[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009147769A - Circular polarization antenna - Google Patents

Circular polarization antenna Download PDF

Info

Publication number
JP2009147769A
JP2009147769A JP2007324204A JP2007324204A JP2009147769A JP 2009147769 A JP2009147769 A JP 2009147769A JP 2007324204 A JP2007324204 A JP 2007324204A JP 2007324204 A JP2007324204 A JP 2007324204A JP 2009147769 A JP2009147769 A JP 2009147769A
Authority
JP
Japan
Prior art keywords
waveguide
circularly polarized
probes
zenith direction
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007324204A
Other languages
Japanese (ja)
Inventor
Masataka Yasukawa
昌孝 安川
Hidehisa Shiomi
英久 塩見
Yasuyuki Okamura
康行 岡村
Kazuhiro Kitatani
和弘 北谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2007324204A priority Critical patent/JP2009147769A/en
Publication of JP2009147769A publication Critical patent/JP2009147769A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accomplish a waveguide-type circular polarization antenna which is capable of securing a wide band excellent in gain, axis ratio, and VSWR and has a simple structure. <P>SOLUTION: A circular polarization antenna 1 is provided with: a waveguide part 23, probes 5A-5D inserted into the waveguide part 23; and coaxial cables 4A-4D with the probes 5A-5D as center conductors. The waveguide part 23 is constituted of a cylindrical waveguide 2 opened at a zenith side and a semispherical cavity 3 connected to a side opposite to the zenith side of the cylindrical waveguide 2. The probes 5A-5D are disposed at equal angle intervals with a center O of the cylindrical waveguide 2 as a reference. Transmission signals phase-adjusted in accordance with the angle intervals and the arrangement positions are fed to these probes 5A-5D via the coaxial cables 4A-4D. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、円偏波を送受信するための円偏波アンテナ、特に導波管アンテナからなる円偏波アンテナに関するものである。   The present invention relates to a circularly polarized antenna for transmitting and receiving circularly polarized waves, and more particularly to a circularly polarized antenna comprising a waveguide antenna.

現在、GPSを含むGNSS等では、衛星からの電波を受信するアプリケーションとして円偏波を用いたものが多い。このため、従来、各種の円偏波アンテナが考案、開示されている。そして、近年、アンテナには広帯域化が要求されており、例えば、GPSでは、L1波(周波数:1.57542GHz)、L2波(周波数:1.2276GHz)、L5波(周波数:1.17645GHz)の三周波数が受信可能なアンテナが要求され、さらには、ガリレオ等、他のGNSSの電波をも受信可能なアンテナが要求されることがある。   Currently, in GNSS including GPS, there are many applications using circular polarization as an application for receiving radio waves from satellites. For this reason, various circularly polarized antennas have been devised and disclosed. In recent years, antennas are required to have a wide band. For example, in GPS, L1 waves (frequency: 1.57542 GHz), L2 waves (frequency: 1.2276 GHz), and L5 waves (frequency: 1.17645 GHz). An antenna capable of receiving three frequencies is required, and an antenna capable of receiving other GNSS radio waves such as Galileo may also be required.

このような広帯域化に対して、それぞれに異なる周波数からなる電波の送受信を行う複数のエレメントを一つの平板上に形成したアンテナや、平板上に形成するエレメントの形状を工夫することで周波数帯域幅を広げたアンテナが開示されている。また、伝搬可能な周波数帯域幅が元々広い導波管を用いたアンテナも各種開示されている。例えば、特許文献1のアンテナは、アレイ化された複数の受信手段と、当該複数の受信手段に対して受信方向側に設置されたアレイ形状の導波管と、当該導波管の外方に設置されたドーム状のレンズ部とを備えたものである。
特開2006−279776号公報
In response to such a broadening of the bandwidth, the frequency bandwidth is devised by devising the shape of the antenna formed on a single flat plate, and the shape of the elements formed on a flat plate, each of which transmits and receives radio waves of different frequencies An antenna with a widening is disclosed. Various antennas using a waveguide having a wide propagation frequency band are also disclosed. For example, the antenna of Patent Document 1 includes a plurality of receiving units arranged in an array, an array-shaped waveguide installed on the receiving direction side with respect to the plurality of receiving units, and an outside of the waveguide. And a dome-shaped lens unit installed.
JP 2006-29776 A

上述のように、従来、各種の広帯域アンテナが考案されているが、利得、軸比、VSWRが良好な帯域を広く取ることができる、簡素な形状の導波管型円偏波アンテナは存在しなかった。   As described above, various types of broadband antennas have been devised in the past. However, there are waveguide-type circularly polarized antennas with a simple shape that can take a wide band with good gain, axial ratio, and VSWR. There wasn't.

したがって、本発明の目的は、円偏波に対する各種特性が良好な帯域幅を広く取ることができ、且つ簡素な構造からなる導波管型の円偏波アンテナを実現することにある。   Accordingly, an object of the present invention is to realize a waveguide-type circularly polarized antenna having a simple structure that can provide a wide bandwidth with good characteristics with respect to circularly polarized waves.

