[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009189226A - Distributed power generation system, and method for controlling the same - Google Patents

Distributed power generation system, and method for controlling the same Download PDF

Info

Publication number
JP2009189226A
JP2009189226A JP2008190558A JP2008190558A JP2009189226A JP 2009189226 A JP2009189226 A JP 2009189226A JP 2008190558 A JP2008190558 A JP 2008190558A JP 2008190558 A JP2008190558 A JP 2008190558A JP 2009189226 A JP2009189226 A JP 2009189226A
Authority
JP
Japan
Prior art keywords
power generation
power
amount
generation amount
distributed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008190558A
Other languages
Japanese (ja)
Other versions
JP5446156B2 (en
Inventor
Yasuhiro Mori
康浩 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008190558A priority Critical patent/JP5446156B2/en
Publication of JP2009189226A publication Critical patent/JP2009189226A/en
Application granted granted Critical
Publication of JP5446156B2 publication Critical patent/JP5446156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid a low power generation operation in a distributed power generation system and have redundancy for followability to a power generation load fluctuation in the operation. <P>SOLUTION: The distributed power generation system for feeding power loads 103, 107 with a plurality of power generation devices 104, 108 includes a power generation number controller 304 that controls the number of power generation devices that generate the power so as to allow an average power generation amount obtained averaging the gross power demand amount of the power loads 103, 107 by a power generation device number to be a predetermined first threshold value or higher and a second threshold value or less that is bigger than the first threshold value and smaller than the maximum power generation amount of the power generation devices. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力ネットワークによって接続された分散型発電システムにおいて、エネルギー効率を最適化するための発電量配分を行う分散型発電システム、ならびにその制御方法に関する。   The present invention relates to a distributed power generation system that performs power generation amount distribution for optimizing energy efficiency in a distributed power generation system connected by a power network, and a control method therefor.

複数の発電装置を電力ネットワークを介して運転制御するよう構成された分散型電源システムにおいて、エネルギー効率を最適化するために様々な運転制御技術が提案されている。   Various operation control techniques have been proposed in order to optimize energy efficiency in a distributed power supply system configured to control operation of a plurality of power generation devices via a power network.

例えば、第1の従来の技術として、システム内の総電力負荷量を満たすよう複数の発電装置で分散発電する際に、各発電装置の最大発電量によって重み付け配分を行って、各発電装置の発電量割り当てを決定する発電量制御システムが提案されている(例えば、特許文献1参照)。   For example, as a first conventional technique, when distributed power generation is performed by a plurality of power generation devices so as to satisfy the total power load amount in the system, weight distribution is performed according to the maximum power generation amount of each power generation device, and the power generation of each power generation device is performed. A power generation amount control system that determines amount allocation has been proposed (see, for example, Patent Document 1).

図9は、上記特許文献1に記載された従来の発電量制御システムを示すものである。図9において、改質器900は天然ガスやLPGなどを原料として浄化水素を生成する。燃料電池901〜903は生成された浄化水素がガス配管網907から供給され、各燃料電池の運転制御に対応する制御装置904〜906によって、その発電量が制御される。制御装置904〜906は通信ネットワーク908を経て、複数の演算装置909〜911と通信可能なように構成されている。また、演算装置909〜911は、発電量送信手段912、発電量算出手段913、総電力負荷算出手段914、電力負荷取得手段915を含むよう構成されている。電力負荷取得手段915が家庭内の電力負荷からその消費電力を取得して、総電力負荷算出手段914がそれらの総和を求める。発電量算出手段913はその総和を元に各燃料電池901〜903の発電量を決定し、最後に発電量送信手段912が各制御装置904〜906に決定された発電量を送信する。燃料電池901〜903で発電された電力は電力線916を介して、相互に電力を融通することができる。   FIG. 9 shows a conventional power generation amount control system described in Patent Document 1. In FIG. 9, a reformer 900 generates purified hydrogen using natural gas, LPG, or the like as a raw material. The generated purified hydrogen is supplied from the gas piping network 907 to the fuel cells 901 to 903, and the power generation amount is controlled by the control devices 904 to 906 corresponding to the operation control of each fuel cell. The control devices 904 to 906 are configured to be able to communicate with a plurality of arithmetic devices 909 to 911 via the communication network 908. The arithmetic devices 909 to 911 are configured to include a power generation amount transmission unit 912, a power generation amount calculation unit 913, a total power load calculation unit 914, and a power load acquisition unit 915. The power load acquisition unit 915 acquires the power consumption from the power load in the home, and the total power load calculation unit 914 calculates the sum thereof. The power generation amount calculation unit 913 determines the power generation amount of each fuel cell 901 to 903 based on the sum, and finally the power generation amount transmission unit 912 transmits the determined power generation amount to each of the control devices 904 to 906. The electric power generated by the fuel cells 901 to 903 can be interchanged through the power line 916.

図10は、第1の従来例における発電量の配分を示す図である。演算装置は燃料電池の定格発電量を取得し、保持している。図10(a)では、FC1、FC2、FC3がそれぞれ1000W、1000W、2000Wの定格発電量であることを示している。図10(b)に示すように電力負荷1、電力負荷2、電力負荷3からそれぞれ200W、300W、500Wの電力需要を受けた時、定格発電量に比例してFC1〜FC3に電力を配分すると、図10(c)に示すように250W、250W、500Wとなる。この結果、定格発電量に対して平均して25%の発電量が各燃料電池に割り当てられる。   FIG. 10 is a diagram showing the distribution of the power generation amount in the first conventional example. The arithmetic unit acquires and holds the rated power generation amount of the fuel cell. FIG. 10A shows that FC1, FC2, and FC3 have rated power generation amounts of 1000 W, 1000 W, and 2000 W, respectively. When power demands of 200 W, 300 W, and 500 W are received from the power load 1, power load 2, and power load 3, respectively, as shown in FIG. 10B, the power is distributed to FC1 to FC3 in proportion to the rated power generation amount. As shown in FIG. 10C, the power is 250 W, 250 W, and 500 W. As a result, a power generation amount of 25% on the average with respect to the rated power generation amount is allocated to each fuel cell.

本従来例では、総電力負荷量を複数の発電装置で分散発電する為に、発電装置の最大発電量に比例して電力負荷分散を行うが、その結果、すべての発電装置がそれぞれの最大発電量に対して同じ比率で発電量を割り当てられることになる。これにより、単純に発電装置の数によって平均化する場合であれば、最大発電量が大きい発電装置にとっては割り当てられた発電量が低出力発電の範囲であるためにエネルギー効率が悪いというケースがあり得るが、本従来例ではそういった問題が抑制できる。   In this conventional example, in order to generate the total power load with multiple power generators, the power load is distributed in proportion to the maximum power generation amount of the power generators. The amount of power generation is assigned at the same ratio to the amount. As a result, in the case of simply averaging based on the number of power generation devices, there is a case where the power generation amount assigned to a power generation device having a large maximum power generation is low in energy efficiency because the allocated power generation amount is within the range of low output power generation. However, this conventional example can suppress such a problem.

また、第2の従来技術として、燃料電池1台の発電量が予め決められた閾値を下回った場合はその発電を停止し、他の燃料電池にその分の発電量を割り当てる電力供給システムが提案されている(例えば、特許文献2参照)。   As a second prior art, a power supply system is proposed in which when the amount of power generated by one fuel cell falls below a predetermined threshold, the power generation is stopped and the amount of power generated is allocated to another fuel cell. (For example, refer to Patent Document 2).

図11は、上記特許文献2に記載された電力供給システムを示すブロック図である。図11において、発電装置1101〜1104は電力ネットワーク1100を介して接続され、お互いに電力の融通が可能である。発電装置1101〜1104は燃料電池1105を含み、その発電量は制御装置1108から通信ネットワーク1107を経て与えられる。また、電力負荷1106が要求する電力は反対に通信ネットワーク1107を介して、制御装置1108に集められる。通常は、電力負荷1106の要求する電力は電力負荷1106に対応する燃料電池1105から供給される。制御装置1108は常時その対応する燃料電池の発電量を監視して、発電量が予め決められた閾値よりも小さい場合には、対応する燃料電池での発電を止めてその燃料電池から電力負荷へのダイレクトの電力供給を停止する。そして、他の燃料電池で発電を停止した燃料電池の発電力を補って発電するよう指示して、電力ネットワーク1100を経由して他の燃料電池が発電した電力を受け取るようにする。この結果、第2の従来例では燃料電池はエネルギー効率の悪い低出力発電を避けることができる。   FIG. 11 is a block diagram showing the power supply system described in Patent Document 2. In FIG. 11, the power generation devices 1101 to 1104 are connected via a power network 1100 and can exchange power with each other. The power generation devices 1101 to 1104 include a fuel cell 1105, and the amount of power generation is given from the control device 1108 via the communication network 1107. On the contrary, the power requested by the power load 1106 is collected in the control device 1108 via the communication network 1107. Normally, the power required by the power load 1106 is supplied from the fuel cell 1105 corresponding to the power load 1106. The control device 1108 constantly monitors the power generation amount of the corresponding fuel cell, and when the power generation amount is smaller than a predetermined threshold value, the power generation in the corresponding fuel cell is stopped and the fuel cell is transferred to the power load. Stop direct power supply. Then, it is instructed to supplement the generated power of the fuel cell whose power generation has been stopped by another fuel cell, and to receive the power generated by the other fuel cell via the power network 1100. As a result, in the second conventional example, the fuel cell can avoid low power generation with low energy efficiency.

図12は、特許文献2記載の電力供給システムにおける燃料電池の発電量の配分方法を示す図である。図12に示すように制御装置1108は一つの燃料電池の発電量が予め決められた最小発電量を下回ることを検知すると、その燃料電池の発電を止め、他の燃料電池に発電を止めた燃料電池の発電量分をさらに発電するよう指示する。指示された燃料電池は発電量を増やして、電力ネットワークを介して、発電を止めた燃料電池から直接電力供給を受けていた電力負荷に電力を供給する。図12(a)で示すようにFC1、FC2、FC3は夫々200W、300W、500Wの発電をしている。最小発電量が250Wに定義されているため、制御装置1108は、FC1の200Wの発電を止めさせ、FC2で余分に発電させることに決めて、FC2、FC3で夫々500Wづつを発電するように指示する。この結果、燃料電池のエネルギー効率が低下する低出力発電を抑制することができ、システムの全体最適を図ることが可能となる。
特開2006−278151号公報 特開2004−266879号公報
FIG. 12 is a diagram illustrating a method of distributing the amount of power generated by the fuel cell in the power supply system described in Patent Document 2. As shown in FIG. 12, when the control device 1108 detects that the power generation amount of one fuel cell is lower than a predetermined minimum power generation amount, the fuel cell stops power generation and the other fuel cells stop generating power. Instruct the battery to generate more power. The instructed fuel cell increases the amount of power generation and supplies power to the power load that has been directly supplied with power from the fuel cell that has stopped generating power via the power network. As shown in FIG. 12A, FC1, FC2, and FC3 generate 200 W, 300 W, and 500 W, respectively. Since the minimum power generation amount is defined as 250 W, the control device 1108 decides to stop the power generation of 200 W of FC1 and to generate extra power at FC2, and instructs FC2 and FC3 to generate 500 W each. To do. As a result, it is possible to suppress low output power generation in which the energy efficiency of the fuel cell is reduced, and it is possible to optimize the entire system.
JP 2006-278151 A JP 2004-266879 A

しかしながら、上記特許文献1記載の発電制御システムでは、総発電量が少ない場合には各発電機(燃料電池)に割り当てられる発電量が小さくエネルギー効率が低い状態で燃料電池の運転を継続することを避けられない。   However, in the power generation control system described in Patent Document 1, when the total power generation amount is small, the operation of the fuel cell is continued in a state where the power generation amount allocated to each generator (fuel cell) is small and energy efficiency is low. Inevitable.

また、上記特許文献2記載の電力供給システムでは、電力負荷が小さい場合に発電機(燃料電池)が低出力運転となるケースを抑制できるが、分散発電によるその他のメリットを享受できない。例えば、分散発電によって、一つの電力負荷に対して複数の発電機(燃料電池)からの電力供給が可能となり、その結果、電力負荷変動への追従性が高まる。例えば、10台の燃料電池によって1つの電力負荷に電力を供給すると、1台の燃料電池で電力を供給する場合に比べて、10倍の電力負荷変動の追従性を得ることができるが、発電機の低出力を運転を避けるために無制限に高出力運転中の発電機で電力負荷量を賄おうとすると発電中に発電機の発電余力が少なくなり、電力負荷変動に対する追従性が損なわれる。   Further, in the power supply system described in Patent Document 2, it is possible to suppress the case where the generator (fuel cell) is operated at a low output when the power load is small, but other benefits of distributed power generation cannot be enjoyed. For example, by distributed power generation, it is possible to supply power from a plurality of generators (fuel cells) to one power load, and as a result, followability to power load fluctuations is improved. For example, when power is supplied to one power load by 10 fuel cells, it is possible to obtain 10 times the followability of power load fluctuations compared to the case where power is supplied by one fuel cell. If an attempt is made to cover the amount of power load with a generator that is operating at high power indefinitely in order to avoid operation with a low output of the generator, the remaining power generation capacity of the generator is reduced during power generation, and the ability to follow fluctuations in the power load is impaired.

本発明は、前記従来の技術における課題を鑑み、分散発電による電力負荷追従のメリットを確保するとともに、効率の悪い低出力発電を抑制する分散型発電システム及びその制御方法を提供することを目的とするものである。   An object of the present invention is to provide a distributed power generation system and a control method therefor that ensure the merit of tracking power load by distributed power generation and suppress low power generation with low efficiency, in view of the problems in the conventional technology. To do.

前記従来の課題を解決するために、第1の本発明の分散型発電システムは、複数の発電装置により電力負荷に電力を供給する分散型発電システムであって、前記電力負荷の総電力需要量を発電装置数で平均化した平均発電量が予め定められた第1の閾値以上で、かつ第1の閾値よりも大きく発電装置の最大発電量よりも小さい第2の閾値以下になるように、発電する発電装置の数を制御する発電数制御器を備えることを特徴とする。   In order to solve the above-described conventional problems, a distributed power generation system according to a first aspect of the present invention is a distributed power generation system that supplies power to a power load by a plurality of power generation devices, and the total power demand of the power load. So that the average amount of power generated by averaging the number of power generation devices is equal to or greater than a predetermined first threshold and less than or equal to a second threshold that is greater than the first threshold and smaller than the maximum power generation of the power generation device. A power generation number controller that controls the number of power generation devices that generate power is provided.

また、第2の本発明の分散型発電システムは、前記発電数制御器は、前記平均発電量が第1の閾値よりも小さい場合、発電する発電装置数を減少させることを特徴とする。   In the distributed power generation system according to the second aspect of the present invention, the power generation number controller reduces the number of power generation devices that generate power when the average power generation amount is smaller than a first threshold value.

また、第3の本発明の分散型発電システムは、前記発電数制御器は、前記平均発電量が第2の閾値よりも大きい場合、発電する発電装置数を増加させることを特徴とする。   In the distributed power generation system of the third aspect of the present invention, the power generation number controller increases the number of power generation devices that generate power when the average power generation amount is larger than a second threshold value.

また、第4の本発明の分散型発電システムは、前記発電数制御器により決定された発電する発電装置の数で平均化した平均発電量を前記発電装置の発電量として許可する許可発電量制御器を備えることを特徴とする。   Further, the distributed power generation system of the fourth aspect of the present invention is a permitted power generation amount control that permits an average power generation amount averaged by the number of power generation devices that generate power determined by the power generation number controller as a power generation amount of the power generation device. It is characterized by providing a vessel.

また、第5の本発明の分散型発電システムは、前記発電装置は、前記発電装置内の発電機から回収された熱を蓄える蓄熱器を備え、前記発電数制御器は、前記蓄熱器の蓄熱可能量に基づいて発電する発電装置数を増加させるために発電開始させる前記発電装置または発電する発電装置数を減少させるために発電停止させることを特徴とする。   Further, in the distributed power generation system of the fifth aspect of the present invention, the power generation device includes a heat accumulator that stores heat recovered from the electric generator in the power generation device, and the power generation number controller is a heat accumulator of the heat accumulator. The power generation is started to increase the number of power generation devices that generate power based on the possible amount, or the power generation is stopped to decrease the number of power generation devices that generate power.

また、第6の本発明の分散型発電システムは、前記発電装置内の発電機から回収された熱を蓄える蓄熱器を備え、
前記許可発電量制御器は、前記蓄熱器の蓄熱可能量に基づいて重み付け処理した発電量を前記発電装置の発電量として許可することを特徴とする。
Moreover, the distributed power generation system of the sixth aspect of the present invention includes a heat accumulator that stores heat recovered from a generator in the power generation device,
The permitted power generation amount controller permits the power generation amount weighted based on the heat storage possible amount of the heat accumulator as the power generation amount of the power generation device.

また、第7の本発明の分散型発電システムは、前記許可発電量制御器は、前記総電力需要量から前記発電数制御器により決定された発電する発電装置の数と第1の閾値との積を減じた値について重み付け処理を行うことを特徴とする。   Further, in the distributed power generation system of the seventh aspect of the present invention, the permitted power generation amount controller is configured such that the number of power generation devices that generate power determined by the power generation number controller from the total power demand amount and a first threshold value A weighting process is performed on a value obtained by subtracting the product.

また、第8の本発明の分散型発電システムの制御方法は、複数の発電装置により電力負荷に電力を供給する分散型発電システムの制御方法であって、
前記電力負荷の総電力需要量を発電装置数で平均化した平均発電量が予め定められた第1の閾値以上で、かつ第1の閾値よりも大きく発電装置の最大発電量よりも小さい第2の閾値以下になるよう発電する発電装置の数を制御する発電数制御ステップを備えることを特徴とする。
A control method for a distributed power generation system according to an eighth aspect of the present invention is a control method for a distributed power generation system that supplies power to a power load by a plurality of power generation devices,
A second average power generation amount obtained by averaging the total power demand of the power load by the number of power generation devices is equal to or greater than a predetermined first threshold value and is larger than the first threshold value and smaller than the maximum power generation amount of the power generation device. The power generation number control step of controlling the number of power generation devices that generate power so as to be equal to or less than the threshold value is provided.

また、第9の本発明の分散型発電システムの制御方法は、前記発電数制御ステップにより決定された発電する発電装置の数で平均化した平均発電量を前記発電装置の発電量として許可する許可発電量制御ステップを備えることを特徴とする。   According to a ninth aspect of the present invention, there is provided a distributed power generation system control method that permits an average power generation amount averaged by the number of power generation devices that generate power determined in the power generation number control step as a power generation amount of the power generation device. A power generation amount control step is provided.

また、第10の本発明の分散型発電システムの制御方法は、前記発電装置は、前記発電装置内の発電機から回収された熱を蓄える蓄熱器を備え、
前記発電数制御ステップにおいて、前記蓄熱器の蓄熱可能量に基づいて発電する発電装置数を増加させるために発電開始させる前記発電装置または発電する発電装置数を減少させるために発電停止させる前記発電装置を決定することを特徴とする。
In the control method for a distributed power generation system according to a tenth aspect of the present invention, the power generation device includes a heat accumulator that stores heat recovered from a generator in the power generation device.
In the power generation number control step, the power generation device that starts power generation to increase the number of power generation devices that generate power based on the heat storage capacity of the heat accumulator or the power generation device that stops power generation to decrease the number of power generation devices that generate power It is characterized by determining.

また、第11の本発明の分散型発電システムの制御方法は、前記発電装置内の発電機から回収された熱を蓄える蓄熱器を備え、前記許可発電量制御ステップにおいて、前記蓄熱器の蓄熱可能量に基づいて重み付け処理した発電量を前記発電装置の発電量として許可することを特徴とする。   An eleventh aspect of the present invention provides a distributed power generation system control method comprising a heat accumulator that stores heat recovered from a generator in the power generation device, and in the permitted power generation amount control step, the heat accumulator can store heat. The power generation amount weighted based on the amount is permitted as the power generation amount of the power generation device.

本発明の分散型発電システム、及びその制御方法によれば、エネルギー効率の低い低電力発電を抑制するとともに、複数の発電装置の分散発電による電力負荷追従性をより向上することができる。   According to the distributed power generation system and the control method thereof of the present invention, it is possible to suppress low power generation with low energy efficiency and to further improve the power load followability by distributed power generation of a plurality of power generation devices.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における分散型発電システムを示すブロック図である。図1において、電力ネットワーク100は複数の発電装置104、108を接続し、本ネットワークによって複数の発電装置は相互に電力を融通することができる。発電装置104、108は運転制御器105、109と、発電機の一例としての燃料電池106、110を含み、運転制御器105、109が燃料電池の発電運転を制御するよう構成され、各燃料電池106、110で出力された電力は電力負荷103及び107に供給される。また、発電装置104、108は、燃料電池106及び110から回収した熱を蓄える蓄熱器111及び113、そしてこれらの蓄熱器111及び113に貯えられた熱は、それぞれ少なくとも1つ以上の熱負荷に供給されるよう構成される。本実施の形態では、蓄熱器111に貯えられた熱は、複数の熱負荷(熱負荷112、X等)に、また、蓄熱器113に貯えられた熱も、複数の熱負荷(熱負荷114、Y等)に供給されるよう構成されている。また、運転制御器105、109は通信ネットワーク101と接続可能で、電力負荷の電力需要量並びに、蓄熱器が最大蓄熱量になるまで蓄熱可能な熱量(蓄熱余力)である蓄熱可能量を送信する一方で、発電量配分制御器102から送信される許可発電量を受信することができる。運転制御器105,109は受信した許可発電量に基づき対応する燃料電池を制御して、この許可発電量になるよう発電させる。
(Embodiment 1)
FIG. 1 is a block diagram showing a distributed power generation system according to Embodiment 1 of the present invention. In FIG. 1, a power network 100 connects a plurality of power generation devices 104 and 108, and the plurality of power generation devices can exchange power with each other by this network. The power generation devices 104 and 108 include operation controllers 105 and 109 and fuel cells 106 and 110 as an example of a generator, and the operation controllers 105 and 109 are configured to control the power generation operation of the fuel cell. The electric power output at 106 and 110 is supplied to the electric power loads 103 and 107. Further, the power generation devices 104 and 108 include heat accumulators 111 and 113 that store heat recovered from the fuel cells 106 and 110, and the heat stored in the heat accumulators 111 and 113 is at least one heat load. Configured to be supplied. In the present embodiment, the heat stored in the heat accumulator 111 is a plurality of heat loads (heat loads 112, X, etc.), and the heat stored in the heat accumulator 113 is also a plurality of heat loads (heat loads 114). , Y, etc.). In addition, the operation controllers 105 and 109 can be connected to the communication network 101, and transmit the power demand amount of the power load and the amount of heat that can be stored until the heat storage reaches the maximum heat storage amount (heat storage capacity). On the other hand, the permitted power generation amount transmitted from the power generation amount distribution controller 102 can be received. The operation controllers 105 and 109 control the corresponding fuel cells based on the received permitted power generation amount, and generate power so as to reach this permitted power generation amount.

発電量配分制御器102は通信ネットワーク101に一つ以上存在し、すべての運転制御器105、109から電力負荷の電力需要量、蓄熱器に蓄熱可能な熱量を受信して、これらの値を考慮して各発電装置へ割り当てる許可発電量を決定する。決定された許可発電量は、通信ネットワーク101を介して、各運転制御器(例えば、運転制御器105、109)に送信する。   One or more power generation amount distribution controllers 102 exist in the communication network 101, receive the power demand amount of the power load from all the operation controllers 105 and 109, and the heat amount that can be stored in the heat accumulator, and consider these values. Thus, the permitted power generation amount allocated to each power generation device is determined. The determined permitted power generation amount is transmitted to each operation controller (for example, the operation controllers 105 and 109) via the communication network 101.

なお、電力負荷は、通常、燃料電池より直接的に供給される電力を消費するが、燃料電池の発電力が電力負荷の電力需要に満たない場合は、電力ネットワーク100を介して供給される電力を消費する。   The power load normally consumes the power supplied directly from the fuel cell. However, when the power generated by the fuel cell does not satisfy the power demand of the power load, the power supplied via the power network 100 is used. Consume.

図2は、本実施の形態の分散型発電システムにおいて各発電装置内に設けられた運転制御器の構成の一例を示すブロック図である。運転制御器は、自らが制御する燃料電池が直接電力供給を受ける各電力負荷の電力需要量を受け取り、これらを合計した値を通信器201から発電量配分制御器102へ送信する。より、具体的には、運転制御器に内蔵された発電量管理器202に各電力負荷の電力需要量が入力され、これらを合計した値が保持される。また、通信器201は発電量配分制御器102から各発電装置が発電すべき許可発電量を受け取り、発電量管理器202にその値が保持される。燃料電池制御器203は、発電量管理器202に保持された許可発電量を読み出し、この許可発電量を燃料電池から出力するように制御する。この結果、許可発電量>電力需要量の場合は、余剰分の電力は図1の電力ネットワーク100を経由して、他の燃料電池より直接電力供給を受ける別の電力負荷に供給される。許可発電量<電力需要量の場合はその逆に不足分が電力ネットワーク100を介して供給される。許可電力=電力需要量の場合は電力負荷への電力供給が電力ネットワーク100を介さずに、電力負荷へ直接電力を供給する燃料電池での発電量で100%賄われている。   FIG. 2 is a block diagram showing an example of the configuration of the operation controller provided in each power generator in the distributed power generation system of the present embodiment. The operation controller receives the power demand amount of each power load to which the fuel cell controlled by itself directly receives power supply, and transmits the total value from the communication device 201 to the power generation amount distribution controller 102. More specifically, the power demand amount of each power load is input to the power generation amount management unit 202 built in the operation controller, and the sum of these values is held. The communication device 201 receives the permitted power generation amount to be generated by each power generation device from the power generation amount distribution controller 102, and the value is held in the power generation amount manager 202. The fuel cell controller 203 reads the permitted power generation amount held in the power generation amount management unit 202 and performs control so that the permitted power generation amount is output from the fuel cell. As a result, when the permitted power generation amount> the power demand amount, surplus power is supplied to another power load that receives power supply directly from another fuel cell via the power network 100 of FIG. If the permitted power generation amount <the power demand amount, the shortage is supplied via the power network 100 on the contrary. In the case of permitted power = power demand, the power supply to the power load is 100% covered by the amount of power generated by the fuel cell that directly supplies power to the power load without going through the power network 100.

図3は発電量配分制御器の構成の一例を示すブロック図である。通信器302は通信ネットワーク101にアクセスして運転制御器から電力需要量、蓄熱器に蓄熱可能な蓄熱可能量、及び燃料電池の運転状態(発電運転ONまたは発電運転OFF)に関する信号を受け取る。電力需要量は総計算出器303に入力され、ここで各運転制御器から受け取った電力需要量を総和して総電力需要量を算出する。同時に現在発電運転中の燃料電池の数をカウントする。総電力需要量及び発電運転中の燃料電池数の両者を許可発電量制御器301に入力すると、許可発電量制御器301は、発電中の各燃料電池の平均発電量を算出する。この算出された平均発電量に基づき発電数制御器304は、発電すべき発電装置数を決定する。許可発電量制御器301は、発電数制御器304により決定された発電装置数における平均発電量を許可発電量とし、通信器302から各発電装置の運転を制御する運転制御器に送出する。   FIG. 3 is a block diagram showing an example of the configuration of the power generation amount distribution controller. The communicator 302 accesses the communication network 101 and receives from the operation controller a signal relating to the amount of power demand, the amount of heat that can be stored in the heat accumulator, and the fuel cell operation state (power generation operation ON or power generation operation OFF). The power demand is input to the total calculator 303, where the power demand received from each operation controller is summed to calculate the total power demand. At the same time, the number of fuel cells currently in power generation operation is counted. When both the total power demand and the number of fuel cells in power generation operation are input to the permitted power generation amount controller 301, the permitted power generation amount controller 301 calculates the average power generation amount of each fuel cell that is generating power. Based on the calculated average power generation amount, the power generation number controller 304 determines the number of power generation devices to generate power. The permitted power generation amount controller 301 uses the average power generation amount in the number of power generation devices determined by the power generation number controller 304 as the permitted power generation amount, and sends it from the communication device 302 to the operation controller that controls the operation of each power generation device.

以下、図4及び図5を用いて、本実施の形態における分散型発電システムの動作について説明する。図4は、許可発電量制御器301の動作アルゴリズムを示すフローチャート図であり、図5はその結果決定される許可発電量を示すチャート図である。まず、上述のように総計算出器303で総電力需要量、ならびに発電中の燃料電池数を算出する(ステップ400、401)。次に、総計算出器303で算出された両値に基づき許可発電量制御器301は、総電力需要量を燃料電池数で除算して平均発電量を算出する(ステップ402)。そして、発電数制御器304は、算出された平均発電量と予め定められた第1の閾値である第1発電量と比較する(ステップ403)。平均発電量が第1発電量を下回った場合には、発電数制御器304は、発電装置数を減少させて、再度ステップ402へ戻る(ステップ405)。発電数制御器304は、ステップS403において、算出した平均発電量が第1発電量以上である場合、算出した平均発電量を予め定められた第2の閾値である第2発電量と比較する(ステップ404)。平均発電量が第2発電量を上回った場合には発電装置数を増加して、再度ステップ402へ戻る(ステップ406)。発電数制御器304は、最終的に平均発電量が第1発電量以上、第2発電量以下になった場合の発電装置数を発電する発電装置数として決定するとともに、決定した旨の信号を許可発電量制御器301に送信する。許可発電量制御器301は、この場合の平均発電量を各発電装置の許可発電量として通信器302に出力して、処理を終了する(ステップ407)。   Hereinafter, the operation of the distributed power generation system according to the present embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a flowchart showing an operation algorithm of the permitted power generation amount controller 301, and FIG. 5 is a chart showing the permitted power generation amount determined as a result. First, as described above, the total calculator 303 calculates the total power demand and the number of fuel cells being generated (steps 400 and 401). Next, the permitted power generation amount controller 301 calculates the average power generation amount by dividing the total power demand amount by the number of fuel cells based on both values calculated by the total calculator 303 (step 402). Then, the power generation number controller 304 compares the calculated average power generation amount with a first power generation amount that is a predetermined first threshold (step 403). If the average power generation amount is lower than the first power generation amount, the power generation number controller 304 decreases the number of power generation devices and returns to step 402 again (step 405). In step S403, when the calculated average power generation amount is equal to or greater than the first power generation amount, the power generation number controller 304 compares the calculated average power generation amount with a second power generation amount that is a predetermined second threshold ( Step 404). When the average power generation amount exceeds the second power generation amount, the number of power generation devices is increased, and the process returns to step 402 again (step 406). The power generation number controller 304 finally determines the number of power generation devices when the average power generation amount is equal to or greater than the first power generation amount and equal to or less than the second power generation amount as the number of power generation devices to generate power, and a signal indicating that the determination has been made. This is transmitted to the permitted power generation amount controller 301. The permitted power generation amount controller 301 outputs the average power generation amount in this case to the communication device 302 as the permitted power generation amount of each power generation device, and ends the process (step 407).

なお、上記第1発電量と第2発電量は予め定められた値であり、例えば、最大発電量1000Wの発電装置であるならば、第1発電量=300W、第2発電量750Wと定義する。勿論、この値は発電装置の特性によって変化するものである。また、発電数制御器304は、ステップS405またはS406において発電する発電装置数を増減させる場合に、どの発電装置を増減させるかを蓄熱可能量に基づき決定しても構わない。具体的には、ステップS405にて発電装置数を減少させる場合、発電中の発電装置に、それぞれ設けられた蓄熱器のうち蓄熱可能量が小さい発電装置(例えば、蓄熱可能量が最小の蓄熱器を有する発電中の発電装置)を発電運転する発電装置の対象からはずす。これは、蓄熱可能量が小さい蓄熱器を有する発電装置は、発電運転を継続しても、すぐに蓄熱量が最大になって発電運転を停止しなければならない可能性があるが、蓄熱可能量量が大きい蓄熱器を有する発電装置は、発電運転を継続しても、その可能性が低いため、発電装置の停止に伴う総発電量の変動や別の発電装置の起動エネルギー消費による省エネ性の低下を抑制することができるからである。また、ステップS406にて発電装置数を増加させる場合、発電運転中でない発電装置のうち蓄熱可能量が大きい蓄熱器を有する発電装置(例えば、蓄熱可能量が最大の蓄熱器を有する発電装置)を発電運転する発電装置に新たに加える。これも、ステップS405で発電を停止させる発電装置を選択する際の上記理由と同じである。   The first power generation amount and the second power generation amount are predetermined values. For example, if the power generation device has a maximum power generation amount of 1000 W, the first power generation amount is defined as 300 W and the second power generation amount is 750 W. . Of course, this value varies depending on the characteristics of the power generator. Further, the power generation number controller 304 may determine which power generation device to increase or decrease based on the heat storage possible amount when increasing or decreasing the number of power generation devices that generate power in step S405 or S406. Specifically, when the number of power generation devices is decreased in step S405, a power generation device having a small heat storage capacity (for example, a heat storage apparatus having a minimum heat storage capacity) among the heat storage apparatuses provided in the power generation apparatus that is generating power. The power generation device that is generating power) is removed from the target of the power generation device that performs the power generation operation. This is because a power generation device having a heat accumulator with a small amount of heat storage may have to immediately stop the power generation operation because the heat storage amount becomes maximum immediately even if the power generation operation is continued. A generator with a large amount of heat accumulator is less likely to remain in power generation operation, so energy savings due to fluctuations in the total amount of power generated due to the stoppage of the generator or the startup energy consumption of another generator It is because a fall can be suppressed. Moreover, when increasing the number of power generation devices in step S406, a power generation device having a heat storage device with a large heat storage capacity among power generation devices that are not in a power generation operation (for example, a power generation device having a heat storage device with the maximum heat storage capacity). It is newly added to the power generation device that performs power generation operation. This is also the same reason as described above when selecting a power generation device that stops power generation in step S405.

図5は、図4で説明した許可発電量決定処理によってどのように電力配分がなされるかを例示したものである。総電力需要量が小さい場合(図5(a)〜(c))、例えば、発電装置1、2、3からそれぞれ200W、300W、0Wの電力需要量があったと仮定すると(図5(a))、総計算出器303で算出された総電力需要量を発電中の発電装置数2台で平均すると、図5(b)のように燃料電池1、2で250Wづつの平均発電量になる。この結果、第1発電量(=300W)を下回るので、燃料電池1の発電を止め、燃料電池2で500W発電するようにし、燃料電池1、2、3の許可発電量は夫々0W、500W、0Wとなる(図5(c))。   FIG. 5 exemplifies how power distribution is performed by the permitted power generation amount determination process described in FIG. 4. When the total power demand is small (FIGS. 5A to 5C), for example, assuming that there are power demands of 200 W, 300 W, and 0 W from the power generators 1, 2, and 3, respectively (FIG. 5A). ) If the total power demand calculated by the total calculator 303 is averaged by the number of power generating devices that are generating power, the average power generation amount is 250 W for the fuel cells 1 and 2 as shown in FIG. As a result, since it is below the first power generation amount (= 300 W), the power generation of the fuel cell 1 is stopped and the fuel cell 2 generates 500 W, and the permitted power generation amounts of the fuel cells 1, 2 and 3 are 0 W, 500 W, 0 W (FIG. 5C).

また、総電力需要量が大きい場合(図5(d)〜(f))、例えば、発電装置1、2、3からの電力需要量が夫々850W、710W、0Wである時(図5(d))、総計算出器303で算出された総電力需要量を発電中の発電装置数2台で平均すると、図5(e)のように燃料電池1、2で780Wづつの許可発電量になる。この結果、第2発電量(=750W)を超えるので、発電中の発電装置数を増加させる。つまり、図5(f)に示すように現在停止中の燃料電池3を稼動させ、3台の燃料電池で総電力需要量を配分して、燃料電池1、2、3の許可発電量を520Wづつとする。   Further, when the total power demand is large (FIGS. 5D to 5F), for example, when the power demand from the power generators 1, 2, and 3 is 850 W, 710 W, and 0 W, respectively (FIG. 5D )) When the total power demand calculated by the total calculator 303 is averaged over the number of power generating devices that are generating power, the permitted power generation amount is 780 W per fuel cell 1 and 2 as shown in FIG. . As a result, since it exceeds the second power generation amount (= 750 W), the number of power generation devices during power generation is increased. That is, as shown in FIG. 5 (f), the currently stopped fuel cell 3 is operated, the total power demand is distributed among the three fuel cells, and the permitted power generation amount of the fuel cells 1, 2 and 3 is 520W. Suppose.

以上のように、電力ネットワークで接続された複数の発電装置において各発電装置の発電量を上述のような手法により配分制御することで、総電力需要量が小さい場合において、稼動する燃料電池すべてがエネルギー効率の低い低発電量で発電することを抑制し、エネルギー効率の高い所定の発電量の範囲で発電運転することが可能となる。   As described above, by controlling distribution of the power generation amount of each power generation device by the above-described method in a plurality of power generation devices connected by the power network, all the fuel cells that are operating can be operated when the total power demand is small. It is possible to suppress power generation with a low power generation amount with low energy efficiency, and to perform power generation operation within a predetermined power generation range with high energy efficiency.

また、分散型発電のメリットとして上述のように電力負荷の電力需要量の変動に対する追従性の向上が挙げられるが、発電運転中の発電装置のすべてがその最大発電量近くで発電していれば、即座に電力需要量の増大に応答しきれないということも考えられる。このため、発電運転中の発電装置が最大電力に対してある程度の発電余力を持った状態で発電するよう発電量の配分を行うのが望ましい。このために設定したのが最大発電量よりも小さい第2発電量という閾値であり、本実施の形態の燃料電池システムに拠れば、許可発電量が第2発電量を超えた場合には停止中の発電装置を起動させ、発電量の再配分を行うことによって、各発電装置が発電余力を持った発電運転が可能となり、この結果、電力負荷変動への追従性を確保できる。   In addition, as described above, the advantage of distributed power generation is improved follow-up to fluctuations in the amount of power demand of the power load. However, if all the power generation devices in power generation operation are generating power near their maximum power generation amount. It is also conceivable that it cannot respond immediately to the increase in power demand. For this reason, it is desirable to distribute the amount of power generation so that the power generation device in the power generation operation generates power with a certain amount of power generation surplus with respect to the maximum power. For this purpose, a threshold value of the second power generation amount that is smaller than the maximum power generation amount is set, and according to the fuel cell system of the present embodiment, when the permitted power generation amount exceeds the second power generation amount, it is stopped. By starting the power generation apparatus and redistributing the power generation amount, each power generation apparatus can perform a power generation operation with a surplus power generation capacity, and as a result, it is possible to ensure followability to power load fluctuations.

(実施の形態2)
図6は本発明の実施の形態2の分散型発電システムにおける発電量配分制御器の構成を示すブロック図である。図6において、図3と同じ構成要素については同じ符号を用い、説明を省略する。重み付け器305は通信器302を経て各運転制御器から蓄熱可能量を受け取り、電力配分処理において用いる重み付け係数を算出する。発電装置は発電機としての燃料電池の発電によって電力を生成すると同時に、発電の際に発生する熱をお湯として回収し、蓄熱器に蓄えるコジェネレーションシステムである。この場合、蓄熱器に蓄えられている蓄熱量が上限に達している場合にはこれ以上の熱回収が出来ないため、エネルギー効率の点から燃料電池の発電を通常実施しないことになる。従って、本実施の形態の分散型発電システムにおいては、蓄熱量が多い発電装置については発電量を控え、蓄熱量が少ない発電装置については発電量が多くなるような重み付けの処理を行うことを特徴とする。なお、上記蓄熱可能量とは、蓄熱器が最大蓄熱量になるまでに蓄熱可能な蓄熱量の大きさを表すものであり、蓄熱可能量=最大蓄熱量―現時点での蓄熱量となる。ここで蓄熱器の蓄熱量とは、所定の発電装置内に設けられた蓄熱器の蓄熱量である。
(Embodiment 2)
FIG. 6 is a block diagram showing the configuration of the power generation amount distribution controller in the distributed power generation system according to the second embodiment of the present invention. In FIG. 6, the same components as those in FIG. The weighter 305 receives the heat storage possible amount from each operation controller via the communication device 302 and calculates a weighting coefficient used in the power distribution process. The power generation device is a cogeneration system that generates electric power by power generation of a fuel cell as a generator, and at the same time collects heat generated during power generation as hot water and stores it in a heat accumulator. In this case, when the amount of heat stored in the heat accumulator has reached the upper limit, no more heat can be recovered, so that fuel cell power generation is not normally performed in terms of energy efficiency. Therefore, in the distributed power generation system of the present embodiment, the power generation amount is reduced for a power generation device with a large amount of heat storage, and weighting processing is performed so that the power generation amount is increased for a power generation device with a small amount of heat storage. And Note that the heat storage capacity indicates the amount of heat storage that can be stored before the heat accumulator reaches the maximum heat storage capacity, and heat storage capacity = maximum heat storage capacity−current heat storage capacity. Here, the heat storage amount of the heat accumulator is the heat storage amount of the heat accumulator provided in a predetermined power generator.

図7は、各発電装置における蓄熱可能量に基づく許可発電量の重み付け処理のアルゴリズムを示すフローチャート図である。図7において、図4と同じステップについては、同じ符号を使い、説明を省略する。ステップ400〜ステップ406までで、平均発電量と発電装置数が確定する。注意すべきは、ここでの発電装置数は、実際に発電している発電装置の数ではなく、ステップS405またはステップS406で決定される平均発電量が所定の範囲内に収まる発電装置数である。総計算出器303は、発電数制御器304からの信号に基づきステップS405またはステップS406で発電運転する発電装置として決定された各発電装置における蓄熱可能量を合計して総蓄熱可能量を算出する(ステップ701)。そして、総電力需要量から第1発電量×発電装置数を減算した値を可変発電量とする(ステップ702)。可変発電量は重み付けによって変更可能な発電量の合計である。重み付け器305は、発電許可された各発電装置について(蓄熱可能量/発電許可された各発電装置の総蓄熱可能量)を算出し、重み付け係数とする(ステップS703)。そして、許可発電量制御器301は、すべての発電許可された発電装置について第1発電量+可変発電量*(各発電装置の重み付け係数)を算出し、これを発電許可された各発電装置における燃料電池の許可発電量として出力する(ステップ704)。   FIG. 7 is a flowchart showing an algorithm of weighting processing of the permitted power generation amount based on the heat storage possible amount in each power generation device. In FIG. 7, the same steps as those in FIG. From step 400 to step 406, the average power generation amount and the number of power generation devices are determined. It should be noted that the number of power generation devices here is not the number of power generation devices that are actually generating power, but the number of power generation devices in which the average power generation amount determined in step S405 or step S406 falls within a predetermined range. . Based on the signal from the power generation number controller 304, the total calculator 303 calculates the total heat storage possible amount by summing up the heat storage possible amount in each power generation device determined as the power generation device that performs the power generation operation in step S405 or step S406 ( Step 701). Then, a value obtained by subtracting the first power generation amount × the number of power generation devices from the total power demand amount is set as a variable power generation amount (step 702). The variable power generation amount is the total power generation amount that can be changed by weighting. The weighting unit 305 calculates (heat storage possible amount / total heat storage possible amount of each power generation device permitted for power generation) for each power generation device permitted for power generation and sets it as a weighting coefficient (step S703). Then, the permitted power generation amount controller 301 calculates the first power generation amount + variable power generation amount * (weighting coefficient of each power generation device) for all power generation devices that are permitted to generate power, and this is calculated for each power generation device that is permitted to generate power. Output as the permitted power generation amount of the fuel cell (step 704).

図8は、図7のフローチャート図に示すアルゴリズムを実行し、各発電装置に対する要求熱量に基づいて許可発電量に重み付け処理を行った結果の一例を示すブロック図である。図8(a)は各発電装置からの電力需要量であり、400W、600W、800Wとなっている。これを実施の形態1の分散型発電システムのように許可発電量を決定すると、図8(b)のように600Wづつの分担となる。一方で、各発電装置に設けられた蓄熱器の蓄熱可能量が3000kcal、2000kcal、1000kcalとなっている。(図8(d))ここで、蓄熱可能量に基づき、図7のフローチャートに従って重み付け処理を行うと、1000kcalあたり150Wとなり、各発電装置の分担発電量は、図8(c)に示すように750W、600W、450Wとなる。   FIG. 8 is a block diagram illustrating an example of a result of executing the algorithm shown in the flowchart of FIG. 7 and performing a weighting process on the permitted power generation amount based on the required heat amount for each power generation device. FIG. 8A shows the amount of power demand from each power generation device, which is 400 W, 600 W, and 800 W. When the permitted power generation amount is determined as in the distributed power generation system of the first embodiment, the allocation becomes 600 W in units as shown in FIG. On the other hand, the heat storage possible amount of the heat accumulator provided in each power generator is 3000 kcal, 2000 kcal, and 1000 kcal. Here, when weighting processing is performed according to the flow chart of FIG. 7 based on the heat storage possible amount, it becomes 150 W per 1000 kcal, and the shared power generation amount of each power generator is as shown in FIG. 8 (c). It becomes 750W, 600W, 450W.

以上の結果、図6に示す分散型発電装置の構成により図7に示すアルゴリズムに拠る許可発電量の重み付け処理を行えば、蓄熱可能量に応じて可変発電量部分が比例配分され、より蓄熱可能量が多い発電装置へ発電量を多く割り当てることが可能となり、個々の発電装置に設けられた蓄熱器が熱供給する熱負荷からの熱需要に対してもより対応性が向上する。   As a result of the above, if the weight generation processing of the permitted power generation amount based on the algorithm shown in FIG. 7 is performed by the configuration of the distributed power generation device shown in FIG. 6, the variable power generation amount portion is proportionally distributed according to the heat storage possible amount and more heat storage is possible. It becomes possible to allocate a large amount of power generation to a power generation device having a large amount, and the responsiveness is further improved with respect to heat demand from a heat load supplied by a heat accumulator provided in each power generation device.

なお、実施の形態1及び2に記載の分散型発電システムにおいて、発電装置内の発電機として燃料電池を用いたが、あくまで例示であり、発電機としては、ガスエンジンや太陽電池等の発電機であっても構わない。   In the distributed power generation system described in the first and second embodiments, the fuel cell is used as the generator in the power generation apparatus. However, the generator is merely an example, and the generator is a generator such as a gas engine or a solar cell. It does not matter.

本発明にかかる分散型発電システムとその制御方法によれば、エネルギー効率の低い低電力発電を抑制するとともに、複数の発電装置の分散発電による電力負荷追従性をより向上することができ、分散型燃料電池システム等として有用である。   According to the distributed power generation system and the control method thereof according to the present invention, it is possible to suppress low power generation with low energy efficiency and to further improve the power load followability by distributed power generation of a plurality of power generation devices. This is useful as a fuel cell system.

本発明の実施の形態1における分散型発電システムのブロック図Block diagram of a distributed power generation system in Embodiment 1 of the present invention 本発明の実施の形態1における分散型発電システムを構成する運転制御器のブロック図Block diagram of an operation controller constituting the distributed power generation system according to Embodiment 1 of the present invention. 本発明の実施の形態1における分散型発電システムを構成する発電量配分制御器のブロック図The block diagram of the electric power generation amount distribution controller which comprises the distributed power generation system in Embodiment 1 of this invention 本発明の実施の形態1における分散型発電システムを構成する発電量配分制御器での電力配分のアルゴリズムを示すフローチャートThe flowchart which shows the algorithm of the electric power allocation in the electric power generation amount distribution controller which comprises the distributed power generation system in Embodiment 1 of this invention. 本発明の実施の形態1における分散型発電システムでの発電量配分の様子を示すブロック図The block diagram which shows the mode of the electric power generation amount distribution in the distributed power generation system in Embodiment 1 of this invention 本発明の実施の形態2における分散型発電システムを構成する発電量配分制御器のブロック図The block diagram of the electric power generation amount distribution controller which comprises the distributed power generation system in Embodiment 2 of this invention 本発明の実施の形態2における分散型発電システムを構成する発電量配分制御器での電力配分のアルゴリズムを示すフローチャートThe flowchart which shows the algorithm of the electric power allocation in the electric power generation amount distribution controller which comprises the distributed power generation system in Embodiment 2 of this invention. 本発明の実施の形態2における分散型発電システムでの発電量配分の様子を示すブロック図The block diagram which shows the mode of the electric power generation amount distribution in the distributed power generation system in Embodiment 2 of this invention 第1の従来の分散型発電システムの構成を示すブロック図Block diagram showing the configuration of a first conventional distributed power generation system 第1の従来の分散型発電システムにおける電力配分の様子を示すブロック図The block diagram which shows the mode of the power distribution in the 1st conventional distributed generation system 第2の従来の分散型発電システムの構成を示すブロック図Block diagram showing a configuration of a second conventional distributed power generation system 第2の従来の分散型発電システムにおける電力配分の様子を示すブロック図Block diagram showing the state of power distribution in the second conventional distributed power generation system

符号の説明Explanation of symbols

100 電力ネットワーク
101 通信ネットワーク
102 発電量配分制御器
103,107 電力負荷
104,108 発電装置
105,109 運転制御器
106,110 燃料電池
111,113 蓄熱器
112,114 熱負荷
201 通信器
202 発電量管理器
203 燃料電池制御器
301 許可発電量制御器
302 通信器
303 総計算出器
304 発電数制御器
305 重み付け器
DESCRIPTION OF SYMBOLS 100 Electric power network 101 Communication network 102 Electric power generation amount distribution controller 103,107 Electric power load 104,108 Electric power generation apparatus 105,109 Operation controller 106,110 Fuel cell 111,113 Thermal accumulator 112,114 Thermal load 201 Communication device 202 Electric power generation amount management 203 Fuel cell controller 301 Permitted power generation controller 302 Communication device 303 Total calculator 304 Power generation number controller 305 Weighting unit

Claims (11)

複数の発電装置により電力負荷に電力を供給する分散型発電システムであって、
前記電力負荷の総電力需要量を発電装置数で平均化した平均発電量が予め定められた第1の閾値以上で、かつ第1の閾値よりも大きく発電装置の最大発電量よりも小さい第2の閾値以下になるように、発電する発電装置の数を制御する発電数制御器を備えることを特徴とする分散型発電システム。
A distributed power generation system that supplies power to a power load by a plurality of power generation devices,
A second average power generation amount obtained by averaging the total power demand of the power load by the number of power generation devices is equal to or greater than a predetermined first threshold value and is larger than the first threshold value and smaller than the maximum power generation amount of the power generation device. A distributed power generation system comprising a power generation number controller that controls the number of power generation devices that generate power so as to be equal to or less than a threshold value.
前記発電数制御器は、前記平均発電量が前記第1の閾値よりも小さい場合、発電する発電装置数を減少させることを特徴とする請求項1記載の分散型発電システム。 The distributed power generation system according to claim 1, wherein the power generation number controller decreases the number of power generation devices that generate power when the average power generation amount is smaller than the first threshold. 前記発電数制御器は、前記平均発電量が前記第2の閾値よりも大きい場合、発電する発電装置数を増加させることを特徴とする請求項1記載の分散型発電システム。 The distributed power generation system according to claim 1, wherein the power generation number controller increases the number of power generation devices that generate power when the average power generation amount is larger than the second threshold value. 前記発電数制御器により決定された発電する発電装置の数で平均化した平均発電量を前記発電装置の発電量として許可する許可発電量制御器を備える請求項1記載の分散型発電システム。 The distributed power generation system according to claim 1, further comprising a permitted power generation amount controller that permits an average power generation amount averaged by the number of power generation devices that generate power determined by the power generation number controller as a power generation amount of the power generation device. 前記発電装置は、前記発電装置内の発電機から回収された熱を蓄える蓄熱器を備え、
前記発電数制御器は、前記蓄熱器の蓄熱可能量に基づいて発電する発電装置数を増加させるために発電開始させる前記発電装置または発電する発電装置数を減少させるために発電停止させる前記発電装置を決定する請求項2または3記載の分散型発電システム。
The power generator includes a heat accumulator that stores heat recovered from a generator in the power generator,
The power generation number controller is configured to start power generation to increase the number of power generation apparatuses that generate power based on the heat storage capacity of the heat accumulator, or to stop power generation to decrease the number of power generation apparatuses that generate power. The distributed power generation system according to claim 2 or 3, wherein:
前記発電装置は、前記発電装置内の発電機から回収された熱を蓄える蓄熱器を備え、
前記許可発電量制御器は、前記蓄熱器の蓄熱可能量に基づいて重み付け処理した発電量を前記発電装置の発電量として許可する請求項4記載の分散型発電システム。
The power generator includes a heat accumulator that stores heat recovered from a generator in the power generator,
The distributed power generation system according to claim 4, wherein the permitted power generation amount controller permits the power generation amount weighted based on the heat storage capacity of the heat accumulator as the power generation amount of the power generation device.
前記許可発電量制御器は、前記総電力需要量から前記発電数制御器により決定された発電する発電装置の数と第1の閾値との積を減じた値について重み付け処理を行う請求項6記載の分散型発電システム。 7. The permitted power generation amount controller performs weighting processing on a value obtained by subtracting a product of the number of power generation devices to be generated determined by the power generation number controller from the total power demand amount and a first threshold value. Distributed power generation system. 複数の発電装置により電力負荷に電力を供給する分散型発電システムの制御方法であって、
前記電力負荷の総電力需要量を発電装置数で平均化した平均発電量が予め定められた第1の閾値以上で、かつ第1の閾値よりも大きく発電装置の最大発電量よりも小さい第2の閾値以下になるよう発電する発電装置の数を制御する発電数制御ステップを備えることを特徴とする分散型発電システムの制御方法。
A control method for a distributed power generation system that supplies power to a power load by a plurality of power generation devices,
A second average power generation amount obtained by averaging the total power demand of the power load by the number of power generation devices is equal to or greater than a predetermined first threshold value and is larger than the first threshold value and smaller than the maximum power generation amount of the power generation device. A control method for a distributed power generation system, comprising: a power generation number control step for controlling the number of power generation devices that generate power to be equal to or less than a threshold value.
前記発電数制御ステップにより決定された発電する発電装置の数で平均化した平均発電量を前記発電装置の発電量として許可する許可発電量制御ステップを備える請求項1記載の分散型発電システムの制御方法。 2. The control of the distributed power generation system according to claim 1, further comprising a permitted power generation amount control step that permits an average power generation amount averaged by the number of power generation devices that generate power determined in the power generation number control step as a power generation amount of the power generation device. Method. 前記発電装置は、前記発電装置内の発電機から回収された熱を蓄える蓄熱器を備え、
前記発電数制御ステップにおいて、前記蓄熱器の蓄熱可能量に基づいて発電する発電装置数を増加させるために発電開始させる前記発電装置または発電する発電装置数を減少させるために発電停止させる前記発電装置を決定する請求項9記載の分散型発電システム。
The power generator includes a heat accumulator that stores heat recovered from a generator in the power generator,
In the power generation number control step, the power generation device that starts power generation to increase the number of power generation devices that generate power based on the heat storage capacity of the heat accumulator or the power generation device that stops power generation to decrease the number of power generation devices that generate power The distributed power generation system according to claim 9, wherein:
前記発電装置は、前記発電装置内の発電機から回収された熱を蓄える蓄熱器を備え、
前記許可発電量制御ステップにおいて、前記蓄熱器の蓄熱可能量に基づいて重み付け処理した発電量を前記発電装置の発電量として許可する請求項9記載の分散型発電システムの制御方法。
The power generator includes a heat accumulator that stores heat recovered from a generator in the power generator,
The control method for a distributed power generation system according to claim 9, wherein in the permitted power generation amount control step, a power generation amount weighted based on a heat storage possible amount of the heat accumulator is permitted as a power generation amount of the power generation device.
JP2008190558A 2008-01-11 2008-07-24 Distributed power generation system and control method thereof Expired - Fee Related JP5446156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190558A JP5446156B2 (en) 2008-01-11 2008-07-24 Distributed power generation system and control method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008004001 2008-01-11
JP2008004001 2008-01-11
JP2008190558A JP5446156B2 (en) 2008-01-11 2008-07-24 Distributed power generation system and control method thereof

Publications (2)

Publication Number Publication Date
JP2009189226A true JP2009189226A (en) 2009-08-20
JP5446156B2 JP5446156B2 (en) 2014-03-19

Family

ID=41071898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190558A Expired - Fee Related JP5446156B2 (en) 2008-01-11 2008-07-24 Distributed power generation system and control method thereof

Country Status (1)

Country Link
JP (1) JP5446156B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053996A (en) * 2012-09-05 2014-03-20 Toshiba Corp Controller for rotary electric machine, rotary electric machine, and wind power generation system
WO2014057867A1 (en) * 2012-10-09 2014-04-17 株式会社日立製作所 Solar power generation device and power management system, and electric power load and measuring apparatus for same
JP5842069B1 (en) * 2015-02-16 2016-01-13 静岡ガス株式会社 Power generation control system, power generation system, residential system, program, power generation control device, and power generation control method
JP2016049017A (en) * 2010-06-16 2016-04-07 トランスオーシャン セドコ フォレックス ベンチャーズ リミテッド Hybrid power generation plant for enhanced efficiency and dynamic performance
WO2016102675A1 (en) * 2014-12-23 2016-06-30 Deif A/S Optimal dispatch
JP2017070080A (en) * 2015-09-29 2017-04-06 京セラ株式会社 Control method for power generation system, power generation system, and power generation device
WO2019058979A1 (en) * 2017-09-19 2019-03-28 東芝燃料電池システム株式会社 Fuel cell system, instruction device for fuel cell system, and instruction method for fuel cell system
JP2019521478A (en) * 2016-06-06 2019-07-25 フュエルセル エナジー, インコーポレイテッドFuelcell Energy, Inc. Fuel cell load variation to support distribution networks
US10389116B2 (en) 2012-12-10 2019-08-20 Nec Corporation Distributed electric power generation system, control station, and method of controlling the same
JP2019526150A (en) * 2016-11-30 2019-09-12 シーアールアールシー チンタオ シーファン カンパニー,リミティッド Fuel cell control method, apparatus and system, and railway vehicle
EP3840163A1 (en) * 2019-12-20 2021-06-23 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for determining an operating sequence of a generator set assembly of an electrical network
CN118316112A (en) * 2024-06-07 2024-07-09 滁州捷泰新能源科技有限公司 Photovoltaic power generation system and power generation adjusting method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475428A (en) * 1990-07-16 1992-03-10 Nippon Telegr & Teleph Corp <Ntt> Dc parallel operation system for fuel cell
JPH06141468A (en) * 1992-10-21 1994-05-20 Osaka Gas Co Ltd Load sharing method
JP2003199254A (en) * 2001-10-19 2003-07-11 Matsushita Electric Ind Co Ltd Cogeneration system and program therefor
JP2003244852A (en) * 2002-02-14 2003-08-29 Yanmar Co Ltd Power generation system for distributed power sources
JP2004266879A (en) * 2003-01-17 2004-09-24 Japan Research Institute Ltd Power supply system, condominium, and program
JP2006278151A (en) * 2005-03-29 2006-10-12 National Institute Of Advanced Industrial & Technology Power generation control system, power generation control method, and calculation device
JP2007194137A (en) * 2006-01-20 2007-08-02 Sanyo Electric Co Ltd Fuel cell system, fuel cell control system, fuel cell system control method, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475428A (en) * 1990-07-16 1992-03-10 Nippon Telegr & Teleph Corp <Ntt> Dc parallel operation system for fuel cell
JPH06141468A (en) * 1992-10-21 1994-05-20 Osaka Gas Co Ltd Load sharing method
JP2003199254A (en) * 2001-10-19 2003-07-11 Matsushita Electric Ind Co Ltd Cogeneration system and program therefor
JP2003244852A (en) * 2002-02-14 2003-08-29 Yanmar Co Ltd Power generation system for distributed power sources
JP2004266879A (en) * 2003-01-17 2004-09-24 Japan Research Institute Ltd Power supply system, condominium, and program
JP2006278151A (en) * 2005-03-29 2006-10-12 National Institute Of Advanced Industrial & Technology Power generation control system, power generation control method, and calculation device
JP2007194137A (en) * 2006-01-20 2007-08-02 Sanyo Electric Co Ltd Fuel cell system, fuel cell control system, fuel cell system control method, and program

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389113B2 (en) 2010-06-16 2019-08-20 Transocean Sedco Forex Ventures Limited Hybrid power plant for improved efficiency and dynamic performance
JP2016049017A (en) * 2010-06-16 2016-04-07 トランスオーシャン セドコ フォレックス ベンチャーズ リミテッド Hybrid power generation plant for enhanced efficiency and dynamic performance
JP2014053996A (en) * 2012-09-05 2014-03-20 Toshiba Corp Controller for rotary electric machine, rotary electric machine, and wind power generation system
JP2014078055A (en) * 2012-10-09 2014-05-01 Hitachi Ltd Solar power generation apparatus, power management system, and power loads and measurement device therefor
WO2014057867A1 (en) * 2012-10-09 2014-04-17 株式会社日立製作所 Solar power generation device and power management system, and electric power load and measuring apparatus for same
US10389116B2 (en) 2012-12-10 2019-08-20 Nec Corporation Distributed electric power generation system, control station, and method of controlling the same
WO2016102675A1 (en) * 2014-12-23 2016-06-30 Deif A/S Optimal dispatch
JP5842069B1 (en) * 2015-02-16 2016-01-13 静岡ガス株式会社 Power generation control system, power generation system, residential system, program, power generation control device, and power generation control method
JP2016152659A (en) * 2015-02-16 2016-08-22 静岡ガス株式会社 Power generation control system, power generation system, residence system, program, power generation controller and power generation control method
JP2017070080A (en) * 2015-09-29 2017-04-06 京セラ株式会社 Control method for power generation system, power generation system, and power generation device
US11688868B2 (en) 2016-06-06 2023-06-27 Fuel Cell Energy, Inc. Fuel cell load cycling to support the electric grid
JP2019521478A (en) * 2016-06-06 2019-07-25 フュエルセル エナジー, インコーポレイテッドFuelcell Energy, Inc. Fuel cell load variation to support distribution networks
JP2019526150A (en) * 2016-11-30 2019-09-12 シーアールアールシー チンタオ シーファン カンパニー,リミティッド Fuel cell control method, apparatus and system, and railway vehicle
WO2019058979A1 (en) * 2017-09-19 2019-03-28 東芝燃料電池システム株式会社 Fuel cell system, instruction device for fuel cell system, and instruction method for fuel cell system
JP2019057362A (en) * 2017-09-19 2019-04-11 東芝燃料電池システム株式会社 Fuel cell system, instruction device for fuel cell system, and instruction method for fuel cell system
EP3840163A1 (en) * 2019-12-20 2021-06-23 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for determining an operating sequence of a generator set assembly of an electrical network
FR3105628A1 (en) * 2019-12-20 2021-06-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD OF DETERMINING A SEQUENCE OF OPERATION OF A SET OF GENERATING SETS OF AN ELECTRICAL NETWORK
US11336093B2 (en) 2019-12-20 2022-05-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for determining a sequence of operation of a set of generator units of an electrical network
CN118316112A (en) * 2024-06-07 2024-07-09 滁州捷泰新能源科技有限公司 Photovoltaic power generation system and power generation adjusting method

Also Published As

Publication number Publication date
JP5446156B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5446156B2 (en) Distributed power generation system and control method thereof
JP4543217B2 (en) Grid information monitoring system
JP4694614B2 (en) Power system stabilization system
CN108155662B (en) Control method and device for wind power hydrogen production
EP2763269B1 (en) Energy control system, energy control device, and energy control method
WO2013076985A1 (en) Power supply control system and power supply control method
JP5315813B2 (en) Distributed power generation system and control method thereof
CN110165713A (en) A kind of garden demand response method of providing multiple forms of energy to complement each other based on peaking demand of power grid
JP6822927B2 (en) Monitoring and control system, its control method and control program
JP5940263B2 (en) Power control apparatus and power control method
JP5893319B2 (en) Power management system and power management apparatus
JP7386028B2 (en) power supply system
CN111523708B (en) Energy optimization management method based on price type demand response
JP5469120B2 (en) Power generation output control system and control method for distributed power supply
JP5131719B2 (en) Power generation amount control system, power generation amount control method, and arithmetic unit
CN116882163A (en) Method and device for distributing power of electrolytic cell cluster, electronic equipment and storage medium
JP7356922B2 (en) Distributed power systems and distributed power supplies
JP2004007963A (en) Energy transfer control method, energy transfer control system, energy transfer controller, computer program, and recording medium
CN115663866A (en) Method and terminal for electric vehicle to participate in power grid regulation
CN113964852A (en) Power generation control method and device for virtual power plant for sharing stored energy
JP2022037684A (en) Power supply system
CN115911466B (en) Micro-grid energy supply system of fuel cell and dynamic scheduling method thereof
JP7533524B2 (en) POWER CONTROL DEVICE, POWER CONTROL METHOD, AND POWER CONTROL PROGRAM
KR102631022B1 (en) Hybrid power plant operation method in independent system
JP7226730B2 (en) Electric power local production for local consumption system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110713

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R151 Written notification of patent or utility model registration

Ref document number: 5446156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees