JP2009168872A - レンズの製造方法および固体撮像装置の製造方法 - Google Patents
レンズの製造方法および固体撮像装置の製造方法 Download PDFInfo
- Publication number
- JP2009168872A JP2009168872A JP2008003909A JP2008003909A JP2009168872A JP 2009168872 A JP2009168872 A JP 2009168872A JP 2008003909 A JP2008003909 A JP 2008003909A JP 2008003909 A JP2008003909 A JP 2008003909A JP 2009168872 A JP2009168872 A JP 2009168872A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- metal particles
- etching
- organic film
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
【課題】製造工程数が少ない方法により、レンズ表面に所望の大きさの凹凸を形成することを可能とする。
【解決手段】基体11上にレンズ形成層12を形成する工程と、前記レンズ形成層12表面に金属粒子14を含む有機膜13を形成する工程と、前記金属粒子14を含む有機膜13上に第1レンズ型15を形成する工程と、前記第1レンズ型15と前記有機膜13とをエッチングして、前記金属粒子14を含む有機膜13で前記第1レンズ型15の表面形状が転写された表面に凹凸を有する第2レンズ型16を形成する工程と、前記第2レンズ型16および前記レンズ形成層12をエッチングして、前記レンズ形成層12で前記第2レンズ型15の表面形状が転写された表面に凹凸を有するレンズ17を形成する工程とを有することを特徴とする。
【選択図】図1
【解決手段】基体11上にレンズ形成層12を形成する工程と、前記レンズ形成層12表面に金属粒子14を含む有機膜13を形成する工程と、前記金属粒子14を含む有機膜13上に第1レンズ型15を形成する工程と、前記第1レンズ型15と前記有機膜13とをエッチングして、前記金属粒子14を含む有機膜13で前記第1レンズ型15の表面形状が転写された表面に凹凸を有する第2レンズ型16を形成する工程と、前記第2レンズ型16および前記レンズ形成層12をエッチングして、前記レンズ形成層12で前記第2レンズ型15の表面形状が転写された表面に凹凸を有するレンズ17を形成する工程とを有することを特徴とする。
【選択図】図1
Description
本発明は、レンズ表面にナノ構造の凹凸を有するレンズの製造方法および固体撮像装置の製造方法に関するものである。
半導体デバイスの高集積化に伴い、固体撮像装置のレンズの小型化が要求されている。
しかしながら、単純なレンズの小型化、すなわち、集光面積の縮小は、固体撮像装置の感度を低下させることになるため、小型化および感度向上の双方を実現できるようなレンズ加工技術が強く求められている。
しかしながら、単純なレンズの小型化、すなわち、集光面積の縮小は、固体撮像装置の感度を低下させることになるため、小型化および感度向上の双方を実現できるようなレンズ加工技術が強く求められている。
固体撮像装置においてマイクロレンズは画素ごとに形成された受光部の上方に凸型のドーム型に形成され、光を屈折させて受光部に集光する役割を担う。
現状のマイクロレンズ部の形成は、図6(1)に示すように、基体111上にレンズ形成膜112を形成し、さらにこのレンズ形成層112上にレジストパターン113を形成、リフロー処理によってレジストパターン113を凸型に変形する。
次に、ドライエッチング法により、上記レジストパターン113とともにレンズ形成膜112をエッチバックする。
次に、ドライエッチング法により、上記レジストパターン113とともにレンズ形成膜112をエッチバックする。
その結果、図6(2)に示すように、上記レジストパターン113(前記図6(1)参照)はエッチングにより除去され、そのレジストパターン113の表面形状が上記レンズ形成層112に転写され、凸レンズ形状のマイクロレンズ114が形成される。
上記レンズ形成方法が一般的によく用いられる。
上記レンズ形成方法が一般的によく用いられる。
ただし、上記レンズ形状では入射光が数%反射するため、これを低減するためにマイクロレンズの表面に凹凸をつけるような構造が提案されている(例えば、特許文献1参照。)。
このマイクロレンズの表面の凹凸は、プラズマ処理またはウェットエッチング処理を施すことにより形成している。
このマイクロレンズの表面の凹凸は、プラズマ処理またはウェットエッチング処理を施すことにより形成している。
しかしながら、プラズマ処理またはウェットエッチング処理を施す方法では所望の大きな凹凸を得ることが難しい。
また高イオンエネルギーのドライエッチング条件であれば凹凸を大きく形成することができるが、この場合、レンズ表面のプラズマダメージが顕著になり、表面の濁り等による劣化、表面の硬化などの副作用を発生させることになる。
また高イオンエネルギーのドライエッチング条件であれば凹凸を大きく形成することができるが、この場合、レンズ表面のプラズマダメージが顕著になり、表面の濁り等による劣化、表面の硬化などの副作用を発生させることになる。
そこで、レンズ表面を荒す加工を避けて、レンズの集光効率を向上させる方法が提案されている。
例えば、レンズと屈折率の異なるフッ素系アクリル樹脂層(反射防止膜)をレンズ上に積むことで集光効率を向上させる方法が提案されている(例えば、特許文献2参照。)。
また、レンズギャップ間に光吸収樹脂(反射防止膜)を埋め込むことで、レンズ間に入射する光の散乱光や集光効率の良くないレンズの裾部に入射する斜め光を低減させ、この結果、集光効率を向上させる技術が開示されている(例えば、特許文献3参照。)。
例えば、レンズと屈折率の異なるフッ素系アクリル樹脂層(反射防止膜)をレンズ上に積むことで集光効率を向上させる方法が提案されている(例えば、特許文献2参照。)。
また、レンズギャップ間に光吸収樹脂(反射防止膜)を埋め込むことで、レンズ間に入射する光の散乱光や集光効率の良くないレンズの裾部に入射する斜め光を低減させ、この結果、集光効率を向上させる技術が開示されている(例えば、特許文献3参照。)。
しかしながら、これらの反射防止膜を利用した集光効率を向上させる技術では限界がある。
空気とレンズ間の屈折率の勾配をより滑らかにすることが反射光を抑制し、集光効率の更なる向上につながる。反射防止膜を用いる場合、より集光効率を向上させようとすれば、屈折率の異なる反射防止膜をレンズ上に多層に積む必要がある。
この方法ではデバイスの微細化に対して限界がある。
また、製造工程数も集光効率の向上に従って増えるといった製造面においても問題が生じる。
空気とレンズ間の屈折率の勾配をより滑らかにすることが反射光を抑制し、集光効率の更なる向上につながる。反射防止膜を用いる場合、より集光効率を向上させようとすれば、屈折率の異なる反射防止膜をレンズ上に多層に積む必要がある。
この方法ではデバイスの微細化に対して限界がある。
また、製造工程数も集光効率の向上に従って増えるといった製造面においても問題が生じる。
解決しようとする問題点は、反射防止効果を得るためにレンズ表面にプラズマ処理またはウェットエッチング処理を施して凹凸を形成する方法では、所望の大きな凹凸を得ることが難しいため、反射率を十分に低減することが困難な点であり、それを回避するために、レンズ表面に反射防止膜を形成する方法では、屈折率の異なる反射防止膜を多層に形成する必要があり、製造工程数が増加する点である。
本発明は、製造工程数が少ない方法により、レンズ表面に所望の大きさの凹凸を形成することを可能にする。
本発明のレンズの製造方法は、基体上にレンズ形成層を形成する工程と、前記レンズ形成層表面に金属粒子を含む有機膜を形成する工程と、前記金属粒子を含む有機膜上にレンズ型を形成する工程と、前記レンズ型と前記金属粒子を含む有機膜と前記レンズ形成層をエッチングして、前記レンズ形成層で前記レンズ型の表面形状が転写された表面に凹凸を有するレンズを形成する工程とを有することを特徴とする。
本発明のレンズの製造方法では、基体上に形成したレンズ形成層の表面に金属粒子を含む有機膜を形成し、その金属粒子を含む有機膜上にレンズ型を形成してから、レンズ型と金属粒子を含む有機膜とレンズ形成層をエッチングする。このエッチング過程では、まず、レンズ型とともに金属粒子を含む有機膜がエッチングされていく。そして、レンズ型の表面形状が金属粒子を含む有機膜に転写されていくとともに、金属粒子を含む有機膜中の金属粒子がエッチングマスクになるので、金属粒子が残される状態もしくは金属粒子のエッチングが遅れる状態で、金属粒子を含む有機膜中の有機部分がエッチングされる。この結果、金属粒子を含む有機膜にレンズ型の表面形状が転写されていき、金属粒子がエッチングマスクになることで表面に凹凸が形成される。この凹凸形状は、例えば金属粒子の分布密度、大きさ等によって制御することができる。
そして、エッチングを進行させ、レンズ形成層をエッチングし、レンズ形成層によってレンズ型の表面形状が転写されていて、表面に凹凸を有するレンズが形成される。
したがって、上記レンズ表面に形成される凹凸の大きさ、分布密度は、金属粒子の大きさ、材質、分布密度を適宜変更することで、意図的に制御することが可能になる。
なお、エッチングの進行とともに金属粒子もエッチングされる。例えば、金属粒子を含む有機膜のエッチングの進行中に金属粒子がエッチングされて消滅したとしても、そのときには、金属粒子を含む有機膜のエッチング表面に金属粒子による凹凸形状が残されているため、その形状がレンズ形成層に転写されていく。
またレンズが形成されたときにレンズ表面の金属粒子が残っている場合には、残った金属粒子を選択的に除去すればよいので、レンズが形成されたときに金属粒子が残っていても問題にはならない。
そして、エッチングを進行させ、レンズ形成層をエッチングし、レンズ形成層によってレンズ型の表面形状が転写されていて、表面に凹凸を有するレンズが形成される。
したがって、上記レンズ表面に形成される凹凸の大きさ、分布密度は、金属粒子の大きさ、材質、分布密度を適宜変更することで、意図的に制御することが可能になる。
なお、エッチングの進行とともに金属粒子もエッチングされる。例えば、金属粒子を含む有機膜のエッチングの進行中に金属粒子がエッチングされて消滅したとしても、そのときには、金属粒子を含む有機膜のエッチング表面に金属粒子による凹凸形状が残されているため、その形状がレンズ形成層に転写されていく。
またレンズが形成されたときにレンズ表面の金属粒子が残っている場合には、残った金属粒子を選択的に除去すればよいので、レンズが形成されたときに金属粒子が残っていても問題にはならない。
本発明の固体撮像装置の製造方法は、入射光を光電変換する受光部を有し、前記受光部の前記入射光側に入射光を前記受光部に集光するレンズを形成する固体撮像装置の製造方法において、前記レンズの形成工程は、前記受光部が形成された基体上にレンズ形成層を形成する工程と、前記レンズ形成層表面に金属粒子を含む有機膜を形成する工程と、前記金属粒子を含む有機膜上にレンズ型を形成する工程と、前記レンズ型と前記金属粒子を含む有機膜と前記レンズ形成層をエッチングして、前記レンズ形成層で前記レンズ型の表面形状が転写された表面に凹凸を有するレンズを形成する工程とを有することを特徴とする。
本発明の固体撮像装置の製造方法では、本発明のレンズの製造方法を適用しているので、上記説明したように、簡便な方法で、レンズ表面に凹凸が形成される。
その凹凸の大きさ、分布密度は、金属粒子の大きさ、材質、分布密度を適宜変更することで、意図的に制御することが可能になる。
その凹凸の大きさ、分布密度は、金属粒子の大きさ、材質、分布密度を適宜変更することで、意図的に制御することが可能になる。
本発明のレンズの製造方法は、レンズ表面に所望の凹凸を制御性よく簡便な方法で形成することができるので、レンズの集光効率を高めることができる。また、簡便な方法でレンズ表面に凹凸を形成することができるので、製造コストが低減できる。したがって、高い集光効率の要求に対して製造工程数の増加を抑えることができ、世代の異なるデバイスに対しても適用することが可能となる。
本発明の固体撮像装置の製造方法は、レンズ表面に所望の凹凸を制御性よく簡便な方法で形成することができるので、レンズの集光効率を高めることができ、受光感度の向上を図ることができる。また、簡便な方法でレンズ表面に凹凸を形成することができるので、製造コストが低減できる。したがって、高い集光効率の要求に対して製造工程数の増加を抑えることができ、世代の異なる固体撮像装置に対しても適用することが可能となる。
本発明のレンズの製造方法に係る一実施の形態(実施例)を、図1の模式的に示した製造工程断面図および図2の模式的に示した拡大断面図によって説明する。
図1(1)に示すように、基体11上にレンズを形成するためのレンズ形成層12を形成する。このレンズ形成層12は、例えばレンズ用有機膜で形成される。このレンズ用有機膜には、例えばポリスチレン、アクリル系透明樹脂、ノボラック系透明樹脂等を用いることができる。
次に、上記レンズ形成層12上に金属粒子を含む有機膜13を形成する。
次に、上記レンズ形成層12上に金属粒子を含む有機膜13を形成する。
この金属粒子を含む有機膜13の有機部分14は上記レンズ形成層12よりもエッチング時のプラズマ耐性が高い材料で形成される。例えば、上記有機部分14は、例えば天然樹脂もしくは合成樹脂を用いることができ、また変性天然物質、塩素化ゴム、ビスコースなどを用いてもよい。
上記金属粒子を含む有機膜13の金属粒子15には、例えば、銅(Cu)粒子を用いる。
上記銅粒子の含有量は、例えば1%以上10%以下であり、例えば3%とした。
上記金属粒子15の材料には、他に、ニッケル(Ni)、モリブデン(Mo)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、金(Au)などの粒子を用いることができ、その含有量は1%以上10%以下とする。上記金属粒子15の含有量は、1%未満であると、後に形成するレンズ表面に形成される凹凸が少なすぎて、表面反射を防止するという効果が十分に得られなくなる。一方、金属粒子15の含有量が10%を超えると、金属粒子15が多すぎて、後に形成するレンズの表面形状の転写が十分に行えなくなる。
また、上記金属粒子15の平均粒径0.05μm以上0.12μm以下とした。金属粒子15の平均粒径が0.05μmよりも小さいと、後に形成するレンズの表面に形成される凹凸が小さくなりすぎる、もしくは凹凸が十分に形成されなくなる。一方、金属粒子15の平均粒径が0.12μmよりも大きくなると、後に形成するレンズ表面の凹凸が大きくなり過ぎて、十分な反射防止効果が得られなくなる。
また、上記金属粒子の基礎材料として、イソインドリン、アゾ、キノフタノン系の有機顔料を用いてもよい。
上記銅粒子の含有量は、例えば1%以上10%以下であり、例えば3%とした。
上記金属粒子15の材料には、他に、ニッケル(Ni)、モリブデン(Mo)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、金(Au)などの粒子を用いることができ、その含有量は1%以上10%以下とする。上記金属粒子15の含有量は、1%未満であると、後に形成するレンズ表面に形成される凹凸が少なすぎて、表面反射を防止するという効果が十分に得られなくなる。一方、金属粒子15の含有量が10%を超えると、金属粒子15が多すぎて、後に形成するレンズの表面形状の転写が十分に行えなくなる。
また、上記金属粒子15の平均粒径0.05μm以上0.12μm以下とした。金属粒子15の平均粒径が0.05μmよりも小さいと、後に形成するレンズの表面に形成される凹凸が小さくなりすぎる、もしくは凹凸が十分に形成されなくなる。一方、金属粒子15の平均粒径が0.12μmよりも大きくなると、後に形成するレンズ表面の凹凸が大きくなり過ぎて、十分な反射防止効果が得られなくなる。
また、上記金属粒子の基礎材料として、イソインドリン、アゾ、キノフタノン系の有機顔料を用いてもよい。
次に、上記金属粒子を含む有機膜13上にレンズ型16を形成する。例えば、上記レンズ型16は、フォトレジストで形成される。このレンズ型16は、上記金属粒子を含む有機膜13の有機部分14をエッチングするときに、同時にエッチングされる材質で形成されることが好ましい。
上記レンズ型16の大きさ(径)は、例えば2μmである。この大きさは、形成しようとするレンズの大きさと同等な大きさであり、例えば数百nm以上数十μm以下とする。もちろん、数百nmより小さいものも、数十μmより大きいものも作製することは可能である。このレンズ型16の具体的な形成方法については、後に詳述する。
上記レンズ型16の大きさ(径)は、例えば2μmである。この大きさは、形成しようとするレンズの大きさと同等な大きさであり、例えば数百nm以上数十μm以下とする。もちろん、数百nmより小さいものも、数十μmより大きいものも作製することは可能である。このレンズ型16の具体的な形成方法については、後に詳述する。
次に、図1(2)に示すように、まず、上記レンズ型16(前記図1(1)参照)と上記金属粒子を含む有機膜13をエッチングする。このエッチングでは、上記レンズ型16と上記金属粒子を含む有機膜13の有機部分14とが同時にエッチングされていき、上記レンズ型16の表面形状が上記金属粒子を含む有機膜13に転写されていく。そして、上記金属粒子を含む有機膜13が凸レンズ形状に形成されていく。このとき、上記金属粒子15がエッチングマスクになるので、上記金属粒子を含む有機膜13の表面には凹凸が形成される。やがて、上記レンズ型16はエッチングにより消滅する。またレンズ形成層12の一部がエッチングされ始める。
上記金属粒子を含む有機膜13の有機成分14のエッチングレートと金属粒子15のエッチングレートが同等の場合には、図2(1)に示すように、有機成分14と金属粒子15とが同時にエッチングされてしまうので、エッチング表面には凹凸が形成されない。このような条件では、表面に凹凸を有するレンズを形成することができない。
そこで、本発明のレンズの製造方法では、図2(2)に示すように、有機成分14のエッチングレートを金属粒子15のエッチングレートより早くなる条件にエッチング条件を設定する。この場合には有機成分14がエッチングされ、金属粒子15がエッチングされにくくなるので、金属粒子15がエッチングマスクの機能を果たして、エッチング表面には凹凸が形成される。
さらに、上記エッチングを進める。その結果、図1(3)に示すように、上記レンズ形成層12で、上記レンズ型16(前記図1(1)参照)の表面形状が転写された、表面に凹凸を有するレンズ17が形成される。
上記エッチングは、例えばドライエッチングにより行う。
そのドライエッチングの加工条件は、一例として、ICP(Inductively Coupled Plasma)型RIE(Reactive Ion Etching)装置を用い、エッチング雰囲気の圧力を6.7Pa、ソースパワーを600W、バイアスパワーを100Wに設定し、エッチングガスに、酸素(O2)(供給流量=20cm3/min)と塩素(Cl2)(供給流量=50cm3/min)とを用いる。
また、塩素(Cl2)のかわりに四フッ化炭素(CF4)などのハロゲン元素を有するガスを用いてもよい。
そのドライエッチングの加工条件は、一例として、ICP(Inductively Coupled Plasma)型RIE(Reactive Ion Etching)装置を用い、エッチング雰囲気の圧力を6.7Pa、ソースパワーを600W、バイアスパワーを100Wに設定し、エッチングガスに、酸素(O2)(供給流量=20cm3/min)と塩素(Cl2)(供給流量=50cm3/min)とを用いる。
また、塩素(Cl2)のかわりに四フッ化炭素(CF4)などのハロゲン元素を有するガスを用いてもよい。
その結果、表面に、径が3nm〜10nm、深さが5nm〜30nm程度の微小な凹凸が形成された上記レンズ17を得ることができる。
この微小な凹凸は、上記ドライエッチング時において、金属粒子を含む有機膜13中の金属粒子15と、金属粒子を含む有機膜13中の有機部分15およびレンズ形成層12とのドライエッチングでの反応性(例えば蒸気圧)が異なるため、金属粒子15のある部分とない部分でのエッチングレートの差が生じることから形成される。
この微小な凹凸は、上記ドライエッチング時において、金属粒子を含む有機膜13中の金属粒子15と、金属粒子を含む有機膜13中の有機部分15およびレンズ形成層12とのドライエッチングでの反応性(例えば蒸気圧)が異なるため、金属粒子15のある部分とない部分でのエッチングレートの差が生じることから形成される。
上記レンズ17の表面に形成される凹凸のアスペクト比は、上記金属粒子15の種類によって制御することができる。
例えばチタン(Ti)などのより大きな原子を用いることで、凸部の横方向の径を大きくするができる。一方、アルミニウム(Al)などのドライエッチングの反応性の高いものを用いれば凸部の浅くすることができる。
例えばチタン(Ti)などのより大きな原子を用いることで、凸部の横方向の径を大きくするができる。一方、アルミニウム(Al)などのドライエッチングの反応性の高いものを用いれば凸部の浅くすることができる。
また、これらを制御するために金属粒子15の含有量を変えてもよい。
金属粒子15の含有量を大きくすることで、よりアスペクトの低い凸形状を作ることができる。また反応性の違いを利用するためエッチングのガスや条件などを変更しても、凹凸のアスペクト比を制御することができる。
金属粒子15の含有量を大きくすることで、よりアスペクトの低い凸形状を作ることができる。また反応性の違いを利用するためエッチングのガスや条件などを変更しても、凹凸のアスペクト比を制御することができる。
例えば、樹脂等からなるレンズ形成膜12の上に金属粒子15としてアルミニウム(Al)粒子を5%含有させた高分子量の有機物質を塗布して金属粒子を含む有機膜13を形成する。さらに、金属粒子を含む有機膜13上にレジストを塗布する。このレジスト材料には、例えばKrF露光用ポジ型レジストを用いる。そして、KrF露光機により紫外領域の光を照射してレンズ型16のパターン形成を行う。
その後、ドライエッチングを、例えば、ICP型RIE装置を用い、エッチングminの圧力を6.7Pa、ソースパワーを600W、バイアスパワーを100Wに設定し、エッチングガスに、酸素(O2)(供給流量=20cm3/min)と塩素(Cl2)(供給流量=50cm3/min)とを用いて、エッチング加工を行う。
その後、ドライエッチングを、例えば、ICP型RIE装置を用い、エッチングminの圧力を6.7Pa、ソースパワーを600W、バイアスパワーを100Wに設定し、エッチングガスに、酸素(O2)(供給流量=20cm3/min)と塩素(Cl2)(供給流量=50cm3/min)とを用いて、エッチング加工を行う。
ここで最終的なレンズ17の表面の凹凸を深く形成するためには、エッチング条件として、金属粒子を含む有機膜13の金属粒子15と有機部分14とのエッチングレート差を大きくすることが有効である。そのためには、例えば、エッチングガス中の酸素(O2)流量を増やす。
酸素ラジカルは有機膜との化学反応性が強く、また酸素ラジカルの量が酸素(O2)流量と比例することから、レンズ17表面に形成される凹凸を容易に制御することができる。
酸素(O2)流量を増やすことにより、感度良く有機部分14のエッチングレートが増加する一方で、金属粒子15であるアルミニウム(Al)のエッチングレートは変わらないため、アルミニウム(Al)と有機部分14とのエッチングレート差が大きくなる。この結果、レンズ17表面の凹凸を深くすることができる。
酸素ラジカルは有機膜との化学反応性が強く、また酸素ラジカルの量が酸素(O2)流量と比例することから、レンズ17表面に形成される凹凸を容易に制御することができる。
酸素(O2)流量を増やすことにより、感度良く有機部分14のエッチングレートが増加する一方で、金属粒子15であるアルミニウム(Al)のエッチングレートは変わらないため、アルミニウム(Al)と有機部分14とのエッチングレート差が大きくなる。この結果、レンズ17表面の凹凸を深くすることができる。
または、イオンエネルギーを低くすることにより凹凸を深くすることができる。
これは一般的に金属の結合エネルギーの方が有機物に比べて大きく、また金属は有機物より硬いため、イオンエネルギーを低くすれば金属に対するエッチング選択比が向上する。すなわち、有機部分14のエッチングレート差が大きくなるため、凹凸を深くすることができる。
ちなみに、結合エネルギーは、Al−Al結合が72eV、C−C結合が3.6eV、C−H結合が4.3eVである。
これは一般的に金属の結合エネルギーの方が有機物に比べて大きく、また金属は有機物より硬いため、イオンエネルギーを低くすれば金属に対するエッチング選択比が向上する。すなわち、有機部分14のエッチングレート差が大きくなるため、凹凸を深くすることができる。
ちなみに、結合エネルギーは、Al−Al結合が72eV、C−C結合が3.6eV、C−H結合が4.3eVである。
上記イオンエネルギーを低くする具体策としては、バイアスパワーを低下させる、またはエッチング雰囲気の圧力を下げることにより達成できる。
また含有させる金属粒子15の成分をアルミニウム(Al)からチタン(Ti)に変更した場合には、チタンはアルミニウムに比べて蒸気圧が低い(例えば、蒸気圧が1mmHgとなる三塩化アルミニウム(AlCl3)の温度は100℃であり、三塩化チタン(TiCl3)の温度は−25℃である。)ので、エッチングレートを速くすることができる。これによって、金属粒子15と有機部分14のエッチレート差を制御するこができる。このように金属粒子15の種類とエッチング条件次第で、レンズ17表面における凹凸深さを制御することができる。
また含有させる金属粒子15の成分をアルミニウム(Al)からチタン(Ti)に変更した場合には、チタンはアルミニウムに比べて蒸気圧が低い(例えば、蒸気圧が1mmHgとなる三塩化アルミニウム(AlCl3)の温度は100℃であり、三塩化チタン(TiCl3)の温度は−25℃である。)ので、エッチングレートを速くすることができる。これによって、金属粒子15と有機部分14のエッチレート差を制御するこができる。このように金属粒子15の種類とエッチング条件次第で、レンズ17表面における凹凸深さを制御することができる。
また、上記説明したように、レンズ型16のエッチングから上記レンズ17を形成するエッチングは、レンズ型16、金属粒子を含む有機膜13、レンズ形成層12のエッチングを連続して行うこともでき、もしくは、上記金属粒子を含む有機膜13に上記レンズ型16の表面形状を転写した後、一旦エッチングを停止し、別のエッチング条件で、上記レンズ型16の表面形状が転写された金属粒子を含む有機膜13とレンズ形成膜12をエッチングして、上記レンズ17を形成することもできる。
上記レンズの製造方法では、基体11上に形成したレンズ形成層12の表面に金属粒子を含む有機膜13を形成し、その金属粒子を含む有機膜13上にレンズ型16を形成してから、レンズ型16と金属粒子を含む有機膜13とレンズ形成層12をエッチングする。このエッチング過程では、まず、レンズ型16とともに金属粒子を含む有機膜13がエッチングされていく。そして、レンズ型の表面形状が金属粒子を含む有機膜13に転写されていくとともに、金属粒子を含む有機膜13中の金属粒子15がエッチングマスクになるので、金属粒子15が残される状態もしくは金属粒子のエッチングが遅れる状態で、その金属粒子を含む有機膜13の有機部分15がエッチングされる。この結果、金属粒子を含む有機膜13にレンズ型16の表面形状が転写されていき、金属粒子15がエッチングマスクになることで表面に凹凸が形成される。この凹凸形状は、例えば金属粒子15の分布密度、大きさ等によって制御することができる。
そして、エッチングを進行させ、レンズ形成層12をエッチングし、レンズ形成層12によってレンズ型16の表面形状が転写されていて、表面に凹凸を有するレンズ17が形成される。
したがって、上記レンズ17表面に形成される凹凸の大きさ、分布密度は、金属粒子15の大きさ、材質、分布密度を適宜変更することで、意図的に制御することが可能になる。
したがって、上記レンズ17表面に形成される凹凸の大きさ、分布密度は、金属粒子15の大きさ、材質、分布密度を適宜変更することで、意図的に制御することが可能になる。
なお、エッチングの進行とともに金属粒子15もエッチングされる。例えば、金属粒子を含む有機膜13のエッチングの進行中に金属粒子15がエッチングされて消滅したとしても、そのときには、金属粒子を含む有機膜13のエッチング表面に金属粒子15による凹凸形状が残されているため、その形状がレンズ形成層12に転写されていく。
またレンズ17が形成されたときにレンズ17表面の金属粒子15が残っている場合には、残った金属粒子15を選択的に除去すればよいので、レンズ17が形成されたときに金属粒子15が残っていても問題にはならない。
またレンズ17が形成されたときにレンズ17表面の金属粒子15が残っている場合には、残った金属粒子15を選択的に除去すればよいので、レンズ17が形成されたときに金属粒子15が残っていても問題にはならない。
上記説明したように、本発明のレンズの製造方法によれば、レンズ17表面に所望の凹凸を制御性よく簡便な方法で形成することができるので、レンズ17の集光効率を高めることができる。また、簡便な方法でレンズ17表面に凹凸を形成することができるので、製造コストが低減できる。したがって、高い集光効率の要求に対して製造工程数の増加を抑えることができ、世代の異なるデバイスに対しても適用することが可能となる。
上記実施例において、金属粒子を含む有機膜をレンズ形成層として用い、上記実施例で説明したレンズ形成層は形成しない。この製造方法を、図3の製造工程図によって、以下に説明する。
図3(1)に示すように、基体31上にレンズを形成するためのレンズ形成層となる金属粒子を含む有機膜33を形成する。
この金属粒子を含む有機膜33の有機部分34は、例えば、天然樹脂もしくは合成樹脂を用いることができ、また変性天然物質、塩素化ゴム、ビスコースなどを用いてもよい。
上記金属粒子を含む有機膜33の金属粒子35は、例えば、銅(Cu)粒子を用いる。
上記銅粒子の含有量は、例えば1%以上10%以下であり、例えば3%とした。
上記金属粒子35の材料には、他に、ニッケル(Ni)、モリブデン(Mo)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、金(Au)などの粒子を用いることができ、その含有量は1%以上10%以下とする。上記金属粒子35の含有量は、1%未満であると、後に形成されるレンズ表面の凹凸が少なすぎて、表面反射を防止するという効果が十分に得られなくなる。一方、金属粒子35の含有量が10%を超えると、金属粒子35が多すぎて、光透過率が悪化し、レンズとして用いることができなくなる。
また、上記金属粒子35の平均粒径0.05μm以上0.12μm以下とした。金属粒子35の平均粒径が0.05μmよりも小さいと、後に形成されるレンズの表面の凹凸が小さくなりすぎて、レンズ表面の反射を防止するという効果が十分に得られなくなる。一方、金属粒子35の平均粒径が0.12μmよりも大きくなると、後に形成するレンズ表面の凹凸が大きくなり過ぎて、十分な反射防止効果が得られなくなる。
上記銅粒子の含有量は、例えば1%以上10%以下であり、例えば3%とした。
上記金属粒子35の材料には、他に、ニッケル(Ni)、モリブデン(Mo)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、金(Au)などの粒子を用いることができ、その含有量は1%以上10%以下とする。上記金属粒子35の含有量は、1%未満であると、後に形成されるレンズ表面の凹凸が少なすぎて、表面反射を防止するという効果が十分に得られなくなる。一方、金属粒子35の含有量が10%を超えると、金属粒子35が多すぎて、光透過率が悪化し、レンズとして用いることができなくなる。
また、上記金属粒子35の平均粒径0.05μm以上0.12μm以下とした。金属粒子35の平均粒径が0.05μmよりも小さいと、後に形成されるレンズの表面の凹凸が小さくなりすぎて、レンズ表面の反射を防止するという効果が十分に得られなくなる。一方、金属粒子35の平均粒径が0.12μmよりも大きくなると、後に形成するレンズ表面の凹凸が大きくなり過ぎて、十分な反射防止効果が得られなくなる。
次に、上記金属粒子を含む有機膜33上にレンズ型36を形成する。例えば、上記レンズ型35はフォトレジストで形成される。このレンズ型の大きさ(径)は、例えば2μmである。この大きさは、形成しようとするレンズの大きさと同等な大きさであり、例えば数百nm以上数十μm以下とする。もちろん、数百nmより小さいものも、数十μmより大きいものも作製することは可能である。
次に、図3(2)に示すように、上記レンズ型36(前記図3(1)参照)と上記金属粒子を含む有機膜33の有機部分34とをエッチングして、上記金属粒子を含む有機膜33で上記レンズ型36の表面形状が転写された、表面に凹凸を有するレンズ37を形成する。
上記エッチングは、例えばドライエッチングにより行う。そのドライエッチングの加工条件は、ICP(Inductively Coupled Plasma)型RIE(Reactive Ion Etching)装置を用い、エッチングminの圧力を6.7Pa、ソースパワーを600W、バイアスパワーを100Wに設定し、エッチングガスに、酸素(O2)(供給流量=20cm3/min)と塩素(Cl2)(供給流量=50cm3/min)とを用いる。
また、塩素(Cl2)のかわりに四フッ化炭素(CF4)などのハロゲン元素を有するガスを用いてもよい。
また、塩素(Cl2)のかわりに四フッ化炭素(CF4)などのハロゲン元素を有するガスを用いてもよい。
その結果、上記レンズ37の表面に、径が3nm〜10nm、深さが5nm〜30nm程度の微小な凹凸が形成される。
上記レンズ37の表面に形成される凹凸のアスペクト比は、上記説明したのと同様に、上記金属粒子35の種類によって制御することができる。
例えばチタン(Ti)などのより大きな原子を用いることで、凸部の横方向の径を大きくするができる。一方、アルミニウム(Al)などのドライエッチングの反応性の高いものを用いれば凸部の浅くすることができる。
また、これらを制御するために金属粒子35の含有量を変えてもよい。金属粒子35の含有量を大きくすることで、よりアスペクトの低い凸形状を作ることができる。また反応性の違いを利用するためエッチングのガスや条件などを変更しても、凹凸のアスペクト比を制御することができる。
例えばチタン(Ti)などのより大きな原子を用いることで、凸部の横方向の径を大きくするができる。一方、アルミニウム(Al)などのドライエッチングの反応性の高いものを用いれば凸部の浅くすることができる。
また、これらを制御するために金属粒子35の含有量を変えてもよい。金属粒子35の含有量を大きくすることで、よりアスペクトの低い凸形状を作ることができる。また反応性の違いを利用するためエッチングのガスや条件などを変更しても、凹凸のアスペクト比を制御することができる。
また、上記説明したのと同様に、イオンエネルギーを低くすることにより、レンズ37の表面に形成される凹凸を深くすることができる。
上記図3によって説明したレンズの製造方法では、レンズ37の内部に金属粒子35が残るので、光透過性は低下するが、レンズ表面での反射を防止することができる。
また、上記レンズ37表面の凹凸の大きさ、分布密度は、金属粒子35の大きさ、材質、分布密度を適宜変更することで、意図的に制御することが可能になる。
また、上記レンズ37表面の凹凸の大きさ、分布密度は、金属粒子35の大きさ、材質、分布密度を適宜変更することで、意図的に制御することが可能になる。
次に、本発明の固体撮像装置の製造方法を以下に説明する。本発明の固体撮像装置の製造方法は、固体撮像装置の受光部に入射光を集光させる集光レンズの製造方法に、上記本発明の各レンズの製造方法を適用することを特徴としている。
その一例を、図4および図5の概略構成断面図によって説明する。
図4に示した固体撮像装置はCCD型固体撮像装置の一例であり、また図4に示した固体撮像装置はCMOS型固体撮像装置の一例である。
すなわち、本発明の固体撮像装置の製造方法は、固体撮像装置の受光部に入射光を集光させるレンズの製造方法であれば、いかなる固体撮像装置に対しても適用することができる。
すなわち、本発明の固体撮像装置の製造方法は、固体撮像装置の受光部に入射光を集光させるレンズの製造方法であれば、いかなる固体撮像装置に対しても適用することができる。
図4に示すように、固体撮像装置5は以下のように構成されている。
半導体基板51(例えばN型シリコン基板)にp型ウエル領域61が形成され、そのp型ウエル領域61に、受光部52が形成されている。この受光部52の一方側には、読み出しゲート部53、垂直電荷転送部55、チャネルストップ領域54が形成され、さらに隣接する受光部52が形成されている。他方側にもチャネルストップ領域54が形成されている。
上記受光部52は、n型不純物領域71と、その上部に形成されたp型正孔蓄積領域73とから構成されている。
また、上記垂直電荷転送部55は、上記p型ウエル領域61よりも高濃度のp型ウエル領域81とその上部に形成されたn型チャネル領域82で構成されている。また、n型チャネル領域82上にはゲート絶縁膜83を介して転送電極84が形成されている。この電極84は、垂直転送電極とともに読み出しゲート電極も兼ねる。
また、上記電極84を被覆するように、層間絶縁膜91が形成され、さらに遮光膜92が形成されている。上記遮光膜92は、例えばタングステン、アルミニウム等の金属膜で形成されている。この遮光膜92には受光部52上に開口部93が形成されている。さらにパッシベーション膜94、平坦化膜95で被覆され、上記平坦化膜95上にカラーフィルター層96が形成されている。そして、入射光が効率よく受光部52に集光されるように、上記カラーフィルター層96上に集光レンズ97が設けられている。
上記集光レンズ97を形成するときに、本発明の各レンズの製造方法を適用することができる。
次に、図5によって、本発明の固体撮像装置の適用する一例として全面開口型CMOSイメージセンサを示した。
図5に示すように、半導体基板111で形成される活性層112には、入射光を電気信号に変換する光電変換部(例えばフォトダイオード)122、転送トランジスタ、増幅トランジスタ、リセットトランジスタ等のトランジスタ群123(図面ではその一部を図示)等を有する複数の画素部121が形成されている。上記半導体基板111には、例えばシリコン基板を用いる。さらに、各光電変換部122から読み出した信号電荷を処理する信号処理部(図示せず)が形成されている。
上記画素部121の周囲の一部、例えば行方向もしくは列方向の画素部121間には、素子分離領域124が形成されている。
また、上記光電変換部122が形成された半導体基板111の表面側(図面では半導体基板111の下側)には配線層131が形成されている。この配線層131は、配線132とこの配線132を被覆する絶縁膜133からなる。上記配線層131には、支持基板135が形成されている。この支持基板135は、例えばシリコン基板からなる。
さらに、上記固体撮像装置6には、半導体基板111裏面側に光透過性を有する平坦化膜141が形成されている。さらにこの平坦化膜141(図面で上面側)には、有機カラーフィルター層142が形成されている。また、上記有機カラーフィルター層142上には、各光電変換部122に入射光を集光させる集光レンズ151が形成されている。
上記集光レンズ151を形成するときに、本発明の各レンズの製造方法を適用することができる。
なお、図5では、いわゆる、裏面照射型のCMOS型固体撮像装置を示したが、本発明の固体撮像装置の製造方法では、配線層側から入射光を光電変換部に取り込む、いわゆる、表面照射型のCMOS型固体撮像装置の製造方法にも適用することができる。
よって、上記説明したように、簡便な方法で、表面に凹凸が形成された集光レンズ97(前記図4参照)、集光レンズ151(前記図5参照)を形成することができる。
その凹凸の大きさ、分布密度は、ナノ構造体の大きさ、材質、分布密度を適宜変更することで、意図的に制御することが可能になる。
このように、レンズ表面に所望の凹凸を制御性よく形成することができるので、レンズの集光効率を高めることができ、固体撮像装置の受光感度の向上を図ることができる。また、簡便な方法でレンズ表面に凹凸を形成することができるので、製造コストが低減できる。
したがって、高い集光効率の要求に対して製造工程数の増加を抑えることができ、世代の異なる固体撮像装置に対しても適用することが可能となる。
その凹凸の大きさ、分布密度は、ナノ構造体の大きさ、材質、分布密度を適宜変更することで、意図的に制御することが可能になる。
このように、レンズ表面に所望の凹凸を制御性よく形成することができるので、レンズの集光効率を高めることができ、固体撮像装置の受光感度の向上を図ることができる。また、簡便な方法でレンズ表面に凹凸を形成することができるので、製造コストが低減できる。
したがって、高い集光効率の要求に対して製造工程数の増加を抑えることができ、世代の異なる固体撮像装置に対しても適用することが可能となる。
また、本発明のレンズの製造方法は、固体撮像装置のレンズの製造方法に限らず、光学センサのような入射光を受光部に集光するデバイスに設けられた集光レンズの製造方法にも、適用することができる。
11…基体、12…レンズ形成層、13…金属粒子を有する有機膜、14…金属粒子、15…第1レンズ型、16…第2レンズ型、17…レンズ
Claims (5)
- 基体上にレンズ形成層を形成する工程と、
前記レンズ形成層表面に金属粒子を含む有機膜を形成する工程と、
前記金属粒子を含む有機膜上にレンズ型を形成する工程と、
前記レンズ型と前記金属粒子を含む有機膜と前記レンズ形成層をエッチングして、前記レンズ形成層で前記レンズ型の表面形状が転写された表面に凹凸を有するレンズを形成する工程と
を有することを特徴とするレンズの製造方法。 - 前記金属粒子は前記レンズを形成するときのエッチングマスクとなる
ことを特徴とする請求項1記載のレンズの製造方法。 - 前記エッチングはプラズマエッチングであり、
前記金属粒子は前記有機膜よりエッチング時のプラズマ耐性が高い
ことを特徴とする請求項1記載のレンズの製造方法。 - 入射光を光電変換する受光部を有し、前記受光部の前記入射光側に入射光を前記受光部に集光するレンズを形成する固体撮像装置の製造方法において、
前記レンズの形成工程は、
前記受光部が形成された基体上にレンズ形成層を形成する工程と、
前記レンズ形成層表面に金属粒子を含む有機膜を形成する工程と、
前記金属粒子を含む有機膜上にレンズ型を形成する工程と、
前記レンズ型と前記金属粒子を含む有機膜と前記レンズ形成層をエッチングして、前記レンズ形成層で前記レンズ型の表面形状が転写された表面に凹凸を有するレンズを形成する工程と
を有することを特徴とする固体撮像装置の製造方法。 - 前記基体の最上層にカラーフィルター層が形成され、
前記カラーフィルター層上に前記レンズ形成層を形成する
ことを特徴とする請求項4記載の固体撮像装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008003909A JP2009168872A (ja) | 2008-01-11 | 2008-01-11 | レンズの製造方法および固体撮像装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008003909A JP2009168872A (ja) | 2008-01-11 | 2008-01-11 | レンズの製造方法および固体撮像装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009168872A true JP2009168872A (ja) | 2009-07-30 |
Family
ID=40970150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008003909A Pending JP2009168872A (ja) | 2008-01-11 | 2008-01-11 | レンズの製造方法および固体撮像装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009168872A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015032590A (ja) * | 2013-07-31 | 2015-02-16 | ソニー株式会社 | 撮像素子、撮像装置、並びに、製造装置および方法 |
JP2015207638A (ja) * | 2014-04-18 | 2015-11-19 | キヤノン株式会社 | 光電変換素子およびその製造方法 |
JP2017011091A (ja) * | 2015-06-22 | 2017-01-12 | 凸版印刷株式会社 | 固体撮像素子および電子機器 |
JP2023053868A (ja) * | 2021-10-01 | 2023-04-13 | 采▲ぎょく▼科技股▲ふん▼有限公司 | イメージセンサ |
-
2008
- 2008-01-11 JP JP2008003909A patent/JP2009168872A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015032590A (ja) * | 2013-07-31 | 2015-02-16 | ソニー株式会社 | 撮像素子、撮像装置、並びに、製造装置および方法 |
JP2015207638A (ja) * | 2014-04-18 | 2015-11-19 | キヤノン株式会社 | 光電変換素子およびその製造方法 |
JP2017011091A (ja) * | 2015-06-22 | 2017-01-12 | 凸版印刷株式会社 | 固体撮像素子および電子機器 |
JP2023053868A (ja) * | 2021-10-01 | 2023-04-13 | 采▲ぎょく▼科技股▲ふん▼有限公司 | イメージセンサ |
JP7442556B2 (ja) | 2021-10-01 | 2024-03-04 | 采▲ぎょく▼科技股▲ふん▼有限公司 | イメージセンサ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI488291B (zh) | 固態成像裝置,其製造方法,及電子設備 | |
US10054719B2 (en) | Methods for farbricating double-lens structures | |
US7569804B2 (en) | Image sensor having exposed dielectric layer in a region corresponding to a first color filter by a passivation layer | |
TWI321348B (en) | Advance ridge structure for microlens gapless approach | |
US20060292731A1 (en) | CMOS image sensor and manufacturing method thereof | |
JP2013033864A (ja) | 固体撮像素子の製造方法、固体撮像素子、および電子機器 | |
US9806124B2 (en) | Solid state image pickup apparatus and method for manufacturing the same | |
US20090189233A1 (en) | Cmos image sensor and method for manufacturing same | |
TW202127543A (zh) | 影像感測件、光學結構及其形成方法 | |
JP2003204050A (ja) | 固体撮像装置 | |
JP2009116056A (ja) | レンズの製造方法および固体撮像装置の製造方法 | |
JP2009168872A (ja) | レンズの製造方法および固体撮像装置の製造方法 | |
JP2006165162A (ja) | 固体撮像素子 | |
JP4243258B2 (ja) | 光学効率を増加させる金属パターン周辺の絶縁層の平坦化方法 | |
KR100672661B1 (ko) | 시모스 이미지 센서의 제조방법 | |
US9269744B2 (en) | Manufacturing method of solid-state imaging apparatus | |
JP2014239081A (ja) | 固体撮像装置 | |
JP2013012653A (ja) | 光学素子およびその製造方法 | |
JP4915135B2 (ja) | 固体撮像装置の製造方法 | |
JP2014207273A (ja) | 固体撮像素子及び固体撮像素子の製造方法 | |
US20090160000A1 (en) | Image sensor and method for manufacturing the sensor | |
JP6161295B2 (ja) | 固体撮像装置及びその製造方法 | |
hee Nam et al. | The optimization of zero-spaced microlenses for 2.2 um pixel CMOS image sensor | |
WO2011099091A1 (ja) | 固体撮像素子 | |
JP2005109445A (ja) | 固体撮像装置 |