[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009173996A - Coated steel product - Google Patents

Coated steel product Download PDF

Info

Publication number
JP2009173996A
JP2009173996A JP2008013461A JP2008013461A JP2009173996A JP 2009173996 A JP2009173996 A JP 2009173996A JP 2008013461 A JP2008013461 A JP 2008013461A JP 2008013461 A JP2008013461 A JP 2008013461A JP 2009173996 A JP2009173996 A JP 2009173996A
Authority
JP
Japan
Prior art keywords
film
steel material
coating
coated
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008013461A
Other languages
Japanese (ja)
Inventor
Reiko Takazawa
令子 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2008013461A priority Critical patent/JP2009173996A/en
Priority to PCT/JP2009/050665 priority patent/WO2009093545A1/en
Publication of JP2009173996A publication Critical patent/JP2009173996A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated steel product that has a coating on the surface of a steel product and is chromium-free so as to be friendly to an environment while exhibiting excellent corrosion-resistant performance. <P>SOLUTION: The coated steel product has a coating formed on the surface of the steel product via an inorganic film which includes a silicon oxide in the range of 5-100 mg/m<SP>2</SP>in terms of a silicon content and substantially does not include chromium and an organic material. Though the coated steel product substantially does not include hexavalent chromium and trivalent chromium at all, that is, being so-called chromium-free, it has excellent corrosion-resistant performance and is a material friendly to an environment. Consequently, it can be safely used in a wide range of applications. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、冷延鋼材、熱延鋼材,ステンレススチール、亜鉛系めっき鋼材、亜鉛―アルミニウム合金系めっき鋼材、亜鉛―鉄系めっき鋼材、亜鉛―マグネシウム系めっき鋼材、アルミニウム系めっき鋼材等の各種の鋼材の表面に、耐食性に優れた塗膜を有する塗装鋼材に関する。   This invention is applied to various kinds of materials such as cold-rolled steel material, hot-rolled steel material, stainless steel, zinc-based plated steel material, zinc-aluminum alloy-plated steel material, zinc-iron-based plated steel material, zinc-magnesium-based plated steel material, and aluminum-based plated steel material. The present invention relates to a coated steel material having a coating film excellent in corrosion resistance on the surface of the steel material.

従来、鋼材の耐食性処理にはクロメート処理やリン酸クロメート処理等のクロム系表面処理剤を用いる方法がよく知られており、これらの方法は現在でも広く行われている。しかしながら、クロム系表面処理剤には、クロムの有する毒性のため、将来的に使用が制限される可能性がある。環境負荷物質の使用を規制しようとする気運が世界的に高まってきており、例えばEUでは、廃自動車指令等により6価のクロムに関する法規制が始まっている。このため、クロムを含有しない、いわゆるノンクロム処理であって耐食性に優れた塗装鋼材の開発が望まれていた。   Conventionally, methods using a chromium-based surface treatment agent such as chromate treatment or phosphoric acid chromate treatment are well known for corrosion resistance treatment of steel materials, and these methods are still widely used today. However, the use of chromium-based surface treatment agents may be limited in the future due to the toxicity of chromium. Motivation to regulate the use of environmentally hazardous substances is increasing globally. For example, in the EU, laws and regulations relating to hexavalent chromium have begun due to the directive on scrapped automobiles. For this reason, it has been desired to develop a coated steel material that does not contain chromium and is a so-called non-chromium treatment and has excellent corrosion resistance.

そして、鋼材のノンクロム型の被覆処理の例としては、亜鉛めっき鋼板等の金属板の表面に、特定の架橋樹脂マトリックス(A)50〜90質量%と、コロイダルシリカ、リン酸及び酸化ニオブゾル等の無機防錆剤(B)10〜50質量%とを含む皮膜を形成することにより、ノンクロム型で耐食性、耐アルカリ性、耐溶剤性、耐傷つき性及び密着性に優れた有機被覆処理金属板を提供することが提案されている(特許文献1参照)。   And as an example of the non-chromium-type coating treatment of the steel material, on the surface of a metal plate such as a galvanized steel plate, 50 to 90% by mass of a specific cross-linked resin matrix (A), colloidal silica, phosphoric acid, niobium oxide sol, etc. By forming a film containing 10-50% by mass of the inorganic rust preventive agent (B), a non-chromium type organic coated metal plate with excellent corrosion resistance, alkali resistance, solvent resistance, scratch resistance and adhesion is provided. It has been proposed (see Patent Document 1).

また、全ての金属に対して良好なノンクロム化成処理として、ジルコニウム、チタン系の化成処理が提案されており(特許文献2参照)、また、亜鉛系めっき鋼板、アルミニウム材のノンクロム処理として、硫黄化合物とポリウレタンを含む塗装下地処理が提案されており(特許文献3参照)、更に、金属材料のノンクロム処理として、シランカップリング剤、ウレタン樹脂、ジルコニウム化合物を含有する皮膜を形成することで、耐食性と塗膜密着性に優れた表面処理皮膜を提供することが提案されている(特許文献4参照)。
特開2005-281,863号公報 特開2004-218,070号公報 特開2006-124,752号公報 特開2006-328,445号公報
Further, zirconium and titanium-based chemical conversion treatments have been proposed as good non-chromium chemical conversion treatments for all metals (see Patent Document 2), and zinc-based plated steel sheets and aluminum materials are treated with sulfur compounds as non-chromium treatments. And a coating base treatment containing polyurethane has been proposed (see Patent Document 3). Furthermore, as a non-chromic treatment of a metal material, a coating containing a silane coupling agent, a urethane resin, and a zirconium compound is formed, thereby improving corrosion resistance. It has been proposed to provide a surface-treated film having excellent coating film adhesion (see Patent Document 4).
JP 2005-281,863 A JP 2004-218,070 A JP 2006-124,752 A JP 2006-328,445 A

本発明者は、係るノンクロムで環境に優しくて優れた耐食性能を有する塗膜が形成されている塗装鋼材について、更に検討を進めた結果、意外なことには、塗装鋼材の表面とこの塗膜との間に所定の珪素酸化物を所定のシリコン量で含有すると共に有機物質を実質的に含まない皮膜(無機皮膜)を介在させることにより、得られた塗装鋼材の耐食性能を顕著に向上せしめることが可能であることを見出し、本発明を完成した。   As a result of further investigation on the coated steel material in which the coating film having excellent corrosion resistance and environment-friendly non-chromium has been developed, the present inventor unexpectedly found that the surface of the coated steel material and the coated steel material The corrosion resistance of the resulting coated steel material is remarkably improved by interposing a film (inorganic film) containing a predetermined silicon oxide in a predetermined silicon amount and substantially not containing an organic substance. The present invention has been completed.

従って、本発明の目的は、鋼材表面に塗膜を有し、ノンクロムで環境に優しくて優れた耐食性能を発揮する塗装鋼材を提供することにある。   Accordingly, an object of the present invention is to provide a coated steel material which has a coating film on the surface of the steel material, is non-chromium and is environmentally friendly and exhibits excellent corrosion resistance.

すなわち、本発明は、鋼材の表面に、珪素酸化物をシリコン量5〜100mg/m2の範囲で含有すると共に、クロム及び有機物質を実質的に含まない無機皮膜を介して塗膜が形成されていることを特徴とする塗装鋼材である。ここで、「クロムを実質的に含まない」とは、無機皮膜の蛍光X線分析でクロムが検出限界以下(通常、0.5mg/m2以下)であることを意味し、意識的にクロムを添加しないことを意味し、また、「有機物質を実質的に含まない」とは、蛍光X線分析において表面汚染で検出される微量の炭素量(C量)以下(通常10mg/m2以下)であり、例えば有機樹脂バインダー等の無機皮膜中に残留させることを意図した有機物質を添加しないことを意味し、この無機皮膜の形成過程で例えばアルコール類等の無機皮膜中に実質的に残留しない有機物質を用いることは排除されるものではない。 That is, according to the present invention, a coating film is formed on the surface of a steel material through an inorganic coating that contains silicon oxide in a silicon amount range of 5 to 100 mg / m 2 and substantially does not contain chromium and organic substances. It is a painted steel material characterized by Here, “substantially free of chromium” means that chromium is below the detection limit (usually 0.5 mg / m 2 or less) in fluorescent X-ray analysis of inorganic coatings. It means that it is not added, and “substantially free of organic substances” means less than a small amount of carbon (C amount) detected by surface contamination in fluorescent X-ray analysis (usually 10 mg / m 2 or less) This means that, for example, an organic substance intended to remain in an inorganic film such as an organic resin binder is not added, and in the formation process of this inorganic film, it does not substantially remain in an inorganic film such as alcohols. The use of organic materials is not excluded.

本発明において、鋼材としては、冷延、熱延鋼材、ステンレススチール、亜鉛系めっき鋼材、亜鉛―アルミニウム合金系めっき鋼材、亜鉛―鉄系めっき鋼材、亜鉛―マグネシウム系めっき鋼材、アルミニウム系めっき鋼材等の鋼材が挙げられ、これらを適宜加工して得られる加工材、更にはこれらの材料を適宜組み合わせて得られる組合せ材等が挙げられる。そして、上記亜鉛系めっき鋼材の例としては、例えば、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板等が、また、亜鉛―アルミめっき鋼材の例としては、例えば、溶融亜鉛-5%アルミ合金めっき鋼板、溶融55%アルミ-亜鉛合金めっき鋼板等が挙げられる。   In the present invention, as the steel material, cold rolled, hot rolled steel material, stainless steel, zinc-based plated steel material, zinc-aluminum alloy-plated steel material, zinc-iron-based plated steel material, zinc-magnesium-based plated steel material, aluminum-based plated steel material, etc. Steel materials, processed materials obtained by appropriately processing these materials, and combined materials obtained by appropriately combining these materials. Examples of the zinc-based plated steel material include, for example, an electrogalvanized steel sheet, a hot-dip galvanized steel sheet, and the like, and examples of the zinc-aluminum-plated steel material include, for example, a hot-dip zinc-5% aluminum alloy-plated steel sheet, Examples include a molten 55% aluminum-zinc alloy plated steel sheet.

本発明において、鋼材の表面に形成される無機皮膜は、珪素酸化物をシリコン量5mg/m2以上100mg/m2以下、好ましくは10mg/m2以上90mg/m2以下の範囲で含有することが必要である。この無機皮膜におけるシリコン量が5mg/m2より少ないと、耐食性が劣るという問題があり、反対に、100mg/m2より多くなると、密着性が不良になるという問題が生じる。 In the present invention, the inorganic coating formed on the surface of the steel material contains silicon oxide in a silicon amount of 5 mg / m 2 or more and 100 mg / m 2 or less, preferably 10 mg / m 2 or more and 90 mg / m 2 or less. is required. When the amount of silicon in the inorganic film is less than 5 mg / m 2, there is a problem that corrosion resistance is poor, on the contrary, if larger than 100 mg / m 2, a problem that adhesion is poor is caused.

また、本発明の無機皮膜は、通常その膜厚が5nm以上500nm以下、好ましくは20nm以上300nm以下であるのがよく、また、この皮膜中のシリコン含有率が30重量%以上46.7重量%以下、好ましくは32重量%以上46.7重量%以下であるのがよい。この無機皮膜の膜厚が5nmより薄いと、耐糸錆性が不足する虞があり、反対に、500nmより厚くなると、密着性が不足する虞が生じる。また、皮膜中のシリコン含有率が30重量%より少ないと、耐食性が劣るという問題が生じ、46.7重量%より多いと汎用的な原料では皮膜形成が難しくなりコストが高くなるという問題が生じる。   The inorganic film of the present invention usually has a film thickness of 5 nm to 500 nm, preferably 20 nm to 300 nm, and the silicon content in the film is 30% to 46.7% by weight. In the following, it is preferably 32% by weight or more and 46.7% by weight or less. If the film thickness of the inorganic film is less than 5 nm, the yarn rust resistance may be insufficient. Conversely, if the film thickness is greater than 500 nm, the adhesion may be insufficient. Further, if the silicon content in the film is less than 30% by weight, there is a problem that the corrosion resistance is inferior, and if it is more than 46.7% by weight, it is difficult to form a film with a general-purpose raw material and the cost is increased. .

更に、本発明の珪素酸化物を含有する無機皮膜は、好ましくは水分散性シリカを原料として形成された皮膜であるのがよく、この水分散性シリカとしてはコロイダルシリカ、気相シリカ等があり、より好ましくはコロイダルシリカである。そして、コロイダルシリカとしては、特に限定されるものではないが、具体的には例えば、球状のコロイダルシリカとして、日産化学工業社製のスノーテックス-C、スノーテックス-O、スノーテックス-N、スノーテックス-S、スノーテックス-OL、スノーテックス-XS、スノーテックス-XL等があり、また、鎖状のコロイダルシリカとして、日産化学工業社製のスノーテックス-UP、スノーテックス-OUP等がある。また、気相シリカとしては、日本アエロジル社製のアエロジル130、アエロジル200、アエロジル200CF、アエロジル300、アエロジル300CF、アエロジル380、アエロジルMOX80等がある。   Furthermore, the inorganic film containing the silicon oxide of the present invention is preferably a film formed using water-dispersible silica as a raw material, and examples of the water-dispersible silica include colloidal silica and vapor phase silica. More preferably, it is colloidal silica. The colloidal silica is not particularly limited. Specifically, for example, spherical colloidal silica includes SNOWTEX-C, SNOWTEX-O, SNOWTEX-N, SNOWTEX-N, manufactured by Nissan Chemical Industries, Ltd. There are Tex-S, Snowtex-OL, Snowtex-XS, Snowtex-XL, etc. As chain colloidal silica, there are Snowtex-UP and Snowtex-OUP manufactured by Nissan Chemical Industries. Gas phase silica includes Aerosil 130, Aerosil 200, Aerosil 200CF, Aerosil 300, Aerosil 300CF, Aerosil 380, Aerosil MOX80, etc. manufactured by Nippon Aerosil Co., Ltd.

更にまた、この無機皮膜には、必要により一層の耐食性の向上等を目的として、この無機皮膜を形成する皮膜形成処理に際に、使用する皮膜形成処理液中に上記珪素酸化物に加えて所定のリン化合物が添加し、これによって無機皮膜中にリン化合物が添加される。添加されたリン化合物は、皮膜形成時にめっき鋼材表面の亜鉛、アルミニウムとリン化合物が反応しリン酸亜鉛、リン酸アルミニウム等のリン酸塩が生成し、皮膜中に含有されるような場合もある。この目的で無機皮膜中に添加されるリン化合物の添加量は、この皮膜中のリン量として1mg/m2以上15mg/m2以下、好ましくは1.5mg/m2以上10mg/m2以下であるのがよく、また、皮膜中のリン含有率として10重量%以下の範囲内であるのがよい。このリン化合物の添加量については、皮膜中のリン量については、1mg/m2未満であると、リン化合物添加の目的が達成されず、また、15mg/m2を超えて添加すると密着性不良という問題が生じ、また、皮膜中のリン含有率については、10重量%を超えると密着性が低下するという問題が生じる。 Furthermore, for the purpose of further improving the corrosion resistance, if necessary, the inorganic film has a predetermined value in addition to the silicon oxide in the film forming treatment liquid used in the film forming process for forming the inorganic film. In this way, the phosphorus compound is added into the inorganic film. The added phosphorus compound may be contained in the film when zinc or aluminum on the surface of the plated steel reacts with the phosphorus compound to form a phosphate such as zinc phosphate or aluminum phosphate during film formation. . The addition amount of the phosphorus compound added for this purpose in the inorganic coating, a phosphorus content of the coating in the 1 mg / m 2 or more 15 mg / m 2 or less, preferably 1.5 mg / m 2 or more 10 mg / m 2 or less It is preferable that the phosphorus content in the film is within 10% by weight or less. Regarding the amount of phosphorus compound added, if the amount of phosphorus in the film is less than 1 mg / m 2 , the purpose of adding the phosphorus compound is not achieved, and if it exceeds 15 mg / m 2 , poor adhesion occurs. In addition, when the phosphorus content in the film exceeds 10% by weight, there is a problem that the adhesiveness is lowered.

この目的で皮膜形成処理液中に添加されるリン化合物としては、特に限定されないが、好ましくは、例えばオルトリン酸、ホスホン酸、ピロリン酸、トリポリリン酸及びこれらの塩から選ばれた1種又は2種以上の混合物を挙げることができ、具体的には、リン酸、リン酸三アンモニウム、リン酸三ナトリウム、リン酸アルミニウム、リン酸亜鉛、リン酸マグネシウム等を例示することができる。   The phosphorus compound added to the film-forming treatment solution for this purpose is not particularly limited, but preferably one or two selected from, for example, orthophosphoric acid, phosphonic acid, pyrophosphoric acid, tripolyphosphoric acid and salts thereof. Examples of the mixture include phosphoric acid, triammonium phosphate, trisodium phosphate, aluminum phosphate, zinc phosphate, and magnesium phosphate.

