-0.6mm及び0.6-1.0mm粒径のカラマツ木粉(水分はそれぞれ6.5%、7.5%)3.5-2.0gと蒸留水を0ml、1ml、2ml加えて軽く練り混ぜた後、その混合物を遊星型ボールミル中430rpmで5-40分間粉砕した。粉砕に使用したボールは粒径15mmのメノウ製である。粉砕後の粒径はレーザー屈折計で粒径分布を測定し、平均粒径D50を算出した。
4 Mixing ratio and grinding of carbon and wood flour The above-mentioned 5 kinds of charcoal 0.5-2.0g, larch wood flour of 0.3-0.6mm and 0.6-1.0mm particle size (moisture is 6.5% and 7.5% respectively) 3.5-2.0g After adding 0 ml, 1 ml and 2 ml of distilled water and kneading lightly, the mixture was pulverized in a planetary ball mill at 430 rpm for 5-40 minutes. The balls used for grinding were made of agate with a particle size of 15 mm. The particle diameter after grinding by measuring the particle size distribution by a laser refractometer was calculated an average particle diameter D 50.
5 熱圧成形
粉砕後の内容物をステンレス容器に移し、50Kg/cm2で10分冷圧の後120-160℃に昇温して10-30分間100、200、300Kg/cm2で熱圧した。なお、適当な熱圧条件では、直径20mm、厚さ約2mmの固化円板に成形された。
5 Hot press forming Transfer the crushed contents to a stainless steel container, cool for 10 minutes at 50Kg / cm 2 , then heat up to 120-160 ° C for 10-30 minutes and hot press at 100, 200, 300Kg / cm 2 for 10-30 minutes did. In addition, it was formed into a solidified disk having a diameter of 20 mm and a thickness of about 2 mm under appropriate hot pressure conditions.
6 体積抵抗率、EMS性能、インピーダンスの測定
各成形円板について四探針法による体積抵抗率(Ω・cm、導電率の逆数)、同軸キャビティー管による50-800MHzの電磁波シールド効果(dB)7)、Zプロット交流インピーダンスを1-10,000Hzで測定した。
6 Volume resistivity, EMS performance, impedance measurement Volume resistivity (Ω · cm, reciprocal of conductivity) for each molded disk by the four-probe method, 50-800MHz electromagnetic shielding effect (dB) by coaxial cavity tube 7) The Z plot AC impedance was measured at 1-10,000 Hz.
7 市販導電性カーボンの粉砕、熱圧成形と導電特性
6の結果から適正と判断された木粉との配合比、粉砕条件、熱圧条件を適用してDB、KB、LOの円板を作成し、それらの導電特性を6と同様に調べた。
7 Grinding, hot pressing and conductive properties of commercially available conductive carbon
DB, KB, and LO discs were prepared by applying the blending ratio with the wood flour judged appropriate from the results of 6, the grinding conditions, and the hot pressure conditions, and their conductive properties were examined in the same manner as in 6.
[結果と考察]
木炭の結晶構造
図2は5種木炭のX線回折図である。この図から明らかなように、None炭は非晶質であるがU-Fe炭では26°付近にT成分の回折線が現われている。ただし、U-Fe炭のT成分はU-Ni炭ほど生成しておらず、Feの炭素結晶化促進作用はNiより小さいことを示している。Fe触媒の効果が小さいことは、U-Ni炭では活性種である金属ニッケルが存在するのに対して、U-Fe炭では金属鉄ではなく鉄カーバイド(セメンタイト、Fe3C)が生成していることからも納得される。しかし、A-Fe炭のピーク強度はU-Fe炭を上回り、希硝酸洗浄はNi炭の場合と同様に炭素の結晶性を増大させた。この炭素の結晶性増大は、金属除去が炭素濃度の増加だけでなく結晶子の配向性改善ももたらすためと考えられる10)。
[Results and discussion]
Crystal structure of charcoal Figure 2 is an X-ray diffraction pattern of type 5 charcoal. As is clear from this figure, None charcoal is amorphous, but U-Fe charcoal shows a T component diffraction line around 26 °. However, the T component of U-Fe charcoal is not generated as much as U-Ni charcoal, indicating that the carbon crystallization promoting action of Fe is smaller than Ni. The effect of Fe catalyst is small, whereas in U-Ni charcoal, there is metallic nickel, which is an active species, in U-Fe charcoal, iron carbide (cementite, Fe 3 C) is generated instead of metallic iron. It is convinced from being. However, the peak intensity of A-Fe charcoal exceeded that of U-Fe charcoal, and the dilute nitric acid cleaning increased the crystallinity of carbon as in the case of Ni charcoal. This increase in carbon crystallinity is thought to be due to the removal of metal not only increasing the carbon concentration but also improving the orientation of the crystallites10 ) .
表1はこれら5種木炭の結晶構造をDB、KB、ROと比較したものであり、各木炭中の金属含有量も付記してある。LOに比べるとT成分から成る4種木炭はいずれもLcとRPIが大きく劣るが、Ni炭の結晶性はDBを上回り、A-Fe炭の結晶性はDBに近いものであった。KBはよく知られているようにX線的には無定形炭素であり、そのX線回折パターンはNone炭と類似であった。従って、炭素の結晶性の序列はLO≫A-Ni炭>Ni炭>A-Fe炭≧DB>Fe炭≫KB=None炭となる。なお、酸洗浄による炭素損失がないと仮定すれば、Ni、Feの除去率はそれぞれ約95%、約80%であり、Feの除去率がNiより低いのは上記のようにセメンタイトが生成したことに関係している。 Table 1 compares the crystal structures of these five types of charcoal with DB, KB, and RO, and the metal content in each charcoal is also noted. Compared to LO, all four types of charcoal composed of T component are greatly inferior in Lc and RPI, but the crystallinity of Ni coal exceeds that of DB, and the crystallinity of A-Fe coal is close to that of DB. As is well known, KB is amorphous carbon in X-ray, and its X-ray diffraction pattern is similar to that of None charcoal. Therefore, the order of crystallinity of carbon is LO >> A-Ni coal> Ni coal> A-Fe coal ≧ DB> Fe coal >> KB = None coal. Assuming that there is no carbon loss due to acid cleaning, the removal rates of Ni and Fe are about 95% and about 80%, respectively. It has something to do with it.
表2中のRPIは、乱層構造炭素(T成分)とグラファイトとのX線強度比であり、この値が大きいほど炭素の結晶化が進んでいることを表す。表2には先に実施した1M酢酸と1M硝酸による洗浄後の炭素の結晶構造を示す。酸洗浄により結晶性は増大(RPIが増加)し、粉砕して酸洗浄する方が効果は大きいという結果は共通である。硝酸洗浄が酢酸洗浄より有利であることが分かる。 RPI in Table 2 is an X-ray intensity ratio between the turbostratic carbon (T component) and graphite, and the larger this value, the more crystallization of the carbon progresses. Table 2 shows the crystal structure of carbon after the previous washing with 1M acetic acid and 1M nitric acid. The results show that the crystallinity increases (RPI increases) by acid cleaning, and the effect is greater when pulverized and acid cleaned. It can be seen that nitric acid cleaning is more advantageous than acetic acid cleaning.
2 熱圧成形性と適正熱圧条件
表3はおよそ1.0mm粒径のU-Fe炭を用いて木粉との配合比、水の添加量、混合時間、熱圧条件を変え、その成形性を調べた結果を例示している。これらの結果から成形性に影響を与える最も重要な因子は木粉の粒径と水の添加量であり、0.3-0.6mm木粉に水を1.0ml加えて10分以上粉砕すれば、用いた熱圧条件にかかわらずFe炭の配合量を1.5gまで増加させても見掛け上均一で相当に堅い円板に成形できることがわかった。即ち、○印を付けた円板は、強度の実測は行っていないが、もしDBやKB配合体並みの優れた導電特性を有するなら、通常の導電性プラスチックと同じ用途(自動車・家電製品などの電気系統におけるプラスチックケースとの一体配線、電気、電子機器等の3次元配線基板、スイッチ、コネクタ等の電子部品など)が十分期待できる堅さであった。他の4炭でも上記とほぼ同様の熱圧成形挙動が観測され、金属や酸洗浄の有無、触媒種の違いは重大ではなかった。なお、木粉がサイズと添加水量を調節することで適当なバインダーとしての能力、従ってマトリックスとしての役割を発現するのは、木材細胞が崩壊して露出した炭水化物成分が軟化、熱流動するためと考えられる。丸太材や板材を含水状態で加熱すると軟化、変形することは「曲げ木」としてよく知られた木材加工技術であり、この技術原理を理解していれば湿潤木粉の炭素のマトリックスとしての利応用は容易に思い浮かぶので特別新規な技術とは言えない。炭2.0gでは成形不可であり、これは湿潤木粉のバインダー能力に限界があることを示す予想された事態である。
2 Hot-press formability and proper hot-press conditions The result of having investigated is illustrated. From these results, the most important factors affecting the formability are the particle size of the wood flour and the amount of water added. If you add 1.0 ml of water to 0.3-0.6 mm wood flour and grind it for 10 minutes or more, it was used. It was found that even if the amount of Fe charcoal was increased to 1.5g regardless of the hot-pressure condition, it could be formed into an apparently uniform and considerably hard disk. In other words, the disks marked with ○ have not been measured for strength, but if they have excellent conductive properties similar to those of DB and KB blends, they can be used in the same applications as ordinary conductive plastics (automobiles, home appliances, etc.) In the electrical system of this system, integrated wiring with plastic cases, three-dimensional wiring boards for electricity, electronic equipment, etc., electronic parts such as switches, connectors, etc.) were sufficiently rigid. The other four charcoal showed the same hot pressing behavior as above, and the presence or absence of metal and acid washing and the difference in catalyst type were not significant. In addition, the ability of wood flour to adjust the size and amount of added water as an appropriate binder, and thus the role as a matrix, is because the carbohydrate components exposed by the decay of wood cells soften and heat flow. Conceivable. Softening and deformation of logs and plates when heated in a water-containing state is a wood processing technology well known as “bending wood”. If this technical principle is understood, it will be useful as a carbon matrix for wet wood flour. Application is easy to come up with, so it is not a specially new technology. Molding is not possible with 2.0g charcoal, which is an anticipated situation indicating that there is a limit to the binder capacity of wet wood flour.
表4は表3で○印を付けた円板試料の体積抵抗率を示している。この値は導電性の逆数であるから、高性能の導電体ほど小さな値を与える。導電性は構成炭素粒子自体の導電性にも支配されるが、成形体の緻密さ(密度)などにも大きな影響を受けるので、この値から熱圧条件の適否を評価、判定できる。なお、熱圧成形中には添加した水と木粉中の水分はほぼ完全に除去されると考えられるので、参考までに乾量基準の炭濃度も付記した。 Table 4 shows the volume resistivity of the disk sample marked with a circle in Table 3. Since this value is a reciprocal of conductivity, a smaller value is given to a higher performance conductor. Although the conductivity is governed by the conductivity of the constituent carbon particles themselves, it is also greatly influenced by the density (density) of the molded body, and from this value, the suitability of the hot press condition can be evaluated and judged. In addition, since it is considered that the added water and the water in the wood flour are almost completely removed during the hot pressing, the carbon concentration on the dry basis is also added for reference.
炭割合の増加に伴って体積抵抗率が激減するのはU-Fe炭が良好な導電性を有することの証拠であり、図3に与えた市販の導電性カーボンの添加量と体積抵抗率の関係11)から推測すると、その性能はKBとDBの中間に位置する。従って、U-Fe炭は「導電性カーボン」としての性能を十分備えていると判断される。このことは、熱圧成形がうまく行われたことを裏付けており、炭/木粉1.5g/2.5g(炭濃度39.3%)ではいずれの条件でも1.0Ω・cmを下回る高性能の導電体であった。従って、熱圧成形は120-160℃、10-30分、100-300Kg/cm2のいずれの温度、時間、圧力の組み合せを採用してもよいが、160℃、200Kg/cm2以上はやや不利と思われる。他の4炭でも熱圧条件の違いは体積抵抗率にそれほど重大な影響を与えず、総じて120-140℃、20分、200-300Kg/cm2が適当と判断された。DB、KB、LOでもその1.5gを0.3-0.6mm粒径木粉2.5g、水1.0mlで10分混合した時、熱圧条件140℃、20分、200Kg/cm2で比較的堅い円板が得られた。そこで、5種の木炭と3種の導電性カーボンはいずれもこの条件で混合、熱圧成形して3.3の導電特性の評価、比較に用いた。 The volume resistivity drastically decreases as the proportion of charcoal increases, which is evidence that U-Fe charcoal has good electrical conductivity. From the relation 11) , the performance is in the middle of KB and DB. Therefore, it is judged that U-Fe charcoal has sufficient performance as “conductive carbon”. This confirms that the hot-press molding has been performed successfully, with a high-performance conductor with a charcoal / wood powder of 1.5g / 2.5g (charcoal concentration of 39.3%) of less than 1.0Ω · cm in any condition. there were. Therefore, any combination of temperature, time, and pressure of 120-160 ° C, 10-30 minutes, 100-300Kg / cm 2 may be used for hot pressing, but somewhat higher than 160 ° C, 200Kg / cm 2 It seems to be disadvantageous. Differences in the hot-pressing conditions of the other four charcoal did not have a significant effect on the volume resistivity, and as a whole, 120-140 ° C, 20 minutes, 200-300 Kg / cm 2 was judged appropriate. DB, KB, LO even 0.3-0.6mm particle DBH powder 2.5g its 1.5g, when mixed 10 minutes with water 1.0 ml, hot pressing conditions 140 ° C., 20 min, relatively rigid disc at 200 Kg / cm 2 was gotten. Therefore, all 5 types of charcoal and 3 types of conductive carbon were mixed and hot-pressed under these conditions and used for evaluation and comparison of the conductive properties of 3.3.
3 酸洗浄の効果と市販の導電性カーボンとの導電特性の比較
図4は5種の木炭試料の導電性能を比較したものである。なお、インピーダンスは1000Hzにおける値、電磁波シールド性能は測定範囲における最小値として与えた。この図からA-Fe炭の導電特性はA-Ni炭を上回り、最も優れていることがわかる。また、いずれの特性でもA-Fe炭>U-Fe炭であるから、硝酸洗浄による炭素の結晶性改善の効果(図2、表1)が現われている。しかし、導電性やEMS性能においてU-Fe炭がU-Ni炭より優ることは炭素の結晶構造以外の因子がより重大に関与することを意味している。このことを説明しうる最も有力な要因は、構成するナノ粒子のサイズである。即ち、TEM観察(図5)によればU-Ni炭は約50nm、U-Fe炭は約30nmであり、後者は一次粒子の繋がり、つまり接触性の点で前者より有利と考えられる。これらの粒子サイズは酸洗浄によっても変化しないので、鉄触媒炭化はより小さな基本単位微粒子を生成しうる点でニッケル触媒炭化より本質的に優位にあることが示唆される。
3 Comparison of the effect of acid cleaning with that of commercially available conductive carbon Fig. 4 compares the conductive performance of five charcoal samples. The impedance was given as a value at 1000 Hz, and the electromagnetic shielding performance was given as the minimum value in the measurement range. From this figure, it can be seen that the conductive properties of A-Fe charcoal are better than those of A-Ni charcoal. Moreover, since A-Fe charcoal> U-Fe charcoal in all properties, the effect of improving the crystallinity of carbon by nitric acid cleaning (Fig. 2, Table 1) appears. However, the superiority of U-Fe charcoal over U-Ni charcoal in conductivity and EMS performance means that factors other than the crystal structure of carbon are more importantly involved. The most prominent factor that can explain this is the size of the constituent nanoparticles. That is, according to TEM observation (Fig. 5), U-Ni charcoal is about 50 nm, U-Fe charcoal is about 30 nm, and the latter is considered to be more advantageous than the former in terms of primary particle connection, that is, contact. Since these particle sizes do not change upon acid washing, it is suggested that iron-catalyzed carbonization is essentially superior to nickel-catalyzed carbonization in that it can produce smaller basic unit particles.
図6はDB、KB、LOとの比較である。A-Fe炭の性能がLOに及ばないのは、炭素の結晶構造の差異を反映していると考えられるが、導電性とEMS性能はDB以上であり、前者の性能はKBとほぼ同等であることがわかる。総合的に判断するとA-Ni炭はDBとKBの中間にあるが、A-Fe炭はむしろKBに近い非常に導電性の高い炭素である。 Figure 6 compares DB, KB, and LO. The reason why the performance of A-Fe charcoal does not reach LO is thought to reflect the difference in the crystal structure of carbon, but the conductivity and EMS performance are better than DB, and the former performance is almost equivalent to KB. I know that there is. Overall, A-Ni charcoal is between DB and KB, but A-Fe charcoal is rather highly conductive carbon that is close to KB.
4 混合・粉砕時間の影響
木粉と炭素原料との粉砕は混合物の組成均一化に不可欠であるが、その反面処理が過酷となれば過度な粒子の崩壊もしくは凝集、炭素の結晶性低下などを引き起こし、成形体の導電性能に不都合な影響を与えると予想される。従って、この処理は適正な条件で行われる必要があり、現実問題として処理時間が重要な因子となる。表5と図7はA-Fe炭についてその時間がそれぞれ平均粒径D50と炭素との結晶構造、成形体の導電性能に及ぼす影響を調べたものである。処理時間5分から10分までは粒子の粉砕が効果的に進行し、炭素の結晶構造は破壊されるが熱圧成形性が向上する結果として導電性、EMS性能が増加したと解釈できる。一方10分と20分ではD50に大差はないが、20分から40分への延長では粒子の凝集が激しく起こり、このことが成形性の悪化を招いて導電性、EMS性能の大きな低下につながったと説明できる。従って、A-Fe炭では10から20分の混合・粉砕が適当であり、処理時間をそれほど厳密にコントロールする必要はないと言える。この処理が時間的に比較的融通が利くことはA-Ni炭、DB、KB、LOでも同様で、10分と20分では導電特性に重大な差異は現われなかった。即ち、図6は各炭素の本来的な導電特性を反映したものとして受け入れられることが再確認される。なお、粒子の凝集はSEM観察ではより明瞭に確認できるので、適正な混合・粉砕時間を設定するにはこの視覚手段に頼るのがよいと考えられる。
4 Influence of mixing and grinding time Grinding of wood flour and carbon raw material is indispensable for uniform composition of the mixture, but on the other hand, if the treatment becomes severe, excessive particle disintegration or aggregation, carbon crystallinity degradation, etc. This is expected to adversely affect the conductive performance of the molded body. Therefore, this processing needs to be performed under appropriate conditions, and the processing time becomes an important factor as a real problem. Table 5 and Figure 7 is obtained by examining the crystal structure, on the conductive performance of the molded article the influence of the time the respective average particle diameter D 50 and carbon for A-Fe charcoal. From the treatment time of 5 minutes to 10 minutes, it can be interpreted that the pulverization of the particles effectively proceeds and the crystal structure of carbon is destroyed, but as a result of improving the hot press moldability, conductivity and EMS performance are increased. On the other hand, there is no significant difference in D 50 between 10 minutes and 20 minutes, but when the length is increased from 20 minutes to 40 minutes, the particles agglomerate severely, which leads to a deterioration in moldability and a large decrease in conductivity and EMS performance. Can be explained. Therefore, for A-Fe charcoal, mixing and grinding for 10 to 20 minutes is appropriate, and it can be said that it is not necessary to control the treatment time so closely. This process is relatively flexible in time, as was the case with A-Ni charcoal, DB, KB, and LO, with no significant differences in conductivity properties appearing at 10 and 20 minutes. That is, it is reconfirmed that FIG. 6 is accepted as reflecting the intrinsic conductive characteristics of each carbon. In addition, since aggregation of particles can be confirmed more clearly by SEM observation, it is considered better to rely on this visual means to set an appropriate mixing and grinding time.
反応器出口ガス中のNO+NO2濃度測定
50℃で減圧乾燥したFe(NO3)3・9H2O をFeとして3%添加したカラマツ木粉10gを縦型のステンレス反応器に入れ、N2を130ml/minで流しながら50℃に加熱した後、50℃から850℃まで10℃/minで昇温し、850℃で1h保持した(これが850℃ Fe炭の調製工程)。この間に(1)50℃から200℃までと(2)200℃から350℃までの反応器出口ガスをそれぞれ5L容のガスバックに採取し、(1)、(2)の窒素酸化物(NO+NO2)濃度をガステック製検知管(目盛り範囲10-250ppm、100mlを1分で吸引、吸引回数2回、検出限界2ppm)により測定した。その結果(1)、(2)とも黄色の呈色は認められず、NO+NO2濃度は 2ppm以下と判定された。ちなみにFe3%添加カラマツ木粉10gには(NO3)3が1.0g含まれ、NO2としては0.741g存在することになる。この全量がNO2として発生すれば0.741g/3900ml=190ppmであるが、(1)+(2)<4ppmであり、NO2としての発生率は<2.1%である。実際には検出限界以下であったから、NO+NO2は非発生と見なしてよい。なお、Fe(NO3)3・9H2OはN2中の熱重量曲線によれば340℃で完全にFe3O4となる(鈴木ら、木材学会誌、34、537-542、1988)。従って、上記の炭化においてFe(NO3)3・9H2Oが350℃以上でNOxを発生しながら分解するとは考えられない。
Measurement of NO + NO2 concentration in reactor outlet gas
10 g of larch wood flour containing 3% Fe (NO 3 ) 3 · 9H 2 O dried under reduced pressure at 50 ° C was placed in a vertical stainless steel reactor and heated to 50 ° C while flowing N 2 at 130 ml / min. Then, the temperature was raised from 50 ° C. to 850 ° C. at 10 ° C./min, and held at 850 ° C. for 1 hour (this is a process for preparing 850 ° C. Fe charcoal). During this period, (1) 50 ° C to 200 ° C and (2) 200 ° C to 350 ° C reactor outlet gas were collected in 5 L gas bags, respectively, and (1) and (2) nitrogen oxides (NO + NO 2 ) concentration was measured with a Gastec detector tube (scale range 10-250 ppm, 100 ml aspirated in 1 minute, 2 aspirations, detection limit 2 ppm). As a result, no yellow coloration was observed in both (1) and (2), and the NO + NO 2 concentration was determined to be 2 ppm or less. By the way, 10 g of larch-added larch wood flour contains 1.0 g of (NO 3 ) 3, and 0.741 g of NO 2 is present. This total amount is 0.741g / 3900ml = 190ppm be generated as NO 2, (1) + ( 2) < a 4 ppm, the incidence of the NO 2 is <2.1%. Since it was actually below the detection limit, NO + NO 2 may be regarded as non-occurring. Note that Fe (NO 3 ) 3 · 9H 2 O is completely Fe 3 O 4 at 340 ° C. according to the thermogravimetric curve in N 2 (Suzuki et al., Journal of the Wood Society, 34, 537-542, 1988). . Therefore, it is unlikely that Fe (NO 3 ) 3 · 9H 2 O decomposes while generating NOx at 350 ° C. or higher in the above carbonization.
[結論]
カラマツ木粉にFe(NO3)3・9H2Oを水溶液含浸より鉄として3wt%添加した後850℃-1hの炭化を行なった。得られた木炭(U-Fe炭)を適正条件で湿潤木粉と混合・粉砕し、熱圧成形すると900℃のニッケル添加木炭(U-Ni炭)の成形体より優れた導電特性を示した。鉄回収のためにU-Fe炭を室温で希硝酸洗浄すると炭素の結晶性が増大し、この酸洗浄炭(A-Fe炭)成形体の導電特性はさらに向上した。その導電特性は酸洗浄U-Ni炭(A-Ni炭)成形体や市販の導電性カーボンDB成形体のそれを上回り、最高級導電性カーボンであるKBを配合した成形体のそれに近い非常に優れたものであった。
[Conclusion]
Larch wood powder was added with 3% by weight of Fe (NO 3 ) 3 · 9H 2 O as iron by impregnation with aqueous solution, and then carbonized at 850 ° C-1h. When the obtained charcoal (U-Fe charcoal) was mixed and pulverized with wet wood flour under appropriate conditions, and hot-pressed, it showed better conductive properties than the 900 ° C nickel-added charcoal (U-Ni charcoal) compact. . When U-Fe charcoal was washed with dilute nitric acid at room temperature for iron recovery, the crystallinity of the carbon increased, and the conductive properties of this acid-washed charcoal (A-Fe charcoal) compact were further improved. Its conductivity characteristics exceed those of acid-washed U-Ni charcoal (A-Ni charcoal) molded products and commercially available conductive carbon DB molded products, and it is very close to that of molded products containing KB, the highest grade conductive carbon. It was excellent.
本発明は、導電性カーボンの製造に関する分野に有用である。 The present invention is useful in the field relating to the production of conductive carbon.
Claims (8)
木材に硝酸鉄水溶液を含浸し、
硝酸鉄水溶液を含浸した木材を炭化し、
炭化した材料を硝酸水溶液で洗浄して、炭化した材料から鉄を硝酸鉄として回収し、
回収した硝酸鉄水溶液を木材の含浸に再利用する、
ことを含む、上記製造方法。 A method for producing a conductive carbon material, comprising:
Impregnating wood with iron nitrate aqueous solution,
Carbonize wood impregnated with iron nitrate aqueous solution,
The carbonized material is washed with an aqueous nitric acid solution, and iron is recovered from the carbonized material as iron nitrate.
Reusing the recovered iron nitrate aqueous solution for impregnation of wood,
The said manufacturing method including this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008036409A JP2009190957A (en) | 2008-02-18 | 2008-02-18 | Method of manufacturing conductive carbon material and conductive body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008036409A JP2009190957A (en) | 2008-02-18 | 2008-02-18 | Method of manufacturing conductive carbon material and conductive body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009190957A true JP2009190957A (en) | 2009-08-27 |
Family
ID=41073303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008036409A Pending JP2009190957A (en) | 2008-02-18 | 2008-02-18 | Method of manufacturing conductive carbon material and conductive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009190957A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012121110A1 (en) | 2011-03-04 | 2012-09-13 | 住友大阪セメント株式会社 | Electrode active substance and method for producing same |
US9979013B2 (en) | 2013-04-30 | 2018-05-22 | Sumitomo Osaka Cement Co., Ltd. | Electrode material, paste, electrode plate, and lithium ion battery |
KR20220136702A (en) * | 2021-04-01 | 2022-10-11 | 공주대학교 산학협력단 | Multifunctional and assembled filter comprising porous carbonized wood which is eco-friendly |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001098278A (en) * | 1999-09-30 | 2001-04-10 | Iwate Prefecture | Carbonization method for wood |
JP2007001810A (en) * | 2005-06-23 | 2007-01-11 | Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai | Manufacturing method of carbon material |
JP2009502724A (en) * | 2005-08-05 | 2009-01-29 | エヌティーエヌユー テクノロジー トランスファー エーエス | Carbon film |
-
2008
- 2008-02-18 JP JP2008036409A patent/JP2009190957A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001098278A (en) * | 1999-09-30 | 2001-04-10 | Iwate Prefecture | Carbonization method for wood |
JP2007001810A (en) * | 2005-06-23 | 2007-01-11 | Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai | Manufacturing method of carbon material |
JP2009502724A (en) * | 2005-08-05 | 2009-01-29 | エヌティーエヌユー テクノロジー トランスファー エーエス | Carbon film |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012121110A1 (en) | 2011-03-04 | 2012-09-13 | 住友大阪セメント株式会社 | Electrode active substance and method for producing same |
US9979013B2 (en) | 2013-04-30 | 2018-05-22 | Sumitomo Osaka Cement Co., Ltd. | Electrode material, paste, electrode plate, and lithium ion battery |
KR20220136702A (en) * | 2021-04-01 | 2022-10-11 | 공주대학교 산학협력단 | Multifunctional and assembled filter comprising porous carbonized wood which is eco-friendly |
KR102508388B1 (en) | 2021-04-01 | 2023-03-09 | 공주대학교 산학협력단 | Multifunctional and assembled filter comprising porous carbonized wood which is eco-friendly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bourke et al. | Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal | |
JP4452887B2 (en) | Method for producing electrode catalyst for fuel cell, electrode catalyst produced by the method, and fuel cell using the electrode catalyst | |
Thines et al. | In-situ polymerization of magnetic biochar–polypyrrole composite: a novel application in supercapacitor | |
TW524904B (en) | Carbon fiber, method for producing same and electrodes for electric cells | |
CA2745163C (en) | Carbon catalyst, method for manufacturing the carbon catalyst, and electrode and battery using the carbon catalyst | |
Mitra et al. | Electrochemical properties of spinel cobalt ferrite nanoparticles with sodium alginate as interactive binder | |
JPWO2010064555A1 (en) | Carbon catalyst and method for producing the same, electrode and battery using the same | |
JP2018511553A (en) | Graphite production from biomass | |
CN101613100B (en) | Micro-wave preparation method for biomass-based graphitized carbon and carbon-carbon composite material | |
Verma et al. | Biowaste orange peel‐derived mesoporous carbon as a cost‐effective anode material with ultra‐stable cyclability for potassium‐ion batteries | |
Chen et al. | Mesoporous Manganese Sulfide Spheres Anchored on Graphene Sheets as High‐Capacity and Long‐Life Anode Materials for Lithium‐Ion Batteries | |
Ngan et al. | Production, characterization and alternative applications of biochar | |
Dutta | Composites of Sb2O4 and Biomass‐Derived Mesoporous Disordered Carbon as Versatile Anodes for Sodium‐Ion Batteries | |
JP2009190957A (en) | Method of manufacturing conductive carbon material and conductive body | |
Ding et al. | N, S Co‐Doped Porous Carbon from Antibiotic Bacteria Residues Enables a High‐Performance FeF3⋅ 0.33 H2O Cathode for Li‐Ion Batteries | |
Chatterjee et al. | Rare‐Earth Doped Configurational Entropy Stabilized High Entropy Spinel Oxide as an Efficient Anchoring/Catalyst Functional Interlayer for High‐Performance Lithium‐Sulfur Battery | |
Mahbub et al. | Red Bean Pod Derived Heterostructure Carbon Decorated with Hollow Mixed Transition Metals as a Bifunctional Catalyst in Zn‐Air Batteries | |
CN106083049A (en) | A kind of method preparing isotropic graphite material from sintering | |
Wang et al. | Synthesis of 3D graphitic carbon foams via pressurized pyrolysis of Victorian brown coal as anode material for Li-ion battery | |
Thi Thanh Dang et al. | Biomimetic Mesoporous Cobalt Ferrite/Carbon Nanoflake Helices for Freestanding Lithium‐Ion Battery Anodes | |
Zhao et al. | Pseudocapacitive graphene‐wrapped porous VO2 microspheres for ultrastable and ultrahigh‐rate sodium‐ion storage | |
JP5957793B2 (en) | Carbon material manufacturing method | |
Zhang et al. | Ultrahigh reversibility of SnO2 in SnO2@ C quantum dots/graphene oxide nanosheets for lithium storage | |
Wong et al. | Hybrid manufacturing of oxidation resistant cellulose nanocrystals-copper-graphene nanoplatelets based electrodes | |
Wang et al. | Boron-doped polyhedral graphite catalyzed by h-BN via structural induction for lithium storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100921 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20101102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110315 |