JP2009167035A - Method for producing high purity alkali metal carbonate aqueous solution - Google Patents
Method for producing high purity alkali metal carbonate aqueous solution Download PDFInfo
- Publication number
- JP2009167035A JP2009167035A JP2008005009A JP2008005009A JP2009167035A JP 2009167035 A JP2009167035 A JP 2009167035A JP 2008005009 A JP2008005009 A JP 2008005009A JP 2008005009 A JP2008005009 A JP 2008005009A JP 2009167035 A JP2009167035 A JP 2009167035A
- Authority
- JP
- Japan
- Prior art keywords
- alkali metal
- aqueous solution
- metal carbonate
- carbonate aqueous
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000288 alkali metal carbonate Inorganic materials 0.000 title claims abstract description 116
- 150000008041 alkali metal carbonates Chemical class 0.000 title claims abstract description 116
- 239000007864 aqueous solution Substances 0.000 title claims abstract description 115
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 90
- 239000013522 chelant Substances 0.000 claims abstract description 60
- 239000011347 resin Substances 0.000 claims abstract description 59
- 229920005989 resin Polymers 0.000 claims abstract description 59
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 43
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical group CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 claims abstract description 23
- 229910052742 iron Inorganic materials 0.000 claims abstract description 22
- 125000000524 functional group Chemical group 0.000 claims abstract description 20
- 239000000243 solution Substances 0.000 claims abstract description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- 239000010949 copper Substances 0.000 claims abstract description 12
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 8
- 239000010941 cobalt Substances 0.000 claims abstract description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- 239000010936 titanium Substances 0.000 claims abstract description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 239000012266 salt solution Substances 0.000 claims 1
- 230000002349 favourable effect Effects 0.000 abstract 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 23
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229910000027 potassium carbonate Inorganic materials 0.000 description 12
- 235000011181 potassium carbonates Nutrition 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 239000003456 ion exchange resin Substances 0.000 description 11
- 229920003303 ion-exchange polymer Polymers 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 9
- 235000012431 wafers Nutrition 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 8
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 7
- -1 patent document 5 Chemical compound 0.000 description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 description 7
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 5
- 235000017557 sodium bicarbonate Nutrition 0.000 description 5
- 239000011550 stock solution Substances 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011736 potassium bicarbonate Substances 0.000 description 4
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 4
- 235000015497 potassium bicarbonate Nutrition 0.000 description 4
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920003053 polystyrene-divinylbenzene Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004880 oxines Chemical group 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
本発明は、粗アルカリ金属炭酸塩水溶液中の重金属分を効果的に除去することができる高純度アルカリ金属炭酸塩水溶液の製造方法に関する。更に詳しくは、本発明は、官能基としてN−メチルグルカミン基を有するキレート樹脂を用いて、粗アルカリ金属炭酸塩水溶液中の重金属分を効果的に除去することができる高純度アルカリ金属炭酸塩水溶液の製造方法に関する。 The present invention relates to a method for producing a high-purity alkali metal carbonate aqueous solution capable of effectively removing heavy metal components in a crude alkali metal carbonate aqueous solution. More specifically, the present invention relates to a high-purity alkali metal carbonate that can effectively remove heavy metal components in a crude alkali metal carbonate aqueous solution by using a chelate resin having an N-methylglucamine group as a functional group. The present invention relates to a method for producing an aqueous solution.
半導体ウェーハやカラーフィルター等の電子部品の製造においては、ウェーハ表面のエッチングによる平面化、レジスト材の現像と除去、あるいは表面の洗浄等を目的として水酸化アルカリとアルカリ金属炭酸塩の水溶液が使用されている。これらの電子部品の製造に使用されるアルカリ金属炭酸塩は、半導体ウェーハの劣化、半導体デバイスの特性の低下等を防ぐため、鉄や銅等の金属不純物を含まない高純度のアルカリ金属炭酸塩であることが要求されている。また、これらの用途では、使用中にアルカリ金属炭酸塩が適宜追加されるが、追加時に希薄溶液を用いると全体の水分が多くなり組成が大きく変化してしまうため、通常、濃厚溶液が追加される。また、この他、医療用や化粧品等においても、金属不純物等を含まない高純度の薬剤の要求が高まっている。 In the manufacture of electronic components such as semiconductor wafers and color filters, aqueous solutions of alkali hydroxides and alkali metal carbonates are used for the purpose of planarizing the wafer surface by etching, developing and removing the resist material, or cleaning the surface. ing. Alkali metal carbonates used in the manufacture of these electronic components are high-purity alkali metal carbonates that do not contain metal impurities such as iron and copper in order to prevent deterioration of semiconductor wafers and degradation of semiconductor device characteristics. It is required to be. In these applications, alkali metal carbonate is added as needed during use, but if a dilute solution is used at the time of addition, the total moisture will increase and the composition will change greatly, so a concentrated solution is usually added. The In addition, for medical use and cosmetics, there is an increasing demand for high-purity drugs that do not contain metal impurities.
高純度のアルカリ金属炭酸塩水溶液の製法としては、例えば、イオン交換膜により水酸化アルカリを精製した後、二酸化炭素と反応させる方法が知られている。この際に使用する高純度水酸化アルカリの製造方法としては、陽イオン交換膜により陽極室と陰極室とに区画された電解槽を用いて不純物濃度の低いアルカリ溶液を生成させる方法が知られている(例えば、特許文献1参照。)。この他、高純度水酸化アルカリの製造方法としては、活性炭により水酸化カリウム中のニッケルを除去する方法(例えば、特許文献2参照。)、活性炭により水酸化ナトリウム中の鉄やニッケルを除去する方法(例えば、特許文献3参照。)、オキシン基等の特定の構造を有するキレート性官能基を有する樹脂により、水酸化アルカリ中の鉄、クロム、ニッケルを除去する方法(例えば、特許文献4参照。)、イオン交換樹脂、キレート樹脂及び活性炭を組み合わせて使用し、重金属を除去する方法(例えば、特許文献5参照。)が開示されている。 As a method for producing a high-purity alkali metal carbonate aqueous solution, for example, a method in which an alkali hydroxide is purified by an ion exchange membrane and then reacted with carbon dioxide is known. As a method for producing high-purity alkali hydroxide used at this time, a method of producing an alkaline solution having a low impurity concentration using an electrolytic cell partitioned into an anode chamber and a cathode chamber by a cation exchange membrane is known. (For example, refer to Patent Document 1). In addition, as a method for producing high-purity alkali hydroxide, a method of removing nickel in potassium hydroxide with activated carbon (see, for example, Patent Document 2), a method of removing iron or nickel in sodium hydroxide with activated carbon. (For example, refer to Patent Document 3), a method of removing iron, chromium and nickel in an alkali hydroxide with a resin having a chelating functional group having a specific structure such as an oxine group (for example, refer to Patent Document 4). ), A method for removing heavy metals by using a combination of an ion exchange resin, a chelate resin and activated carbon (see, for example, Patent Document 5).
しかし、特許文献1に記載された方法では、精製精度は十分に高いものの設備化に比較的手間がかかり、何処でも簡単に高純度に精製された水酸化アルカリが得られない状況である。また、特許文献2〜4の方法では、比較的簡単な設備で対応でき、高度な精製が可能であるが、除去することができる金属種が限られており、更に、設備等から水溶液に一部溶出する金属種もあり、この溶出を防ぐための前処理に労力がかかる場合もある。また、特許文献5のように、イオン交換樹脂、キレート樹脂及び活性炭を組み合わせても、重金属、特に鉄やアルミニウムの除去は不十分である。このように、高純度水酸化アルカリを容易に得ることができず、従って、高純度アルカリ金属炭酸塩水溶液の製造も容易ではなかった。 However, in the method described in Patent Document 1, although the purification accuracy is sufficiently high, it takes a relatively large amount of time for installation, and it is not possible to obtain an alkali hydroxide that is easily purified to high purity anywhere. In addition, the methods of Patent Documents 2 to 4 can be handled with relatively simple equipment and can be highly purified. However, the metal species that can be removed are limited, and further, the equipment can be used as an aqueous solution. Some metal species elute, and pre-treatment to prevent this elution may take effort. Moreover, even if it combines an ion exchange resin, a chelate resin, and activated carbon like patent document 5, removal of a heavy metal, especially iron and aluminum is inadequate. As described above, high-purity alkali hydroxide cannot be easily obtained. Therefore, it is not easy to produce a high-purity alkali metal carbonate aqueous solution.
本発明は、上記の従来の状況に鑑みてなされたものであり、アルカリ金属炭酸塩水溶液を高濃度の状態のままで、この中に含有される重金属分を除去し、精製することができる高純度アルカリ金属炭酸塩水溶液の製造方法を提供することを課題とする。 The present invention has been made in view of the above-described conventional situation, and it is possible to remove and purify a heavy metal component contained in an alkali metal carbonate aqueous solution in a high concentration state. It is an object of the present invention to provide a method for producing a pure alkali metal carbonate aqueous solution.
アルカリ金属炭酸塩水溶液からの重金属分の除去を鋭意検討した結果、官能基としてN−メチルグルカミン基を有するキレート樹脂により粗アルカリ金属炭酸塩水溶液中の重金属分を十分に除去できることを見出し、本発明を完成させた。
即ち、本発明は具体的には以下の通りである。
1.官能基としてN−メチルグルカミン基を有するキレート樹脂を用いて、粗アルカリ金属炭酸塩水溶液中の重金属を除去することにより、高純度アルカリ金属炭酸塩水溶液を得ることを特徴とする高純度アルカリ金属炭酸塩水溶液の製造方法。
2.前記重金属が、鉄、銅、アルミニウム、チタン及びコバルトのうちの少なくとも1種である上記1.に記載の高純度アルカリ金属炭酸塩水溶液の製造方法。
3.前記粗アルカリ金属炭酸塩水溶液に含まれる前記アルカリ金属炭酸塩の濃度が、15〜60質量%である上記1.又は2.に記載の高純度アルカリ金属炭酸塩水溶液の製造方法。
4.前記粗アルカリ金属炭酸塩水溶液に含まれる前記重金属は、5000ng/g以下である上記1.乃至3.のうちのいずれか1項に記載の高純度アルカリ金属炭酸塩水溶液の製造方法。
5.前記高純度アルカリ金属炭酸塩水溶液に含まれる重金属は、500ng/g以下である上記1.乃至4.のうちのいずれか1項に記載の高純度アルカリ金属炭酸塩水溶液の製造方法。
6.前記粗アルカリ金属炭酸塩水溶液全体を100質量%とした場合に、前記キレート樹脂は0.1〜20質量%である上記1.乃至5.のうちのいずれか1項に記載の高純度アルカリ金属炭酸塩水溶液の製造方法。
As a result of intensive investigations on the removal of heavy metals from the aqueous alkali metal carbonate solution, it was found that the heavy metal content in the aqueous crude alkali metal carbonate solution can be sufficiently removed by the chelate resin having an N-methylglucamine group as a functional group. Completed the invention.
That is, the present invention is specifically as follows.
1. A high-purity alkali metal, characterized in that a high-purity alkali metal carbonate aqueous solution is obtained by removing heavy metals in a crude alkali metal carbonate aqueous solution using a chelate resin having an N-methylglucamine group as a functional group A method for producing an aqueous carbonate solution.
2. The above 1. wherein the heavy metal is at least one of iron, copper, aluminum, titanium and cobalt. A method for producing a high-purity alkali metal carbonate aqueous solution as described in 1.
3. 1. The concentration of the alkali metal carbonate contained in the crude alkali metal carbonate aqueous solution is 15 to 60% by mass. Or 2. A method for producing a high-purity alkali metal carbonate aqueous solution as described in 1.
4). The heavy metal contained in the crude alkali metal carbonate aqueous solution is 5000 ng / g or less. To 3. The manufacturing method of the high purity alkali metal carbonate aqueous solution of any one of these.
5. The heavy metal contained in the high purity alkali metal carbonate aqueous solution is 500 ng / g or less. To 4. The manufacturing method of the high purity alkali metal carbonate aqueous solution of any one of these.
6). The chelating resin is 0.1 to 20% by mass when the total amount of the crude alkali metal carbonate aqueous solution is 100% by mass. To 5. The manufacturing method of the high purity alkali metal carbonate aqueous solution of any one of these.
本発明の高純度アルカリ金属炭酸塩水溶液の製造方法によれば、官能基としてN−メチルグルカミン基を有するキレート樹脂を用いて粗アルカリ金属炭酸塩水溶液中の重金属を除去するものであるため、重金属を含む粗アルカリ金属炭酸塩水溶液から効率よく重金属を捕捉し、除去することができ、重金属が、鉄、銅、アルミニウム、チタン及びコバルトのうちの少なくとも1種である場合、これらをより効率よく除去することができる。これらの重金属は、特に、半導体ウェーハの劣化、半導体デバイスの特性の低下等をもたらすため、除去する効果が大きい。
粗アルカリ金属炭酸塩水溶液に含まれるアルカリ金属炭酸塩の濃度が、15〜60質量%であれば、高濃度であるため、例えば、研磨剤等に添加することにより、研磨剤等の濃度の低下を抑制しつつ、その作用効果を維持することができる。
粗アルカリ金属炭酸塩水溶液に含まれる重金属が、5000ng/g以下であれば、効率よく重金属を除去することができ、より高純度のアルカリ金属炭酸塩水溶液を製造することができる。
本発明の高純度アルカリ金属炭酸塩水溶液の製造方法であれば、重金属を500ng/g以下にまで低減させることができ、極めて高純度のアルカリ金属炭酸塩水溶液を製造することができる。
粗アルカリ金属炭酸塩水溶液全体を100質量%とした場合に、キレート樹脂が0.1〜20質量%であれば、効率よく高純度アルカリ金属炭酸塩水溶液を製造することができる。
According to the method for producing a high-purity alkali metal carbonate aqueous solution of the present invention, a heavy metal in a crude alkali metal carbonate aqueous solution is removed using a chelate resin having an N-methylglucamine group as a functional group. Heavy metals can be efficiently captured and removed from a crude alkali metal carbonate aqueous solution containing heavy metals, and when the heavy metals are at least one of iron, copper, aluminum, titanium, and cobalt, these are more efficiently Can be removed. These heavy metals are particularly effective for removal because they cause deterioration of semiconductor wafers, deterioration of characteristics of semiconductor devices, and the like.
If the concentration of the alkali metal carbonate contained in the crude alkali metal carbonate aqueous solution is 15 to 60% by mass, the concentration is high. For example, by adding to the abrasive, the concentration of the abrasive or the like is reduced. The effect can be maintained while suppressing the above.
If the heavy metal contained in the crude alkali metal carbonate aqueous solution is 5000 ng / g or less, the heavy metal can be efficiently removed, and a higher purity alkali metal carbonate aqueous solution can be produced.
If it is the manufacturing method of the highly purified alkali metal carbonate aqueous solution of this invention, a heavy metal can be reduced to 500 ng / g or less, and an extremely high purity alkali metal carbonate aqueous solution can be manufactured.
When the total amount of the crude alkali metal carbonate aqueous solution is 100% by mass, if the chelate resin is 0.1 to 20% by mass, a high-purity alkali metal carbonate aqueous solution can be efficiently produced.
本発明の高純度アルカリ金属炭酸塩水溶液の製造方法は、官能基としてN−メチルグルカミン基を有するキレート樹脂(以下、「キレート樹脂」ともいう。)を用いて、粗アルカリ金属炭酸塩水溶液中の重金属を除去することを特徴とする。 The method for producing a high-purity alkali metal carbonate aqueous solution of the present invention uses a chelate resin having an N-methylglucamine group as a functional group (hereinafter also referred to as “chelate resin”) in a crude alkali metal carbonate aqueous solution. The heavy metal is removed.
[1]N−メチルグルカミン基を有するキレート樹脂
前記「N−メチルグルカミン基を有するキレート樹脂」は、金属イオンに対する選択性がイオン交換樹脂よりもはるかに大きく、更に、キレート樹脂が有する官能基であるN−メチルグルカミン基により重金属が捕捉されて強固なキレートが形成されるため、重金属が再度溶出することがなく、効率的に重金属を除去することが可能である。そのため、重金属を数ng/g以下にまで除去することができる。
[1] Chelate resin having an N-methylglucamine group The “chelate resin having an N-methylglucamine group” has a much higher selectivity for metal ions than an ion exchange resin, and further has a functional property of the chelate resin. Since the heavy metal is captured by the N-methylglucamine group as a group and a strong chelate is formed, the heavy metal can be efficiently removed without being eluted again. Therefore, heavy metals can be removed to several ng / g or less.
N−メチルグルカミン基を有するキレート樹脂としては、ポリスチレン、ポリスチレン−ジビニルベンゼン共重合体及びフェノール樹脂等に、N−メチルグルカミン基が結合した樹脂が挙げられる。例えば、ポリスチレン−ジビニルベンゼン共重合体にN−メチルグルカミン基が結合したものとして、ダイヤイオンCRB−05(商品名、三菱化学社製)、アンバーライトIRA743(商品名、Rohm&Haas社製)やユニセレックUR−3500S(商品名、ユニチカ社製)等を例示することができる。 Examples of the chelate resin having an N-methylglucamine group include a resin in which an N-methylglucamine group is bonded to polystyrene, a polystyrene-divinylbenzene copolymer, a phenol resin, or the like. For example, as a combination of polystyrene-divinylbenzene copolymer with N-methylglucamine group, Diaion CRB-05 (trade name, manufactured by Mitsubishi Chemical), Amberlite IRA743 (trade name, manufactured by Rohm & Haas) Examples thereof include UR-3500S (trade name, manufactured by Unitika).
重金属の除去をバッチ式で行う場合は、N−メチルグルカミン基を有するキレート樹脂の添加量は、粗アルカリ金属炭酸塩水溶液全体を100質量%とした場合に、0.1〜20質量%であることが好ましく、0.3〜10質量%であることがより好ましく、1〜10質量%であることが更に好ましい。0.1質量%未満では、十分な重金属除去の効果が得られず、20質量%を超えて添加しても、重金属除去の効果はそれ以上大きく向上することはない。但し、粗アルカリ金属炭酸塩水溶液中の重金属濃度により適宜調整することが好ましい。 When removing heavy metals in a batch system, the amount of chelate resin having an N-methylglucamine group is 0.1 to 20% by mass when the total amount of the crude alkali metal carbonate aqueous solution is 100% by mass. Preferably, it is 0.3 to 10 mass%, more preferably 1 to 10 mass%. If the amount is less than 0.1% by mass, a sufficient effect of removing heavy metals cannot be obtained. Even if the amount exceeds 20% by mass, the effect of removing heavy metals is not greatly improved. However, it is preferable to adjust appropriately according to the heavy metal concentration in the crude alkali metal carbonate aqueous solution.
重金属の除去を連続式で行う場合は、容器中の溶液を入れ替えることなく作業することができるため、バッチ式より作業効率が高く好ましい。連続式で行う場合、例えば、充填塔を用いて重金属を除去させるときは、粗アルカリ金属炭酸塩水溶液の単位時間当たりの流量である空塔速度(以下、「SV」と略記する。)で表示すると、SV=0.1〜5[1/時間]、好ましくはSV=0.2〜3[1/時間]、より好ましくはSV=0.3〜2[1/時間]でキレート樹脂に接触させることによって、より効率よく重金属を除去することができる。また、充填塔が破過に達する前に充填したキレート樹脂を入れ替えることにより、連続して重金属を除去する時間を延ばすことができる。入れ替えるキレート樹脂の量は入れ替え前に処理した粗アルカリ金属炭酸塩水溶液を100質量%とした場合に、0.1〜20質量%であることが好ましく、0.3〜10質量%であることがより好ましく、0.3〜1質量%であることが更に好ましい。キレート樹脂は繰り返し使用し、除去効果に応じて一括入れ替え、若しくは逐次入れ替えをすればよく、更には後述の再生により重金属が除去された状態に回復させ、維持させることができる。 When removing heavy metals in a continuous manner, it is possible to work without replacing the solution in the container, which is preferable because the working efficiency is higher than the batch manner. In the case of continuous operation, for example, when heavy metal is removed using a packed tower, it is indicated by a superficial velocity (hereinafter abbreviated as “SV”) which is a flow rate per unit time of the crude alkali metal carbonate aqueous solution. Then, SV = 0.1-5 [1 / hour], preferably SV = 0.2-3 [1 / hour], more preferably SV = 0.3-2 [1 / hour], and contact with the chelate resin By doing so, heavy metals can be more efficiently removed. Moreover, the time for removing heavy metals continuously can be extended by replacing the chelate resin packed before the packed tower reaches breakthrough. The amount of the chelate resin to be replaced is preferably 0.1 to 20% by mass, and preferably 0.3 to 10% by mass, when the crude alkali metal carbonate aqueous solution treated before replacement is 100% by mass. More preferably, it is still more preferably 0.3-1 mass%. The chelate resin may be used repeatedly, and may be replaced in a batch or sequentially in accordance with the removal effect. Further, the chelate resin can be recovered and maintained in a state in which heavy metals have been removed by regeneration described later.
重金属類が吸着したキレート樹脂は、超純水等による洗浄や逆洗浄操作などの後、更には塩酸や硝酸等の酸で処理した後、水で洗浄する等の、公知の脱重金属操作による再生方法を適用し、再生させることができる。そして、このようにして再生したキレート樹脂は、本発明の高純度アルカリ金属炭酸塩水溶液の製造に再使用することができる。 The chelate resin with heavy metals adsorbed is regenerated by known demetalized metal operations such as washing with ultrapure water, backwashing, etc., and further treating with acid such as hydrochloric acid or nitric acid and then washing with water. The method can be applied and replayed. The chelate resin regenerated in this way can be reused in the production of the high-purity alkali metal carbonate aqueous solution of the present invention.
[2]粗アルカリ金属炭酸塩水溶液
前記「粗アルカリ金属炭酸塩水溶液」とは、重金属を除去する前のアルカリ金属炭酸塩水溶液である。
アルカリ金属炭酸塩としては、炭酸水素カリウム、炭酸水素ナトリウム、炭酸ナトリウム及び炭酸カリウムが好ましい種類として挙げられ、炭酸水素カリウム、炭酸ナトリウム及び炭酸カリウムが更に好ましく、炭酸ナトリウム、炭酸カリウムが特に好ましく、効率よく重金属除去処理ができる炭酸カリウムが最も好ましい。
[2] Crude alkali metal carbonate aqueous solution The “crude alkali metal carbonate aqueous solution” is an alkali metal carbonate aqueous solution before removing heavy metals.
Examples of the alkali metal carbonate include potassium hydrogen carbonate, sodium hydrogen carbonate, sodium carbonate and potassium carbonate, preferred are potassium hydrogen carbonate, sodium carbonate and potassium carbonate, particularly preferred are sodium carbonate and potassium carbonate, and efficiency. Most preferred is potassium carbonate, which is capable of removing heavy metals.
使用する粗アルカリ金属炭酸塩水溶液は、水酸化アルカリ金属水溶液に炭酸を吹き込んで炭酸アルカリ金属水溶液や炭酸水素アルカリ金属水溶液にしたもの、又は水酸化アルカリ金属と炭酸水素アルカリ金属を水溶液で反応させ、炭酸アルカリ金属水溶液にしたもの、更には炭酸水素アルカリ金属を焼成してアルカリ金属炭酸塩にした後、これを水溶液にしたもの等が挙げられる。 The crude alkali metal carbonate aqueous solution used is obtained by blowing carbon dioxide into an alkali metal hydroxide aqueous solution to make an alkali metal carbonate aqueous solution or an alkali metal hydrogen carbonate aqueous solution, or reacting an alkali metal hydroxide and an alkali metal hydrogen carbonate with an aqueous solution, Examples include an alkali metal carbonate aqueous solution, an alkali metal hydrogen carbonate baked to an alkali metal carbonate, and then converted into an aqueous solution.
粗アルカリ金属炭酸塩水溶液に含まれるアルカリ金属炭酸塩の濃度は、どのような濃度でも重金属低減効果が望めるが、例えば、研磨剤等に添加して使用する場合、研磨剤等の濃度が低下しないように、高濃度であることが好ましい。また、輸送効率、保管効率や、その後の取り扱いで濃縮する等の余計な操作を必要としないよう、高濃度であることが好ましい。 The concentration of alkali metal carbonate contained in the crude alkali metal carbonate aqueous solution can be expected to reduce heavy metals at any concentration. For example, when used by adding to an abrasive, the concentration of the abrasive does not decrease. Thus, a high concentration is preferable. Moreover, it is preferable that it is high concentration so that extra operations, such as transport efficiency, storage efficiency, and concentration by subsequent handling, are not required.
粗アルカリ金属炭酸塩水溶液中のアルカリ金属炭酸塩の濃度は、炭酸カリウムであれば、粗アルカリ金属炭酸塩水溶液全体を100質量%とした場合に、炭酸カリウム20〜60質量%であることが好ましい。20質量%未満では、研磨剤等として使用したときに十分な作用効果が得られず、60質量%を超えると、常温(20〜30℃)では溶解度を超え、析出するおそれがあるからである。この濃度は25〜57質量%であることが更に好ましく、30〜54質量%であることが特に好ましく、40〜50質量%であることが最も好ましい。 If the density | concentration of the alkali metal carbonate in crude alkali metal carbonate aqueous solution is potassium carbonate, when the whole crude alkali metal carbonate aqueous solution shall be 100 mass%, it is preferable that it is 20-60 mass% of potassium carbonate. . If it is less than 20% by mass, a sufficient effect cannot be obtained when used as an abrasive or the like, and if it exceeds 60% by mass, it exceeds the solubility at room temperature (20 to 30 ° C.) and may precipitate. . This concentration is more preferably 25 to 57% by mass, particularly preferably 30 to 54% by mass, and most preferably 40 to 50% by mass.
炭酸水素カリウム及び炭酸ナトリウムであれば、粗アルカリ金属炭酸塩水溶液全体を100質量%とした場合に、炭酸水素カリウム及び炭酸ナトリウム15〜25質量%であることが好ましい。15質量%未満では、研磨剤等として使用したときに十分な作用効果が得られず、25質量%を超えると、常温では溶解度を超え、析出するおそれがあるからである。この濃度は18〜22質量%であることが更に好ましい。 If it is potassium hydrogen carbonate and sodium carbonate, when the whole crude alkali metal carbonate aqueous solution shall be 100 mass%, it is preferable that they are 15-25 mass% of potassium hydrogen carbonate and sodium carbonate. If it is less than 15% by mass, sufficient effects cannot be obtained when it is used as an abrasive or the like, and if it exceeds 25% by mass, the solubility at room temperature may be exceeded and precipitation may occur. This concentration is more preferably 18 to 22% by mass.
炭酸水素ナトリウムであれば、粗アルカリ金属炭酸塩水溶液全体を100質量%とした場合に、炭酸水素ナトリウム5〜10質量%であることが好ましい。10質量%を超えると、溶解度を超え、析出するおそれがあるからである。この濃度は8〜10質量%であることが更に好ましい。 If it is sodium hydrogen carbonate, when the whole crude alkali metal carbonate aqueous solution shall be 100 mass%, it is preferable that it is 5-10 mass% of sodium hydrogen carbonate. This is because if it exceeds 10% by mass, the solubility may be exceeded and precipitation may occur. This concentration is more preferably 8 to 10% by mass.
[3]重金属
前記「重金属」とは、粗アルカリ金属炭酸塩水溶液に含まれる不純物としての重金属である。
粗アルカリ金属炭酸塩水溶液に含まれる不純物としての重金属としては、例えば、鉄、銅、アルミニウム、チタン、コバルト、アルカリ土類金属(カルシウム、マグネシウム、ストロンチウム及びバリウム)、ニッケル、亜鉛、鉛、カドミウム、マンガン、バナジウム、モリブデン、クロム、ジルコニウム、銀、錫、水銀、アンチモン、ビスマス、ガリウム、タリウム等が挙げられ、これらを極力少なくすることが望ましい。
[3] Heavy Metal The “heavy metal” is a heavy metal as an impurity contained in a crude alkali metal carbonate aqueous solution.
Examples of heavy metals as impurities contained in the crude alkali metal carbonate aqueous solution include iron, copper, aluminum, titanium, cobalt, alkaline earth metals (calcium, magnesium, strontium and barium), nickel, zinc, lead, cadmium, Manganese, vanadium, molybdenum, chromium, zirconium, silver, tin, mercury, antimony, bismuth, gallium, thallium and the like can be mentioned, and it is desirable to reduce these as much as possible.
更には、特定の重金属においては少量の含有でも製品の品質に対して影響が大きい。この特定の重金属とは、鉄、銅、アルミニウム、チタン、コバルトであり、これらは、より低レベルまで低減できることが好ましい。特に、半導体ウェーハやカラーフィルター等の電子部品の製造においては、半導体ウェーハの劣化、半導体デバイスの特性の低下等を防ぐため、これらの特定の重金属の含有量が極力少ない高純度の水溶液であることが要求されている。 Furthermore, even if a specific heavy metal is contained in a small amount, the quality of the product is greatly affected. The specific heavy metals are iron, copper, aluminum, titanium, and cobalt, and it is preferable that these can be reduced to a lower level. In particular, in the manufacture of electronic components such as semiconductor wafers and color filters, it must be a high-purity aqueous solution that contains as little of these specific heavy metals as possible in order to prevent deterioration of the semiconductor wafer and deterioration of the characteristics of the semiconductor device. Is required.
重金属が含有される過程としては、アルカリ金属炭酸塩水溶液の製造工程において、原材料に元々含まれている場合、重金属製の製造容器から溶出する場合、製造ラインのパイプ等から溶出する場合、及び製造したアルカリ金属炭酸塩水溶液を保存する金属製容器から溶出する場合等が考えられる。例えば、ステンレス製の容器により製造又は保存すれば、鉄、ニッケル、クロム等の重金属が溶出することがある。 Processes involving heavy metals include, when originally contained in raw materials, in the production process of alkali metal carbonate aqueous solution, when eluted from heavy metal production containers, when eluted from production line pipes, etc. The case where it elutes from the metal container which preserve | saved the alkali metal carbonate aqueous solution preserve | saved is considered. For example, when manufactured or stored in a stainless steel container, heavy metals such as iron, nickel, and chromium may be eluted.
[4]除去
前記「除去」とは、粗アルカリ金属炭酸塩水溶液から重金属を取り除き、高純度のアルカリ金属炭酸塩水溶液を得る過程をいう。この除去は、含有されている重金属を実質的に完全に取り除く場合のみならず、不完全に取り除く場合をも意味する。
粗アルカリ金属炭酸塩水溶液に混入していても差し支えない重金属の濃度は、除去操作後の高純度アルカリ金属炭酸塩水溶液に残存する重金属の濃度により異なる。例えば、重金属除去後の濃度が30ng/g以下である場合、除去前に混入していても差し支えない濃度として、各金属とも5000ng/g以下であることが好ましく、1000ng/g以下であることがより好ましく、500ng/g以下であることが特に好ましい。
[4] Removal The “removal” refers to a process of removing heavy metals from a crude alkali metal carbonate aqueous solution to obtain a high-purity alkali metal carbonate aqueous solution. This removal means not only the case where the contained heavy metal is substantially completely removed but also the case where it is removed incompletely.
The concentration of heavy metal that may be mixed in the crude alkali metal carbonate aqueous solution varies depending on the concentration of heavy metal remaining in the high-purity alkali metal carbonate aqueous solution after the removal operation. For example, when the concentration after heavy metal removal is 30 ng / g or less, it is preferable that each metal is 5000 ng / g or less, and 1000 ng / g or less as a concentration that may be mixed before removal. More preferably, it is particularly preferably 500 ng / g or less.
本発明の高純度アルカリ金属炭酸塩水溶液の製造方法において、重金属を除去するときの操作温度は0℃から60℃程度であればよく、この温度範囲であれば、粗アルカリ金属炭酸塩水溶液中の重金属を効率よく除去することができるので好ましい。0℃未満では、粗アルカリ金属炭酸塩水溶液中のアルカリ金属炭酸塩の溶解度が減少し、析出しやすくなり、キレート樹脂に析出物が詰まりやすく、重金属の除去効率の低下を招く。一方、60℃を超えると、加熱を継続する必要があり、経済的な面で不利である。好ましい操作温度は5℃から50℃であり、より好ましくは10℃から45℃である。 In the method for producing a high-purity alkali metal carbonate aqueous solution of the present invention, the operating temperature when removing heavy metals may be about 0 ° C. to 60 ° C., and if within this temperature range, the crude alkali metal carbonate aqueous solution It is preferable because heavy metals can be efficiently removed. If it is less than 0 ° C., the solubility of the alkali metal carbonate in the aqueous solution of the crude alkali metal carbonate is reduced, and it is likely to precipitate, the precipitate is likely to be clogged with the chelate resin, and the heavy metal removal efficiency is reduced. On the other hand, if it exceeds 60 ° C., it is necessary to continue heating, which is disadvantageous in terms of economy. The preferred operating temperature is 5 ° C to 50 ° C, more preferably 10 ° C to 45 ° C.
除去操作は、より具体的には、例えば、粗アルカリ金属炭酸塩水溶液をカラムに詰めたキレート樹脂と、0℃から60℃の間の温度で、連続的に接触させて重金属を除去し、高純度アルカリ金属炭酸塩水溶液を製造することができる。また、粗アルカリ金属炭酸塩水溶液とキレート樹脂とをバッチ式で0℃から60℃の間の温度で、例えば、2時間、接触させて重金属を除去し、高純度アルカリ金属炭酸塩水溶液を製造することもできる。 More specifically, for example, the removal operation is performed by continuously contacting a chelate resin packed in a column with a crude alkali metal carbonate aqueous solution at a temperature between 0 ° C. and 60 ° C. to remove heavy metals. A pure alkali metal carbonate aqueous solution can be produced. Moreover, a crude alkali metal carbonate aqueous solution and a chelate resin are brought into contact with each other at a temperature between 0 ° C. and 60 ° C. in a batch manner, for example, for 2 hours to remove heavy metals to produce a high purity alkali metal carbonate aqueous solution. You can also.
[5]高純度アルカリ金属炭酸塩水溶液
前記「高純度アルカリ金属炭酸塩水溶液」とは、粗アルカリ金属炭酸塩水溶液から重金属を除去した後のアルカリ金属炭酸塩水溶液である。
高純度アルカリ金属炭酸塩水溶液中に残存する重金属、即ち、鉄、銅、アルミニウム、チタン、コバルト等の濃度は500ng/g以下であることが好ましく、100ng/g以下であることがより好ましく、30ng/g以下であることが特に好ましい。
尚、粗アルカリ金属炭酸塩水溶液に含有されている各重金属の下限量は、高純度アルカリ金属炭酸塩水溶液における各重金属の含有量より多い。即ち、重金属の除去操作により上記下限量を超える多くの重金属が溶出し、含有されることはない。
[5] High-purity alkali metal carbonate aqueous solution The “high-purity alkali metal carbonate aqueous solution” is an alkali metal carbonate aqueous solution after removing heavy metals from a crude alkali metal carbonate aqueous solution.
The concentration of heavy metals remaining in the high-purity alkali metal carbonate aqueous solution, that is, iron, copper, aluminum, titanium, cobalt, etc. is preferably 500 ng / g or less, more preferably 100 ng / g or less, and 30 ng. / G or less is particularly preferable.
In addition, the minimum amount of each heavy metal contained in the crude alkali metal carbonate aqueous solution is larger than the content of each heavy metal in the high-purity alkali metal carbonate aqueous solution. That is, many heavy metals exceeding the lower limit are eluted and are not contained by the heavy metal removal operation.
本発明の高純度アルカリ金属炭酸塩水溶液の製造方法により製造した高純度アルカリ金属炭酸塩水溶液には、種々の用途があり、特に限定はされない。
この高純度アルカリ金属炭酸塩水溶液は、研磨剤にpH調整剤として配合することにより、半導体ウェーハやカラーフィルター等の電子部品の製造、例えば、エッチング後のウェーハ表面の平面化、及びレジスト材の現像と除去等において使用することができる。また、洗浄剤として、電子部品表面の洗浄に用いることもできる。
使用方法も特に限定はされず、例えば、上記のように配合して使用する場合、当初から研磨剤に配合したものを使用することもでき、研磨剤の使用にともない重金属が増加した時点で、配合して使用してもよい。
The high-purity alkali metal carbonate aqueous solution produced by the method for producing a high-purity alkali metal carbonate aqueous solution of the present invention has various uses and is not particularly limited.
This high-purity alkali metal carbonate aqueous solution is blended with a polishing agent as a pH adjuster to produce electronic parts such as semiconductor wafers and color filters, for example, planarization of the wafer surface after etching, and development of a resist material. And can be used in removal and the like. Moreover, it can also be used for washing | cleaning of the surface of an electronic component as a washing | cleaning agent.
The method of use is not particularly limited, for example, when blended and used as described above, it is also possible to use what was blended into the abrasive from the beginning, when the heavy metal increased with the use of the abrasive, You may mix | blend and use.
以下、実施例を用いて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
表1に示す重金属成分を含有する、40質量%炭酸カリウム水溶液(粗アルカリ金属炭酸塩水溶液)100gに、N−メチルグルカミン基を有するキレート樹脂(商品名;ダイヤイオンCRB−05、三菱化学社製)を0.5g加え、室温で攪拌して2時間接触させた。尚、ポリテトラフルオロエチレン製の容器を用いて試験を行い、容器から金属イオンが溶出することのないようにした。以下の実施例2〜9及び比較例1〜9においても、この材質の容器を用いた。
その後、溶液を採取し、重金属含有分の分析(下記の分析方法)を行った。その結果を表1に示す。
EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these Examples.
[Example 1]
Chelate resin (trade name; Diaion CRB-05, Mitsubishi Chemical Corporation) having an N-methylglucamine group in 100 g of 40% by mass potassium carbonate aqueous solution (crude alkali metal carbonate aqueous solution) containing heavy metal components shown in Table 1 Product) was added and stirred at room temperature for 2 hours. A test was conducted using a container made of polytetrafluoroethylene so that metal ions were not eluted from the container. Also in the following Examples 2-9 and Comparative Examples 1-9, the container of this material was used.
Thereafter, the solution was collected and analyzed for heavy metal content (the following analysis method). The results are shown in Table 1.
(重金属の分析方法)
採取した試料に超純水を加えた後、硝酸で中和した。そして100mM酢酸アンモニウム水溶液(pH5.5)を加えてメスアップし、供試液とした。その後、キレートディスクにて供試液に含まれる対象金属を捕捉し、次いで、超純水により洗浄した。そして、希硝酸を用いてキレートディスクから対象金属を溶出させ、超純水でメスアップして誘導結合プラズマ質量分析装置(ICP−MS)で各金属濃度を測定した(各金属については、事前に検量線を作成した)。
尚、以下の実施例2〜7及び比較例1〜9においてもこの分析方法で重金属の分析を行った。
(Method for analyzing heavy metals)
After ultrapure water was added to the collected sample, it was neutralized with nitric acid. Then, a 100 mM ammonium acetate aqueous solution (pH 5.5) was added to make up the volume to prepare a test solution. Thereafter, the target metal contained in the test solution was captured with a chelate disk, and then washed with ultrapure water. Then, the target metal was eluted from the chelate disk using dilute nitric acid, measured up with ultrapure water, and each metal concentration was measured with an inductively coupled plasma mass spectrometer (ICP-MS). Created a calibration curve).
In the following Examples 2 to 7 and Comparative Examples 1 to 9, heavy metals were analyzed by this analysis method.
[比較例1]
実施例1のキレート樹脂に替えて、官能基としてイミノジ酢酸Naを有するキレート樹脂(商品名;ダイヤイオンCR−11、三菱化学社製)0.5gを使用した。他の条件は実施例1と同様にして試験を行った。
以上の結果を表1に示す。
[Comparative Example 1]
Instead of the chelate resin of Example 1, 0.5 g of a chelate resin (trade name; Diaion CR-11, manufactured by Mitsubishi Chemical Corporation) having iminodiacetic acid Na as a functional group was used. The other conditions were tested in the same manner as in Example 1.
The results are shown in Table 1.
表1によれば、実施例1(N−メチルグルカミン基を有するキレート樹脂使用)は、比較例1(イミノジ酢酸Naを有するキレート樹脂使用)に比べ、いずれの重金属の除去効果も高かった。本検討においては、キレート樹脂添加量0.5gという少量の添加量にて試験を行ったが、多くの金属をよく除去できており、特に鉄の除去については顕著な効果があった。 According to Table 1, Example 1 (using a chelate resin having an N-methylglucamine group) was higher in the removal effect of any heavy metal than Comparative Example 1 (using a chelate resin having iminodiacetic acid Na). In this examination, the test was conducted with a small amount of addition of 0.5 g of chelate resin, but many metals could be removed well, and there was a remarkable effect especially on the removal of iron.
[実施例2]
表2に原液Aとして示す重金属を含有する、40質量%炭酸カリウム水溶液(粗アルカリ金属炭酸塩水溶液)100gに、官能基としてN−メチルグルカミン基を有するキレート樹脂(商品名;ダイヤイオンCRB−02、三菱化学社製)を6.4g加え、室温で攪拌して2時間接触させた。その後、溶液を採取し、重金属含有分の分析を行った。
[Example 2]
Chelate resin (trade name; Diaion CRB-) containing N-methylglucamine group as a functional group in 100 g of 40% by mass potassium carbonate aqueous solution (crude alkali metal carbonate aqueous solution) containing heavy metals shown as stock solution A in Table 2 02, manufactured by Mitsubishi Chemical Corporation), and stirred at room temperature for 2 hours. Thereafter, the solution was collected and analyzed for heavy metal content.
[比較例2]
実施例2のキレート樹脂に替えて、官能基としてイミノジ酢酸Naを有するキレート樹脂(商品名;ダイヤイオンCR−11、三菱化学社製)6.4gを使用した。他の条件は実施例2と同様にして試験を行った。
[比較例3]
表2に原液Bとして示す重金属を含有する、40質量%炭酸カリウム水溶液(粗アルカリ金属炭酸塩水溶液)100gに、官能基としてSO3Naを有するゲル型のイオン交換樹脂(商品名;ダイヤイオンSK110、三菱化学社製)6.4gを使用した。他の条件は実施例2と同様にして試験を行った。
[比較例4]
比較例3のイオン交換樹脂に替えて、官能基としてSO3Naを有するポーラス型のイオン交換樹脂(商品名;ダイヤイオンPK228、三菱化学社製)6.4gを使用した。他の条件は比較例3と同様にして試験を行った。
[比較例5]
比較例3のイオン交換樹脂に替えて、官能基としてCH2NH(CH2CH2NH)nHを有するキレート樹脂(商品名;ダイヤイオンCR−20、三菱化学社製)を使用した。他の条件は比較例3と同様にして試験を行った。
[比較例6]
比較例3のイオン交換樹脂に替えて、官能基としてCH2CCH3(COOH)nHSO3Naを有するイオン交換樹脂(商品名;ダイヤイオンWK−10、三菱化学社製)6.4gを使用した。他の条件は比較例3と同様にして試験を行った。
[比較例7]
比較例3のイオン交換樹脂に替えて、官能基としてイミノジ酢酸Naを有するキレート樹脂(商品名;レバチットモノプラスTP−208、ランクセス社製)6.4gを使用した。他の条件は比較例3と同様にして試験を行った。
以上の結果を表2に示す。
[Comparative Example 2]
Instead of the chelate resin of Example 2, 6.4 g of a chelate resin (trade name; Diaion CR-11, manufactured by Mitsubishi Chemical Corporation) having iminodiacetic acid Na as a functional group was used. The other conditions were tested in the same manner as in Example 2.
[Comparative Example 3]
Gel type ion exchange resin (trade name; Diaion SK110) containing SO 3 Na as a functional group in 100 g of 40% by mass potassium carbonate aqueous solution (crude alkali metal carbonate aqueous solution) containing heavy metals shown as undiluted solution B in Table 2 6.4 g) manufactured by Mitsubishi Chemical Corporation. The other conditions were tested in the same manner as in Example 2.
[Comparative Example 4]
Instead of the ion exchange resin of Comparative Example 3, 6.4 g of a porous ion exchange resin (trade name; Diaion PK228, manufactured by Mitsubishi Chemical Corporation) having SO 3 Na as a functional group was used. The other conditions were tested in the same manner as in Comparative Example 3.
[Comparative Example 5]
Instead of the ion exchange resin of Comparative Example 3, a chelate resin (trade name; Diaion CR-20, manufactured by Mitsubishi Chemical Corporation) having CH 2 NH (CH 2 CH 2 NH) n H as a functional group was used. The other conditions were tested in the same manner as in Comparative Example 3.
[Comparative Example 6]
Instead of the ion exchange resin of Comparative Example 3, 6.4 g of ion exchange resin (trade name; Diaion WK-10, manufactured by Mitsubishi Chemical Corporation) having CH 2 CCH 3 (COOH) n HSO 3 Na as a functional group is used. did. The other conditions were tested in the same manner as in Comparative Example 3.
[Comparative Example 7]
Instead of the ion exchange resin of Comparative Example 3, 6.4 g of a chelate resin (trade name; Lebatit Monoplus TP-208, manufactured by LANXESS) having Na iminodiacetic acid as a functional group was used. The other conditions were tested in the same manner as in Comparative Example 3.
The results are shown in Table 2.
表2によれば、実施例2(N−メチルグルカミン基を有するキレート樹脂使用)は、比較例2〜7(他のキレート樹脂又はイオン交換樹脂使用)に比べ、いずれの重金属に対しても重金属除去の効果が大きいことが分かった。また、実施例1と比べ、本発明におけるキレート樹脂6.4gを使用することにより、重金属除去の効果が高まったと考えられる。 According to Table 2, Example 2 (using a chelate resin having an N-methylglucamine group) is used for any heavy metal compared to Comparative Examples 2 to 7 (using other chelate resins or ion exchange resins). It was found that the effect of removing heavy metals was great. Moreover, compared with Example 1, it is thought that the effect of heavy metal removal increased by using 6.4g of chelate resin in this invention.
[実施例3]
実施例2の40質量%炭酸カリウム水溶液に替えて、20質量%炭酸ナトリウム水溶液を使用して、試験を行った。原液の重金属成分は表3に示す通りである。他の条件は実施例2と同様にして試験を行った。
[比較例8]
実施例3のキレート樹脂に替えて、官能基としてイミノジ酢酸Naを有するキレート樹脂(商品名;ダイヤイオンCR−11、三菱化学社製)を使用した。他の条件はすべて実施例3と同様にして試験を行った。
以上の結果を表3に示す。
[Example 3]
The test was carried out using a 20% by mass aqueous sodium carbonate solution instead of the 40% by mass aqueous potassium carbonate solution of Example 2. The heavy metal components of the stock solution are as shown in Table 3. The other conditions were tested in the same manner as in Example 2.
[Comparative Example 8]
Instead of the chelate resin of Example 3, a chelate resin (trade name; Diaion CR-11, manufactured by Mitsubishi Chemical Corporation) having iminodiacetic acid Na as a functional group was used. All other conditions were tested in the same manner as in Example 3.
The results are shown in Table 3.
表3によれば、実施例3(N−メチルグルカミン基を有するキレート樹脂使用)は、比較例8(イミノジ酢酸Naを有するキレート樹脂使用)に比べ、いずれの重金属についても重金属除去の効果が大きいことが分かった。実施例1、2の40質量%炭酸カリウム水溶液に替えて、20質量%炭酸ナトリウム水溶液を使用しても、使用するキレート樹脂の量が6.4gであれば、同様の効果が得られることが分かった。 According to Table 3, Example 3 (using a chelate resin having an N-methylglucamine group) has an effect of removing heavy metals with respect to any heavy metal as compared with Comparative Example 8 (using a chelate resin having iminodiacetic acid Na). I found it big. Even if a 20% by mass sodium carbonate aqueous solution is used instead of the 40% by mass potassium carbonate aqueous solution in Examples 1 and 2, the same effect can be obtained if the amount of the chelate resin used is 6.4 g. I understood.
[実施例4]
実施例2の40質量%炭酸カリウム水溶液に替えて、9質量%炭酸水素ナトリウム水溶液を使用して試験を行った。原液の重金属成分は表4に示す通りである。他の条件は実施例2と同様にして試験を行った。
[比較例9]
実施例4のキレート樹脂に替えて、官能基としてイミノジ酢酸Naを有するキレート樹脂(商品名;ダイヤイオンCR−11、三菱化学社製)を使用した。他の条件はすべて実施例4と同様にして試験を行った。
以上の結果を表4に示す。
[Example 4]
The test was carried out using a 9% by mass aqueous sodium hydrogen carbonate solution instead of the 40% by mass aqueous potassium carbonate solution of Example 2. The heavy metal components of the stock solution are as shown in Table 4. The other conditions were tested in the same manner as in Example 2.
[Comparative Example 9]
Instead of the chelate resin of Example 4, a chelate resin (trade name; Diaion CR-11, manufactured by Mitsubishi Chemical Corporation) having iminodiacetic acid Na as a functional group was used. All other conditions were tested in the same manner as in Example 4.
The results are shown in Table 4.
表4によれば、実施例4(N−メチルグルカミン基を有するキレート樹脂使用)は、比較例9(イミノジ酢酸Naを有するキレート樹脂使用)に比べ、鉄とアルミニウムについては、劣っているが、銅、チタン、コバルトについては、除去の効果が大きいことが分かった。実施例1〜3のようにすべての金属について除去効果が得られていないのは、アルカリ金属炭酸塩水溶液として炭酸水素ナトリウム水溶液を使用したこと、及びその濃度が9質量%とやや低濃度であったことに起因していると考えられる。 According to Table 4, Example 4 (using a chelate resin having an N-methylglucamine group) is inferior in iron and aluminum compared to Comparative Example 9 (using a chelate resin having iminodiacetic acid Na). About copper, titanium, and cobalt, it turned out that the removal effect is large. The reason why the removal effect was not obtained for all metals as in Examples 1 to 3 was that an aqueous sodium hydrogen carbonate solution was used as the aqueous alkali metal carbonate solution and that its concentration was slightly low at 9% by mass. This is considered to be caused by this.
[実施例5〜7]
表5に原液として示す重金属を含有する、40質量%炭酸カリウム水溶液100gに、官能基としてN−メチルグルカミン基を有するキレート樹脂(商品名;ダイヤイオンCRB−05、三菱化学社製)を、種々の添加量として、試験を行った。
以上の結果を表5に示す。
[Examples 5 to 7]
A chelate resin (trade name; Diaion CRB-05, manufactured by Mitsubishi Chemical Corporation) having an N-methylglucamine group as a functional group in 100 g of a 40% by mass potassium carbonate aqueous solution containing heavy metals shown in Table 5 as a stock solution, The test was conducted as various addition amounts.
The results are shown in Table 5.
表5によれば、実施例5のように、キレート樹脂0.1gを添加した場合は、鉄、銅いずれについても、25%の重金属の除去ができた。また、実施例6のように、キレート樹脂0.6gを添加した場合、除去の割合は飛躍的に向上し、鉄については約86%、銅については約83%の除去ができた。更に、実施例7のように、キレート樹脂4.0gを添加した場合には、鉄、銅共に約96%除去することができた。 According to Table 5, when 0.1 g of chelate resin was added as in Example 5, 25% of heavy metals could be removed from both iron and copper. Further, when 0.6 g of the chelate resin was added as in Example 6, the removal rate was dramatically improved, and about 86% of iron and about 83% of copper could be removed. Furthermore, as in Example 7, when 4.0 g of chelate resin was added, about 96% of both iron and copper could be removed.
[実施例8〜9]
1080ng/gの鉄を含有する、40質量%炭酸カリウム水溶液(粗アルカリ金属炭酸塩水溶液)100gに、官能基としてN−メチルグルカミン基を有するキレート樹脂(商品名;ダイヤイオンCRB−05、三菱化学社製))10g(実施例8)又は20g(実施例9)を加え、室温で攪拌して2時間接触させた。その後、これらの溶液を採取し、鉄含有分の分析(下記の分析方法)を行い、キレート樹脂未接触の原液と比較して除去率を求めた。その結果、実施例8、9のいずれの場合も除去率は99%を超えていた。このように粗アルカリ金属炭酸塩水溶液に高濃度に含まれる鉄を極めて効率よく除去できることが分かった。
[Examples 8 to 9]
Chelate resin (trade name: Diaion CRB-05, Mitsubishi) having N-methylglucamine group as a functional group in 100 g of 40 mass% potassium carbonate aqueous solution (crude alkali metal carbonate aqueous solution) containing 1080 ng / g of iron 10 g (Example 8) or 20 g (Example 9)) was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, these solutions were collected, analyzed for iron content (the following analysis method), and the removal rate was determined in comparison with a stock solution not in contact with the chelate resin. As a result, in both cases of Examples 8 and 9, the removal rate exceeded 99%. Thus, it was found that iron contained in a high concentration in the crude alkali metal carbonate aqueous solution can be removed extremely efficiently.
(鉄イオンの分析方法)
採取した試料に超純水を加えた後、塩酸酸性とした。そして10質量%塩酸ヒドロキシルアンモニウム水溶液を加え、数分間煮沸させた後、希アンモニア水にてpHを3〜5に調整し、0.3質量%オルトフェナントロリン塩酸塩溶液を加えた。次いで、20質量%酢酸アンモニウム緩衝液と蒸留水とでメスアップし、室温で10分間放置して発色させ、吸光光度計にて吸光度を求めた。また、別途、採取試料を用いないで同様の操作を行い、ブランクの吸光度を求めた。更に、別途作成した検量線を用いて鉄濃度を求めた。
(Iron ion analysis method)
After adding ultrapure water to the collected sample, it was acidified with hydrochloric acid. And after adding 10 mass% hydroxylammonium hydrochloride aqueous solution and making it boil for several minutes, pH was adjusted to 3-5 with dilute ammonia water, and 0.3 mass% orthophenanthroline hydrochloride solution was added. Subsequently, it was made up with 20% by mass ammonium acetate buffer and distilled water, allowed to stand at room temperature for 10 minutes for color development, and the absorbance was determined with an absorptiometer. Separately, the same operation was performed without using the collected sample, and the absorbance of the blank was determined. Further, the iron concentration was determined using a separately prepared calibration curve.
本発明によれば、粗アルカリ金属炭酸塩水溶液中の重金属を除去し、高純度化することができるため、半導体ウェーハの研磨等の電子材料向けの他、医薬品、化粧品等の多くの分野に適用することができ、また、アルカリ金属炭酸塩水溶液製造時、出荷時、受け入れ時、使用時等のいずれの場合でも手軽に適用することができる。 According to the present invention, heavy metals in a crude alkali metal carbonate aqueous solution can be removed and highly purified, so that it can be applied to many fields such as pharmaceuticals and cosmetics in addition to electronic materials such as semiconductor wafer polishing. In addition, the present invention can be easily applied in any case such as during production of an alkali metal carbonate aqueous solution, shipment, acceptance, and use.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008005009A JP5369440B2 (en) | 2008-01-11 | 2008-01-11 | Method for producing high-purity alkali metal carbonate aqueous solution and continuous production method for high-purity alkali metal carbonate aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008005009A JP5369440B2 (en) | 2008-01-11 | 2008-01-11 | Method for producing high-purity alkali metal carbonate aqueous solution and continuous production method for high-purity alkali metal carbonate aqueous solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009167035A true JP2009167035A (en) | 2009-07-30 |
JP5369440B2 JP5369440B2 (en) | 2013-12-18 |
Family
ID=40968683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008005009A Active JP5369440B2 (en) | 2008-01-11 | 2008-01-11 | Method for producing high-purity alkali metal carbonate aqueous solution and continuous production method for high-purity alkali metal carbonate aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5369440B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011051833A (en) * | 2009-09-02 | 2011-03-17 | Nomura Micro Sci Co Ltd | Method for purification of alkaline aqueous solution |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169828A (en) * | 1998-12-04 | 2000-06-20 | Kiresuto Kk | Powdery chelate-catching material and its production, and ion-catching using the catching material |
JP2000511865A (en) * | 1996-05-24 | 2000-09-12 | ソルベイ(ソシエテ アノニム) | Method for producing industrial sodium chloride aqueous solution |
JP2001113179A (en) * | 1999-10-20 | 2001-04-24 | Agency Of Ind Science & Technol | Method for removing germanium in aqueous solution |
JP2006167638A (en) * | 2004-12-17 | 2006-06-29 | Chubu Kiresuto Kk | Treatment method of arsenic in hot spring water |
WO2007148552A1 (en) * | 2006-06-19 | 2007-12-27 | Nomura Micro Science Co., Ltd. | Method of purifying aqueous alkali solution |
JP2008031009A (en) * | 2006-07-31 | 2008-02-14 | Toagosei Co Ltd | Method for producing high purity alkali metal hydroxide |
-
2008
- 2008-01-11 JP JP2008005009A patent/JP5369440B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000511865A (en) * | 1996-05-24 | 2000-09-12 | ソルベイ(ソシエテ アノニム) | Method for producing industrial sodium chloride aqueous solution |
JP2000169828A (en) * | 1998-12-04 | 2000-06-20 | Kiresuto Kk | Powdery chelate-catching material and its production, and ion-catching using the catching material |
JP2001113179A (en) * | 1999-10-20 | 2001-04-24 | Agency Of Ind Science & Technol | Method for removing germanium in aqueous solution |
JP2006167638A (en) * | 2004-12-17 | 2006-06-29 | Chubu Kiresuto Kk | Treatment method of arsenic in hot spring water |
WO2007148552A1 (en) * | 2006-06-19 | 2007-12-27 | Nomura Micro Science Co., Ltd. | Method of purifying aqueous alkali solution |
JP2008031009A (en) * | 2006-07-31 | 2008-02-14 | Toagosei Co Ltd | Method for producing high purity alkali metal hydroxide |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011051833A (en) * | 2009-09-02 | 2011-03-17 | Nomura Micro Sci Co Ltd | Method for purification of alkaline aqueous solution |
Also Published As
Publication number | Publication date |
---|---|
JP5369440B2 (en) | 2013-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5053587B2 (en) | High-purity production method of alkali metal hydroxide | |
RU2456241C2 (en) | Method of producing vanadium oxide through extraction | |
US11046634B2 (en) | High-purity carboxylic acid ester and method for producing same | |
JP7558647B2 (en) | How lithium hydroxide is produced | |
JP2016507637A (en) | Method for producing scandium-containing solid material with high scandium content | |
JP5636142B2 (en) | Method for producing high purity ammonium paratungstate | |
JP5049528B2 (en) | Method for producing high purity alkali metal hydroxide | |
JP2008031014A (en) | Method for producing high purity alkali metal hydroxide | |
US20150211091A1 (en) | Silver Recovery Methods and Silver Products Produced Thereby | |
JP5369440B2 (en) | Method for producing high-purity alkali metal carbonate aqueous solution and continuous production method for high-purity alkali metal carbonate aqueous solution | |
JP2009167050A (en) | Method for producing high purity alkali metal carbonate aqueous solution | |
EP1930296A1 (en) | Method for producing high purity caustic potash | |
JP4996172B2 (en) | Method for producing high purity alkali metal hydroxide | |
JP4758894B2 (en) | Purification method of acid aqueous solution | |
WO2023054258A1 (en) | Method for producing lithium hydroxide | |
JP2009167036A (en) | Method for producing high purity alkali metal carbonate aqueous solution | |
JP6327668B2 (en) | High purity glycine salt and glycine, and method for producing the same | |
JP2008050197A (en) | Method for producing high-purity alkali metal hydroxide | |
JP4554193B2 (en) | Method for producing and purifying hydroxylamine stabilizer | |
JP2012091981A (en) | Method for purifying sodium hydroxide | |
JP2009114013A (en) | Powder containing indium oxide as major component and method for producing the same | |
EP4349781A1 (en) | Method for producing lithium-containing solution and method for producing lithium hydroxide | |
JP2012091980A (en) | Method for preparing sodium compound having reduced potassium concentration and the sodium compound | |
EP4257552A1 (en) | Method for producing lithium hydroxide | |
JP2005177669A (en) | Treating method of fluorine-containing waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100709 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20121026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121205 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5369440 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |