JP2009156648A - Measuring gap adjusting method and apparatus in ultrasonic flaw detection - Google Patents
Measuring gap adjusting method and apparatus in ultrasonic flaw detection Download PDFInfo
- Publication number
- JP2009156648A JP2009156648A JP2007333371A JP2007333371A JP2009156648A JP 2009156648 A JP2009156648 A JP 2009156648A JP 2007333371 A JP2007333371 A JP 2007333371A JP 2007333371 A JP2007333371 A JP 2007333371A JP 2009156648 A JP2009156648 A JP 2009156648A
- Authority
- JP
- Japan
- Prior art keywords
- probe
- gap
- flaw detection
- measurement
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000000523 sample Substances 0.000 claims abstract description 97
- 230000005540 biological transmission Effects 0.000 claims abstract description 34
- 238000005259 measurement Methods 0.000 claims description 51
- 230000007547 defect Effects 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 36
- 239000010959 steel Substances 0.000 description 36
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
本発明は、鋼板内部の欠陥を超音波探傷にて行う、超音波探傷における測定ギャップの調整方法および装置に関するものである。 The present invention relates to a method and an apparatus for adjusting a measurement gap in ultrasonic flaw detection, in which defects inside a steel plate are detected by ultrasonic flaw detection.
これまで、鋼板内部欠陥の超音波探傷方法には、広く厚鋼板で実施されているシュー接材による水ギャップ式や水柱式の超音波探傷方法、また、薄鋼板においては、タイヤ探触子を用いた探傷方法や水没式や水柱式の探傷方法がある。そして、測定ギャップについては、シュー等により鋼板とのギャップを設定するものや、水柱や水没式で固定のギャップで行うものが知られている。 Until now, the ultrasonic flaw detection method for internal defects in steel plates has been widely used for water gap type and water column type ultrasonic flaw detection methods using shoe contact materials, which are widely used for thick steel plates, and for thin steel plates, tire probes have been used. There are a flaw detection method used, a submerged type, and a water column type flaw detection method. And as for the measurement gap, there are known a method of setting a gap with a steel plate by a shoe or the like, and a method of performing a water column or a submerged type fixed gap.
特に、薄鋼板の内部探傷を行う場合において、微細な欠陥(φ0.1mm以下)を探傷しようとした場合、タイヤ探触子を用いる方法では欠陥検出能(一般的にφ1mm程度)が不足しており、測定が困難であるという問題があった。また、水没式や水柱式で微細な欠陥を探傷する方法においては鋼板とのギャップ固定である場合には、測定可能な板厚に制約があった。 In particular, when performing an internal flaw detection on a thin steel sheet, if a fine defect (φ0.1 mm or less) is to be detected, the method using a tire probe lacks the defect detection capability (generally φ1 mm or so). Therefore, there is a problem that measurement is difficult. Further, in the submerged type or water column type method for detecting fine defects, there is a limitation in the measurable plate thickness when the gap is fixed to the steel plate.
そこで、例えば、特許文献1に開示された技術がある。この技術では、センサ昇降手段を介してセンサを昇降させ、鋼板とのギャップを可変に設定しを迅速に且つ正確に内部欠陥からの欠陥エコー高さを極大にする水柱式超音波探傷装置および方法が開示されている。
しかしながら、特許文献1に開示された技術のようにギャップを可変とした場合にも、板厚の設定誤差やギャップの位置決めの誤差が発生することにより波形が最適とならず所定の探傷性能がでないという問題があった。 However, even when the gap is variable as in the technique disclosed in Patent Document 1, a waveform setting error or gap positioning error occurs, and the waveform is not optimal and the predetermined flaw detection performance is not achieved. There was a problem.
本発明は、これら従来技術の問題点に鑑み、測定対象とセンサとの測定ギャップを最適なギャップに調節する、超音波探傷における測定ギャップ調整方法および装置を提供することを課題とする。 An object of the present invention is to provide a measurement gap adjustment method and apparatus in ultrasonic flaw detection that adjusts a measurement gap between a measurement object and a sensor to an optimum gap in view of these problems of the prior art.
本発明の請求項1に係る発明は、送信側の探触子と受信側の探触子との間に測定対象を配置し、送信側の探触子から超音波を送信し受信側の探触子で受信することによって測定対象の内部欠陥を探傷する、超音波探傷における測定ギャップ調整方法であって、前記測定対象の探傷情報から予め設定された、前記それぞれの探触子と前記測定対象との測定ギャップを、前記測定対象からの送信波、表面波および底面波を測定することによって補正すること特徴とする超音波探傷における測定ギャップ調整方法である。 According to the first aspect of the present invention, a measurement object is disposed between a probe on the transmission side and a probe on the reception side, and ultrasonic waves are transmitted from the probe on the transmission side to detect the probe on the reception side. A measurement gap adjustment method in ultrasonic flaw detection, in which an internal defect of a measurement target is detected by receiving with a probe, wherein each of the probes and the measurement target set in advance from the flaw detection information of the measurement target The measurement gap adjustment method in ultrasonic flaw detection is characterized in that the measurement gap is corrected by measuring a transmission wave, a surface wave, and a bottom wave from the measurement object.
また本発明の請求項2に係る発明は、請求項1に記載の超音波探傷における測定ギャップ調整方法において、前記測定ギャップを補正するにあたって、送信波と表面波の観測遅れ時間ΔT1より、送信側の探触子と測定対象表面までの距離Aを(ΔT1×水中での音速)との演算から求め、さらに、表面波と底面波の観測遅れ時間ΔT2より、測定対象の板厚Cを(ΔT2×測定対象中での音速)との演算から求めて、前記距離Aが、予め設定した送信側の探触子と測定対象とのギャップと比較して違いがある場合は、該ギャップを前記距離Aとなるように調整し、予め設定した送受信探触子間隔Yと前記距離A、前記板厚Cから(Y−(A+C)=受信側の探触子ギャップD)との演算から受信側の探触子ギャップDを求め、この受信側の探触子ギャップDと予め設定した受信側の探触子と測定対象とのギャップと比較して違いがある場合は、該ギャップを前記受信側の探触子ギャップDとなるように調整すること特徴とする超音波探傷における測定ギャップ調整方法である。
According to
さらに本発明の請求項3に係る発明は、送信側の探触子と受信側の探触子との間に測定対象を配置し、送信側の探触子から超音波を送信し受信側の探触子で受信することによって測定対象の内部欠陥を探傷する、超音波探傷における測定ギャップ調整装置であって、受信波から測定対象の内部欠陥探傷を行う探傷器部と、送信側の探触子と受信側の探触子を保持し、それぞれを上下方向に可動とする機構部と、該機構部に送信側の探触子と受信側の探触子のそれぞれの位置決めを指示する制御部と備え、前記探傷器部は、送信波、表面波および底面波の受信タイミングを測定し、該受信タイミングに基づき、前記制御部は、予め設定された、前記それぞれの探触子と前記測定対象との測定ギャップを補正すること特徴とする超音波探傷における測定ギャップ調整装置である。 Furthermore, the invention according to claim 3 of the present invention is such that a measurement object is arranged between a probe on the transmission side and a probe on the reception side, ultrasonic waves are transmitted from the probe on the transmission side, and A measurement gap adjustment device for ultrasonic flaw detection that detects internal defects of a measurement target by receiving with a probe, a flaw detector unit that performs flaw detection of a measurement target from a received wave, and a probe on a transmission side A mechanism unit that holds the probe on the transmitter side and the probe on the reception side, and moves each of them vertically, and a control unit that instructs the mechanism unit to position the probe on the transmission side and the probe on the reception side. And the flaw detector unit measures the reception timing of the transmission wave, the surface wave, and the bottom surface wave, and based on the reception timing, the control unit sets the respective probes and the measurement target that are set in advance. In ultrasonic flaw detection characterized by correcting the measurement gap with It is a measurement gap adjustment device.
本発明は、測定対象の探傷情報から予め設定された、それぞれの探触子と測定対象との測定ギャップを、測定対象からの送信波、表面波および底面波を測定することによって補正するようにしたので、最適な測定ギャップで測定対象の内部欠陥を探傷することができ、高い精度の内部欠陥探傷ができる。 The present invention corrects the measurement gap between each probe and the measurement object set in advance from the flaw detection information of the measurement object by measuring the transmission wave, the surface wave, and the bottom wave from the measurement object. Therefore, the internal defect to be measured can be detected with the optimum measurement gap, and the internal defect can be detected with high accuracy.
図1は、本発明に係る超音波探傷における測定ギャップ調整装置の構成例を示す図である。測定対象として鋼板を用いた例を以下説明する。図中、1は鋼板、2は上部探触子、3は下部探触子、4は機構部、5は上位計算機部、6は探傷器部、および7は制御部をそれぞれ表す。 FIG. 1 is a diagram showing a configuration example of a measurement gap adjusting device in ultrasonic flaw detection according to the present invention. An example in which a steel plate is used as a measurement target will be described below. In the figure, 1 is a steel plate, 2 is an upper probe, 3 is a lower probe, 4 is a mechanism unit, 5 is a high-order computer unit, 6 is a flaw detector unit, and 7 is a control unit.
本装置は、探傷情報を送信する上位計算機部5、探傷行う探傷器部6、上部探触子2、下部探触子3、上部探触子2と下部探触子3を保持し、それぞれを上下方向に可動とする機構部4、および機構部4に上部探触子2と下部探触子3のそれぞれの位置決めを指示する制御部7とから構成され、上部探触子2と下部探触子3との間に鋼板1の内部欠陥を探傷する。鋼板1と上部探触子2および下部探触子3とのそれぞれのギャップには、水柱を形成する乃至は水で満たす(水没式)ようにする。
This apparatus holds an upper computer unit 5 that transmits flaw detection information, a flaw detector unit 6 that performs flaw detection, an
鋼板1の探傷を実施するために、まず上位計算機部5より事前に探傷情報を探傷器部6に送信するとともに、探傷情報(板厚、材質など)より探触子と鋼板のギャップを制御部7に送信する。制御部7ではそのギャップに合せて、機構部4を駆動し所定のギャップとなるように調整する。 In order to perform the flaw detection on the steel plate 1, first, the host computer unit 5 transmits flaw detection information to the flaw detector unit 6 in advance, and the control unit controls the gap between the probe and the steel plate based on flaw detection information (plate thickness, material, etc.). 7 to send. In accordance with the gap, the control unit 7 drives the mechanism unit 4 to adjust the gap to a predetermined value.
図3は、初期設定された鋼板と上・下部探触子とのギャップを模式的に示す図である。ギャップ設定した結果を、上部探触子と下部探触子との距離をY、上部探触子から鋼板表面までのギャップをX、および下部探触子から鋼板裏面までのギャップをZと表している。 FIG. 3 is a diagram schematically showing a gap between the initially set steel plate and the upper and lower probes. In the gap setting results, the distance between the upper probe and the lower probe is represented as Y, the gap from the upper probe to the steel plate surface is represented as X, and the gap from the lower probe to the steel plate back surface is represented as Z. Yes.
そして、上部探触子2および下部探触子3のいずれかから他方にむけて超音波送信波形Tを送信する(以下では、鋼板上部の上部探触子2から下部探触子3にむけて送信するものとする)。図2は、受信する探触子で観測される波形を模式的に示す図である。図中、8は送信波T、9は表面波S、および10は底面波Bをそれぞれ表す。図に示すように、送信波形T、鋼板表面から反射してくる表面波S、鋼板底面から反射してくる底面波Bが順次観測される。
Then, an ultrasonic transmission waveform T is transmitted from one of the
送信波Tと表面波Sの観測遅れ時間ΔT1より、鋼板上部の送信探触子と鋼板表面までの距離Aが、(ΔT1×水中での音速)との演算から計測できる。また、表面波Sと底面波Bの観測遅れ時間ΔT2より、鋼板の板厚Cが、(ΔT2×鋼板中での音速)との演算から計測できる。 From the observation delay time ΔT1 of the transmission wave T and the surface wave S, the distance A between the transmission probe above the steel plate and the steel plate surface can be measured from the calculation of (ΔT1 × sonic velocity in water). Further, from the observation delay time ΔT2 of the surface wave S and the bottom surface wave B, the thickness C of the steel plate can be measured from the calculation of (ΔT2 × sonic velocity in the steel plate).
このようにして求めた鋼板上部の送信探触子と鋼板表面までの距離Aと鋼板の板厚Cから、初期設定されたギャップを次のように補正を行う。すなわち、図3に示すように上部探触子と鋼板の既設定ギャップXと前記計測値Aを比較して違いがある場合は計測値Aとなるように機構部を調整する。 The initially set gap is corrected as follows based on the distance A to the transmission probe at the upper part of the steel plate and the steel plate surface thus obtained and the plate thickness C of the steel plate. That is, as shown in FIG. 3, when the measured gap A is different from the preset gap X of the upper probe and the steel plate, the mechanism is adjusted so that the measured gap A is obtained.
また、上下探触子間隔Yと計測値A、計測値Cから(Y−(A+C)=下部探触子ギャップD)との演算から下部探触子ギャップDを求め、この下部探触子ギャップDと(下部探触子と鋼板の既設定ギャップZ)とを比較して違いがある場合は、下部探触子ギャップDとなるように機構部を調整する。このように上下探触子と鋼板とのギャップを調整することで最適な探傷波形を得ることができ、測定性能の安定化につなげることができる。 Further, the lower probe gap D is obtained from the calculation of (Y− (A + C) = lower probe gap D) from the upper / lower probe interval Y, the measured value A, and the measured value C, and this lower probe gap is obtained. If there is a difference between D and (the preset gap Z between the lower probe and the steel plate), the mechanism is adjusted so that the lower probe gap D is obtained. By adjusting the gap between the upper and lower probes and the steel plate in this way, an optimum flaw detection waveform can be obtained, and the measurement performance can be stabilized.
これまでは、対象鋼板の探傷開始時に実施する場合を想定して説明したが、同一鋼板を探傷中にパスライン変動などでギャップが変動した場合では、板厚が一定であれば上下探触子の間隔を固定として上下探触子双方同時に移動させることで、設定変更時間の短縮を図ることができる。 Up to this point, the explanation was given assuming that the inspection was performed at the start of the flaw detection on the target steel sheet. However, if the gap fluctuates due to fluctuations in the pass line during flaw detection on the same steel sheet, the upper and lower probes have a constant thickness. The time for changing the setting can be shortened by moving both the upper and lower probes simultaneously with a fixed interval.
また、上の説明では、上部探触子を送信側とし下部探触子を受信側としたが、逆に下部探触子を送信側とし上部探触子を受信側しても同様に実施することが可能であること言うまでもないことである。 In the above description, the upper probe is used as the transmission side and the lower probe is used as the reception side. However, the same applies to the case where the lower probe is used as the transmission side and the upper probe is used as the reception side. It goes without saying that it is possible.
また、機構部の駆動および送受信区分を、幅方向に複数に分割し個別に駆動可能とすることにより、鋼板の幅方向に伸びによる凹凸が発生している材料であっても、個別に適正なギャップにでき、精度良く探傷することが可能である。 In addition, by dividing the drive and transmission / reception sections of the mechanism section into a plurality of parts in the width direction and making them individually driveable, even if the material has unevenness due to elongation in the width direction of the steel sheet, A gap can be formed and flaw detection can be performed with high accuracy.
なお、透過式の超音波探傷での説明を行ったが、鋼板上部もしくは下部からの反射波を用いた片側探傷においても、同様な考え方で測定ギャップ補正を実施することが可能である。 Although the description has been made on the transmission type ultrasonic flaw detection, the measurement gap correction can be performed based on the same concept even in the one-side flaw detection using the reflected wave from the upper part or the lower part of the steel plate.
1 鋼板
2 上部探触子
3 下部探触子
4 機構部
5 上位計算機部
6 探傷器部
7 制御部
8 送信波T
9 表面波S
10 底面波B
DESCRIPTION OF SYMBOLS 1
9 Surface wave S
10 Bottom wave B
Claims (3)
前記測定対象の探傷情報から予め設定された、前記それぞれの探触子と前記測定対象との測定ギャップを、
前記測定対象からの送信波、表面波および底面波を測定することによって補正すること特徴とする超音波探傷における測定ギャップ調整方法。 The measurement object is placed between the probe on the transmission side and the probe on the reception side, and ultrasonic waves are transmitted from the probe on the transmission side and received by the probe on the reception side. A method for adjusting a measurement gap in ultrasonic flaw detection for flaw detection,
The measurement gap between each of the probes and the measurement object preset from the flaw detection information of the measurement object,
A measurement gap adjustment method in ultrasonic flaw detection, wherein correction is performed by measuring a transmission wave, a surface wave, and a bottom wave from the measurement object.
前記測定ギャップを補正するにあたって、
送信波と表面波の観測遅れ時間ΔT1より、送信側の探触子と測定対象表面までの距離Aを(ΔT1×水中での音速)との演算から求め、さらに、表面波と底面波の観測遅れ時間ΔT2より、測定対象の板厚Cを(ΔT2×測定対象中での音速)との演算から求めて、
前記距離Aが、予め設定した送信側の探触子と測定対象とのギャップと比較して違いがある場合は、該ギャップを前記距離Aとなるように調整し、
予め設定した送受信探触子間隔Yと前記距離A、前記板厚Cから(Y−(A+C)=受信側の探触子ギャップD)との演算から受信側の探触子ギャップDを求め、この受信側の探触子ギャップDと予め設定した受信側の探触子と測定対象とのギャップと比較して違いがある場合は、該ギャップを前記受信側の探触子ギャップDとなるように調整すること特徴とする超音波探傷における測定ギャップ調整方法。 In the method for adjusting a measurement gap in ultrasonic flaw detection according to claim 1,
In correcting the measurement gap,
From the observation delay time ΔT1 of the transmitted wave and surface wave, the distance A between the probe on the transmitting side and the surface to be measured is calculated from (ΔT1 × sound velocity in water), and the surface wave and bottom wave are observed. From the delay time ΔT2, the thickness C of the object to be measured is calculated from (ΔT2 × sound velocity in the object to be measured),
If the distance A is different from the preset gap between the probe on the transmitting side and the object to be measured, adjust the gap to be the distance A,
The probe gap D on the reception side is obtained from the calculation of (Y− (A + C) = probe gap D on the reception side) from the preset transmission / reception probe interval Y, the distance A, and the plate thickness C, If there is a difference between the probe gap D on the reception side and the preset gap between the probe on the reception side and the object to be measured, the gap becomes the probe gap D on the reception side. A method for adjusting a measurement gap in ultrasonic flaw detection, characterized in that the adjustment is carried out.
受信波から測定対象の内部欠陥探傷を行う探傷器部と、
送信側の探触子と受信側の探触子を保持し、それぞれを上下方向に可動とする機構部と、
該機構部に送信側の探触子と受信側の探触子のそれぞれの位置決めを指示する制御部と備え、
前記探傷器部は、送信波、表面波および底面波の受信タイミングを測定し、
該受信タイミングに基づき、前記制御部は、予め設定された、前記それぞれの探触子と前記測定対象との測定ギャップを補正すること特徴とする超音波探傷における測定ギャップ調整装置。 The measurement object is placed between the probe on the transmission side and the probe on the reception side, and ultrasonic waves are transmitted from the probe on the transmission side and received by the probe on the reception side. A measurement gap adjusting device for ultrasonic flaw detection, which detects flaws,
A flaw detector that performs internal defect flaw detection from the received wave; and
A mechanism that holds the probe on the transmission side and the probe on the reception side and makes each moveable in the vertical direction,
A control unit for instructing the positioning of the probe on the transmission side and the probe on the reception side to the mechanism unit; and
The flaw detector unit measures the reception timing of transmission waves, surface waves and bottom waves,
The measurement gap adjusting device in ultrasonic flaw detection, wherein the control unit corrects a preset measurement gap between each of the probes and the measurement object based on the reception timing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007333371A JP5186917B2 (en) | 2007-12-26 | 2007-12-26 | Method and apparatus for adjusting measurement gap in ultrasonic flaw detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007333371A JP5186917B2 (en) | 2007-12-26 | 2007-12-26 | Method and apparatus for adjusting measurement gap in ultrasonic flaw detection |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009156648A true JP2009156648A (en) | 2009-07-16 |
JP5186917B2 JP5186917B2 (en) | 2013-04-24 |
Family
ID=40960838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007333371A Expired - Fee Related JP5186917B2 (en) | 2007-12-26 | 2007-12-26 | Method and apparatus for adjusting measurement gap in ultrasonic flaw detection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5186917B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101736612B1 (en) | 2015-12-07 | 2017-05-17 | 주식회사 포스코 | Apparatus and method of detecting inner defect of steel plate using height controllable ultrasonic sensor |
JP2020085642A (en) * | 2018-11-26 | 2020-06-04 | 株式会社日立パワーソリューションズ | Ultrasonic inspection method and ultrasonic inspection device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62144066A (en) * | 1985-12-18 | 1987-06-27 | Hitachi Ltd | Ultrasonic flaw detection equipment |
JPH02134560A (en) * | 1988-11-16 | 1990-05-23 | Hitachi Constr Mach Co Ltd | Ultrasonic flaw detection equipment |
JPH02276905A (en) * | 1989-04-18 | 1990-11-13 | Kandenko Co Ltd | Method and device for ultrasonic thickness measurement |
JPH06317418A (en) * | 1993-05-10 | 1994-11-15 | Mitsubishi Electric Corp | Ultrasonic measuring instrument |
JPH07253414A (en) * | 1994-01-26 | 1995-10-03 | Kawasaki Steel Corp | Method and apparatus for ultrasonic flaw detection |
JPH0875713A (en) * | 1994-07-04 | 1996-03-22 | Nkk Corp | Method and apparatus for measuring crystal grain size of test object by ultrasonic wave and heat treatment method and apparatus using the same |
JP2006250595A (en) * | 2005-03-09 | 2006-09-21 | Jfe Steel Kk | Ultrasonic measuring method and device |
JP2007170901A (en) * | 2005-12-20 | 2007-07-05 | Jfe Steel Kk | Water-column type ultrasonic flaw detector and water-column type ultrasonic flaw detection method |
-
2007
- 2007-12-26 JP JP2007333371A patent/JP5186917B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62144066A (en) * | 1985-12-18 | 1987-06-27 | Hitachi Ltd | Ultrasonic flaw detection equipment |
JPH02134560A (en) * | 1988-11-16 | 1990-05-23 | Hitachi Constr Mach Co Ltd | Ultrasonic flaw detection equipment |
JPH02276905A (en) * | 1989-04-18 | 1990-11-13 | Kandenko Co Ltd | Method and device for ultrasonic thickness measurement |
JPH06317418A (en) * | 1993-05-10 | 1994-11-15 | Mitsubishi Electric Corp | Ultrasonic measuring instrument |
JPH07253414A (en) * | 1994-01-26 | 1995-10-03 | Kawasaki Steel Corp | Method and apparatus for ultrasonic flaw detection |
JPH0875713A (en) * | 1994-07-04 | 1996-03-22 | Nkk Corp | Method and apparatus for measuring crystal grain size of test object by ultrasonic wave and heat treatment method and apparatus using the same |
JP2006250595A (en) * | 2005-03-09 | 2006-09-21 | Jfe Steel Kk | Ultrasonic measuring method and device |
JP2007170901A (en) * | 2005-12-20 | 2007-07-05 | Jfe Steel Kk | Water-column type ultrasonic flaw detector and water-column type ultrasonic flaw detection method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101736612B1 (en) | 2015-12-07 | 2017-05-17 | 주식회사 포스코 | Apparatus and method of detecting inner defect of steel plate using height controllable ultrasonic sensor |
JP2020085642A (en) * | 2018-11-26 | 2020-06-04 | 株式会社日立パワーソリューションズ | Ultrasonic inspection method and ultrasonic inspection device |
JP7101106B2 (en) | 2018-11-26 | 2022-07-14 | 株式会社日立パワーソリューションズ | Ultrasonic inspection method and ultrasonic inspection equipment |
Also Published As
Publication number | Publication date |
---|---|
JP5186917B2 (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7789286B2 (en) | Method and apparatus for assessing the quality of spot welds | |
JP4596337B2 (en) | Ultrasonic flaw detection method and seamless tube manufacturing method | |
WO2007145200A1 (en) | Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus | |
JP5931551B2 (en) | Ultrasonic flaw detector, ultrasonic sensor support device, and ultrasonic flaw detector method | |
KR100975330B1 (en) | Ultrasonic flaw detector system and its control method | |
JP2010266463A (en) | Ultrasonic probe, ultrasonic flaw detector, ultrasonic flaw detection method, and seamless tube manufacturing method | |
CN104350381A (en) | Defect detection device, defect detection method, program, and storage medium | |
JP2008051645A (en) | Ultrasonic inspection device | |
JP2000343915A (en) | Measuring method and measuring device for cross sectional structure of tire | |
CN101923075B (en) | Method for compensating vibration of automatic and ultrasonic steel pipe flaw detection probe | |
WO2015142163A2 (en) | Mobile ultrasonic rail inspection system and method | |
JP2006308566A5 (en) | ||
JP3680805B2 (en) | Probe holder | |
JP5186917B2 (en) | Method and apparatus for adjusting measurement gap in ultrasonic flaw detection | |
JP2001194137A (en) | Non-contact measuring method and apparatus for material thickness | |
JP2009097942A (en) | Noncontact-type array probe, and ultrasonic flaw detection apparatus and method using same | |
JP2008232627A (en) | Ultrasonic flaw inspection device and method | |
CN107884039A (en) | A kind of more sound path external labeling type liquid level gauges of the ultrasonic wave of high stability | |
JP4360175B2 (en) | Ultrasonic transmission / reception array sensor, ultrasonic flaw detector, and ultrasonic flaw detection method therefor | |
JP2014077708A (en) | Inspection device and inspection method | |
JP4682921B2 (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus | |
JP2009236620A (en) | Ultrasonic flaw detection method | |
JP2005083907A (en) | Defect inspection method | |
JP2011122827A (en) | Array probe measuring method and array probe measuring instrument | |
JP3525595B2 (en) | Multi-channel automatic ultrasonic flaw detection method and apparatus for rolled metal sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100823 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120515 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130107 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160201 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |