[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009186460A - Flow electrolytic cell, and apparatus and method for quantifying density using same - Google Patents

Flow electrolytic cell, and apparatus and method for quantifying density using same Download PDF

Info

Publication number
JP2009186460A
JP2009186460A JP2009002839A JP2009002839A JP2009186460A JP 2009186460 A JP2009186460 A JP 2009186460A JP 2009002839 A JP2009002839 A JP 2009002839A JP 2009002839 A JP2009002839 A JP 2009002839A JP 2009186460 A JP2009186460 A JP 2009186460A
Authority
JP
Japan
Prior art keywords
sample solution
working electrode
electrolysis cell
flow electrolysis
hollow tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009002839A
Other languages
Japanese (ja)
Inventor
Jun Kasuno
潤 糟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryukoku University
Original Assignee
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryukoku University filed Critical Ryukoku University
Priority to JP2009002839A priority Critical patent/JP2009186460A/en
Publication of JP2009186460A publication Critical patent/JP2009186460A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow electrolytic cell comprising a working electrode filled with many linear conductors, the flow electrolytic cell being capable of improving analytic precision, easy to handle, and more quickly analyzing many sample solutions. <P>SOLUTION: This flow electrolytic cell 1 includes a case 1a having a reservoir 1L for accumulating an electrolyte solution, and the working electrode 2, a reference electrode 3, and a counter electrode 4 which are adjusted to a predetermined potential vialead wires 2A, 3A and 4A respectively, and attached to the case 1a, partly soaked in the electrolyte solution. The sample solution is fed to the working electrode 2 to electrolyze a target component contained therein. The working electrode 2 includes an insulating hollow pipe 20 and a bundle 21 of the linear conductors arranged and filled inside the hollow pipe 20 in parallel to an axial direction. The bundle 21 of the conductors is extended outside from a rear end portion 20b of the hollow pipe 20 and connected to the lead wire 2A at a position away from the reservoir 1L. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、作用電極に所定電位を印加し、電解に要した電荷量を測定するために試料溶液中の目的成分のほぼ全てを電解するフロー電解セルに関し、また、そのフロー電解セルを用いた濃度定量装置と濃度定量方法に関する。   The present invention relates to a flow electrolysis cell that applies a predetermined potential to a working electrode and electrolyzes almost all of the target components in a sample solution in order to measure the amount of charge required for electrolysis, and also uses the flow electrolysis cell. The present invention relates to a concentration determination apparatus and a concentration determination method.

電気化学的に活性な目的成分を含む試料溶液を流液とする分析方法は、化学工業設備におけるプロセス制御、医療分野や化学分野における検体の迅速分析、など多くの分野で広く用いられている。このような分析方法のうち、電解を基礎とする主なものの一つとして、試料溶液に含まれる目的成分のほぼ全てを電解し、そのとき電解に要した電荷量を測定する方法(フロークーロメトリ)がある。この方法では、フロー電解セルに試料溶液が供給されると、迅速に目的成分が電解されて平衡に達するようにすることが必要である。このため、試料溶液の量に対する作用電極の導体の表面積比を様々な方法で大きくしている。例えば、特許文献1乃至3に記載のフロー電解セルは、絶縁性の中空管に多数の線状の導体であるカーボン繊維を充填して作用電極の導体の表面積を大きくし、かつ、中空管の内径を小さくすることで試料溶液の量を少なくしている。   Analytical methods using a sample solution containing an electrochemically active target component as a flowing liquid are widely used in many fields such as process control in chemical industrial facilities and rapid analysis of specimens in the medical field and chemical field. Among these analytical methods, one of the main methods based on electrolysis is a method of electrolyzing almost all of the target components contained in the sample solution and measuring the amount of charge required for the electrolysis (flow coulometry). ) In this method, when the sample solution is supplied to the flow electrolysis cell, it is necessary to quickly electrolyze the target component and reach equilibrium. For this reason, the surface area ratio of the conductor of the working electrode with respect to the amount of the sample solution is increased by various methods. For example, in the flow electrolysis cell described in Patent Documents 1 to 3, the insulating hollow tube is filled with a large number of linear conductor carbon fibers to increase the surface area of the working electrode conductor, and the hollow electrolytic cell is hollow. The amount of the sample solution is reduced by reducing the inner diameter of the tube.

図5(a)は、特許文献1に記載のものと同様の作用電極102を示す断面模式図であり、同図(b)は、特許文献2、3に記載のものと同様の作用電極102’を示す断面模式図である。これらは、バイコールガラス管又は石英ガラス管からなる絶縁性の中空管120にカーボン繊維束121を充填している。カーボン繊維束121とリード線122の接続について、前者では、中空管120の前方に別のガラス管120Aを設け、その外方にこれより大径であって外側からリード線122が接続される白金管120Bを設け、別のガラス管120Aと白金管120Bとの間にカーボン繊維束121の一部を延出させて挟持固定している。一方、後者では、中空管120の長手方向の中央付近に貫通孔を形成して外側からリード線122が接続されるカーボン電極120’を埋め込み、それがカーボン繊維束121に接触するようにしている。   5A is a schematic cross-sectional view showing a working electrode 102 similar to that described in Patent Document 1, and FIG. 5B shows a working electrode 102 similar to that described in Patent Documents 2 and 3. It is a cross-sectional schematic diagram showing '. In these, an insulating hollow tube 120 made of a Vycor glass tube or a quartz glass tube is filled with a carbon fiber bundle 121. Regarding the connection between the carbon fiber bundle 121 and the lead wire 122, in the former case, another glass tube 120A is provided in front of the hollow tube 120, and the lead wire 122 is connected to the outside from the outside with a larger diameter. A platinum tube 120B is provided, and a part of the carbon fiber bundle 121 is extended and fixed between another glass tube 120A and the platinum tube 120B. On the other hand, in the latter, a through hole is formed near the center of the longitudinal direction of the hollow tube 120 and a carbon electrode 120 ′ to which the lead wire 122 is connected from the outside is embedded so that it contacts the carbon fiber bundle 121. Yes.

特開平9−264869号公報JP-A-9-264869 特開平9−292359号公報Japanese Patent Laid-Open No. 9-292359 特開平10−19844号公報JP-A-10-19844

しかしながら、前者の作用電極102のように中空管120の他に別のガラス管120Aや白金管120Bを設けたり、後者の作用電極102’のように中空管120を加工してカーボン電極120’を埋め込んだりする構造では、それらのフロー電解セルは破損し易いので慎重な取扱いが必要であり、しかも、高価なものとなる。また、中空管120がバイコールガラス管又は石英ガラス管であるため、それ自体も破損し易い。従って、このようなフロー電解セルにおいて、多くの試料溶液の分析をより迅速に行うことができ、取扱いを容易にし、更に分析の精度を向上させるためには、改良の余地がある。   However, in addition to the hollow tube 120 as in the former working electrode 102, another glass tube 120A and a platinum tube 120B are provided, or the hollow tube 120 is processed as in the latter working electrode 102 ′ so that the carbon electrode 120 is processed. In a structure in which 'is embedded, those flow electrolysis cells are easily damaged, and therefore must be handled with care and are expensive. Further, since the hollow tube 120 is a Vycor glass tube or a quartz glass tube, the tube itself is easily damaged. Therefore, in such a flow electrolysis cell, many sample solutions can be analyzed more quickly, and there is room for improvement in order to facilitate handling and further improve the accuracy of analysis.

本発明は、係る事由に鑑みてなされたものであり、その目的は、多数の線状の導体を充填して作用電極としたフロー電解セルにおいて、分析の精度を向上させることができるとともに、取り扱いが容易であり、しかも多くの試料溶液の分析をより迅速に行うことができるフロー電解セルを提供することにある。   The present invention has been made in view of the above reasons, and its purpose is to improve the accuracy of analysis in a flow electrolysis cell filled with a large number of linear conductors to serve as a working electrode, and to handle it. It is an object of the present invention to provide a flow electrolysis cell that is easy to perform and can analyze many sample solutions more quickly.

上記目的を達成するために、請求項1に記載のフロー電解セルは、電解質溶液を溜める液溜部を有した筐体に、各リード線を介して所定電位とされる作用電極、参照電極、対極が該電解質溶液に浸るように取着され、該作用電極に試料溶液を流してそれに含まれる目的成分を電解するフロー電解セルにおいて、前記作用電極は、絶縁性の中空管と、中空管の内部に軸方向に平行に配列して充填された線状の導体の束と、を有して成り、該導体の束は、中空管の後端部から外方に延出させて前記液溜部から離れた位置で前記リード線に接続されてなることを特徴とする。   In order to achieve the above object, a flow electrolysis cell according to claim 1 is provided with a working electrode, a reference electrode, and a working electrode, each of which has a predetermined potential via each lead wire, in a housing having a liquid reservoir for storing an electrolyte solution. In a flow electrolysis cell in which a counter electrode is attached so as to be immersed in the electrolyte solution, and a sample solution is passed through the working electrode to electrolyze a target component contained therein, the working electrode includes an insulating hollow tube, a hollow tube A bundle of linear conductors arranged in parallel in the axial direction inside the tube, and the bundle of conductors extends outward from the rear end of the hollow tube. It is connected to the lead wire at a position away from the liquid reservoir.

請求項2に記載のフロー電解セルは、請求項1に記載のフロー電解セルにおいて、前記中空管は、ポリテトラフルオロエチレン製であることを特徴とする。   The flow electrolysis cell according to claim 2 is the flow electrolysis cell according to claim 1, wherein the hollow tube is made of polytetrafluoroethylene.

請求項3に記載のフロー電解セルは、請求項1又は2に記載のフロー電解セルにおいて、前記導体は、カーボン繊維であることを特徴とする。   The flow electrolysis cell according to claim 3 is the flow electrolysis cell according to claim 1 or 2, wherein the conductor is a carbon fiber.

請求項4に記載の濃度定量装置は、請求項1乃至3のいずれかに記載のフロー電解セルを備える濃度定量装置であって、前記目的成分が作用電極により電解される試料溶液の量を測定する分析用天秤を更に備えることを特徴とする。   A concentration quantification device according to claim 4 is a concentration quantification device comprising the flow electrolysis cell according to any one of claims 1 to 3, and measures the amount of a sample solution in which the target component is electrolyzed by a working electrode. And further comprising an analytical balance.

請求項5に記載の濃度定量装置は、請求項4に記載の濃度定量装置において、前記試料溶液を溜める試料溶液容器と、該試料溶液容器から前記作用電極に試料溶液を送る送液チューブと、を更に備え、前記分析用天秤は、フロー電解セルの前記筐体の重量を計測するか、又は、前記試料溶液容器の重量を計測するものであることを特徴とする。   The concentration quantification device according to claim 5 is the concentration quantification device according to claim 4, wherein a sample solution container for storing the sample solution, a liquid feeding tube for sending the sample solution from the sample solution container to the working electrode, The analytical balance is characterized by measuring the weight of the casing of the flow electrolysis cell or measuring the weight of the sample solution container.

請求項6に記載の濃度定量方法は、請求項5に記載の濃度定量装置を用いた濃度定量方法であって、フロー電解セルの前記液溜部の液面と前記作用電極との間が接近するように制御するか、又は、前記試料溶液容器の試料溶液の液面と前記送液チューブとの間が接近するように制御するかしながら、前記分析用天秤で重量を計測することによって、試料溶液に含まれる目的成分の濃度を定量することを特徴とする。   The concentration quantification method according to claim 6 is a concentration quantification method using the concentration quantification device according to claim 5, wherein the liquid surface of the liquid reservoir of the flow electrolysis cell and the working electrode are close to each other. By measuring the weight with the analytical balance while controlling so that the liquid level of the sample solution in the sample solution container and the liquid feeding tube are close to each other, It is characterized by quantifying the concentration of the target component contained in the sample solution.

本発明のフロー電解セルによれば、多数の線状の導体を充填して作用電極としたものにおいて、作用電極を、絶縁性の中空管と、中空管の内部に軸方向に平行に配列して充填された線状の導体の束と、を有して構成し、その導体の束を、中空管の後端から外方に延出させて液溜部から離れた位置でリード線に接続するようにしたので、リード線が試料溶液と接触して電位窓が変化することが確実に防止され、作用電極において液流の乱れが生じ難くなるため、分析の精度を向上させることができ、また、構造が簡単で丈夫になるため、取り扱いが容易となり、しかも多くの試料の分析を迅速に行うことができる。また、このフロー電解セルを用いると、高精度な濃度算出が可能となる。   According to the flow electrolysis cell of the present invention, the working electrode is filled with a large number of linear conductors, and the working electrode is arranged in parallel with the insulating hollow tube and the inside of the hollow tube in the axial direction. A bundle of linear conductors arranged and filled, and the conductor bundle extends outward from the rear end of the hollow tube and leads away from the liquid reservoir. Because the lead wire is in contact with the sample solution, the potential window is reliably prevented from changing, and the liquid flow is less likely to be disturbed at the working electrode, improving the accuracy of the analysis. In addition, since the structure is simple and strong, handling becomes easy, and many samples can be analyzed quickly. In addition, when this flow electrolysis cell is used, it is possible to calculate the concentration with high accuracy.

本発明の実施形態に係るフロー電解セルを含む濃度定量装置を示す模式図である。It is a schematic diagram which shows the concentration determination apparatus containing the flow electrolysis cell which concerns on embodiment of this invention. 同上の別の濃度定量装置を示す模式図である。It is a schematic diagram which shows another concentration determination apparatus same as the above. 同上のフロー電解セルの作用電極を上方から見た斜視図である。It is the perspective view which looked at the working electrode of the flow electrolysis cell same as the above. 同上のフロー電解セルを用いた実験結果を示すグラフである。It is a graph which shows the experimental result using the flow electrolysis cell same as the above. 従来のフロー電解セルの作用電極を示す概略断面図である。It is a schematic sectional drawing which shows the working electrode of the conventional flow electrolysis cell.

以下、本発明を実施するための好ましい形態を図面を参照しながら説明する。図1は、本発明の実施形態に係るフロー電解セル1を含む濃度定量装置10を示す模式図である。なお、フロー電解セル1は、濃度定量装置10を用いた濃度定量のみならず、電解合成や電解反応機構の解明、金属イオンの濃縮にも使用可能である。   Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a concentration determination device 10 including a flow electrolysis cell 1 according to an embodiment of the present invention. The flow electrolysis cell 1 can be used not only for concentration determination using the concentration determination apparatus 10, but also for elucidation of electrolytic synthesis and electrolytic reaction mechanism, and concentration of metal ions.

フロー電解セル1の基本構造体となる例えばガラス製の筐体1aは、電解質溶液を溜める液溜部1Lを有しており、各リード線2A、3A、4Aを介して所定電位とされる作用電極2、参照電極3、対極4を、液溜部1Lの電解質溶液に直接又は作用電極2に流れる試料溶液を介して浸るように取着している。筐体1aは、大略下方がやや膨らんだ有底円筒状をなし、上方の略円筒部分が作用電極取着部1A、下方の円筒部分が液溜部1L、そして、下方の円筒部分から斜め上方に突出形成される部分が参照電極取着部1B及び対極取着部1C、となっている。   A glass casing 1a serving as a basic structure of the flow electrolysis cell 1 has a liquid reservoir 1L for accumulating an electrolyte solution, and has a predetermined potential via the lead wires 2A, 3A, and 4A. The electrode 2, the reference electrode 3, and the counter electrode 4 are attached so as to be immersed in the electrolyte solution in the liquid reservoir 1 </ b> L directly or through the sample solution flowing to the working electrode 2. The casing 1a has a bottomed cylindrical shape that is slightly swollen in the lower part, the upper substantially cylindrical part is the working electrode attaching part 1A, the lower cylindrical part is the liquid reservoir part 1L, and obliquely upward from the lower cylindrical part The portions that are formed to project are the reference electrode attachment portion 1B and the counter electrode attachment portion 1C.

作用電極2は、絶縁性の中空管20と、中空管20の内部に軸方向に平行に配列して充填された線状の導体の束21と、を有して作用電極取着部1Aに取着される。中空管20は、内径が約1mm程度の管であり、筐体1aに取着した状態で、前端部(図1における上端の部分)20aが筐体1aの上端部から突出している。また、中空管20は、後端部(図1における下端の部分)20bが液溜部1Lに溜められる電解質溶液の液面1LSに到達しているか或いはほぼ到達する長さを有しており、それにより作用電極2が液溜部1Lの電解質溶液に直接又は作用電極2に流れる試料溶液を介して浸ることになる。中空管20の前端部20aは、送液チューブ6に接続される。目的成分が加えられた電解質溶液である試料溶液は、試料溶液容器7Aに溜められており、試料溶液容器7Aから、送液ポンプ(例えば、ペリスタポンプ)7によりほぼ一定速度で送液チューブ6を介して作用電極2に送られ、作用電極2を通過した試料溶液は液溜部1Lに元々溜められていた電解質溶液に混合する。作用電極2の構成、材質、寸法、リード線2Aとの接続等については後に詳述する。   The working electrode 2 includes an insulating hollow tube 20 and a bundle of linear conductors 21 filled in the hollow tube 20 so as to be arranged in parallel in the axial direction. Attach to 1A. The hollow tube 20 is a tube having an inner diameter of about 1 mm, and a front end portion (upper end portion in FIG. 1) 20a protrudes from the upper end portion of the housing 1a when attached to the housing 1a. Further, the hollow tube 20 has a length at which the rear end portion (the lower end portion in FIG. 1) 20b reaches or almost reaches the liquid surface 1LS of the electrolyte solution stored in the liquid reservoir 1L. Thereby, the working electrode 2 is immersed in the electrolyte solution in the liquid reservoir 1L directly or through the sample solution flowing through the working electrode 2. The front end 20 a of the hollow tube 20 is connected to the liquid feeding tube 6. A sample solution, which is an electrolyte solution to which the target component is added, is stored in a sample solution container 7A, and is supplied from the sample solution container 7A through a liquid feeding tube 6 at a substantially constant speed by a liquid feeding pump (for example, a peristaltic pump) 7. The sample solution that has been sent to the working electrode 2 and passed through the working electrode 2 is mixed with the electrolyte solution originally stored in the liquid reservoir 1L. The configuration, material, dimensions, connection with the lead wire 2A, etc. of the working electrode 2 will be described in detail later.

参照電極3は、例えば、ガラス製であり、管状を成し、内部に公知の形状(例えば、螺旋形状)の導体31を配設し、内方端に隔膜32が取着されて電解質溶液を封入し、参照電極取着部1Bに固定材33を用いて取着される。導体31は、電解質溶液に浸されている。また、隔膜32は、液溜部1Lに溜められる電解質溶液に浸たるように位置決めされており、封入している電解質溶液との間で支持電解質が通過し得るものとなっている。また、参照電極3の筐体1aの外側に位置する外方端の栓材34を通過して導体31が取り出され、リード線3Aに接続されている。   The reference electrode 3 is made of, for example, glass, has a tubular shape, a conductor 31 having a known shape (for example, a spiral shape) is disposed therein, and a diaphragm 32 is attached to an inner end thereof, so that an electrolyte solution is supplied. It is sealed and attached to the reference electrode attachment portion 1B using the fixing material 33. The conductor 31 is immersed in the electrolyte solution. Further, the diaphragm 32 is positioned so as to be immersed in the electrolyte solution stored in the liquid reservoir 1L, and the supporting electrolyte can pass between the electrolyte solution and the sealed electrolyte solution. The conductor 31 is taken out through the plug 34 at the outer end located outside the housing 1a of the reference electrode 3 and connected to the lead wire 3A.

対極4は、公知の形状(例えば、螺旋形状)の導体41が液溜部1Lに溜められる電解質溶液に浸たるように配設され、栓材44によって対極取着部1Cに取着され、栓材44を通過して導体41が取り出されてリード線4Aに接続されている。   The counter electrode 4 is disposed so that a conductor 41 having a known shape (for example, a spiral shape) is immersed in an electrolyte solution stored in the liquid reservoir 1L, and is attached to the counter electrode attachment 1C by a plug member 44. The conductor 41 is taken out through the material 44 and connected to the lead wire 4A.

作用電極2の導体の束21、参照電極3の導体31、対極4の導体41は、それぞれのリード線2A、3A、4Aを介して、ポテンショスタット8により所定の電位とされる。すなわち、作用電極2には参照電極3に対し、試料溶液に含まれる目的成分を十分に酸化又は還元反応によって電解させる電位が印加される。そして、目的成分の酸化又は還元反応に起因して作用電極2と対極4間を流れる電流がクーロンメーター9で電荷量に換算される。   The conductor bundle 21 of the working electrode 2, the conductor 31 of the reference electrode 3, and the conductor 41 of the counter electrode 4 are set to a predetermined potential by the potentiostat 8 via the respective lead wires 2A, 3A, 4A. That is, a potential that causes the target component contained in the sample solution to be sufficiently electrolyzed by oxidation or reduction reaction is applied to the working electrode 2 with respect to the reference electrode 3. The current flowing between the working electrode 2 and the counter electrode 4 due to the oxidation or reduction reaction of the target component is converted into a charge amount by the coulomb meter 9.

次に、作用電極2について詳述する。作用電極2の中空管20は、試料溶液の量を少なくできるように内径を小さくしているので、各種の試料溶液に対して耐久性がある材質であるとともに、折れ難くて丈夫なものが望ましい。   Next, the working electrode 2 will be described in detail. The hollow tube 20 of the working electrode 2 has a small inner diameter so that the amount of the sample solution can be reduced. Therefore, the hollow tube 20 is a material that is durable against various sample solutions, and is hard to break and strong. desirable.

これらの点において、中空管20は、ポリテトラフルオロエチレン(PTFE)製であること、具体的にはテフロン(米国デュポン社の登録商標)製のものが最適である。このような材料にて形成された中空管20は、試料溶液が酸性、アルカリ性のいずれにも、また有機溶媒に対しても耐久性があり、外径が2mm程度であっても、折損し難くて丈夫である。また、柔軟性に富み、軸方向において曲げることや螺旋状にすることも可能であって、更なる小型化を図ることもできる。また、試料溶液の種類に応じて軸方向の長さを変えて原材料の長いチューブから切り取ることにより、容易に製作でき、従って、作用電極2の長さも自由に調整できるため、例えば、目的成分が酸化還元の電極反応が遅いものであっても、作用電極2を長くすることでほぼ全ての電解が可能である。よって、ヒ酸やフェノール類のような有害物質或いはアスコルビン酸やNADHのような生体関連物質などの酸化還元挙動の分析が容易になる。   In these respects, the hollow tube 20 is optimally made of polytetrafluoroethylene (PTFE), specifically, made of Teflon (registered trademark of DuPont, USA). The hollow tube 20 formed of such a material is durable to both acidic and alkaline sample solutions and to organic solvents, and breaks even if the outer diameter is about 2 mm. It is difficult and strong. Moreover, it is rich in flexibility and can be bent or spiraled in the axial direction, and further miniaturization can be achieved. In addition, the length of the working electrode 2 can be freely adjusted by changing the length in the axial direction according to the type of the sample solution and cutting it from a long tube of raw materials. Even if the electrode reaction of redox is slow, almost all electrolysis can be performed by making the working electrode 2 longer. Therefore, it becomes easy to analyze the oxidation-reduction behavior of harmful substances such as arsenic acid and phenols or biological substances such as ascorbic acid and NADH.

作用電極2の線状の導体の束21は、図3に示すように、中空管20内部に、極めて小径の多数の導体21a、21a、・・・から成る導体の束21を充填している。導体の束21は、その前端が中空管20の前端部20aとほぼ揃っており、その後端は、図1に示すように、中空管20の後端部20bから十分に長く延出させている。具体的には、180度曲げて折り返され、中空管20に沿い筐体1aの作用電極取着部1Aの外方へ延出させている。そして、液溜部1Lから離れた位置、すなわち電解質溶液が存在し得る領域から確実に離れた位置で、例えば、白金のような金属製のリード線2Aに接続されている。導体の束21において中空管20の後端部20bから折り返されてリード線2Aへ接続されるまでの殆どの部分は、電解質溶液が隙間に入り込まないように凝集され、電解質溶液(混合した試料溶液も含む)と電極反応しないように、被覆テープ22で被覆されている。   As shown in FIG. 3, a bundle of linear conductors 21 of the working electrode 2 is filled with a bundle of conductors 21 composed of a number of conductors 21a, 21a,. Yes. The front end of the bundle of conductors 21 is substantially aligned with the front end 20a of the hollow tube 20, and the rear end extends sufficiently long from the rear end 20b of the hollow tube 20 as shown in FIG. ing. Specifically, it is folded back by 180 degrees and extends outward of the working electrode attachment portion 1A of the housing 1a along the hollow tube 20. And it is connected to the lead wire 2A made of metal such as platinum, for example, at a position away from the liquid reservoir 1L, that is, a position surely separated from the region where the electrolyte solution can exist. In the bundle of conductors 21, most of the portion from the back end 20b of the hollow tube 20 until it is connected to the lead wire 2A is agglomerated so that the electrolyte solution does not enter the gap, and the electrolyte solution (mixed sample) It is covered with the covering tape 22 so as not to react with the electrode.

作用電極2の導体21a、21a、…は、直径が例えば10μm程度のカーボン繊維が用いられる。カーボン繊維は、目的成分の酸化還元の電極反応が適切に進行するような電位窓が広く、一方、柔軟であって曲げなどを行っても破断し難い。なお、カーボン繊維と同程度の性質、性能を有した導体を用いてもよい。   For the conductors 21a, 21a,... Of the working electrode 2, carbon fibers having a diameter of, for example, about 10 μm are used. The carbon fiber has a wide potential window so that the redox electrode reaction of the target component can proceed appropriately. On the other hand, the carbon fiber is flexible and hardly breaks even when bent. A conductor having properties and performance similar to those of carbon fibers may be used.

前述した導体の束21の後端のリード線2Aへ接続は、リード線2Aを導体の束21の後端に巻着してこれらの間に電気的接続がなされる。リード線2Aを巻着することで、導体の束21の周囲を万遍なく均一にリード線2Aに電気的接続させることができる。また、図示はしないが、上記被覆テープ22を延長して又は別の被覆テープや熱収縮チューブにより、巻着部分を被覆して圧着してもよい。   The above-described connection to the lead wire 2A at the rear end of the bundle of conductors 21 is performed by winding the lead wire 2A around the rear end of the conductor bundle 21 and electrically connecting them. By winding the lead wire 2A, the periphery of the bundle of conductors 21 can be uniformly and uniformly connected to the lead wire 2A. Although not shown, the covering tape 22 may be extended or covered with another covering tape or a heat-shrinkable tube so as to be crimped.

前述した作用電極2、参照電極3、対極4、が取着されている筐体1aは、分析用天秤5の上皿に載置されている。この分析用天秤5により、目的成分が作用電極2により電解される試料溶液の量を、その前後の筐体1aの重量を計測することで求める。分析用天秤5により得られた計測値は、試料溶液における目的成分の濃度の算出等の定量分析で用いられる。それにより、送液ポンプ7の設定値などに頼らず、高精度の分析が可能となる。これは、試料溶液が少量でありフロー電解セル1が小型軽量であるためにその重量の高精度の測定が可能であることによっている。   The casing 1 a to which the working electrode 2, the reference electrode 3, and the counter electrode 4 are attached is placed on the upper plate of the analytical balance 5. With this analytical balance 5, the amount of the sample solution in which the target component is electrolyzed by the working electrode 2 is determined by measuring the weight of the housing 1a before and after the sample solution. The measurement value obtained by the analytical balance 5 is used in quantitative analysis such as calculation of the concentration of the target component in the sample solution. Thereby, it is possible to perform highly accurate analysis without depending on the set value of the liquid feed pump 7 or the like. This is because the amount of the sample solution is small and the flow electrolysis cell 1 is small and light, so that the weight can be measured with high accuracy.

分析用天秤5は、図2に示す濃度定量装置10’のように、試料溶液を溜めた試料溶液容器7Aの重量を計測するものであってもよい。この場合、試料溶液容器7Aは分析用天秤5の上皿に載置されており、目的成分が作用電極2により電解される試料溶液の量を、その前後の試料溶液容器7Aの重量を分析用天秤5により計測することで求める。このようにすると、上記と同様に、送液ポンプ7の設定値などに頼らず、高精度の分析が可能となる。更に、試料溶液容器7Aは作用電極2、参照電極3、対極4、が取着されている筐体1aよりも、通常、重量の値が小さく、また、構造が簡単なので、誤差要因が少ないために高精度に測定し易く、更には、後述の実験2などで説明するように、重量の値を読む際の利点もある。なお、試料溶液容器7Aは、図2に示すように上部を細くすると、試料溶液の蒸発を抑えることができるので、高精度な測定に寄与する。   The analytical balance 5 may measure the weight of the sample solution container 7A in which the sample solution is stored, like the concentration determination device 10 'shown in FIG. In this case, the sample solution container 7A is placed on the top plate of the analytical balance 5, and the amount of the sample solution whose target component is electrolyzed by the working electrode 2 is analyzed for the weight of the sample solution container 7A before and after that. It calculates | requires by measuring with the balance 5. In this way, as described above, high-precision analysis can be performed without depending on the set value of the liquid feed pump 7 or the like. Further, the sample solution container 7A is usually smaller in weight value than the housing 1a to which the working electrode 2, the reference electrode 3, and the counter electrode 4 are attached, and has a simple structure, so there are few error factors. In addition, there is an advantage in reading the weight value, as will be described later in Experiment 2 or the like. Note that, if the upper part of the sample solution container 7A is thinned as shown in FIG. 2, evaporation of the sample solution can be suppressed, which contributes to highly accurate measurement.

次に、フロー電解セル1の使用方法について説明する。先ず、筐体1aの液溜部1Lに電解質溶液を貯留し、作用電極2、参照電極3、対極4を浸しておく。作用電極2と液面1LSとの間には若干の距離が有っても構わない。そして、送液ポンプ7で作用電極2に試料溶液を送る。作用電極2の中空管20に流入した試料溶液は、導体21a、21a、・・・の隙間を軸方向に通過する。試料溶液に含まれる目的成分は、所定電位の導体21a、21a、・・・により酸化還元され、試料溶液は中空管20から流出する。中空管20を通過し終えるまでに、目的成分はほぼ全て電解され、そのとき電解に要した電荷量を測定する。また、そのときの重量を分析用天秤5で測定する。   Next, the usage method of the flow electrolysis cell 1 is demonstrated. First, the electrolyte solution is stored in the liquid reservoir 1L of the housing 1a, and the working electrode 2, the reference electrode 3, and the counter electrode 4 are immersed therein. There may be a slight distance between the working electrode 2 and the liquid level 1LS. Then, the sample solution is sent to the working electrode 2 by the liquid feed pump 7. The sample solution flowing into the hollow tube 20 of the working electrode 2 passes through the gaps between the conductors 21a, 21a,. The target component contained in the sample solution is oxidized and reduced by the conductors 21a, 21a,... Having a predetermined potential, and the sample solution flows out of the hollow tube 20. By the end of passing through the hollow tube 20, almost all of the target component is electrolyzed, and then the amount of charge required for electrolysis is measured. Further, the weight at that time is measured with the analytical balance 5.

ここで、導体の束21が中空管20の前端部20aから後端部20bまで一定の線状であるので、流入した試料溶液の流れの方向が乱れることがなく、すなわち乱流が生じることなく、試料溶液は中空管20の全区間を通過する。また、導体の束21は、混合した試料溶液も含む電解質溶液が存在し得る領域から確実に離れた位置でリード線2Aに接続されているので、リード線2Aが電解質溶液と接触して酸化還元反応することにより電位窓が変化するようなことがなく、電荷量の測定に誤差が生じることが防止できる。   Here, since the bundle of conductors 21 is a fixed linear shape from the front end 20a to the rear end 20b of the hollow tube 20, the flow direction of the sample solution that has flowed in is not disturbed, that is, turbulence occurs. Instead, the sample solution passes through the entire section of the hollow tube 20. Further, since the conductor bundle 21 is connected to the lead wire 2A at a position surely separated from the region where the electrolyte solution including the mixed sample solution can exist, the lead wire 2A comes into contact with the electrolyte solution and is oxidized and reduced. By reacting, the potential window does not change, and it is possible to prevent an error from occurring in the measurement of the charge amount.

このようにして、フロー電解セル1は、中空管20の内径を小さくしても、高精度の分析が可能であり、しかも構造が簡単で丈夫である。その結果、化学や医療分野などで多くの試料の分析を必要とするところにて、試料溶液の量を少なくして分析を短時間で行うことができる。また、持ち運び易く、取り扱い易いため、現場での分析が容易である。   In this way, the flow electrolysis cell 1 is capable of high-precision analysis even if the inner diameter of the hollow tube 20 is reduced, and has a simple and strong structure. As a result, the analysis can be performed in a short time by reducing the amount of the sample solution in a place where analysis of many samples is required in the chemical or medical fields. Moreover, since it is easy to carry and handle, analysis on site is easy.

図4は、フロー電解セル1の性能を確認するために、それを用いてサイクリックボルタモグラムを求めた実験1の実験結果である。横軸が参照電極3に対する作用電極2の電位であり、縦軸が電流値である。試料溶液は、0.5mM [Fe(CN)3−を目的成分として含み、1MKClを支持電解質として含むものである。送液ポンプ7から0.2ml/分で送液しながら、作用電極2の電位を掃引速度1mV/分で変化させて記録した。参照電極3の導体31は銀/塩化銀とした。液溜部1Lに貯留した電解質溶液は1MKClを支持電解質とするものである。同図の実線の曲線Aがその結果を示すボルタモグラムである。同図の破線の曲線Aは、曲線Aとの比較のために、1MKClのみを含む試料溶液について行った結果のボルタモグラムである。 FIG. 4 shows the experimental results of Experiment 1 in which a cyclic voltammogram was obtained using the flow electrolysis cell 1 in order to confirm the performance of the flow electrolysis cell 1. The horizontal axis is the potential of the working electrode 2 with respect to the reference electrode 3, and the vertical axis is the current value. The sample solution contains 0.5 mM [Fe (CN) 6 ] 3− as a target component and 1MKCl as a supporting electrolyte. While feeding from the liquid feeding pump 7 at 0.2 ml / min, the potential of the working electrode 2 was changed at a sweep speed of 1 mV / min and recorded. The conductor 31 of the reference electrode 3 was silver / silver chloride. The electrolyte solution stored in the liquid reservoir 1L uses 1MKCl as a supporting electrolyte. The solid curve A 1 in the figure is a voltammogram showing the results. A broken line curve A 2 in the figure is a voltammogram of a result obtained for a sample solution containing only 1 MKCl for comparison with the curve A 1 .

曲線Aは約0.15〜0.35Vの電位の範囲で急峻な曲線である。可逆な1電子還元反応を示す理想的な曲線となっている。その範囲よりも負電位側では電流値(約−200μA)がほぼ一定であるので、安定したほぼ100%の還元反応が起こっている。また、その範囲よりも正電位側では電流値がほぼ0になっているので、残余電流(バックグラウンド電流)が少ないことが分かる。従って、フロー電解セル1は、SN比が良好で高精度の定量分析ができるものであることが分かる。 Curve A 1 is a steep curve in the range of potentials from about 0.15~0.35V. This is an ideal curve showing a reversible one-electron reduction reaction. Since the current value (about −200 μA) is almost constant on the negative potential side of the range, a stable reduction reaction of almost 100% occurs. In addition, since the current value is almost zero on the positive potential side of the range, it can be seen that the residual current (background current) is small. Therefore, it can be seen that the flow electrolysis cell 1 has a good SN ratio and can perform quantitative analysis with high accuracy.

次に、極めて高精度な濃度算出が可能な濃度定量方法について説明する。この濃度定量方法は、図2に示した濃度定量装置10’を用いたものであって、分析用天秤5で試料溶液容器7Aの重量の値を読む際に、試料溶液容器7Aの試料溶液の液面7LSと送液チューブ6との間が接近するように制御しながら、重量を計測する。これは、送液チューブ6が試料溶液の中まで入り込んでいると、送液チューブ6への浮力により読み取る重量の値が変わるので、送液チューブ6の存在による影響を最小限に抑えるためである。送液チューブ6の存在による影響を最小限に抑えるためには、送液チューブ6を液面7LSから離して測定するのが理想的であるが、気泡が入ってしまう。よって、送液チューブ6の端が液面7LSすれすれに引き上げられた状態、すなわち、送液チューブ6の端と液面7LSとの間に界面張力による試料溶液が僅かに存在する状態が好ましい。なお、送液チューブ6の端と液面7LSとの間の距離の制御は、少なくとも分析用天秤5で試料溶液容器7Aの重量の値を読む際に行えばよい。   Next, a concentration determination method capable of calculating concentration with extremely high accuracy will be described. This concentration quantification method uses the concentration quantification apparatus 10 ′ shown in FIG. 2. When the weight value of the sample solution container 7A is read by the analytical balance 5, the sample solution in the sample solution container 7A is measured. The weight is measured while controlling the liquid surface 7LS and the liquid feeding tube 6 to approach each other. This is because, when the liquid feeding tube 6 has entered the sample solution, the value of the weight to be read is changed by the buoyancy to the liquid feeding tube 6, so that the influence due to the presence of the liquid feeding tube 6 is minimized. . In order to minimize the influence due to the presence of the liquid feeding tube 6, it is ideal to measure the liquid feeding tube 6 away from the liquid surface 7LS, but bubbles are introduced. Therefore, a state in which the end of the liquid feeding tube 6 is slightly pulled up by the liquid level 7LS, that is, a state in which a sample solution due to the interfacial tension slightly exists between the end of the liquid feeding tube 6 and the liquid level 7LS is preferable. The distance between the end of the liquid feeding tube 6 and the liquid level 7LS may be controlled at least when the weight value of the sample solution container 7A is read by the analytical balance 5.

送液チューブ6の端と液面7LSとの間の距離の制御は、人間の手によって行うのが最も簡単であるが、公知の画像認識技術を用いて液面7LSの高さを自動で認識することにより送液チューブ6の高さを自動位置制御してもよい。   The distance between the end of the liquid feeding tube 6 and the liquid level 7LS is most easily controlled by a human hand, but the height of the liquid level 7LS is automatically recognized using a known image recognition technique. By doing so, the height of the liquid feeding tube 6 may be automatically controlled.

この濃度定量方法の検証のために実験2を行った。試料溶液は、所定の濃度のFe3+を目的成分として含み、1M HSOを支持電解質として含むものである。液溜部1Lに貯留した電解質溶液は1M HSOを支持電解質とするものである。参照電極3の導体31は銀/塩化銀とした。作用電極2の電位を、Fe3+がFe2+に100%還元される電位である0.2Vとして、送液ポンプ7から0.2ml/分の流速で20分間送液した前後で試料溶液容器7Aの重量の値を読み、精度を求めるためにこれを5回繰り返した。そして、分析用天秤5で得られた重量から電荷量の理論値を求め、クーロンメーター9で得られた電荷量の実験値と比較して電解効率を算出した。クーロンメーター9で得られた電荷量は、バックグラウンド電流による電荷量を差し引いている。試料溶液のFe3+の濃度が5×10−4M、1×10−4M、5×10−5Mの場合で行った電解効率の算出の結果を、表1に示す。表1より、電解効率の精度は±0.1〜±0.2%であり、極めて高精度である。よって、この濃度定量方法を用いれば、極めて高精度な濃度算出が可能であることが分かる。 Experiment 2 was conducted to verify this concentration determination method. The sample solution contains Fe 3+ having a predetermined concentration as a target component and 1M H 2 SO 4 as a supporting electrolyte. The electrolyte solution stored in the liquid reservoir 1L uses 1MH 2 SO 4 as a supporting electrolyte. The conductor 31 of the reference electrode 3 was silver / silver chloride. The potential of the working electrode 2 is set to 0.2 V, which is a potential at which Fe 3+ is reduced to 100% by Fe 2+ , and the sample solution container 7A is fed before and after being fed from the feed pump 7 at a flow rate of 0.2 ml / min for 20 minutes. This was repeated 5 times to read the weight value and determine the accuracy. Then, the theoretical value of the charge amount was obtained from the weight obtained with the analytical balance 5, and the electrolytic efficiency was calculated by comparing with the experimental value of the charge amount obtained with the coulomb meter 9. The charge amount obtained by the coulomb meter 9 is subtracted from the charge amount due to the background current. Table 1 shows the results of the electrolytic efficiency calculation performed when the Fe 3+ concentration of the sample solution is 5 × 10 −4 M, 1 × 10 −4 M, and 5 × 10 −5 M. From Table 1, the accuracy of electrolysis efficiency is ± 0.1 to ± 0.2%, which is extremely high accuracy. Therefore, it can be seen that this concentration determination method can calculate the concentration with extremely high accuracy.

Figure 2009186460
Figure 2009186460

なお、図1に示した濃度定量装置10を用いた濃度定量方法では、作用電極2等への浮力の影響を抑えるために、フロー電解セル1の液溜部1Lの液面1LSと作用電極2との間が接近するように制御することも可能である。この場合、作用電極2の構造の複雑さから、液面1LSと作用電極2との間の距離の制御は、図2に示した濃度定量装置10’を用いた濃度定量方法に比べて余り容易ではないが、公知の画像認識技術および位置制御技術を用いて作用電極2の高さを自動制御したり、筐体1aに排出口を設けて液面1LSを一定に保つようにしたりすることもできる。   In the concentration quantification method using the concentration quantification apparatus 10 shown in FIG. 1, the liquid level 1 LS of the liquid reservoir 1 L of the flow electrolysis cell 1 and the working electrode 2 in order to suppress the influence of buoyancy on the working electrode 2 and the like. It is also possible to control so as to approach each other. In this case, due to the complexity of the structure of the working electrode 2, the control of the distance between the liquid level 1LS and the working electrode 2 is much easier than the concentration quantification method using the concentration quantification apparatus 10 ′ shown in FIG. However, the height of the working electrode 2 may be automatically controlled using known image recognition technology and position control technology, or the liquid level 1LS may be kept constant by providing a discharge port in the housing 1a. it can.

以上、本発明の実施形態に係るフロー電解セルについて説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、筐体1aの形状を変えることは任意であるし、また、液溜部1Lの上部に開閉可能な排出口を筐体1aに設け、一の試料の分析が終わるとそれを開いて溜まった試料溶液も含む電解質溶液の一部を排出するようにして、連続して他の試料溶液を分析し易くすることもできる。   The flow electrolysis cell according to the embodiment of the present invention has been described above, but the present invention is not limited to that described in the above-described embodiment, and various processes within the scope of the matters described in the claims. Design changes are possible. For example, it is arbitrary to change the shape of the case 1a, and an opening that can be opened and closed is provided in the case 1a at the top of the liquid reservoir 1L. When the analysis of one sample is completed, it is opened and collected. It is also possible to continuously analyze other sample solutions by discharging a part of the electrolyte solution including the sample solution.

1 フロー電解セル
1a 筐体
1L 液溜部
1LS 液溜部の液面
2 作用電極
2A 作用電極のリード線
20 中空管
20a 中空管の前端部
20b 中空管の後端部
21 作用電極の導体の束
21a 導体の束を構成する導体
3 参照電極
4 対極
5 分析用天秤
6 送液チューブ
7 送液ポンプ
7A 試料溶液容器
7LS 試料溶液容器の液面
8 ポテンショスタット
9 クーロンメーター
10 濃度定量装置
DESCRIPTION OF SYMBOLS 1 Flow electrolysis cell 1a Case 1L Liquid reservoir 1LS Liquid level of liquid reservoir 2 Working electrode 2A Lead wire of working electrode 20 Hollow tube 20a Front end of hollow tube 20b Rear end of hollow tube 21 Working electrode Conductor bundle 21a Conductor constituting conductor bundle 3 Reference electrode 4 Counter electrode 5 Analytical balance 6 Liquid feed tube 7 Liquid feed pump 7A Sample solution container 7LS Liquid surface of sample solution container 8 Potentiostat 9 Coulomb meter 10 Concentration determination device

Claims (6)

電解質溶液を溜める液溜部を有した筐体に、各リード線を介して所定電位とされる作用電極、参照電極、対極が該電解質溶液に浸るように取着され、該作用電極に試料溶液を流してそれに含まれる目的成分を電解するフロー電解セルにおいて、
前記作用電極は、絶縁性の中空管と、中空管の内部に軸方向に平行に配列して充填された線状の導体の束と、を有して成り、該導体の束は、中空管の後端部から外方に延出させて前記液溜部から離れた位置で前記リード線に接続されてなることを特徴とするフロー電解セル。
A working electrode, a reference electrode, and a counter electrode that are set to a predetermined potential via each lead wire are attached to a housing having a liquid reservoir for storing an electrolyte solution so that the sample solution is immersed in the electrolytic solution. In a flow electrolysis cell that electrolyzes the target component contained in
The working electrode includes an insulative hollow tube and a bundle of linear conductors filled in the hollow tube so as to be arranged in parallel in the axial direction. A flow electrolysis cell characterized in that it extends outward from the rear end of a hollow tube and is connected to the lead wire at a position away from the liquid reservoir.
請求項1に記載のフロー電解セルにおいて、
前記中空管は、ポリテトラフルオロエチレン製であることを特徴とするフロー電解セル。
The flow electrolysis cell according to claim 1,
The flow electrolytic cell, wherein the hollow tube is made of polytetrafluoroethylene.
請求項1又は2に記載のフロー電解セルにおいて、
前記導体は、カーボン繊維であることを特徴とするフロー電解セル。
In the flow electrolysis cell according to claim 1 or 2,
The flow electrolysis cell, wherein the conductor is a carbon fiber.
請求項1乃至3のいずれかに記載のフロー電解セルを備える濃度定量装置であって、
前記目的成分が作用電極により電解される試料溶液の量を測定する分析用天秤を更に備えることを特徴とする濃度定量装置。
A concentration determination apparatus comprising the flow electrolysis cell according to any one of claims 1 to 3,
A concentration determination apparatus, further comprising an analytical balance for measuring the amount of a sample solution in which the target component is electrolyzed by a working electrode.
請求項4に記載の濃度定量装置において、
前記試料溶液を溜める試料溶液容器と、
該試料溶液容器から前記作用電極に試料溶液を送る送液チューブと、を更に備え、
前記分析用天秤は、フロー電解セルの前記筐体の重量を計測するか、又は、前記試料溶液容器の重量を計測するものであることを特徴とする濃度定量装置。
The concentration determination apparatus according to claim 4,
A sample solution container for storing the sample solution;
A feeding tube for sending the sample solution from the sample solution container to the working electrode, and
The concentration quantification apparatus, wherein the analytical balance measures the weight of the casing of the flow electrolysis cell or measures the weight of the sample solution container.
請求項5に記載の濃度定量装置を用いた濃度定量方法であって、
フロー電解セルの前記液溜部の液面と前記作用電極との間が接近するように制御するか、又は、前記試料溶液容器の試料溶液の液面と前記送液チューブとの間が接近するように制御するかしながら、前記分析用天秤で重量を計測することによって、試料溶液に含まれる目的成分の濃度を定量することを特徴とする濃度定量方法。
A concentration determination method using the concentration determination device according to claim 5,
Control so that the liquid surface of the liquid reservoir of the flow electrolysis cell approaches the working electrode, or approach the liquid surface of the sample solution in the sample solution container and the liquid feeding tube. A concentration quantification method characterized in that the concentration of a target component contained in a sample solution is quantified by measuring the weight with the analytical balance while controlling as described above.
JP2009002839A 2008-01-09 2009-01-08 Flow electrolytic cell, and apparatus and method for quantifying density using same Withdrawn JP2009186460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002839A JP2009186460A (en) 2008-01-09 2009-01-08 Flow electrolytic cell, and apparatus and method for quantifying density using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008002642 2008-01-09
JP2009002839A JP2009186460A (en) 2008-01-09 2009-01-08 Flow electrolytic cell, and apparatus and method for quantifying density using same

Publications (1)

Publication Number Publication Date
JP2009186460A true JP2009186460A (en) 2009-08-20

Family

ID=41069832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002839A Withdrawn JP2009186460A (en) 2008-01-09 2009-01-08 Flow electrolytic cell, and apparatus and method for quantifying density using same

Country Status (1)

Country Link
JP (1) JP2009186460A (en)

Similar Documents

Publication Publication Date Title
Heyrovský et al. Practical polarography: an introduction for chemistry students
Lu et al. Background noise in capillary electrophoretic amperometric detection
Hersch Trace monitoring in gases using galvanic systems
JP4734097B2 (en) Residual chlorine measuring method and residual chlorine measuring device
JP5686602B2 (en) Titration apparatus and method
Yoshizumi et al. Rapid and coulometric electrolysis for ion transfer at the aqueous| organic solution interface
WO2015060328A1 (en) Potentiostatic electrolytic gas sensor
Souto et al. Progress in scanning electrochemical microscopy by coupling potentiometric and amperometric measurement modes
JP6426336B2 (en) Constant potential electrolysis type gas sensor
Noyhouzer et al. A new electrochemical flow cell for the remote sensing of heavy metals
WO1995000838A1 (en) Determining gas concentration
US3315270A (en) Dissolved oxidant analysis
JP2009186460A (en) Flow electrolytic cell, and apparatus and method for quantifying density using same
US20060163088A1 (en) Amperometric sensor with counter electrode isolated from fill solution
US3523872A (en) Gas analysis
Myers et al. Development of an automated on-line electrochemical chlorite ion sensor
Cox et al. Redox‐filled carbon‐fiber microelectrodes for single‐cell exocytosis
US20030015437A1 (en) Method for in-situ analysis and flow cell therefor
US5547553A (en) Mercury thread electrode
Nei Some milestones in the 50-year history of electrochemical oxygen sensor development
Gutz et al. Adaptation of poly (tetrafluoroethylene) tips to mercury drop electrodes and evaluation by flow injection analysis
JP3650919B2 (en) Electrochemical sensor
CN104391024A (en) Hydrogen peroxide micro-electrode and preparation method thereof
Zhai et al. Real-time calcium uptake monitoring of a single renal cancer cell based on an all-solid-state potentiometric microsensor
Gohara et al. Flow-injection on-line electrochemical separation/determination of ions using a two-step oil/water-type flow cell system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403