また、この無機皮膜には、上記珪素酸化物に加えて、必要により一層の耐食性の向上等を目的として、上記のリン化合物と同様にして無機化合物を添加してもよい。ここでいう無機化合物とは、上記の珪素酸化物やリン化合物以外の無機化合物のことであり、皮膜中の無機化合物の添加量は35重量%以下であることが好ましい。皮膜中の無機化合物の添加量が35重量%を超えると耐食性が低下する。皮膜形成処理液中に添加される無機化合物としては、例えば、アルミナゾル、ジルコニアゾル、チタニアゾル等の金属酸化物ゾルや、酸化亜鉛、酸化チタン、硫酸バリウム、アルミナ、カオリン、酸化鉄等の無機顔料を挙げることができる。   In addition to the silicon oxide, an inorganic compound may be added to the inorganic film in the same manner as the phosphorus compound, if necessary, for the purpose of further improving corrosion resistance. The term “inorganic compound” as used herein refers to an inorganic compound other than the above silicon oxide and phosphorus compound, and the amount of the inorganic compound added to the film is preferably 35% by weight or less. When the added amount of the inorganic compound in the film exceeds 35% by weight, the corrosion resistance is lowered. Examples of inorganic compounds added to the film-forming treatment liquid include metal oxide sols such as alumina sol, zirconia sol, and titania sol, and inorganic pigments such as zinc oxide, titanium oxide, barium sulfate, alumina, kaolin, and iron oxide. Can be mentioned.

本発明において、鋼材の表面に無機皮膜を介して形成される塗膜については、特に限定されるものではなく、この塗膜を形成するための塗料としては、例えば、アクリル系塗料、ポリエステル系塗料、ウレタン系塗料、アクリルウレタン系、アクリルポリエステル系,エポキシ系塗料、フッ素系塗料、アクリルシリコン系塗料、ウレタンシリコン系塗料、アクリルウレタンシリコン系塗料、アルカリシリケート系塗料、コロイダルシリカ等を使用したシリカゾル系塗料、酸化チタン系塗料、セラミックス系塗料、シリコン含有塗料等を挙げることができ、有機系、無機系、有機・無機ハイブリッド系等のいずれの塗料であってもよい。   In the present invention, the coating film formed on the surface of the steel material through the inorganic film is not particularly limited. Examples of the coating material for forming this coating film include acrylic paints and polyester paints. , Urethane paint, Acrylic urethane paint, Acrylic polyester paint, Epoxy paint, Fluorine paint, Acrylic silicone paint, Urethane silicone paint, Acrylic urethane silicone paint, Alkali silicate paint, Colloidal silica, etc. Examples thereof include paints, titanium oxide-based paints, ceramics-based paints, silicon-containing paints, and any of organic, inorganic, and organic / inorganic hybrid paints may be used.

また、鋼材の表面に無機皮膜を介して形成される塗膜は、シリコン元素(Si)を含むシリコン含有塗料を塗布して形成され、塗膜中にシリコン元素(Si)を含むシリコン含有塗膜であってもよく、このシリコン含有塗膜を形成するためのシリコン含有塗料についても、特に制限されるものではない。このシリコン含有塗料としては、具体的にはシロキサン結合を有するモノマー又はポリマーを含有する塗料、又は、アルコキシシラン及び/又はシラノール基を含有する塗料である。このような塗料の具体例としては、例えば、シリコン系塗料、アクリルシリコン系塗料、ウレタンシリコン系塗料、アクリルウレタンシリコン系塗料、アルカリシリケート系塗料、シリカゾル系塗料、シリカ系塗料、セラミックス系塗料等を挙げることができ、また、塗料系としては、溶剤系、水系エマルジョン系、水系等の塗料を挙げることができる。   The coating film formed on the surface of the steel material through an inorganic coating is formed by applying a silicon-containing paint containing silicon element (Si), and the silicon-containing coating film containing silicon element (Si) in the coating film. The silicon-containing paint for forming the silicon-containing coating film is not particularly limited. The silicon-containing paint is specifically a paint containing a monomer or polymer having a siloxane bond, or a paint containing an alkoxysilane and / or silanol group. Specific examples of such paints include, for example, silicone paints, acrylic silicone paints, urethane silicone paints, acrylic urethane silicone paints, alkali silicate paints, silica sol paints, silica paints, ceramic paints, and the like. Examples of the paint system include solvent-based, water-based emulsion, and water-based paints.

本発明において、鋼材の表面に無機皮膜を介して形成される塗膜は、それ自体が塗装鋼材の最外層表面を形成するトップ塗膜であってもよいが、更にその上にトップ塗膜を積層するためにプライマー層として機能するプライマー塗膜であってもよい。そして、無機皮膜の上に形成される塗膜の膜厚については、塗装鋼材の使用目的等に応じて適宜選択されるものであるが、プライマー層として機能するプライマー塗膜の膜厚については、通常0.1μm以上20μm以下、好ましくは0.5μm以上15μm以下であるのがよく、0.1μmより薄いと十分な耐食性能が発揮されず、反対に、20μmより厚くなるとトップ塗膜との密着性が低下するという問題が生じる。   In the present invention, the coating film formed on the surface of the steel material through the inorganic film may itself be a top coating film that forms the outermost surface of the coated steel material. It may be a primer coating film that functions as a primer layer for lamination. And, the film thickness of the coating film formed on the inorganic film is appropriately selected according to the purpose of use of the coated steel material, etc., but the film thickness of the primer coating film that functions as the primer layer, Usually, it should be 0.1 μm or more and 20 μm or less, preferably 0.5 μm or more and 15 μm or less. If the thickness is less than 0.1 μm, sufficient corrosion resistance is not exhibited. There arises a problem that the performance is lowered.

そして、本発明の塗膜がプライマー層として用いられる場合、その塗膜の上に更に上塗り塗料を塗布してトップ塗膜が形成されるが、ここで用いられる上塗り塗料についても特に制限はなく、例えば、アクリル系塗料、ポリエステル系塗料、ウレタン系塗料、アクリルウレタン系、アクリルポリエステル系、エポキシ系塗料、フッ素系塗料、シリコン系塗料、アクリルシリコン系塗料、ウレタンシリコン系塗料、アクリルウレタンシリコン系塗料、アルカリシリケート系塗料、コロイダルシリカ等を使用したシリカゾル系塗料、酸化チタン系塗料、セラミックス系塗料を挙げることができ、有機系、無機系、有機・無機ハイブリッド系等のいずれの塗料であってもよい。また、このトップ塗膜については、単一層塗膜に限らず、二層以上の多層塗膜でもよく、更に、その膜厚については特に制限されないが通常は1〜100μmが好ましい。   And, when the coating film of the present invention is used as a primer layer, a top coating is further formed on the coating film to form a top coating, but there is no particular limitation on the top coating used here, For example, acrylic paint, polyester paint, urethane paint, acrylic urethane, acrylic polyester, epoxy paint, fluorine paint, silicone paint, acrylic silicone paint, urethane silicone paint, acrylic urethane silicone paint, Examples include alkali silicate paints, silica sol paints using colloidal silica, titanium oxide paints, ceramic paints, and any organic, inorganic, or organic / inorganic hybrid paints may be used. . Further, the top coating film is not limited to a single layer coating film, and may be a multilayer coating film having two or more layers. Further, although the film thickness is not particularly limited, it is usually preferably 1 to 100 μm.

本発明の塗装鋼材は、鋼材の表面に、珪素酸化物を含有する皮膜形成処理液を塗布してシリコン量5〜100mg/m2の無機皮膜を形成する皮膜形成処理を行い、次いで得られた無機皮膜の上に塗料を塗布して塗膜を形成することにより製造される。 The coated steel material of the present invention was obtained by applying a film forming treatment liquid containing silicon oxide to the surface of the steel material to form an inorganic film having a silicon amount of 5 to 100 mg / m 2 , and then obtained. It is manufactured by applying a paint on an inorganic film to form a film.

この本発明の塗装鋼材の製造に際しては、好ましくは、皮膜形成処理に先駆けて、予めその表面に、脱脂や表面調整等を目的として、酸溶液、好ましくはpH6以下の酸溶液による酸処理、及び/又は、アルカリ溶液、好ましくはpH8以上のアルカリ溶液によるアルカリ処理からなる前処理を施してもよい。   In the production of the coated steel material of the present invention, preferably, prior to the film formation treatment, an acid treatment with an acid solution, preferably an acid solution having a pH of 6 or less, on the surface in advance for the purpose of degreasing, surface adjustment, and the like, and Alternatively, a pretreatment comprising an alkali treatment with an alkaline solution, preferably an alkaline solution having a pH of 8 or higher, may be performed.

ここで、この前処理に用いる酸溶液としては、例えば、市販の酸性脱脂剤で調製したもの、硫酸、硝酸、フッ酸、リン酸等の鉱酸や酢酸、クエン酸等の有機酸や、これらの酸を混合して得られた混合酸等の酸試薬を用いて調製したもの等を用いることができ、好ましくはpH6以下の酸溶液であるのがよく、また、アルカリ溶液としては、例えば、市販のアルカリ性脱脂剤により調製したもの、苛性ソーダ等のアルカリ試薬により調製したもの、又はこれらのものを混合して調製したもの等を用いることができ、好ましくはpH8以上のアルカリ溶液であるのがよい。   Here, examples of the acid solution used for this pretreatment include those prepared with commercially available acid degreasing agents, mineral acids such as sulfuric acid, nitric acid, hydrofluoric acid, and phosphoric acid, organic acids such as acetic acid and citric acid, and the like. What was prepared using acid reagents, such as mixed acid obtained by mixing acid of this, etc. can be used, Preferably it is an acid solution below pH 6, and as an alkaline solution, for example, Those prepared with a commercially available alkaline degreasing agent, those prepared with an alkaline reagent such as caustic soda, or those prepared by mixing these materials can be used, and preferably an alkaline solution having a pH of 8 or more. .

また、前処理に用いる酸溶液及び/又はアルカリ溶液は珪素化合物を含有していてもよい。珪素化合物を含有する酸溶液及び/又はアルカリ溶液を用いて前処理を行うことにより、鋼材の表面とその上に形成される無機皮膜との間の密着性がより強固になるという作用効果が期待される。このような珪素化合物を含有する酸溶液及び/又はアルカリ溶液としては、例えば、コロイダルシリカを含有する酸溶液やメタ珪酸ソーダ、珪酸ソーダ等の珪酸塩を含有するアルカリ溶液等を例示することができる。   Further, the acid solution and / or the alkali solution used for the pretreatment may contain a silicon compound. By performing the pretreatment using an acid solution and / or an alkali solution containing a silicon compound, an effect of strengthening the adhesion between the surface of the steel material and the inorganic film formed thereon is expected. Is done. Examples of such an acid solution and / or alkali solution containing a silicon compound include an acid solution containing colloidal silica and an alkali solution containing a silicate such as sodium metasilicate and sodium silicate. .

上記の酸溶液及び/又はアルカリ溶液を用いて行なう前処理の操作方法及び処理条件については、従来よりこの種の酸溶液又はアルカリ溶液を用いて行なわれている前処理の操作方法及び処理条件と同様でよく、例えば、浸漬法、スプレー法等の方法により、室温から90℃まで、好ましくは室温から70℃までの温度で、1工程1秒から15分程度、好ましくは5秒から10分程度の条件で行うのがよいが、より好ましくは、5秒から3分であるのがよい。   Regarding the operation method and treatment conditions of the pretreatment performed using the above acid solution and / or alkali solution, the operation method and treatment conditions of the pretreatment conventionally performed using this kind of acid solution or alkali solution, and For example, by a method such as dipping or spraying, the temperature is from room temperature to 90 ° C., preferably from room temperature to 70 ° C., one step for about 1 second to about 15 minutes, preferably about 5 seconds to about 10 minutes. However, it is preferable that the time is 5 seconds to 3 minutes.

そして、鋼材の表面に前処理を施した後は、必要により水洗処理してもよく、この水洗処理には工業用水、地下水、水道水、イオン交換水等を用いることができ、製造される鋼材に応じて適宜選択される。更に、前処理された鋼材については、必要により乾燥処理されるが、この乾燥処理についても、室温で放置する自然乾燥でよいほか、エアーブロー、ドライヤー、オーブン等を用いて行う強制乾燥でもよい。   And after pre-treating the surface of the steel material, it may be washed with water if necessary, and industrial water, ground water, tap water, ion-exchanged water, etc. can be used for this washing treatment, and the steel material to be produced It is appropriately selected depending on. Further, the pretreated steel material is subjected to a drying treatment as necessary. This drying treatment may be natural drying left at room temperature, or may be forced drying using an air blower, a dryer, an oven, or the like.

次に、鋼材の表面に、あるいは、必要により上記の酸処理及び/又はアルカリ処理に前処理が施された鋼材の表面に、好ましくはコロイダルシリカ等の水分散性シリカからなる珪素酸化物を含有し、必要により更に所定のリン化合物や無機化合物が添加された皮膜形成処理液を塗布して、シリコン量5〜100mg/m2の無機皮膜を形成する皮膜形成処理が施される。 Next, the surface of the steel material or, if necessary, the surface of the steel material pretreated by the above acid treatment and / or alkali treatment, preferably contains a silicon oxide made of water-dispersible silica such as colloidal silica. Then, if necessary, a film forming treatment liquid to which a predetermined phosphorus compound or an inorganic compound is added is applied, and a film forming process for forming an inorganic film having a silicon amount of 5 to 100 mg / m 2 is performed.

この皮膜形成処理液については、水溶液あるいはアルコール溶液が好ましく、必要によりアルコール、溶剤、表面調整剤等の有機物質を添加してもよい。ここで添加される有機物質については、好ましくは、無機皮膜の形成時に皮膜から気化して消失し、実質的に皮膜の構成成分として皮膜中に残留しないものであるのがよい。皮膜形成時に皮膜から気化して実質的に消失する有機物質としては、おおよその目安として、沸点150℃以下のものである。   The film forming solution is preferably an aqueous solution or an alcohol solution, and an organic substance such as an alcohol, a solvent, or a surface conditioner may be added as necessary. The organic substance added here is preferably one that vaporizes and disappears from the coating during the formation of the inorganic coating and does not substantially remain in the coating as a component of the coating. As an approximate standard, the organic substance that substantially disappears when vaporized from the film during film formation is one having a boiling point of 150 ° C. or lower.

鋼材の表面に上記の皮膜形成処理液を塗布して無機皮膜を形成する皮膜形成処理の操作方法及び処理条件については、例えば、ロールコート法、スプレーコート法、浸漬法、バーコート法、静電塗装法等によるプレコート法であっても、また、スプレーコート法、スピンコート法、浸漬法、静電塗装法等によるポストコート法により、通常、室温から80℃まで、好ましくは室温から50℃までの温度範囲で、1工程1秒から10分程度、好ましくは2秒から5分程度の条件で行うのがよく、また、塗布後に必要により乾燥処理されるが、この乾燥処理についても、室温で放置する自然乾燥でよいほか、エアーブロー、ドライヤー、オーブン等を用いて行う強制乾燥でもよい。強制乾燥の場合は、室温〜250℃で1秒〜10分程度、好ましくは2秒から5分程度乾燥するのがよい。   As for the operation method and processing conditions of the film forming process for forming the inorganic film by applying the above film forming treatment liquid on the surface of the steel material, for example, roll coating method, spray coating method, dipping method, bar coating method, electrostatic Even if it is a pre-coating method by a coating method or the like, or by a post-coating method by a spray coating method, a spin coating method, a dipping method, an electrostatic coating method or the like, usually from room temperature to 80 ° C., preferably from room temperature to 50 ° C. In this temperature range, one step is performed for about 1 second to about 10 minutes, preferably about 2 seconds to about 5 minutes, and after the coating, if necessary, the drying process is performed. Natural drying may be performed, or may be forced drying using an air blower, a dryer, an oven, or the like. In the case of forced drying, it is preferable to dry at room temperature to 250 ° C. for about 1 second to 10 minutes, preferably about 2 seconds to 5 minutes.

以上のようにして鋼材の表面に所定の無機皮膜が形成された後、この無機皮膜の上に塗料を塗布して塗膜が形成される。この塗料の塗装方法については、例えばロールコート法、スプレーコート法、浸漬法、バーコート法、静電塗装法等によるプレコート法であっても、また、スプレーコート法、スピンコート法、浸漬法、静電塗装法等によるポストコート法であってもよい。そして、塗装後の乾燥処理についても、塗料に応じた乾燥方法を採用すればよく、例えば、エアーブロー、ドライヤー、オーブン等を用いて室温から300℃の範囲で5秒から24時間行う方法を例示することができる。   After a predetermined inorganic film is formed on the surface of the steel as described above, a paint is applied on the inorganic film to form a coating film. As for the coating method of this paint, for example, a pre-coating method such as a roll coating method, a spray coating method, a dipping method, a bar coating method, an electrostatic coating method, etc., or a spray coating method, a spin coating method, a dipping method, A post-coating method such as an electrostatic coating method may be used. The drying process after painting may be performed by a drying method corresponding to the paint, for example, a method of performing air blowing, a dryer, an oven, etc. in the range of room temperature to 300 ° C. for 5 seconds to 24 hours. can do.

また、上記塗膜をプライマー層として用い、その上にトップ塗膜を設ける場合についても、従来のプライマー層の上に上塗り塗料を塗布してトップ塗膜を形成せしめる場合と変わりなく、例えば形成されたプライマー塗膜の上にロールコート法、スプレーコート法、浸漬法、バーコート法、静電塗装法等によるプレコート法や、スプレーコート法、スピンコート法、浸漬法、静電塗装法等によるポストコート法で上塗り塗料を塗布し、次いで上塗り塗料に応じた乾燥方法で乾燥すればよい。   In addition, when the above-mentioned coating film is used as a primer layer and a top coating film is provided thereon, the top coating film is applied to the conventional primer layer to form a top coating film. Post-coating by roll coating method, spray coating method, dipping method, bar coating method, electrostatic coating method, etc., spray coating method, spin coating method, dipping method, electrostatic coating method, etc. A top coating material may be applied by a coating method, and then dried by a drying method corresponding to the top coating material.

本発明によれば、鋼材の表面に塗膜を有し、クロムを実質的に含まないノンクロムで環境に優しくて優れた耐食性能を発揮する塗装鋼材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the coating steel material which has a coating film on the surface of steel materials, is non-chromium substantially free of chromium, and is environmentally friendly and exhibits excellent corrosion resistance can be provided.

以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.

[実施例1〜17及び比較例1〜7]
実施例1〜4及び比較例1では大きさ70mm×150mm×0.6mmの電気亜鉛めっき鋼板(目付量20g/m2)を、実施例5〜9及び比較例2、3及び7では大きさ70mm×150mm×0.6mmの溶融亜鉛めっき鋼板(目付量100g/m2)を、実施例10〜13及び比較例4では大きさ70mm×150mm×0.6mmの亜鉛-5%アルミめっき鋼板(目付量50g/m2)を、及び、実施例14〜17及び比較例5及び6では大きさ70mm×150mm×0.6mmの亜鉛-55%アルミめっき鋼板(目付量150g/m2)をそれぞれ鋼材として用意し、以下のようにして前処理、皮膜形成、塗膜の形成を行なった。
[Examples 1 to 17 and Comparative Examples 1 to 7]
In Examples 1 to 4 and Comparative Example 1, an electrogalvanized steel sheet having a size of 70 mm × 150 mm × 0.6 mm (weight per unit area 20 g / m 2 ) was used. In Examples 5 to 9 and Comparative Examples 2, 3 and 7, the size was used. A hot-dip galvanized steel sheet of 70 mm × 150 mm × 0.6 mm (weight per unit area: 100 g / m 2 ) was used in Examples 10 to 13 and Comparative Example 4 and was a zinc-5% aluminized steel sheet of 70 mm × 150 mm × 0.6 mm in size ( A basis weight of 50 g / m 2 ), and in Examples 14 to 17 and Comparative Examples 5 and 6, a zinc-55% aluminum-plated steel sheet having a size of 70 mm × 150 mm × 0.6 mm (a basis weight of 150 g / m 2 ) was used. Prepared as a steel material, pretreatment, film formation, and coating film formation were performed as follows.

〔前処理〕
実施例1〜9及び比較例1〜3では、珪素化合物を含有するアルカリ溶液として、メタ珪酸ナトリウムを含有する脱脂剤(脱脂剤A:日本ペイント社製商品名:サーフクリーナー53S)の2重量%水溶液を用い、60℃で2分間スプレー処理した後、水洗して乾燥させた。
〔Preprocessing〕
In Examples 1 to 9 and Comparative Examples 1 to 3, as an alkaline solution containing a silicon compound, 2% by weight of a degreasing agent containing sodium metasilicate (degreasing agent A: trade name manufactured by Nippon Paint Co., Ltd .: Surf Cleaner 53S) After spraying at 60 ° C. for 2 minutes using an aqueous solution, it was washed with water and dried.

また、実施例10〜17及び比較例4〜7では、珪素化合物を含有するアルカリ溶液として、メタ珪酸ナトリウムを含有する脱脂剤(脱脂剤A:日本ペイント社製商品名:サーフクリーナー155)の2重量%水溶液を用い、60℃で30秒間浸漬した後、水洗して乾燥させた。   Moreover, in Examples 10-17 and Comparative Examples 4-7, 2 of the degreasing agent (degreasing agent A: Nippon Paint Co., Ltd. brand name: Surf cleaner 155) containing sodium metasilicate as an alkaline solution containing a silicon compound. After dipping at 60 ° C. for 30 seconds using a weight% aqueous solution, it was washed with water and dried.

〔皮膜形成処理〕
珪素酸化物を含有する処理液として、表1に示す水分散性シリカを含有する表2(実施例1〜8)、表3(実施例9〜16)及び表4(実施例17及び比較例1〜6)に示す組成の皮膜形成処理液を用いた。
[Film formation treatment]
Table 2 (Examples 1 to 8), Table 3 (Examples 9 to 16) and Table 4 (Example 17 and Comparative Examples) containing the water-dispersible silica shown in Table 1 as the treatment liquid containing silicon oxide. The film formation processing liquid of the composition shown to 1-6) was used.

Figure 2009173996
Figure 2009173996

Figure 2009173996
Figure 2009173996

Figure 2009173996
Figure 2009173996

Figure 2009173996
Figure 2009173996

実施例1〜17及び比較例1〜6では、前処理後に、表2に示す組成の皮膜形成処理液をバーコーターで6g/m2になるように塗装し、200℃で1分間乾燥させた。 In Examples 1 to 17 and Comparative Examples 1 to 6, after the pretreatment, a film forming treatment liquid having the composition shown in Table 2 was applied with a bar coater to 6 g / m 2 and dried at 200 ° C. for 1 minute. .

この際に、実施例2、5、8、9、及び13〜17と比較例2及び5においては、水分散性シリカ以外に、表2及び表3に示す割合でリン酸(和光純薬工業社製の試薬特級:リン酸含有量85wt%)及び/又はリン酸アルミニウム(和光純薬工業社製の試薬化学用)を添加した。   At this time, in Examples 2, 5, 8, 9, and 13 to 17 and Comparative Examples 2 and 5, in addition to water-dispersible silica, phosphoric acid (Wako Pure Chemical Industries, Ltd.) was used at the ratios shown in Tables 2 and 3. A reagent special grade manufactured by the company: phosphoric acid content 85 wt%) and / or aluminum phosphate (for reagent chemistry manufactured by Wako Pure Chemical Industries, Ltd.) was added.

また、実施例5及び11〜15と比較例1、2及び6においては、水分散性シリカ以外に、アルミナゾル(日産化学工業製:アルミナゾル-100、固形分10wt%)又はジルコニアゾル(日産化学工業製、固形分30wt%)又はベーマイト(日産化学工業製:AS-100、固形分10wt%)を添加した。   In Examples 5 and 11 to 15 and Comparative Examples 1, 2 and 6, in addition to water-dispersible silica, alumina sol (manufactured by Nissan Chemical Industries: Alumina Sol-100, solid content 10 wt%) or zirconia sol (Nissan Chemical Industry) Manufactured, solid content 30 wt%) or boehmite (manufactured by Nissan Chemical Industries: AS-100, solid content 10 wt%) was added.

更に、比較例7においては、この無機皮膜を形成するための皮膜形成処理を実施しなかった。     Furthermore, in Comparative Example 7, the film formation treatment for forming this inorganic film was not performed.

上記のようにして形成された実施例1〜17及び比較例1〜6の無機皮膜について、皮膜単位面積中に含有されるシリコン量(Si量:mg/m2)及びリン量(P量:mg/m2)をそれぞれ蛍光X線分析で測定した。測定には、99.999%の純アルミの板に実施例1〜17及び比較例1〜6の場合と同様の方法で無機皮膜を作製し、皮膜単位面積中に含有されるシリコン量(Si量:mg/m2)及びリン量(P量:mg/m2)を定量分析した。クロム(Cr)及びカーボン(C)に関しても同様に蛍光X線分析でクロム量(Cr量)及びカーボン量(C量)の定量分析を行い、検出されない(検出限界以下:Crの検出限界は0.5mg/m2であり、また、Cの検出限界は10mg/m2である。)ことを確認した。 About the inorganic film | membrane of Examples 1-17 and Comparative Examples 1-6 formed as mentioned above, the silicon | silicone amount (Si amount: mg / m < 2 >) contained in a film | membrane unit area, and phosphorus amount (P amount :) mg / m 2 ) was measured by X-ray fluorescence analysis. For the measurement, an inorganic film was prepared on a 99.999% pure aluminum plate in the same manner as in Examples 1 to 17 and Comparative Examples 1 to 6, and the amount of silicon contained in the film unit area (Si Amount: mg / m 2 ) and phosphorus amount (P amount: mg / m 2 ) were quantitatively analyzed. Similarly, for chromium (Cr) and carbon (C), the amount of chromium (Cr amount) and the amount of carbon (C amount) are quantitatively analyzed by fluorescent X-ray analysis, and they are not detected (below the detection limit: the detection limit of Cr is 0.5. It was mg / m 2 , and the detection limit of C was 10 mg / m 2 ).

更に、無機皮膜中のシリコン含有率(Si含有率:wt%)及びリン含有率(P含有率:wt%)については、珪素含有皮膜を形成する塗料を一定量分取し、200℃で5分間加熱後、形成された珪素含有皮膜の重量を測定し、化学分析により、Si量とP量とを定量分析し、含有率を求めた。   Furthermore, regarding the silicon content (Si content: wt%) and phosphorus content (P content: wt%) in the inorganic film, a predetermined amount of the coating material forming the silicon-containing film was taken and 5% at 200 ° C. After heating for a minute, the weight of the formed silicon-containing film was measured, and the amount of Si and the amount of P were quantitatively analyzed by chemical analysis to determine the content.

〔塗膜の形成〕
無機皮膜を介して形成される塗膜は、下記の表5に示す塗料を用いて形成した。シリコン含有塗膜の形成は、表5のシリコン含有塗料である塗料F、G、H、及びIを用いた。
[Formation of coating film]
The coating film formed through the inorganic film was formed using the paint shown in Table 5 below. For the formation of the silicon-containing coating film, paints F, G, H and I which are silicon-containing paints in Table 5 were used.

Figure 2009173996
Figure 2009173996

〔実施例1〜7、12〜14、16及び17並びに比較例1〜4、6及び7〕
上記の前処理及び皮膜形成処理が行なわれた後の各実施例1〜7、12〜14、16及び17並びに比較例1〜4、6及び7の各鋼板について、下記の方法で塗膜を形成し、各試験片(塗装鋼材)を調製した。
[Examples 1-7, 12-14, 16 and 17 and Comparative Examples 1-4, 6 and 7]
About each steel plate of each of Examples 1-7, 12-14, 16 and 17 and Comparative Examples 1-4, 6 and 7 after the above pretreatment and film formation treatment were performed, the coating film was formed by the following method. Each test piece (painted steel material) was prepared.

実施例1では、塗料Aをバーコート塗装し、最高到達温度(PMT: Peak metal temperature)210℃で40秒間の焼付け処理をして乾燥させ、膜厚5μmのプライマー塗膜を形成した。次いで、塗料Jをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚20μmのトップ塗膜を形成し、実施例1の試験片(塗装鋼材)を調製した。   In Example 1, the coating material A was bar-coated, baked for 40 seconds at a peak metal temperature (PMT) of 210 ° C. and dried to form a primer coating having a thickness of 5 μm. Next, paint J was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 20 μm, and a test piece (painted steel material) of Example 1 was prepared.

実施例2では、塗料Bをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚10μmのトップ塗膜を形成し、実施例2の試験片(塗装鋼材)を調製した。   In Example 2, paint B was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 10 μm, and a test piece (painted steel) of Example 2 was prepared. did.

実施例3では、塗料Cをバーコート塗装し、PMT210℃で40秒間の焼付け処理をして乾燥させ、膜厚10μmのプライマー塗膜を形成した。次いで、塗料Kをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚10μmのトップ塗膜を形成し、実施例3の試験片(塗装鋼材)を調製した。   In Example 3, the coating material C was bar-coated, baked at PMT 210 ° C. for 40 seconds and dried to form a primer coating film having a thickness of 10 μm. Next, paint K was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 10 μm, and a test piece (painted steel material) of Example 3 was prepared.

実施例4では、塗料Dをバーコート塗装し、PMT210℃で40秒間の焼付け処理をして乾燥させ、膜厚2μmのプライマー塗膜を形成した。次いで、塗料Cをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚10μmのトップ塗膜を形成し、実施例4の試験片(塗装鋼材)を調製した。   In Example 4, the coating material D was bar-coated, baked at PMT 210 ° C. for 40 seconds and dried to form a primer coating film having a thickness of 2 μm. Next, the paint C was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 10 μm, and a test piece (coated steel material) of Example 4 was prepared.

実施例5では、塗料Eをバーコート塗装し、PMT210℃で40秒間の焼付け処理をして乾燥させ、膜厚1μmのプライマー塗膜を形成した。次いで、塗料Mをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚15μmのトップ塗膜を形成し、実施例5の試験片(塗装鋼材)を調製した。   In Example 5, paint E was bar-coated, baked at PMT 210 ° C. for 40 seconds and dried to form a primer coating film having a thickness of 1 μm. Subsequently, the coating material M was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 15 μm, and a test piece (coated steel material) of Example 5 was prepared.

実施例6では、塗料Fをバーコート塗装し、PMT230℃で40秒間の焼付け処理をして乾燥させ、膜厚0.5μmのシリコン含有のプライマー塗膜を形成した。次いで、塗料Kをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚30μmのトップ塗膜を形成し、実施例6の試験片(塗装鋼材)を調製した。   In Example 6, the coating material F was bar-coated, baked at PMT 230 ° C. for 40 seconds and dried to form a silicon-containing primer coating having a thickness of 0.5 μm. Next, the paint K was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 30 μm, and a test piece (painted steel material) of Example 6 was prepared.

実施例7では、塗料Gをバーコート塗装し、PMT230℃で100秒間の焼付け処理をして乾燥させ、膜厚20μmのシリコン含有のトップ塗膜を形成し、実施例7の試験片(塗装鋼材)を調製した。   In Example 7, paint G was bar-coated, baked at PMT 230 ° C. for 100 seconds and dried to form a silicon-containing top coating film having a film thickness of 20 μm. ) Was prepared.

実施例12では、塗料Fをバーコート塗装し、PMT230℃で40秒間の焼付け処理をして乾燥させ、膜厚5μmのシリコン含有のプライマー塗膜を形成した。次いで、塗料Kをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚10μmのトップ塗膜を形成し、実施例12の試験片(塗装鋼材)を調製した。   In Example 12, the coating material F was bar-coated, baked at PMT 230 ° C. for 40 seconds and dried to form a silicon-containing primer coating having a thickness of 5 μm. Next, the paint K was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 10 μm, and a test piece (painted steel material) of Example 12 was prepared.

実施例13では、塗料Cをバーコート塗装し、PMT220℃で40秒間の焼付け処理をして乾燥させ、膜厚10μmのプライマー塗膜を形成した。次いで、塗料Lをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚20μmのトップ塗膜を形成し、実施例13の試験片(塗装鋼材)を調製した。   In Example 13, the coating material C was bar-coated, baked at PMT 220 ° C. for 40 seconds and dried to form a primer coating film having a thickness of 10 μm. Subsequently, the coating material L was bar-coated, baked for 60 seconds at PMT 225 ° C. and dried to form a top coating film having a thickness of 20 μm, and a test piece (painted steel material) of Example 13 was prepared.

実施例14では、塗料Fをバーコート塗装し、PMT230℃で40秒間の焼付け処理をして乾燥させ、膜厚1μmのシリコン含有のプライマー塗膜を形成した。次いで、塗料Jをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚15μmのトップ塗膜を形成し、実施例14の試験片(塗装鋼材)を調製した。   In Example 14, paint F was bar-coated, baked at PMT 230 ° C. for 40 seconds and dried to form a silicon-containing primer coating having a thickness of 1 μm. Next, the paint J was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a film thickness of 15 μm, and a test piece (painted steel material) of Example 14 was prepared.

実施例16では、塗料Cをバーコート塗装し、PMT220℃で40秒間の焼付け処理をして乾燥させ、膜厚10μmのプライマー塗膜を形成した。次いで、塗料Lをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚20μmのトップ塗膜を形成し、実施例16の試験片(塗装鋼材)を調製した。   In Example 16, the coating material C was bar-coated, baked at PMT 220 ° C. for 40 seconds and dried to form a primer coating film having a thickness of 10 μm. Subsequently, the coating material L was bar-coated, baked for 60 seconds at PMT 225 ° C. and dried to form a top coating film having a thickness of 20 μm, and a test piece (coated steel material) of Example 16 was prepared.

実施例17では、塗料Fをバーコート塗装し、PMT230℃で40秒間の焼付け処理をして乾燥させ、膜厚0.2μmのシリコン含有のプライマー塗膜を形成した。次いで、塗料Kをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚10μmのトップ塗膜を形成し、実施例17の試験片(塗装鋼材)を調製した。   In Example 17, paint F was bar-coated, baked at PMT 230 ° C. for 40 seconds and dried to form a silicon-containing primer coating having a thickness of 0.2 μm. Next, the paint K was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 10 μm, and a test piece (painted steel material) of Example 17 was prepared.

比較例1では、塗料Cをバーコート塗装し、PMT220℃で40秒間の焼付け処理をして乾燥させ、膜厚10μmのプライマー塗膜を形成した。次いで、塗料Kをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚10μmのトップ塗膜を形成し、比較例1の試験片(塗装鋼材)を調製した。   In Comparative Example 1, paint C was bar-coated, baked at PMT 220 ° C. for 40 seconds and dried to form a primer coating film having a thickness of 10 μm. Next, the paint K was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 10 μm, and a test piece (coated steel) of Comparative Example 1 was prepared.

比較例2及び4では、塗料Dをバーコート塗装し、PMT220℃で40秒間の焼付け処理をして乾燥させ、膜厚5μmのプライマー塗膜を形成した。次いで、塗料Kをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚10μmのトップ塗膜を形成し、比較例2及び4の試験片(塗装鋼材)を調製した。   In Comparative Examples 2 and 4, the coating material D was bar-coated, baked at PMT 220 ° C. for 40 seconds and dried to form a primer coating film having a thickness of 5 μm. Next, the paint K was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 10 μm, and test pieces (coated steel materials) of Comparative Examples 2 and 4 were prepared. .

比較例3では、塗料Gをバーコート塗装し、PMT230℃で40秒間の焼付け処理をして乾燥させ、膜厚2μmのシリコン含有のプライマー塗膜を形成した。次いで、塗料Kをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚10μmのトップ塗膜を形成し、比較例3の試験片(塗装鋼材)を調製した。   In Comparative Example 3, paint G was bar-coated, baked at PMT 230 ° C. for 40 seconds and dried to form a silicon-containing primer coating having a thickness of 2 μm. Next, paint K was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 10 μm, and a test piece (coated steel) of Comparative Example 3 was prepared.

比較例6及び7では、塗料Cをバーコート塗装し、PMT230℃で40秒間の焼付け処理をして乾燥させ、膜厚10μmのプライマー塗膜を形成した。次いで、塗料Kをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚10μmのトップ塗膜を形成し、比較例6及び7の試験片(塗装鋼材)を調製した。   In Comparative Examples 6 and 7, the paint C was bar-coated, baked at PMT 230 ° C. for 40 seconds and dried to form a primer coating film having a thickness of 10 μm. Next, paint K was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 10 μm, and test pieces (coated steel materials) of Comparative Examples 6 and 7 were prepared. .

〔実施例8〜11、15及び比較例5〕
実施例8では、塗料Hをスプレー塗装し、PMT170℃で20分間焼き付けて乾繰させ、膜厚30μmのシリコン含有のトップ塗膜を形成し、実施例8の試験片(塗装鋼材)を調製した。
[Examples 8 to 11, 15 and Comparative Example 5]
In Example 8, paint H was spray-coated, baked at PMT 170 ° C. for 20 minutes, and dried to form a silicon-containing top coating film having a film thickness of 30 μm. Thus, a test piece (painted steel material) of Example 8 was prepared. .

実施例9では、塗料Iをスプレー塗装し、PMT100℃で20分間焼き付けて乾繰させ、膜厚5μmのシリコン含有のプライマー塗膜を形成した。次いで、塗料Kをバーコート塗装し、PMT225℃で60秒間の焼付け処理をして乾燥させ、膜厚10μmのトップ塗膜を形成し、実施例9の試験片(塗装鋼材)を調製した。   In Example 9, the coating material I was spray-coated, baked at PMT 100 ° C. for 20 minutes, and dried to form a silicon-containing primer coating film having a thickness of 5 μm. Next, the paint K was bar-coated, baked at PMT 225 ° C. for 60 seconds and dried to form a top coating film having a thickness of 10 μm, and a test piece (painted steel material) of Example 9 was prepared.

実施例10及び15では、塗料Iをスプレー塗装し、PMT100℃で20分間焼き付けて乾繰させ、膜厚50μmのシリコン含有のトップ塗膜を形成し、実施例10及び15の試験片(塗装鋼材)を調製した。   In Examples 10 and 15, paint I was spray-coated, baked at PMT 100 ° C. for 20 minutes, and dried to form a silicon-containing top coating film having a film thickness of 50 μm. ) Was prepared.

実施例11では、塗料Iをスプレー塗装し、PMT100℃で20分間焼き付けて乾繰させ、膜厚10μmのシリコン含有のトップ塗膜を形成し、実施例11の試験片(塗装鋼材)を調製した。   In Example 11, the paint I was spray-coated, baked at PMT 100 ° C. for 20 minutes and dried to form a silicon-containing top coating film having a thickness of 10 μm, and a test piece (painted steel material) of Example 11 was prepared. .

比較例5では、塗料Iをスプレー塗装し、PMT100℃で20分間焼き付けて乾繰させ、膜厚50μmのシリコン含有のトップ塗膜を形成し、比較例5の試験片(塗装鋼材)を調製した。   In Comparative Example 5, paint I was spray-coated, baked at PMT 100 ° C. for 20 minutes, and dried to form a silicon-containing top coating film having a thickness of 50 μm, and a test piece (coated steel material) of Comparative Example 5 was prepared. .

[耐食性能試験]
以上のようにして調製された各実施例1〜17及び比較例1〜7の試験片について、下記の塩水噴霧試験、耐食性能および密着性能を評価した。
[Corrosion resistance test]
About the test piece of each Example 1-17 and Comparative Examples 1-7 which were prepared as mentioned above, the following salt spray test, corrosion resistance performance, and adhesion performance were evaluated.

塩水噴霧試験は、JIS K5600の方法でクロスカットを入れて1000hr実施した。1000hr後の塗膜で、カット部に腐食、フクレ等の発生が全く無く、カット部の密着性が良好なものを◎、カット部の腐食、フクレ幅が1mm以内で、フクレが無く、密着性が良好なものを○、カット部の腐食が1mm以上、又は、フクレの発生、又は密着性が不良等の異常が発生したものを×として評価した。   The salt spray test was carried out for 1000 hours with a cross cut made according to the method of JIS K5600. The coating after 1000 hours has no corrosion, blistering, etc. in the cut part, and the cut part has good adhesion. Is evaluated as “Good”, and “C” indicates that the corrosion of the cut portion is 1 mm or more, or the occurrence of swelling or abnormalities such as poor adhesion occurs.

沸騰水浸漬試験は、試験片を沸騰水に5時間浸漬し、試験終了後に膨れ、剥がれ等の異常を観察した後,二次物性として、塗膜の密着性を評価した。試験終了後の外観に異常のないものを○、膨れ、剥がれ等の異常を生じたものを×として評価した。二次物性は、JIS K5600の付着性(クロスカット法)の方法で、全く剥離がない場合を◎、剥離が生じているクロスカット部の面積が5%以下(分類1以下)を○、5%を超えるものを×とした。
塩水噴霧試験及び沸騰水浸漬試験の結果を表6(実施例1〜17、比較例1〜7)に示す。
In the boiling water immersion test, the test piece was immersed in boiling water for 5 hours, and after the test was completed, abnormalities such as swelling and peeling were observed, and then the adhesion of the coating film was evaluated as a secondary physical property. Evaluation was made with no abnormality in the appearance after completion of the test, and with X where abnormality such as swelling or peeling occurred. Secondary physical properties are JIS K5600 adhesion (cross-cut method) ◎ when there is no peeling at all, ◯ 5 when the area of the cross-cut part where peeling occurs is 5% or less (class 1 or less) Those exceeding% were rated as x.
The results of the salt spray test and the boiling water immersion test are shown in Table 6 (Examples 1 to 17, Comparative Examples 1 to 7).

Figure 2009173996
Figure 2009173996

本発明の塗装鋼材は、6価及び3価のクロムを実質的に全く含まない、いわゆるノンクロムでありながら、優れた耐食性能を有するものであり、環境に優しい材料であるので、広範囲の用途に安心して用いることができ、その工業的価値の高いものである。   The coated steel material of the present invention is a so-called non-chromium that contains substantially no hexavalent and trivalent chromium, and has excellent corrosion resistance, and is an environmentally friendly material. It can be used with confidence and has high industrial value.

Claims (7)

鋼材の表面に、珪素酸化物をシリコン量5〜100mg/m2の範囲で含有すると共に、クロム及び有機物質を実質的に含まない無機皮膜を介して塗膜が形成されていることを特徴とする塗装鋼材。 The surface of the steel material contains silicon oxide in a silicon amount range of 5 to 100 mg / m 2 and is characterized in that a coating film is formed through an inorganic film substantially free of chromium and organic substances. Painted steel. 無機皮膜は、皮膜のシリコン含有率が30〜46.7重量%である請求項1に記載の塗装鋼材。   The coated steel material according to claim 1, wherein the inorganic film has a silicon content of 30 to 46.7% by weight. 無機皮膜は、水分散性シリカを原料として形成された皮膜である請求項1又は2に記載の塗装鋼材。   The coated steel material according to claim 1 or 2, wherein the inorganic film is a film formed using water-dispersible silica as a raw material. 水分散性シリカがコロイダルシリカである請求項3に記載の塗装鋼材。   The coated steel material according to claim 3, wherein the water-dispersible silica is colloidal silica. 無機皮膜は、珪素酸化物以外にリン化合物を含む請求項1〜4のいずれかに記載の塗装鋼材。   The coated steel material according to any one of claims 1 to 4, wherein the inorganic coating contains a phosphorus compound in addition to silicon oxide. 無機皮膜のリン量が1〜15mg/m2である請求項5に記載の塗装鋼材。 Painted steel according to claim 5 phosphorus content of the inorganic coating is a 1-15 mg / m 2. 無機皮膜は、皮膜のリン含有率が10重量%以下である請求項5又は6に記載の塗装鋼材。   The coated steel material according to claim 5 or 6, wherein the inorganic film has a phosphorus content of 10% by weight or less.
JP2008013461A 2008-01-24 2008-01-24 Coated steel product Pending JP2009173996A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008013461A JP2009173996A (en) 2008-01-24 2008-01-24 Coated steel product
PCT/JP2009/050665 WO2009093545A1 (en) 2008-01-24 2009-01-19 Coated steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008013461A JP2009173996A (en) 2008-01-24 2008-01-24 Coated steel product

Publications (1)

Publication Number Publication Date
JP2009173996A true JP2009173996A (en) 2009-08-06

Family

ID=40901053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008013461A Pending JP2009173996A (en) 2008-01-24 2008-01-24 Coated steel product

Country Status (2)

Country Link
JP (1) JP2009173996A (en)
WO (1) WO2009093545A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2888385B1 (en) 2012-08-27 2018-04-11 Tata Steel IJmuiden BV Coated steel strip or sheet having advantageous properties

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102349154B1 (en) * 2019-12-17 2022-01-10 주식회사 포스코 CONVERSION COATING COMPOSITION FOR Zn-Al-Mg ALLOY PLATED STEEL SHEET AND Zn-Al-Mg ALLOY PLATED STEEL SHEET
CN113755830A (en) * 2021-08-30 2021-12-07 温州瑞银不锈钢制造有限公司 Production process of surface modified stainless steel and surface modified stainless steel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290435A (en) * 1976-01-27 1977-07-29 Kansai Paint Co Ltd Composition for forming coating on metal surface
JP2000079370A (en) * 1998-09-08 2000-03-21 Nippon Steel Corp Galvanized steel sheet excellent in heat resistance, heat discoloration resistance and corrosion resistance
JP2000144444A (en) * 1998-11-08 2000-05-26 Nkk Corp Production of surface treated steel sheet excellent in corrosion resistance
JP2001303263A (en) * 2000-04-20 2001-10-31 Kobe Steel Ltd Surface-coated metallic sheet and method for manufacturing the same
JP2002317278A (en) * 2001-04-19 2002-10-31 Kobe Steel Ltd Coated steel sheet having excellent workability and corrosion resistance
JP2003293151A (en) * 2002-04-04 2003-10-15 Kobe Steel Ltd Surface treated galvanized steel sheet
JP2005281863A (en) * 2004-03-04 2005-10-13 Nippon Steel Corp Surface treated metallic plate
JP2006249459A (en) * 2005-03-08 2006-09-21 Nippon Steel Corp Chemical conversion primary treatment agent for steel material, chemical conversion primary treatment method, and steel material with corrosion protective coating film
JP2007126699A (en) * 2005-11-02 2007-05-24 Kobe Steel Ltd Surface treated galvanized steel plate having excellent corrosion resistance and abrasion resistance, and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290435A (en) * 1976-01-27 1977-07-29 Kansai Paint Co Ltd Composition for forming coating on metal surface
JP2000079370A (en) * 1998-09-08 2000-03-21 Nippon Steel Corp Galvanized steel sheet excellent in heat resistance, heat discoloration resistance and corrosion resistance
JP2000144444A (en) * 1998-11-08 2000-05-26 Nkk Corp Production of surface treated steel sheet excellent in corrosion resistance
JP2001303263A (en) * 2000-04-20 2001-10-31 Kobe Steel Ltd Surface-coated metallic sheet and method for manufacturing the same
JP2002317278A (en) * 2001-04-19 2002-10-31 Kobe Steel Ltd Coated steel sheet having excellent workability and corrosion resistance
JP2003293151A (en) * 2002-04-04 2003-10-15 Kobe Steel Ltd Surface treated galvanized steel sheet
JP2005281863A (en) * 2004-03-04 2005-10-13 Nippon Steel Corp Surface treated metallic plate
JP2006249459A (en) * 2005-03-08 2006-09-21 Nippon Steel Corp Chemical conversion primary treatment agent for steel material, chemical conversion primary treatment method, and steel material with corrosion protective coating film
JP2007126699A (en) * 2005-11-02 2007-05-24 Kobe Steel Ltd Surface treated galvanized steel plate having excellent corrosion resistance and abrasion resistance, and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2888385B1 (en) 2012-08-27 2018-04-11 Tata Steel IJmuiden BV Coated steel strip or sheet having advantageous properties

Also Published As

Publication number Publication date
WO2009093545A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
TWI555881B (en) A water-based metal surface treatment agent and a metal surface treatment method using the same
AU2006203196B8 (en) Method for Coating Metallic Surfaces with an Aqueous Polymer-containing Composition, the Aqueos Composition and use of the Coated Substrates
KR101829483B1 (en) Inorganic chromium-free metal surface treatment agent
JP2006213958A (en) Composition for surface treatment of metallic material, and treatment method
JP5055822B2 (en) Painted steel sheet with excellent coating adhesion
JP2011068996A (en) Composition for surface treatment of metallic material, and treatment method
JP5299531B2 (en) Chrome-free painted steel plate with excellent red rust resistance
JP5380846B2 (en) Painted steel with excellent bending workability
JP5125284B2 (en) Aluminum coating material and manufacturing method thereof
JP5103111B2 (en) Painted steel plate
JP5125285B2 (en) Aluminum coating material and manufacturing method thereof
JP2009173996A (en) Coated steel product
JP2002317279A (en) Coated steel sheet which has little environmental load using aqueous coating
JP5433950B2 (en) Metal paint
JP4319957B2 (en) Pre-coated metal plate with excellent corrosion resistance
JPH11276987A (en) Organic multiple coated metallic material excellent in corrosion resistance, coating property and finger print resistance and its production
JP3461741B2 (en) Pre-coated steel sheet with excellent corrosion resistance
JP6760196B2 (en) Aluminum coating material and its manufacturing method
JP4246689B2 (en) Pre-coated metal plate with excellent corrosion resistance
JP2001234350A (en) Metallic sheet material excellent in corrosion resistance, coatability, fingerprint resistance and workability and its producing method
TW201734260A (en) Aqueous metal surface treatment agent and metal surface treatment method using the same
JP2004283824A (en) Painted aluminum material and production method therefor
JP2004035988A (en) Non-chromium type aluminum substrate treatment material having excellent coating film adhesion
TWI586835B (en) Aqueous composition for treating metallic surface, method of treating surface, protective film and surface-treated galvanized steel sheet
JP5531986B2 (en) Chrome-free coated steel sheet and casing made using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708