[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009150676A - Apparatus and method for measuring internal pressure in pipe - Google Patents

Apparatus and method for measuring internal pressure in pipe Download PDF

Info

Publication number
JP2009150676A
JP2009150676A JP2007326817A JP2007326817A JP2009150676A JP 2009150676 A JP2009150676 A JP 2009150676A JP 2007326817 A JP2007326817 A JP 2007326817A JP 2007326817 A JP2007326817 A JP 2007326817A JP 2009150676 A JP2009150676 A JP 2009150676A
Authority
JP
Japan
Prior art keywords
pipe
strain
internal pressure
young
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007326817A
Other languages
Japanese (ja)
Inventor
Shin Yoshino
伸 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2007326817A priority Critical patent/JP2009150676A/en
Publication of JP2009150676A publication Critical patent/JP2009150676A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve measurement which is easily used for a pipe without processing of the pipe such as drilling, or welding and joining, and can measure the internal pressure in a pipe. <P>SOLUTION: A pipe internal pressure calculation means 14 determines the internal pressure in a pipe P by a formula p=(ε<SB>θ</SB>-ε<SB>z</SB>)Eä(k<SP>2</SP>-1)/(1+ν)} with ν representing Poisson's ratio based on a circumferential direction distortion ε<SB>θ</SB>of the pipe surface detected by a circumferential direction distortion detection device 15, an axis direction distortion ε<SB>z</SB>of the pipe surface detected by an axis direction distortion detection device 16, a Young's modulus E of a pipe material determined by a Young's modulus calculation means 13 and a ratio between the inside diameter and the outside diameter of the pipe k input from an input device 17. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は配管内部の液体や気体の圧力を測定する配管内圧測定装置及び方法に関する。   The present invention relates to a pipe internal pressure measuring apparatus and method for measuring the pressure of liquid or gas inside a pipe.

各種プラントの配管内部の液体または気体の圧力を測定する配管内圧測定装置は、配管から圧力を導くための枝管を設け、その先にブルドン圧力計や半導体式圧力計が取り付けられて構成されている。   The pipe internal pressure measuring device that measures the pressure of liquid or gas inside the pipes of various plants is provided with a branch pipe for guiding the pressure from the pipe, and a Bourdon pressure gauge or semiconductor pressure gauge attached to the branch pipe. Yes.

圧力測定装置として、二次圧導入ポートには一次圧導入ポートに接続される流体の圧力とは相違した圧力の流体を案内する配管が接続され、二次圧導入ポートに連通する圧力室にブルドン管を配置するようにしたものがある(例えば、特許文献1参照)。
特開平11−281510号公報
As a pressure measurement device, a pipe for guiding a fluid having a pressure different from the pressure of the fluid connected to the primary pressure introduction port is connected to the secondary pressure introduction port, and a Bourdon is connected to the pressure chamber communicating with the secondary pressure introduction port. There is one in which a tube is arranged (see, for example, Patent Document 1).
JP 11-281510 A

しかし、配管内部の液体または気体の圧力を測定する際にブルドン管式圧力計や半導体式圧力計を用いる場合には、圧力計を配置するための工事が必要となる。例えば、配管に穴加工し導圧管を穴部にねじ込んだり、溶接接合する等の加工が必要である。また、プラントの配管設備の設置後に圧力計を取り付ける必要が生じた場合には、配管設備の停止と取り付け工事とが必要になりコストがかかる。また、圧力計の取り付け後は接合部が増えるために漏洩等の危険性がある。   However, when a Bourdon tube pressure gauge or a semiconductor pressure gauge is used to measure the pressure of the liquid or gas inside the pipe, work for arranging the pressure gauge is required. For example, it is necessary to perform processing such as drilling a pipe and screwing a pressure guiding pipe into a hole or welding. Moreover, when it becomes necessary to attach a pressure gauge after installation of piping facilities in a plant, it is necessary to stop and install the piping facilities, which is costly. In addition, there is a risk of leakage and the like because the number of joints increases after the pressure gauge is installed.

本発明の目的は、配管への穴あけや溶接接合などの加工を必要とせず配管に容易に適用でき配管内部の圧力を測定できる配管内圧測定装置及び方法を得ることである。   An object of the present invention is to obtain a pipe internal pressure measuring device and method which can be easily applied to pipes and can measure the pressure inside the pipes without requiring processing such as drilling or welding in the pipes.

請求項1の発明に係わる配管内圧測定装置は、配管表面の周方向の歪みを検出する周方向歪み検出装置と、配管表面の軸方向の歪みを検出する軸方向歪み検出装置と、配管の温度を検出する温度検出器と、前記温度検出器で検出した配管温度に基づいて配管材のヤング率を算出するヤング率算出手段と、前記配管の内径外径比を入力する入力装置と、前記周方向歪み検出装置で検出した配管表面の周方向歪み、前記軸方向歪み検出装置で検出した配管表面の軸方向歪み、前記ヤング率算出手段で求めた配管材のヤング率及び前記入力装置から入力された配管の内径外径比に基づいて前記配管の内圧を求める配管内圧算出手段とを備え、前記配管内圧算出手段は、配管表面の周方向の歪みをεθ、配管表面の軸方向の歪みをε、配管材のヤング率をE、配管の内径外径比をkとしたとき、下記式から配管の内圧をpを求めることを特徴とする。
p=(εθ−ε)E{(k−1)/(1+ν)}
ただし、νはポアソン比。
A pipe internal pressure measuring device according to a first aspect of the present invention includes a circumferential strain detection device that detects circumferential strain on a pipe surface, an axial strain detection device that detects axial strain on a pipe surface, and a pipe temperature. , A Young's modulus calculating means for calculating the Young's modulus of the piping material based on the piping temperature detected by the temperature detector, an input device for inputting the inner diameter / outer diameter ratio of the piping, and the circumference The circumferential strain of the pipe surface detected by the directional strain detector, the axial strain of the pipe surface detected by the axial strain detector, the Young's modulus of the piping material obtained by the Young's modulus calculator, and the input device A pipe internal pressure calculating means for obtaining an internal pressure of the pipe based on an inner diameter / outer diameter ratio of the pipe. The pipe internal pressure calculating means calculates a circumferential distortion of the pipe surface as ε θ and an axial distortion of the pipe surface. ε z , pipe material Yan It is characterized in that the internal pressure of the pipe is obtained from the following formula, where E is the gating ratio and k is the inner diameter / outer diameter ratio of the pipe.
p = (ε θ −ε z ) E {(k 2 −1) / (1 + ν)}
Where ν is Poisson's ratio.

請求項2の発明に係わる配管内圧測定装置は、請求項1の発明において、前記周方向歪み検出装置及び前記軸方向歪み検出装置は、配管の表面に光ファイバを付設し、配管の歪みに応じて前記光ファイバの伸びを計測して配管の周方向または軸方向の歪みを検出する歪みセンサであることを特徴とする。   According to a second aspect of the present invention, there is provided the pipe internal pressure measuring device according to the first aspect of the invention, wherein the circumferential strain detection device and the axial strain detection device are provided with an optical fiber on the surface of the pipe to respond to the strain of the pipe. The strain sensor is a strain sensor that detects the strain in the circumferential direction or the axial direction of the pipe by measuring the elongation of the optical fiber.

請求項3の発明に係わる配管内圧測定方法は、配管表面の周方向の歪みεθ、配管表面の軸方向の歪みεを検出し、一方、配管の温度を検出して検出した配管温度に基づいて配管材のヤング率Eを算出し、入力された配管の内径外径比k、検出された配管表面の周方向歪みεθ及び配管表面の軸方向歪みε、算出された配管材のヤング率Eに基づいて、下記式から配管の内圧pを求めることを特徴とする。
p=(εθ−ε)E{(k−1)/(1+ν)}
ただし、νはポアソン比。
The pipe internal pressure measuring method according to the invention of claim 3 detects the circumferential strain ε θ of the pipe surface and the axial strain ε z of the pipe surface, while detecting the pipe temperature to obtain the detected pipe temperature. Based on the calculated Young's modulus E of the piping material, the input pipe inner and outer diameter ratio k, the detected circumferential strain ε θ of the piping surface and the axial strain ε z of the piping surface, Based on the Young's modulus E, the internal pressure p of the pipe is obtained from the following equation.
p = (ε θ −ε z ) E {(k 2 −1) / (1 + ν)}
Where ν is Poisson's ratio.

本発明よれば、配管表面の周方向歪みと配管表面の軸方向歪みとを計測し、これら歪みに基づいて配管内部の圧力を求めるので、歪み検出装置を配管外面に設置するだけで済み簡便で低コストである。また、配管に穴あけ加工や溶接が必要なくなるので配管設備の信頼性も向上する。   According to the present invention, the circumferential strain on the pipe surface and the axial strain on the pipe surface are measured, and the pressure inside the pipe is obtained based on these strains. Therefore, it is only necessary to install a strain detection device on the outer surface of the pipe. Low cost. In addition, since drilling and welding are not required in the piping, the reliability of the piping equipment is also improved.

さらに、配管表面の周方向歪みと配管表面の軸方向歪みとの歪みの差分を用いて配管の内圧を求めるので、配管材の熱膨張による歪み分を除去することができ配管内圧の測定精度が向上する。   Furthermore, since the internal pressure of the pipe is obtained by using the difference between the distortion in the circumferential direction of the pipe surface and the axial distortion of the pipe surface, the distortion due to the thermal expansion of the pipe material can be removed, and the measurement accuracy of the internal pressure of the pipe can be improved. improves.

以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる配管内圧測定装置の一例を示す構成図である。配管の温度Tは温度検出器11で検出され、演算装置12のヤング率算出手段13に入力される。温度検出器11は配管の温度を検出するものである。例えば、熱電対や測温抵抗体または光ファイバ等で直接計測される。また、配管の保温がある部分では内部流体の温度を配管温度とすることもできるので、流体の温度を検出する温度検出器からの計測データを用いることも可能である。また、配管材のヤング率は温度依存性があるために、配管の温度が高い場合または配管の肉厚が大きい場合には、配管径方向のヤング率の分布をなくすために配管に保温を巻くことが望ましい。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram showing an example of a pipe internal pressure measuring apparatus according to an embodiment of the present invention. The temperature T of the pipe is detected by the temperature detector 11 and input to the Young's modulus calculating means 13 of the arithmetic unit 12. The temperature detector 11 detects the temperature of the piping. For example, it is directly measured by a thermocouple, a resistance temperature detector, an optical fiber, or the like. Moreover, since the temperature of the internal fluid can be set to the pipe temperature in a portion where the temperature of the pipe is kept, it is also possible to use measurement data from a temperature detector that detects the temperature of the fluid. In addition, because the Young's modulus of the piping material is temperature-dependent, if the pipe temperature is high or the pipe thickness is large, the pipe is kept warm in order to eliminate the Young's modulus distribution in the pipe radial direction. It is desirable.

温度検出器11で検出された配管温度Tはヤング率算出手段13に入力され、ヤング率算出手段13において配管材のヤング率Eが算出される。配管材のヤング率Eは温度依存性があるので、予め準備した温度−ヤング率曲線から求める。   The piping temperature T detected by the temperature detector 11 is input to the Young's modulus calculating means 13, and the Young's modulus calculating means 13 calculates the Young's modulus E of the piping material. Since the Young's modulus E of the piping material has temperature dependence, it is obtained from a temperature-Young's modulus curve prepared in advance.

ヤング率算出手段13は、配管温度が室温近辺のときはヤング率一定として一定値を出力するようにしてもよい。ヤング率算出手段13で算出されたヤング率Eは配管内圧算出手段14に入力される。 The Young's modulus calculation means 13 may output a constant value with a constant Young's modulus when the pipe temperature is near room temperature. The Young's modulus E calculated by the Young's modulus calculating means 13 is input to the pipe internal pressure calculating means 14.

一方、周方向歪み検出装置15で検出された配管表面の周方向の歪みεθ及び軸方向歪み検出装置16で検出された配管表面の軸方向の歪みεは配管内圧算出手段14に入力される。周方向歪み検出装置15や軸方向歪み検出装置16は、歪みゲージあるいは光ファイバを用いた歪みセンサ等が用いられる。また、配管内圧算出手段14には、入力装置17から配管の内径外径比kが入力される。配管の内径外径比kは配管の設計データもしくは実測値によって求める。 On the other hand, the circumferential strain ε θ of the pipe surface detected by the circumferential strain detector 15 and the axial strain ε z of the pipe surface detected by the axial strain detector 16 are input to the pipe internal pressure calculation means 14. The As the circumferential strain detector 15 and the axial strain detector 16, a strain gauge or a strain sensor using an optical fiber is used. Further, the pipe inner pressure calculating means 14 is inputted with the inner diameter / outer diameter ratio k of the pipe from the input device 17. The inner diameter / outer diameter ratio k of the pipe is obtained from the design data of the pipe or an actually measured value.

配管内圧算出手段14は、ヤング率算出手段13で算出された配管材のヤング率E、周方向歪み検出装置15で検出された配管表面の周方向の歪みεθ、軸方向歪み検出装置16で検出された配管表面の軸方向の歪みε、及び入力装置17から入力された配管の内径外径比kに基づいて配管の内圧pを算出する。配管内圧算出手段14で算出された配管の内圧pは記憶装置18に記憶されるとともに出力装置19に出力される。出力装置19は、例えば表示装置や印字装置である。 The pipe internal pressure calculation means 14 is a pipe material Young's modulus E calculated by the Young's modulus calculation means 13, a pipe surface circumferential strain ε θ detected by the circumferential strain detection device 15, and an axial strain detection device 16. The internal pressure p of the pipe is calculated based on the detected axial strain ε z of the pipe surface and the inner diameter / outer diameter ratio k of the pipe input from the input device 17. The internal pressure p of the pipe calculated by the pipe internal pressure calculating means 14 is stored in the storage device 18 and output to the output device 19. The output device 19 is, for example, a display device or a printing device.

次に、配管内圧算出手段14での配管の内圧pの算出について説明する。配管の内径外径比をk、配管の内圧をp、配管材のヤング率をE、ポアソン比をν、配管の温度をT、配管材の熱膨張係数をαとしたとき、配管表面の周方向の歪みεθは(1)式で示され、配管表面の軸方向の歪みεは(2)式で示される。 Next, calculation of the pipe internal pressure p in the pipe internal pressure calculation means 14 will be described. When the inner diameter / outer diameter ratio of the pipe is k, the inner pressure of the pipe is p, the Young's modulus of the pipe material is E, the Poisson's ratio is ν, the temperature of the pipe is T, and the thermal expansion coefficient of the pipe material is α, the circumference of the pipe surface The direction strain ε θ is expressed by the equation (1), and the axial strain ε z on the pipe surface is expressed by the equation (2).

εθ={(2−ν)/(k−1)}・{p/E}+Tα …(1)
ε={(1−2ν)/(k−1)}・{p/E}+Tα …(2)
配管材の熱膨張による歪みTαの影響を除去するために、(1)式及び(2)式の差分を求め、配管の内圧pを求めると(3)式が得られる。
ε θ = {(2-ν) / (k 2 −1)} · {p / E} + Tα (1)
ε z = {(1-2ν) / (k 2 −1)} · {p / E} + Tα (2)
In order to eliminate the influence of the distortion Tα due to the thermal expansion of the piping material, the difference between the formulas (1) and (2) is obtained, and the internal pressure p of the pipe is obtained, thereby obtaining the formula (3).

p=(εθ−ε)E{(k−1)/(1+ν)} …(3)
このように、本発明の実施の形態では、配管表面の周方向歪みεθと配管表面の軸方向の歪みεとを計測することで、(3)式に基づき配管内部の液体または気体の圧力pを測定する。
p = (ε θ -ε z) E {(k 2 -1) / (1 + ν)} ... (3)
Thus, in the embodiment of the present invention, by measuring the circumferential strain ε θ on the pipe surface and the axial strain ε z on the pipe surface, the liquid or gas inside the pipe is measured based on the equation (3). The pressure p is measured.

図2は、本発明の実施の形態に係わる配管内圧測定装置の測定対象である配管の一例の斜視図である。図2では、配管20の肉厚が長手方向に均一な場合を示しており、配管20の内径がaであり配管20の外径がbであり、配管20の内径外径比kがk=b/aである場合を示している。そのような配管20の表面の周方向歪みεθを周方向歪み検出装置15で検出し、配管表面の軸方向の歪みεを軸方向歪み検出装置16で検出する。また、配管20の肉厚が長手方向に均一な場合だけでなく、配管20の肉厚がテーパー上に緩く変化する場合にも適用できる。また、内径外径比kは常に一定の定数として扱うことができるように、配管の減肉や酸化スケール等の配管内径の変化や配管外部腐食による外径の変化がない場合に適用する。 FIG. 2 is a perspective view of an example of a pipe that is a measurement target of the pipe internal pressure measuring apparatus according to the embodiment of the present invention. FIG. 2 shows a case where the thickness of the pipe 20 is uniform in the longitudinal direction, the inner diameter of the pipe 20 is a, the outer diameter of the pipe 20 is b, and the inner diameter / outer diameter ratio k of the pipe 20 is k = The case of b / a is shown. The circumferential strain ε θ on the surface of the pipe 20 is detected by the circumferential strain detector 15, and the axial strain ε z on the pipe surface is detected by the axial strain detector 16. Further, the present invention can be applied not only when the thickness of the pipe 20 is uniform in the longitudinal direction but also when the thickness of the pipe 20 changes loosely on the taper. Further, the inner diameter / outer diameter ratio k is applied when there is no change in the inner diameter of the pipe, such as pipe thinning, oxide scale, and the like, and no change in the outer diameter due to external corrosion of the pipe so that it can be treated as a constant constant.

図3は、周方向歪み検出装置15及び軸方向歪み検出装置16として光ファイバを用いた光ファイバ歪み検出センサの一例を示す構成図である。周方向歪み検出装置15は、光ファイバ21Aと、配管20の表面に位置する光ファイバ21Aに屈曲部22Aと、光ファイバ21Aに光を送信し屈曲部22Aの周方向の伸びによって生じた光を受信する光送信部23Aと、光送信部23Aから受信したベンディング散乱光、ブリルアン散乱光、ブラッグ反射光などのうち何れかを測定することにより配管の周方向の歪みεθを検出する周方向歪み検出部24Aとから構成される。 FIG. 3 is a configuration diagram illustrating an example of an optical fiber strain detection sensor using optical fibers as the circumferential strain detection device 15 and the axial strain detection device 16. The circumferential strain detector 15 transmits the optical fiber 21A, the bent portion 22A to the optical fiber 21A located on the surface of the pipe 20, and the light generated by the circumferential extension of the bent portion 22A by transmitting light to the optical fiber 21A. a received optical transmitting section 23A, bending the scattered light received from the optical transmission section 23A, the circumferential direction strain detecting a strain epsilon theta circumferential direction of the pipe by measuring one of such Brillouin scattered light, the Bragg reflected light It is comprised from the detection part 24A.

同様に、軸方向歪み検出装置16は、光ファイバ21Bと、配管20の表面に位置する光ファイバ21Bに屈曲部22Bと、光ファイバ21Bに光を送信し屈曲部22Bの軸方向の伸びによって生じた光を受信する光送信部23Bと、光送信部23Bから受信したベンディング散乱光、ブリルアン散乱光、ブラッグ反射光などのうち何れかを測定することにより配管の軸方向の歪みεを検出する軸方向歪み検出部24Bとから構成される。 Similarly, the axial strain detection device 16 is generated by the optical fiber 21B, the bent portion 22B to the optical fiber 21B located on the surface of the pipe 20, and the axial extension of the bent portion 22B by transmitting light to the optical fiber 21B. The axial transmission distortion ε z is detected by measuring any one of the optical transmitter 23B that receives the transmitted light and the bending scattered light, Brillouin scattered light, Bragg reflected light, etc. received from the optical transmitter 23B. It is comprised from the axial direction distortion detection part 24B.

図4は光ファイバ歪み検出センサでの歪み検出の原理説明図であり、図4(a)は配管20に取り付けた光ファイバ21の屈曲部22(光ファイバ歪み検出センサ部分)の初期状態を示し、図4(b)は配管20に伸びが生じた状態での屈曲部22の光ファイバ21の状態を示している。   FIG. 4 is an explanatory diagram of the principle of strain detection by the optical fiber strain detection sensor. FIG. 4A shows an initial state of the bent portion 22 (optical fiber strain detection sensor portion) of the optical fiber 21 attached to the pipe 20. FIG. 4B shows a state of the optical fiber 21 of the bent portion 22 in a state where the pipe 20 is stretched.

図4(a)に示すように、光ファイバ21には伸びを検出するための屈曲部22が設けられており、この屈曲部22を挟んで固定部25a、25bにより光ファイバ21を配管20に固定する。いま、図4の点線矢印で示すように、A方向から光ファイバ21に所定の強度の光を入射したとすると、光は光ファイバ21を通りB方向に進行する。この場合、屈曲部22において外部に漏れ光が生じるので、屈曲部22を透過した後のB箇所での光強度はA箇所の光強度より小さくなる。   As shown in FIG. 4A, the optical fiber 21 is provided with a bent portion 22 for detecting elongation, and the optical fiber 21 is connected to the pipe 20 by fixing portions 25a and 25b with the bent portion 22 interposed therebetween. Fix it. Now, as shown by the dotted arrow in FIG. 4, when light of a predetermined intensity is incident on the optical fiber 21 from the A direction, the light travels in the B direction through the optical fiber 21. In this case, since leakage light is generated outside at the bent portion 22, the light intensity at the B location after passing through the bent portion 22 is smaller than the light intensity at the A location.

一方、図4(b)に示すように、配管20に実線矢印で示す伸びΔdが生じたとすると屈曲部22が伸びる。この屈曲部22の伸びにより屈曲部22における漏れ光が少なくなるので、屈曲部22を透過した後のB箇所の光強度は、伸びΔdが生じていない健全な場合(図4(a)の場合)よりも大きくなる。   On the other hand, as shown in FIG. 4B, when the elongation Δd indicated by the solid line arrow occurs in the pipe 20, the bent portion 22 extends. Since the leakage light at the bent portion 22 is reduced by the extension of the bent portion 22, the light intensity at the B point after passing through the bent portion 22 is healthy when the extension Δd does not occur (in the case of FIG. 4A). ).

図5は光ファイバ21の屈曲部22における歪みと透過光強度との関係を示すグラフである。配管20の外面に光ファイバ21の屈曲部22を配置し、光ファイバ21に光を入射するとともに、配管20の内圧を変化させて配管表面に歪みを発生させ、屈曲部22の透過光強度を測定することにより、配管20の内圧に応じて発生する歪みを計測した。   FIG. 5 is a graph showing the relationship between the strain at the bent portion 22 of the optical fiber 21 and the transmitted light intensity. The bent portion 22 of the optical fiber 21 is disposed on the outer surface of the pipe 20 so that light is incident on the optical fiber 21 and the internal pressure of the pipe 20 is changed to cause distortion on the pipe surface, whereby the transmitted light intensity of the bent portion 22 is increased. By measuring, the distortion which generate | occur | produces according to the internal pressure of the piping 20 was measured.

図5に示すように、光ファイバ21の屈曲部22を配管20に配置した初期状態では、屈曲部22の透過光強度は約34.9dBあり、配管20の内圧を変化させて歪みを約16μSTとしたときの屈曲部22の透過光強度は約34.95dB、歪みが約30μSTのときの屈曲部22の透過光強度は約35.00dBである。以下同様に、配管20の内圧を変化させて、歪みと透過光強度との関係をプロットすると関係曲線Sが得られる。   As shown in FIG. 5, in the initial state in which the bent portion 22 of the optical fiber 21 is arranged in the pipe 20, the transmitted light intensity of the bent portion 22 is about 34.9 dB, and the distortion is about 16 μST by changing the internal pressure of the pipe 20. The transmitted light intensity of the bent portion 22 is about 34.95 dB, and the transmitted light intensity of the bent portion 22 is about 35.00 dB when the strain is about 30 μST. Similarly, the relationship curve S is obtained by changing the internal pressure of the pipe 20 and plotting the relationship between the strain and the transmitted light intensity.

図6は本発明の実施の形態に係わる配管内圧測定方法の内容を示すフローチャートである。まず、配管の温度T、配管表面の周方向歪みεθまたは軸方向歪みεを検出する(S1)。そして、配管の温度Tに基づいて配管材のヤング率Eを求め(S2)、前述の(3)式に基づいて配管の内圧を算出する(S3)。算出した配管の内圧は記憶装置18に記憶するともに出力装置19に出力する(S4)。 FIG. 6 is a flowchart showing the contents of the pipe internal pressure measuring method according to the embodiment of the present invention. First, the pipe temperature T, the pipe surface circumferential strain ε θ or the axial strain ε z are detected (S1). Then, the Young's modulus E of the piping material is obtained based on the temperature T of the piping (S2), and the internal pressure of the piping is calculated based on the above-described equation (3) (S3). The calculated internal pressure of the pipe is stored in the storage device 18 and output to the output device 19 (S4).

本発明の実施の形態によれば、周方向歪みεθと軸方向歪みεとを計測して、(3)式により配管の内圧を求めることにより、配管材の熱膨張による歪みの影響を除去した配管の内圧pを求めることができる。また、歪み検出装置15、16の中でも特に光ファイバを歪み検出装置として用いた場合は、電力を供給する必要もなく施行が容易で電磁波の影響によるノイズや歪み値のドリフトも少なく、精度のよい計測が長時間可能となる。 According to the embodiment of the present invention, the circumferential strain ε θ and the axial strain ε z are measured, and the internal pressure of the pipe is obtained by the equation (3), so that the influence of the strain due to the thermal expansion of the piping material can be reduced. The internal pressure p of the removed pipe can be obtained. Further, in particular, when an optical fiber is used as the strain detection device among the strain detection devices 15 and 16, it is easy to implement without the need to supply power, and there is little noise and distortion value drift due to the influence of electromagnetic waves, and high accuracy. Measurement is possible for a long time.

本発明の実施の形態に係わる配管内圧測定装置の一例を示す構成図。The block diagram which shows an example of the piping internal pressure measuring apparatus concerning embodiment of this invention. 本発明の実施の形態に係わる配管内圧測定装置の測定対象である配管の一例の斜視図。The perspective view of an example of piping which is a measuring object of the piping internal pressure measuring device concerning an embodiment of the invention. 本発明の実施の形態における周方向歪み検出装置及び軸方向歪み検出装置として光ファイバを用いた光ファイバ歪み検出センサの一例を示す構成図。The block diagram which shows an example of the optical fiber distortion detection sensor which used the optical fiber as the circumferential direction strain detection apparatus and axial direction strain detection apparatus in embodiment of this invention. 本発明の実施の形態における光ファイバ歪み検出センサでの歪み検出の原理説明図。The principle explanatory view of distortion detection in the optical fiber distortion detection sensor in an embodiment of the invention. 図4に示した光ファイバの屈曲部における歪みと透過光強度との関係を示すグラフ。The graph which shows the relationship between the distortion in the bending part of the optical fiber shown in FIG. 4, and transmitted light intensity. 本発明の実施の形態に係わる配管内圧測定方法の内容を示すフローチャート。The flowchart which shows the content of the piping internal pressure measuring method concerning embodiment of this invention.

符号の説明Explanation of symbols

11…温度検出器、12…演算装置、13…ヤング率算出手段、14…配管内圧算出手段、15…周方向歪み検出装置、16…軸方向歪み検出装置、17…入力装置、18…記憶装置、19…出力装置、20…配管、21…光ファイバ、22…屈曲部、23…光送受信部、24A…周方向歪み検出部、24B…軸方向歪み検出部、25…固定部 DESCRIPTION OF SYMBOLS 11 ... Temperature detector, 12 ... Arithmetic unit, 13 ... Young's modulus calculation means, 14 ... Pipe internal pressure calculation means, 15 ... Circumferential strain detection device, 16 ... Axial strain detection device, 17 ... Input device, 18 ... Memory | storage device , 19 ... output device, 20 ... piping, 21 ... optical fiber, 22 ... bent part, 23 ... optical transmission / reception part, 24A ... circumferential strain detection part, 24B ... axial strain detection part, 25 ... fixing part

Claims (3)

配管表面の周方向の歪みを検出する周方向歪み検出装置と、配管表面の軸方向の歪みを検出する軸方向歪み検出装置と、配管の温度を検出する温度検出器と、前記温度検出器で検出した配管温度に基づいて配管材のヤング率を算出するヤング率算出手段と、前記配管の内径外径比を入力する入力装置と、前記周方向歪み検出装置で検出した配管表面の周方向歪み、前記軸方向歪み検出装置で検出した配管表面の軸方向歪み、前記ヤング率算出手段で求めた配管材のヤング率及び前記入力装置から入力された配管の内径外径比に基づいて前記配管の内圧を求める配管内圧算出手段とを備え、前記配管内圧算出手段は、配管表面の周方向の歪みをεθ、配管表面の軸方向の歪みをε、配管材のヤング率をE、配管の内径外径比をkとしたとき、下記式から配管の内圧pを求めることを特徴とする配管内圧測定装置。
p=(εθ−ε)E{(k−1)/(1+ν)}
ただし、νはポアソン比。
A circumferential strain detector for detecting circumferential strain on the pipe surface, an axial strain detector for detecting axial strain on the pipe surface, a temperature detector for detecting the temperature of the pipe, and the temperature detector Young's modulus calculating means for calculating the Young's modulus of the piping material based on the detected piping temperature, an input device for inputting the inner diameter / outer diameter ratio of the piping, and the circumferential strain on the piping surface detected by the circumferential strain detecting device Based on the axial strain of the pipe surface detected by the axial strain detector, the Young's modulus of the pipe material obtained by the Young's modulus calculating means, and the inner diameter / outer diameter ratio of the pipe input from the input device A pipe internal pressure calculating means for obtaining an internal pressure, wherein the pipe internal pressure calculating means is ε θ for the circumferential strain on the pipe surface, ε z for the axial strain on the pipe surface, E for the Young's modulus of the pipe material, When the inner diameter / outer diameter ratio is k, A pipe internal pressure measuring device that calculates the internal pressure p of a pipe from the following formula.
p = (ε θ −ε z ) E {(k 2 −1) / (1 + ν)}
Where ν is Poisson's ratio.
前記周方向歪み検出装置及び前記軸方向歪み検出装置は、配管の表面に光ファイバを付設し、配管の歪みに応じて前記光ファイバの伸びを計測して配管の周方向または軸方向の歪みを検出する歪みセンサであることを特徴とする請求項1記載の配管内圧測定装置。   The circumferential strain detection device and the axial strain detection device attach an optical fiber to the surface of a pipe, measure the elongation of the optical fiber in accordance with the strain of the pipe, and determine the circumferential or axial strain of the pipe. The piping internal pressure measuring device according to claim 1, wherein the piping internal pressure measuring device is a strain sensor to detect. 配管表面の周方向の歪みεθ、配管表面の軸方向の歪みεを検出し、一方、配管の温度を検出して検出した配管温度に基づいて配管材のヤング率Eを算出し、入力された配管の内径外径比k、検出された配管表面の周方向歪みεθ及び配管表面の軸方向歪みε、算出された配管材のヤング率Eに基づいて、下記式から配管の内圧pを求めることを特徴とする配管内圧測定方法。
p=(εθ−ε)E{(k−1)/(1+ν)}
ただし、νはポアソン比。
The pipe surface circumferential strain ε θ and the pipe surface axial strain ε z are detected. On the other hand, the pipe temperature is detected and the Young's modulus E of the piping material is calculated based on the detected pipe temperature. Based on the following equation, the internal pressure of the pipe is calculated based on the calculated pipe Young's modulus E based on the calculated pipe inner diameter / outer diameter ratio k, the detected pipe surface circumferential strain ε θ and the pipe surface axial strain ε z . A method for measuring the internal pressure of a pipe, wherein p is obtained.
p = (ε θ −ε z ) E {(k 2 −1) / (1 + ν)}
Where ν is Poisson's ratio.
JP2007326817A 2007-12-19 2007-12-19 Apparatus and method for measuring internal pressure in pipe Pending JP2009150676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326817A JP2009150676A (en) 2007-12-19 2007-12-19 Apparatus and method for measuring internal pressure in pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326817A JP2009150676A (en) 2007-12-19 2007-12-19 Apparatus and method for measuring internal pressure in pipe

Publications (1)

Publication Number Publication Date
JP2009150676A true JP2009150676A (en) 2009-07-09

Family

ID=40919966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326817A Pending JP2009150676A (en) 2007-12-19 2007-12-19 Apparatus and method for measuring internal pressure in pipe

Country Status (1)

Country Link
JP (1) JP2009150676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370438A (en) * 2011-02-04 2013-10-23 欧瑞康贸易股份公司(特吕巴赫) Hot metal sheet forming or stamping tools with Cr-Si-N coatings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370438A (en) * 2011-02-04 2013-10-23 欧瑞康贸易股份公司(特吕巴赫) Hot metal sheet forming or stamping tools with Cr-Si-N coatings
CN103370438B (en) * 2011-02-04 2015-11-25 欧瑞康表面解决方案股份公司,特吕巴赫 There is thermometal plate forming or the press tool of Cr-Si-N coating

Similar Documents

Publication Publication Date Title
US8346492B2 (en) Integrated acoustic leak detection system using intrusive and non-intrusive sensors
US8941821B2 (en) System and method for uniform and localized wall thickness measurement using fiber optic sensors
US10605728B2 (en) Monitoring probe
US10732063B2 (en) Device for measuring the pressure of a fluid flowing through a pipeline
KR20110108484A (en) Measurement method and system for the torsion of the structure using strain sensors
JP6502821B2 (en) Valve seat leak inspection apparatus and valve seat leak inspection method
JP2008249515A (en) Temperature distribution measuring system and temperature distribution measuring method
JP5902980B2 (en) Ultrasonic plate thickness measuring apparatus and ultrasonic plate thickness measuring method
JP5018365B2 (en) Pipe thickness measuring device and method
KR101725589B1 (en) Device for detecting pipe leaking and Method for detecting pipe leaking using the thereof
JPH049651A (en) Method for detecting liquid leakage from fluid transport pipe
JP2009264748A (en) Optical fiber cable for pressure sensor
JP2009150676A (en) Apparatus and method for measuring internal pressure in pipe
JP2009150800A (en) Optical fiber sensor, and distortion and temperature measuring method using optical fiber sensor
JP7231944B2 (en) Vibration probes and measuring equipment
US9557204B2 (en) Metering apparatus for and method of determining a characteristic of a fluid flowing through a pipe
WO2021057288A1 (en) Pipe creep measurement system and method
JP2011117823A (en) Device for measuring pipe wall thickness
JPH11344390A (en) Device for detecting damaged position of pipe or container
JP5934622B2 (en) Temperature measuring instrument, flow meter and temperature measuring method
US11976916B2 (en) Optical surface strain measurements for pipe integrity monitoring
KR20190133518A (en) Leak detecting apparatus
US20140352443A1 (en) Pipe wall thickness measurement
KR101831682B1 (en) Apparatus and method for measuring gas temperature
JP4949892B2 (en) Flow measurement method and flow measurement jig