この発明は、所定周波数帯域幅内のそれぞれに異なる複数の周波数の円偏波を送信および受信する円偏波アンテナに関するものである。この円偏波アンテナは、下記の特徴を有する導波管部、複数のプローブ、および位相処理手段を備える。
導波管部は、天頂方向側の面のみを開口する導体からなり、導体の開口面から内壁面までの距離が、開口面の縁側から中心に向かって順に長くなるように形成されている。複数のプローブは、導波管部内において、給電時に空間的に直交する電界ベクトルが発生するように配置されている。そして、位相処理手段は、複数のプローブによる送信および受信時に、天頂方向から見た複数のプローブの角度間隔に応じて位相処理を行う。
The present invention relates to a circularly polarized antenna that transmits and receives circularly polarized waves having a plurality of different frequencies within a predetermined frequency bandwidth. This circularly polarized antenna includes a waveguide section having the following characteristics, a plurality of probes, and phase processing means.
The waveguide portion is made of a conductor that opens only the surface on the zenith direction side, and is formed such that the distance from the opening surface of the conductor to the inner wall surface increases in order from the edge side of the opening surface toward the center. The plurality of probes are arranged in the waveguide portion so as to generate electric field vectors that are spatially orthogonal during power feeding. The phase processing means performs phase processing according to the angular intervals of the plurality of probes viewed from the zenith direction at the time of transmission and reception by the plurality of probes.

この構成では、例えば送信時に、各プローブに対して送信信号が給電されると、各プローブから電波が放射され、導波管部へ導かれる。このプローブから導波管部への電波(信号)の伝搬は、所謂、同軸−導波管変換器における信号伝搬の原理と同じである。   In this configuration, for example, when a transmission signal is supplied to each probe during transmission, radio waves are radiated from each probe and guided to the waveguide section. The propagation of radio waves (signals) from the probe to the waveguide section is the same as the principle of signal propagation in a so-called coaxial-waveguide converter.

図7は同軸−導波管変換器の基本概念を説明するための概略構成図である。図7に示すように同軸−導波管変換器は、導波管101と、プローブ103を中心導体とする同軸ケーブル102とを有する。プローブ103は、該導波管101の信号搬送方向に沿った壁面から、導波管101の内部へ挿入された形状からなる。この際、プローブ103は、導波管101の電波送信方向に垂直な面を有する端面111に対して、搬送信の約1/4波長(略λ/4)の位置に設置される。このような構成により、同軸ケーブル102と導波管101との間で信号のモード変換が行われて、信号が伝送される。   FIG. 7 is a schematic configuration diagram for explaining the basic concept of the coaxial-waveguide converter. As shown in FIG. 7, the coaxial-waveguide converter includes a waveguide 101 and a coaxial cable 102 having a probe 103 as a central conductor. The probe 103 has a shape inserted from the wall surface along the signal carrying direction of the waveguide 101 into the waveguide 101. At this time, the probe 103 is installed at a position of about 1/4 wavelength (approximately λ / 4) for carrying transmission with respect to the end face 111 having a plane perpendicular to the radio wave transmission direction of the waveguide 101. With such a configuration, signal mode conversion is performed between the coaxial cable 102 and the waveguide 101, and the signal is transmitted.

このように導波管部へ導かれた電波は、当該導波管部の開口した天頂方向側の面から外部へ放射される。この際、プローブの設置される角度間隔に応じて各プローブに対する送信信号の給電の位相を調整することで、この調整された位相に応じた偏波面の電波が放射される。   The radio wave guided to the waveguide portion in this manner is radiated to the outside from the surface on the zenith direction side where the waveguide portion is opened. At this time, by adjusting the phase of feeding the transmission signal to each probe in accordance with the angular interval at which the probe is installed, a radio wave having a polarization plane corresponding to the adjusted phase is radiated.

そして、導波管部における天頂方向に対向する側の面が天頂方向側の面に対して徐々に異なる距離となる形状で形成されていることで、各プローブと天頂方向に対向する側の面との距離も徐々に変化する。このため、上述の同軸−導波管変換器のλ/4の値が複数となり、天頂方向に対向する側の面の各位置でそれぞれに整合する周波数が変化する。これにより、複数の周波数を含む所定幅の周波数帯域の電波が、プローブから導波管内へ低損失で伝搬され、外部へ放射される。   And, the surface on the side facing the zenith direction in the waveguide portion is formed in a shape that gradually becomes a different distance with respect to the surface on the zenith direction side, so that the surface on the side facing each probe in the zenith direction The distance between and changes gradually. For this reason, the value of λ / 4 of the above-described coaxial-waveguide converter becomes plural, and the matching frequency changes at each position on the surface facing the zenith direction. As a result, a radio wave of a predetermined frequency band including a plurality of frequencies is propagated from the probe into the waveguide with low loss and radiated to the outside.

また、この発明の円偏波アンテナは、導波管部が略半球からなり、該略半球の切断面を天頂方向側の面とする。   In the circularly polarized antenna according to the present invention, the waveguide portion is substantially hemispherical, and the cut surface of the substantially hemispherical surface is the surface on the zenith direction side.

この構成では、単純な略半球のみで円偏波アンテナが形成される。   In this configuration, a circularly polarized antenna is formed only with a simple substantially hemisphere.

また、この発明の円偏波アンテナは、導波管部が円筒部と略半球部とからなる。円筒部は対向する円形面の一方面を天頂方向側の面とし、略半球部は略半球の切断面が円筒部の天頂方向に対向する側の面に一致する形状からなる。そして、複数のプローブは、円筒部内に設置されている。   In the circularly polarized antenna according to the present invention, the waveguide portion is composed of a cylindrical portion and a substantially hemispherical portion. The cylindrical portion has one surface of the opposing circular surfaces on the zenith direction side, and the substantially hemispherical portion has a shape in which the cut surface of the substantially hemispherical surface coincides with the surface on the side facing the zenith direction of the cylindrical portion. And the some probe is installed in the cylindrical part.

この構成では、プローブの設置されている部分が円筒導波管となり、上述の天頂方向に対向する側の面が単純な略半球で形成される。このようにプローブが円筒導波管に設けられることで、円筒導波管の側壁面に垂直にプローブを挿入すれば、プローブの延びる方向を導波管の信号搬送方向に対して直交させることができる。   In this configuration, the portion where the probe is installed is a cylindrical waveguide, and the surface on the side facing the zenith direction is formed as a simple substantially hemisphere. By providing the probe in the cylindrical waveguide in this way, if the probe is inserted perpendicularly to the side wall surface of the cylindrical waveguide, the extending direction of the probe can be made orthogonal to the signal carrying direction of the waveguide. it can.

また、この発明の円偏波アンテナは、導波管部内に、所定誘電率からなる誘電体が充填されている。   In the circularly polarized antenna according to the present invention, the waveguide portion is filled with a dielectric having a predetermined dielectric constant.

この構成では、比誘電率を1よりも大きくして適宜設定することで、所望とする周波数に対して、誘電体を充填しない場合よりもアンテナが小型化される。また、導波管の形状を変化させることなく、充填される誘電体の誘電率を変化させれば、当該誘電率に応じた周波数帯域の電波が送受信される。   In this configuration, by setting the relative permittivity to be larger than 1 and setting it appropriately, the antenna can be made smaller than the case where the dielectric is not filled at a desired frequency. Further, if the dielectric constant of the dielectric to be filled is changed without changing the shape of the waveguide, radio waves in a frequency band corresponding to the dielectric constant are transmitted and received.

また、この発明の円偏波アンテナは、導波管部に接続する平板状の導体板を天頂方向側の面に沿って備える。   Moreover, the circularly polarized wave antenna of this invention is equipped with the flat conductor board connected to a waveguide part along the surface of a zenith direction side.

この構成では、導体板からも電波の放射が行われることで利得が改善される。   In this configuration, the gain is improved by emitting radio waves from the conductor plate.

この発明によれば、略半球形状や円筒と略半球との組み合わせ形状のような単純且つ簡素な構造で、利得、軸比、VSWR等の電波に関する諸特性に優れる円偏波アンテナを実現することができる。   According to the present invention, a circularly polarized antenna having a simple and simple structure such as a substantially hemispherical shape or a combined shape of a cylinder and a substantially hemisphere and excellent in various characteristics relating to radio waves such as gain, axial ratio, and VSWR is realized. Can do.

本発明の実施形態に係る円偏波アンテナについて、図を参照して説明する。
図1は本実施形態の円偏波アンテナ1の主要構成を示す外観斜視図である。図2は本実施形態の円偏波アンテナ1の天面図および側面断面図であり、(A)は天面図を示し、(B)は側面断面図を示す。
A circularly polarized antenna according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an external perspective view showing the main configuration of the circularly polarized antenna 1 of the present embodiment. 2A and 2B are a top view and a side sectional view of the circularly polarized antenna 1 of the present embodiment, wherein FIG. 2A shows a top view and FIG. 2B shows a side sectional view.

円偏波アンテナ1は、導波管部23と該導波管部23内に設置されたプローブ5A〜5Dと、該プローブ5A〜5Dのそれぞれを中心導体とする同軸ケーブル4A〜4Dとを備える。   The circularly polarized wave antenna 1 includes a waveguide portion 23, probes 5A to 5D installed in the waveguide portion 23, and coaxial cables 4A to 4D having the probes 5A to 5D as central conductors. .

導波管部23は、円筒導波管2とキャビティ3とからなる。円筒導波管2は、天頂方向(天面方向)から見て所定径の円形となり、軸方向に垂直な二面が開口する円筒状の導体からなり、天頂方向側の開口面(「天頂面」と称する。)がそのまま外部へ開放され、当該天頂面に対向する側の開口面にキャビティ3が接続している。キャビティ3は、中空状の半球形状で形成された導体からなり、この半球形状の元となる球を、当該球の中心を通る平面で切断した形状からなる。そして、キャビティ3は、この切断面が円筒導波管2の天頂面に対向する側の開口面と一致するように、円筒導波管2に対して一体形成されている。この際、円筒導波管2を天頂側から見た中心Oと、キャビティ3を天頂側から見た中心とが、天頂側から見て一致するように、導波管部23は形成されている。さらに、天頂側から見た状態で、円筒導波管2の内壁面側から当該円筒導波管2の中心Oに向かって、円筒導波管2のキャビティ3側開口面からキャビティ3の内壁面(本発明の「天頂方向に対向する面」に相当する。)までの距離が徐々に長くなるように、キャビティ3は設置されている。   The waveguide section 23 includes a cylindrical waveguide 2 and a cavity 3. The cylindrical waveguide 2 has a circular shape with a predetermined diameter when viewed from the zenith direction (top surface direction), and is formed of a cylindrical conductor having two open surfaces perpendicular to the axial direction. Is open to the outside as it is, and the cavity 3 is connected to the opening surface on the side facing the zenith surface. The cavity 3 is made of a conductor formed in a hollow hemispherical shape, and has a shape obtained by cutting the sphere that is the base of the hemispherical shape along a plane that passes through the center of the sphere. The cavity 3 is integrally formed with the cylindrical waveguide 2 so that the cut surface coincides with the opening surface on the side facing the top surface of the cylindrical waveguide 2. At this time, the waveguide portion 23 is formed so that the center O when the cylindrical waveguide 2 is viewed from the zenith side and the center when the cavity 3 is viewed from the zenith side coincide with each other when viewed from the zenith side. . Furthermore, as viewed from the zenith side, from the inner wall surface side of the cylindrical waveguide 2 toward the center O of the cylindrical waveguide 2, the inner wall surface of the cavity 3 from the opening surface on the cavity 3 side of the cylindrical waveguide 2. The cavity 3 is installed such that the distance to (the “surface facing the zenith direction” in the present invention) gradually increases.

円筒導波管2の外壁側には、円筒導波管2を天頂側から見た中心Oに対して、π/2の角度間隔で同軸ケーブル4A〜4Dが設置されている。同軸ケーブル4A〜4Dは、プローブ5A〜5Dとして機能する中心導体と、中心導体の軸に垂直な放射方向へ所定距離で離間された形で中心導体を取り巻く形状からなる外導体とを備える。同軸ケーブル4A〜4Dの外導体はそれぞれ円筒導波管2へ電気的に接続されている。同軸ケーブル4A〜4Dの中心導体は、円筒導波管2の内部に所定の距離だけ突出して形成されており、当該部分がプローブ5A〜5Dとして機能する。プローブ5A〜5Dは、円筒導波管2の軸方向、すなわち円筒形の軸方向に垂直で且つ前記天頂面から等距離の位置に設置されている。また、プローブ5A〜5Dは、前記中心Oに対して、点対称となるように配置されている。この際、プローブ5A〜5Dは、中心Oを基準として、天頂側から見てπ/2[rad.]の角度間隔で配置されている。   On the outer wall side of the cylindrical waveguide 2, coaxial cables 4 </ b> A to 4 </ b> D are installed at an angular interval of π / 2 with respect to the center O when the cylindrical waveguide 2 is viewed from the zenith side. The coaxial cables 4A to 4D include a center conductor that functions as the probes 5A to 5D, and an outer conductor that has a shape surrounding the center conductor in a form spaced apart by a predetermined distance in a radial direction perpendicular to the axis of the center conductor. The outer conductors of the coaxial cables 4 </ b> A to 4 </ b> D are each electrically connected to the cylindrical waveguide 2. The central conductors of the coaxial cables 4A to 4D are formed so as to protrude from the cylindrical waveguide 2 by a predetermined distance, and these portions function as the probes 5A to 5D. The probes 5A to 5D are installed at positions equidistant from the zenith surface perpendicular to the axial direction of the cylindrical waveguide 2, that is, the cylindrical axial direction. The probes 5A to 5D are arranged so as to be point-symmetric with respect to the center O. At this time, the probes 5A to 5D have π / 2 [rad. ] Are arranged at angular intervals.

導波管部23の内部には、所定の誘電率からなる誘電体6が充填されている。なお、誘電体6を充填することなく空洞(比誘電率εr=1)としても良いが、比誘電率εr>1となる誘電体6を充填することで、円偏波アンテナ1を小型化することができる。また、誘電体6の比誘電率を異ならせることで、ターゲットとする周波数帯域を変えることができる。   The waveguide portion 23 is filled with a dielectric 6 having a predetermined dielectric constant. Note that the cavity (relative permittivity εr = 1) may be used without filling the dielectric 6, but the circularly polarized antenna 1 can be downsized by filling the dielectric 6 satisfying the relative permittivity εr> 1. be able to. Further, the target frequency band can be changed by making the relative permittivity of the dielectric 6 different.

このような円偏波アンテナ1における円筒導波管2の径は、当該円偏波アンテナ1により送受信する電波の周波数帯域と誘電体6の誘電率とに応じて適宜設定されており、当該円偏波アンテナ1の他の寸法も、送受信する電波の周波数帯域と誘電率とにより適宜設定される。   The diameter of the cylindrical waveguide 2 in such a circularly polarized antenna 1 is appropriately set according to the frequency band of radio waves transmitted and received by the circularly polarized antenna 1 and the dielectric constant of the dielectric 6. Other dimensions of the polarization antenna 1 are also set as appropriate depending on the frequency band and dielectric constant of the radio wave to be transmitted and received.

このような構造において、例えば電波を送信する場合、同軸ケーブル4A〜4Dに図示しない給電部を接続する。給電部は、元の送信信号の位相を同軸ケーブル4A〜4D毎に調整して、同軸ケーブル4A〜4Dへ出力する。図1、図2の例であれば、同軸ケーブル4Aに与える送信信号を基準として、同軸ケーブル4Bに与える送信信号の位相をπ/2遅らせ、同軸ケーブル4Cに与える送信信号の位相をπ遅らせ、同軸ケーブル4Dに与える送信信号の位相を3π/2遅らせることで、各プローブ5A〜5Dには、プローブ5Aに伝送された送信信号を基準に、プローブ5Bでπ/2遅れた送信信号が伝送され、プローブ5Cでπ遅れた送信信号が伝送され、プローブ5Dで3π/2遅れた送信信号が伝送される。これらの送信信号は、各プローブ5A〜5Dから導波管部23内に伝搬され、導波管部23内を伝搬して、導波管部23の開口された天頂面から外部へ放射される。上述の位相関係は、導波管部23に伝搬されても保存されるので、この場合(図1、図2の場合)、右旋円偏波が天頂方向へ放射される。逆に、同軸ケーブル4A(プローブ5A)に与える送信信号を基準として、同軸ケーブル4B(プローブ5B)に与える送信信号の位相をπ/2進ませ、同軸ケーブル4C(プローブ5C)に与える送信信号の位相をπ進ませ、同軸ケーブル4D(プローブ5D)に与える送信信号の位相を3π/2進ませることで、左旋円偏波が天頂方向へ放射される。   In such a structure, for example, when transmitting radio waves, a power feeding unit (not shown) is connected to the coaxial cables 4A to 4D. The power feeding unit adjusts the phase of the original transmission signal for each of the coaxial cables 4A to 4D and outputs it to the coaxial cables 4A to 4D. In the example of FIGS. 1 and 2, with the transmission signal applied to the coaxial cable 4A as a reference, the phase of the transmission signal applied to the coaxial cable 4B is delayed by π / 2, and the phase of the transmission signal applied to the coaxial cable 4C is delayed by π, By delaying the phase of the transmission signal applied to the coaxial cable 4D by 3π / 2, a transmission signal delayed by π / 2 by the probe 5B is transmitted to each of the probes 5A to 5D based on the transmission signal transmitted to the probe 5A. The transmission signal delayed by π is transmitted by the probe 5C, and the transmission signal delayed by 3π / 2 is transmitted by the probe 5D. These transmission signals are propagated from the respective probes 5A to 5D into the waveguide portion 23, propagated through the waveguide portion 23, and radiated to the outside from the opened zenith surface of the waveguide portion 23. . Since the above-described phase relationship is preserved even if it is propagated to the waveguide section 23, in this case (in the case of FIGS. 1 and 2), a right-handed circularly polarized wave is radiated in the zenith direction. Conversely, with the transmission signal applied to the coaxial cable 4A (probe 5A) as a reference, the phase of the transmission signal applied to the coaxial cable 4B (probe 5B) is advanced by π / 2, and the transmission signal applied to the coaxial cable 4C (probe 5C) By causing the phase to advance by π and the phase of the transmission signal applied to the coaxial cable 4D (probe 5D) to advance by 3π / 2, a left-handed circularly polarized wave is emitted in the zenith direction.

なお、受信の場合は、上述の位相関係に基づいて受信したい信号に応じた位相処理を各プローブ5A〜5Dに対して行うことで、右旋円偏波および左旋円偏波を受信することができる。   In the case of reception, the right-handed circularly polarized wave and the left-handed circularly polarized wave can be received by performing phase processing on each probe 5A to 5D according to the signal to be received based on the above-described phase relationship. it can.

さらに、上述のような構造とすることで、各プローブ5A〜5Dとキャビティ3の内壁面との距離D(例えば、図2(B)におけるD1〜D3)は、プローブ5A〜5Dの軸方向に沿って徐々に変化する。このように距離Dが変化することで、上述の図7の説明を参照して分かるように、距離Dの変化幅に応じて、整合される周波数の帯域が広がり、送受信に対して所定の帯域幅を確保することができる。   Furthermore, with the above-described structure, the distance D (for example, D1 to D3 in FIG. 2B) between each probe 5A to 5D and the inner wall surface of the cavity 3 is in the axial direction of the probes 5A to 5D. Gradually change along. As the distance D changes in this way, as can be understood with reference to the description of FIG. 7 described above, the band of the frequency to be matched expands according to the change width of the distance D, and a predetermined band for transmission and reception A width can be secured.

これにより、円筒導波管と半球状キャビティとからなる単純な構造の導波管部と、複数のプローブとからなる簡素な構造で広い帯域特性を有する円偏波アンテナを実現することができる。   Thereby, it is possible to realize a circularly polarized antenna having a wide band characteristic with a simple structure including a waveguide having a simple structure including a cylindrical waveguide and a hemispherical cavity and a plurality of probes.

図3は、本実施形態の円偏波アンテナの各周波数特性のシミュレーション結果を示す図であり、(A)が利得周波数特性、(B)が軸比周波数特性、(C)がVSWR周波数特性を示す。なお、本シミュレーションは、図4に示す寸法の導波管部23、プローブ5A〜5D、および、図4に示す比誘電率からなる誘電体を用いて、ターゲット周波数をL1波の周波数である1575.42MHzとして行った。図4は図3のシミュレーションを行った円偏波アンテナの外形寸法および比誘電率の指示図である。   FIG. 3 is a diagram showing simulation results of each frequency characteristic of the circularly polarized antenna according to the present embodiment. (A) is a gain frequency characteristic, (B) is an axial ratio frequency characteristic, and (C) is a VSWR frequency characteristic. Show. In this simulation, the waveguide portion 23 having the dimensions shown in FIG. 4, the probes 5A to 5D, and the dielectric having the relative dielectric constant shown in FIG. .42 MHz. FIG. 4 is an indication diagram of the external dimensions and relative permittivity of the circularly polarized antenna for which the simulation of FIG. 3 was performed.

図3に示すように、本実施形態の構成を用いることで、3dB帯域幅、すなわちターゲット周波数の利得に対して−3dB内の利得が得られる周波数帯域幅は、比帯域で約50%となり、広帯域幅を確保することができる。また、軸比が1dB以下となる帯域幅は、GPSのL1波、L2波、L5波の周波数帯域である1.176GHz〜1.575GHz帯を含み、ターゲット周波数に対して比帯域67%以上の帯域幅を得ることができ、円偏波アンテナとしては非常に広帯域幅を確保することができる。さらに、VSWRが2以下となる帯域幅も、ターゲット周波数に対して比帯域略45%となり、広帯域幅を確保することができる。   As shown in FIG. 3, by using the configuration of the present embodiment, the 3 dB bandwidth, that is, the frequency bandwidth at which a gain within −3 dB is obtained with respect to the gain of the target frequency is about 50% in the specific band, A wide bandwidth can be secured. The bandwidth with an axial ratio of 1 dB or less includes the GPS L1 wave, L2 wave, and L5 wave frequency bands of 1.176 GHz to 1.575 GHz, and the bandwidth is 67% or more of the target frequency. A bandwidth can be obtained, and a very wide bandwidth can be secured as a circularly polarized antenna. Furthermore, the bandwidth at which VSWR is 2 or less is about 45% of the bandwidth relative to the target frequency, and a wide bandwidth can be secured.

以上のように、本実施形態の構成を用いることで、広帯域で円偏波アンテナとしての各種特性が優れる、簡素な構造の円偏波アンテナを実現することができる。   As described above, by using the configuration of the present embodiment, it is possible to realize a circularly polarized antenna having a simple structure that is excellent in various characteristics as a circularly polarized antenna in a wide band.

なお、上述の実施形態に加え、放射面である円筒導波管の天頂面に平板状の導体板を設置してもよい。
図5は導体板7を有する円偏波アンテナ1’の構成を示す天面図および側面断面図である。また、図6は図5に示す構成の円偏波アンテナ1’の利得周波数特性を示す図である。
図5に示す円偏波アンテナ1’は、図1および図2に示した円偏波アンテナ1の円筒導波管2の天頂側の開口面に沿って所定径からなる導体板7が設置された構造からなる。導体板7は、円筒導波管2と電気的に接続される構成からなり、例えば、円筒導波管2に対して一体成型されている。導体板7は、天頂側から見てドーナツ型となっており、中心側端部が円筒導波管2に接続する。また、導体板7は、天頂側から見た面積は、放射される電波の各特性が最適となるような面積に設定されている。そして、例えば、この面積は、予めシミュレーション等で決定しておけばよい。
In addition to the above-described embodiment, a flat conductor plate may be installed on the top surface of the cylindrical waveguide that is the radiation surface.
FIG. 5 is a top view and a side sectional view showing the configuration of the circularly polarized antenna 1 ′ having the conductor plate 7. FIG. 6 is a diagram showing the gain frequency characteristics of the circularly polarized antenna 1 ′ configured as shown in FIG.
A circularly polarized antenna 1 ′ shown in FIG. 5 is provided with a conductor plate 7 having a predetermined diameter along an opening surface on the zenith side of the cylindrical waveguide 2 of the circularly polarized antenna 1 shown in FIGS. It consists of a structure. The conductor plate 7 is configured to be electrically connected to the cylindrical waveguide 2, and is integrally formed with the cylindrical waveguide 2, for example. The conductor plate 7 has a donut shape when viewed from the zenith side, and the end on the center side is connected to the cylindrical waveguide 2. In addition, the area of the conductor plate 7 viewed from the zenith side is set to an area that optimizes the characteristics of the radiated radio waves. For example, this area may be determined in advance by simulation or the like.

このような構成とすることで放射効率が向上して、図6に示すように、所望とする周波数帯域での利得、この場合であれば、上述のGPSの使用帯域での利得が、2dB〜3dB程度向上する。このように、図5のような構成を用いることで、図1に示した円偏波アンテナ1に対して単に導体板を付加するという単純な構造で、さらに利得が改善された円偏波アンテナを実現することができる。   With such a configuration, the radiation efficiency is improved, and as shown in FIG. 6, the gain in the desired frequency band, in this case, the gain in the above-mentioned GPS use band is 2 dB to It improves about 3dB. In this way, by using the configuration as shown in FIG. 5, a circularly polarized antenna having a simple structure in which a conductor plate is simply added to the circularly polarized antenna 1 shown in FIG. Can be realized.

なお、上述の説明では、キャビティ3が半球の場合を例に説明したが、楕円半球であっても良く、さらには、天頂側から見た状態で円筒導波管2の内壁面側から中心Oへ向かって、各プローブ5A〜5Dとキャビティ3の壁面との距離が徐々に長くなる形状であれば、他の形状であってもよい。   In the above description, the case where the cavity 3 is a hemisphere has been described as an example, but it may be an elliptical hemisphere, and further, the center O from the inner wall surface side of the cylindrical waveguide 2 when viewed from the zenith side. As long as the distance between each of the probes 5A to 5D and the wall surface of the cavity 3 gradually increases, another shape may be used.

また、上述の説明では、プローブ数が4つの場合を例に示したが、各プローブの配置は、それぞれのプローブから発生する電界ベクトルが空間的に直交するように配置されていればよく、プローブ数は2つ以上であればよい。例えば、プローブ数Nに応じて、配置角度間隔を2π/Nとし、それぞれのプローブに給電する送信信号の位相を2π/Nずつずらすようにすればよい。   In the above description, the case where the number of probes is four is shown as an example. However, the probes may be arranged so that the electric field vectors generated from the probes are spatially orthogonal. The number may be two or more. For example, the arrangement angle interval may be set to 2π / N in accordance with the number of probes N, and the phase of the transmission signal fed to each probe may be shifted by 2π / N.

また、上述の説明では、円筒導波管を用いた例を示したが、円筒導波管を省略し、半球状や楕円半球状のキャビティのみで導波管部を形成しても良い。これにより、導波管部がさらに簡素な構造となる。   In the above description, an example using a cylindrical waveguide is shown. However, the cylindrical waveguide may be omitted, and the waveguide portion may be formed only by a hemispherical or elliptical hemispherical cavity. Thereby, the waveguide portion has a simpler structure.

また、上述の説明では、円筒導波管を用いた例を示したが、方形導波管等を用いても良く、この場合、キャビティは例えば四角錐とすればよい。   In the above description, an example using a cylindrical waveguide has been shown. However, a rectangular waveguide or the like may be used. In this case, the cavity may be a quadrangular pyramid, for example.

本発明の実施形態の円偏波アンテナ1の主要構成を示す外観斜視図である。1 is an external perspective view showing a main configuration of a circularly polarized antenna 1 according to an embodiment of the present invention. 本発明の実施形態の円偏波アンテナ1の天面図および側面断面図である。It is the top view and side sectional drawing of the circularly polarized antenna 1 of embodiment of this invention. 本発明の実施形態の円偏波アンテナ1の各周波数特性のシミュレーション結果を示す図である。It is a figure which shows the simulation result of each frequency characteristic of the circularly polarized wave antenna 1 of embodiment of this invention. 図3のシミュレーションを行った円偏波アンテナの外形寸法および比誘電率指示図である。FIG. 4 is a diagram showing the external dimensions and relative permittivity of the circularly polarized antenna for which the simulation of FIG. 3 was performed. 導体板を有する円偏波アンテナの構成を示す天面図および側面断面図である。It is the top view and side sectional view showing the composition of the circular polarization antenna which has a conductor board. 図5に示す構成の円偏波アンテナの利得特性を示す図である。It is a figure which shows the gain characteristic of the circularly polarized antenna of the structure shown in FIG. 同軸−導波管変換器の基本概念を説明するための概略構成図である。It is a schematic block diagram for demonstrating the basic concept of a coaxial-waveguide converter.

符号の説明Explanation of symbols

1−円偏波アンテナ、2−円筒導波管、3−キャビティ、23−導波管部、4A〜4D−同軸ケーブル、5A〜5D−プローブ、6−誘電体、7−導体板、101−導波管、111−導波管100の端面、102−同軸ケーブル、103−プローブ 1-circularly polarized antenna, 2-cylindrical waveguide, 3-cavity, 23-waveguide section, 4A-4D-coaxial cable, 5A-5D-probe, 6-dielectric, 7-conductor plate, 101- Waveguide, 111-end face of waveguide 100, 102-coaxial cable, 103-probe

Claims (5)

所定周波数帯域幅内のそれぞれに異なる複数の周波数の円偏波を送信および受信する円偏波アンテナであって、
天頂方向側の面のみを開口する導体からなり、前記導体の開口面から内壁面までの距離が、前記開口面の縁側から中心に向かって順に長くなるように形成された導波管部と、
該導波管部内において、給電時に空間的に直交する電界ベクトルが発生するように配置された複数のプローブと、
該複数のプローブによる送信および受信時に、天頂方向から見た前記複数のプローブの角度間隔に応じて位相処理を行う位相処理手段と、
を備えた円偏波アンテナ。
A circularly polarized antenna that transmits and receives circularly polarized waves having different frequencies within a predetermined frequency bandwidth,
A waveguide portion formed of a conductor that opens only the surface on the zenith direction side, and a waveguide portion formed such that the distance from the opening surface of the conductor to the inner wall surface increases in order from the edge side of the opening surface toward the center;
In the waveguide section, a plurality of probes arranged to generate electric field vectors spatially orthogonal at the time of feeding,
Phase processing means for performing phase processing according to the angular interval of the plurality of probes viewed from the zenith direction at the time of transmission and reception by the plurality of probes;
Circularly polarized antenna with
前記導波管部は略半球からなり、該略半球の切断面を前記天頂方向側の面とする、請求項1に記載の円偏波アンテナ。   The circularly polarized wave antenna according to claim 1, wherein the waveguide portion is formed of a substantially hemisphere, and a cut surface of the substantially hemisphere is a surface on the zenith direction side. 前記導波管部は、円筒部と略半球部とからなり、
前記円筒部は、対向する円形面の一方面を前記天頂方向側の面とし、
前記略半球部は、略半球の切断面が前記円筒部の前記天頂方向に対向する側の面に一致する形状からなり、
前記複数のプローブは、前記円筒部内に設置されている、請求項1に記載の円偏波アンテナ。
The waveguide portion is composed of a cylindrical portion and a substantially hemispherical portion,
The cylindrical portion has one surface of the opposing circular surface as the surface on the zenith direction side,
The substantially hemispherical portion has a shape in which the cut surface of the substantially hemispherical surface coincides with the surface of the cylindrical portion facing the zenith direction,
The circularly polarized antenna according to claim 1, wherein the plurality of probes are installed in the cylindrical portion.
前記導波管部内には、所定誘電率からなる誘電体が充填されている、請求項1〜請求項3のいずれかに記載の円偏波アンテナ。   The circularly polarized wave antenna according to any one of claims 1 to 3, wherein the waveguide portion is filled with a dielectric having a predetermined dielectric constant. 前記導波管部に接続する平板状の導体板を前記天頂方向側の面に沿って備える、請求項1〜4のいずれかに記載の円偏波アンテナ。   The circularly polarized wave antenna according to any one of claims 1 to 4, comprising a flat conductor plate connected to the waveguide portion along a surface on the zenith direction side.
JP2007324204A 2007-12-17 2007-12-17 Circular polarization antenna Pending JP2009147769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007324204A JP2009147769A (en) 2007-12-17 2007-12-17 Circular polarization antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007324204A JP2009147769A (en) 2007-12-17 2007-12-17 Circular polarization antenna

Publications (1)

Publication Number Publication Date
JP2009147769A true JP2009147769A (en) 2009-07-02

Family

ID=40917837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007324204A Pending JP2009147769A (en) 2007-12-17 2007-12-17 Circular polarization antenna

Country Status (1)

Country Link
JP (1) JP2009147769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019224A (en) * 2014-07-10 2016-02-01 三菱電機株式会社 Antenna device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205305A (en) * 1982-05-26 1983-11-30 Toshiba Corp Horn antenna
US4672388A (en) * 1984-06-15 1987-06-09 Fay Grim Polarized signal receiver waveguides and probe
JPH01236703A (en) * 1988-03-16 1989-09-21 Yagi Antenna Co Ltd Microwave antenna system
JPH03103608U (en) * 1990-02-13 1991-10-28
JP2000349535A (en) * 1999-06-01 2000-12-15 Nec Corp Primary radiator
JP2006005818A (en) * 2004-06-21 2006-01-05 Sharp Corp Converter for receiving microwave

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205305A (en) * 1982-05-26 1983-11-30 Toshiba Corp Horn antenna
US4672388A (en) * 1984-06-15 1987-06-09 Fay Grim Polarized signal receiver waveguides and probe
JPH01236703A (en) * 1988-03-16 1989-09-21 Yagi Antenna Co Ltd Microwave antenna system
JPH03103608U (en) * 1990-02-13 1991-10-28
JP2000349535A (en) * 1999-06-01 2000-12-15 Nec Corp Primary radiator
JP2006005818A (en) * 2004-06-21 2006-01-05 Sharp Corp Converter for receiving microwave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016019224A (en) * 2014-07-10 2016-02-01 三菱電機株式会社 Antenna device

Similar Documents

Publication Publication Date Title
US8610633B2 (en) Dual polarized waveguide slot array and antenna
JP3867713B2 (en) Radio wave lens antenna device
US5134420A (en) Bicone antenna with hemispherical beam
JP4428864B2 (en) Coaxial cavity antenna
US6819302B2 (en) Dual port helical-dipole antenna and array
Prasannakumar et al. Broadband reflector antenna with high isolation feed for full-duplex applications
CN113196571B (en) Dual polarized horn antenna with asymmetric radiation pattern
WO2018164018A1 (en) Slotted patch antenna
KR20100113347A (en) The series-fed array antenna for ultra high frequency band radar
US20130328733A1 (en) Waveguide or slot radiator for wide e-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
JP2019024170A (en) Dielectric lens antenna device
US5859615A (en) Omnidirectional isotropic antenna
Makar et al. Compact antennas with reduced self interference for simultaneous transmit and receive
KR102015530B1 (en) Monopulse antenna comprising planar reflectors
Debbarma et al. 2-D beam steering performance of a triple mode horn antenna integrated with Risley prism and phase correcting surface
WO2015159871A1 (en) Antenna and sector antenna
JP2009147769A (en) Circular polarization antenna
JP2002135044A (en) Circularly polarized wave antenna and circularly polarized wave array antenna
KR100987367B1 (en) Triple band directional antenna
Priya et al. Design and analysis of planar array with horn antenna beams
RU2620195C1 (en) Resonant antenna
Lin et al. Pattern reconfigurable techniques for LP and CP antennas with the broadside and conical beams
JPH05129823A (en) Microstrip antenna
Bang et al. A New Dual Circularly Polarized Feed Employing a Dielectric Cylinder‐Loaded Circular Waveguide Open End Fed by Crossed Dipoles
CN214336912U (en) Vivaldi antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100325

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410