JP2009039038A - Method for separating substance to be separated and method for purifying the same - Google Patents
Method for separating substance to be separated and method for purifying the same Download PDFInfo
- Publication number
- JP2009039038A JP2009039038A JP2007207412A JP2007207412A JP2009039038A JP 2009039038 A JP2009039038 A JP 2009039038A JP 2007207412 A JP2007207412 A JP 2007207412A JP 2007207412 A JP2007207412 A JP 2007207412A JP 2009039038 A JP2009039038 A JP 2009039038A
- Authority
- JP
- Japan
- Prior art keywords
- ion
- substance
- separated
- water
- soluble salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
元素周期表2族に属するバリウム、カルシウム、マグネシウム等の硫酸塩、リン酸塩、水酸化物、炭酸塩およびアルミニウムのリン酸塩もしくは水酸化物等の難水溶性無機化合物は、生物学的に不活性で生理活性物質の不活化が起きにくい事が知られている。難水溶性無機化合物は生物活性タンパク質や核酸などの有機物との親和性が高いため、ワクチン、血液タンパク、成長ホルモン、食品添加物、インターフェロン等の精製に応用されている(特許文献1、非特許文献1〜6)。 Insoluble inorganic compounds such as sulfates, phosphates, hydroxides, carbonates and aluminum phosphates or hydroxides belonging to Group 2 of the periodic table of biological materials are biologically It is known that inactivation is unlikely to cause inactivation of physiologically active substances. Since poorly water-soluble inorganic compounds have high affinity with organic substances such as biologically active proteins and nucleic acids, they are applied to the purification of vaccines, blood proteins, growth hormones, food additives, interferons, etc. (Patent Document 1, Non-Patent Document 1) Literature 1-6).
吸着担体として難水溶性無機化合物を利用する被分離物質の精製方法は、粉末状の吸着担体を被検液に添加して使用することが多く、精製工程中の固液分離には一般的に遠心分離機が用いられる。増産時は使用する担体量が多くなることから、被検液を複数ロットに分割し複数バッチの精製工程を行わなければならない。また、増産によって吸着担体などの産業廃棄物量も増加することから、後処理に多くの時間を費やさなければならない。 In many cases, a purification method for a substance to be separated that uses a poorly water-soluble inorganic compound as an adsorption carrier is used by adding a powdery adsorption carrier to a test solution, and is generally used for solid-liquid separation during the purification process. A centrifuge is used. When increasing production, the amount of carrier used increases, so the test solution must be divided into a plurality of lots and a plurality of batches of purification steps must be performed. In addition, since the amount of industrial waste such as adsorption carriers increases due to increased production, much time must be spent on post-treatment.
吸着担体として用いられる難水溶性無機化合物の吸着性能や溶出性能をさらに向上させることができれば、被分離物質の分離・精製の効率をより向上させることができ、また、使用済み担体の廃棄量も減じることができる。しかしながら、現在までのところ、満足できる有用な手段は提供されていない。 If the adsorption performance and elution performance of the poorly water-soluble inorganic compound used as the adsorption carrier can be further improved, the efficiency of separation / purification of the substance to be separated can be further improved. Can be reduced. To date, however, no satisfactory and useful means have been provided.
従って、本発明の目的は、難水溶性無機化合物を用いた分離・精製方法の効率をより向上させることができる新規な手段を提供することにある。 Accordingly, an object of the present invention is to provide a novel means that can further improve the efficiency of a separation / purification method using a poorly water-soluble inorganic compound.
本願発明者らは、鋭意研究の結果、被分離物質の分離工程において、被分離物質を含有する溶液中に適当なイオンを加え、該溶液中で難水溶性塩を形成させると、この難水溶性塩に被分離物質が効率良く吸着されることを見出し、本願発明を完成した。 As a result of diligent research, the inventors of the present application have added a suitable ion to a solution containing the substance to be separated in the separation process of the substance to be separated to form a poorly water-soluble salt in the solution. The present invention has been completed by finding that the substance to be separated is efficiently adsorbed to the salt.
すなわち、本発明は、被分離物質を含む水系の被処理液中で、バリウムイオン、カルシウムイオン、マグネシウムイオン及びアルミニウムイオンから成る群より選ばれる少なくとも1種の陽イオンと、該陽イオンとの反応により難水溶性塩を形成できる少なくとも1種の陰イオンとを反応させて、被処理液中に難水溶性塩を析出させ、該析出した難水溶性塩に前記被分離物質を吸着させることを含む、被分離物質の分離方法を提供する。また、本発明は、上記本発明の方法により得られた、被分離物質が吸着された難水溶性塩に溶出液を作用させることを含む、前記被分離物質の精製方法を提供する。 That is, the present invention provides a reaction between at least one cation selected from the group consisting of barium ion, calcium ion, magnesium ion and aluminum ion in an aqueous treatment liquid containing a substance to be separated, and the cation. Reacting with at least one kind of anion capable of forming a hardly water-soluble salt to cause precipitation of the hardly water-soluble salt in the liquid to be treated, and adsorbing the substance to be separated to the precipitated slightly water-soluble salt A method for separating a substance to be separated is provided. The present invention also provides a method for purifying the substance to be separated, which comprises allowing an eluate to act on the poorly water-soluble salt adsorbed with the substance to be separated obtained by the method of the present invention.
本発明により、難水溶性塩を用いた新規な被分離物質の分離方法及び精製方法が提供された。本発明の方法によれば、従来法よりも少量の難水溶性塩で効率良く被分離物質を分離することができる。従って、分離・精製工程を効率化することができ、また、使用済み難水溶性塩の廃棄量を減少させることができる。 According to the present invention, a novel method for separating and purifying a substance to be separated using a hardly water-soluble salt is provided. According to the method of the present invention, a substance to be separated can be efficiently separated with a less water-soluble salt than in the conventional method. Therefore, the separation / purification process can be made more efficient, and the amount of used hardly water-soluble salt discarded can be reduced.
本発明の分離方法では、被分離物質を含む水系の溶液(水系の被処理液)中で難水溶性塩を析出させ、この難水溶性塩に被分離物質を吸着させる。これにより、同一の難水溶性塩から成る吸着剤を調製し、これを被処理液中に添加して用いる場合よりも、少量の難水溶性塩で良好な吸着性を発揮する(下記実施例参照)。詳細な原理は不明であるが、本発明の分離方法では、難水溶性塩微粒子の形成開始時から被分離物質と難水溶性塩とが接触し続けることになるため、別途合成した難水溶性塩を添加する場合よりも被分離物質と難水溶性塩との接触面積を大きくすることができ、効率的に吸着が行なわれるものと考えられる。なお、「水系の溶液」とは、溶媒の50%以上が水である溶液を言う。水系の被処理液としては、溶媒の50%以上が水である限り、親水性有機溶媒等の水以外の溶媒を含んだものであってよいが、溶媒が水のみから成る水溶液が好ましい。 In the separation method of the present invention, a hardly water-soluble salt is precipitated in an aqueous solution (aqueous liquid to be treated) containing a substance to be separated, and the substance to be separated is adsorbed on the hardly water-soluble salt. As a result, an adsorbent composed of the same poorly water-soluble salt is prepared, and it exhibits better adsorptivity with a small amount of the poorly water-soluble salt than when it is used by adding it to the liquid to be treated (Examples below). reference). Although the detailed principle is unknown, in the separation method of the present invention, since the substance to be separated and the poorly water-soluble salt are kept in contact with each other from the start of formation of the slightly water-soluble salt fine particles, a separately synthesized poorly water-soluble The contact area between the substance to be separated and the sparingly water-soluble salt can be increased as compared with the case where salt is added, and it is considered that adsorption is performed efficiently. The “aqueous solution” refers to a solution in which 50% or more of the solvent is water. The aqueous liquid to be treated may contain a solvent other than water, such as a hydrophilic organic solvent, as long as 50% or more of the solvent is water, but an aqueous solution containing only water is preferable.
ここで、「難水溶性塩」とは、25℃の水100gに対する溶解度が50mg以下、好ましくは25mg以下、より好ましくは10mg以下である無機化合物を言う。化合物の溶解度に関する情報は、当業者であれば容易に入手可能であり、また、実際に25℃の水100gに溶解する量を調べることにより、容易に知ることができる。したがって、被処理液中に析出させる難水溶性塩の溶解度は、容易に知ることができる。 Here, “slightly water-soluble salt” refers to an inorganic compound having a solubility in 100 g of water at 25 ° C. of 50 mg or less, preferably 25 mg or less, more preferably 10 mg or less. Information regarding the solubility of the compound can be easily obtained by those skilled in the art, and can be easily obtained by examining the amount actually dissolved in 100 g of water at 25 ° C. Therefore, the solubility of the hardly water-soluble salt to be precipitated in the liquid to be treated can be easily known.
被処理液中で形成させるべき難水溶性塩は、後述する被分離物質を吸着できる難水溶性の無機化合物であればいかなるものであってもよく、特に限定されないが、具体例としては、硫酸バリウム、炭酸バリウム、リン酸カルシウム、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、リン酸アルミニウム、水酸化アルミニウム等が挙げられる。 The sparingly water-soluble salt to be formed in the liquid to be treated is not particularly limited as long as it is a sparingly water-soluble inorganic compound capable of adsorbing the material to be separated, which will be described later. Examples include barium, barium carbonate, calcium phosphate, calcium carbonate, magnesium carbonate, magnesium hydroxide, aluminum phosphate, and aluminum hydroxide.
難水溶性塩を形成させるために、被分離物質を含む液(被処理液)中に存在すべき陽イオンは、バリウムイオン、カルシウムイオン、マグネシウムイオン及びアルミニウムイオンから成る群より選ばれる少なくとも1種の陽イオンである。 In order to form a hardly water-soluble salt, the cation to be present in the liquid containing the substance to be separated (processed liquid) is at least one selected from the group consisting of barium ions, calcium ions, magnesium ions and aluminum ions. The cation.
一方、被処理液中に存在すべき陰イオンは、被処理液中の上記陽イオンのうちの少なくとも1種類との結合により難水溶性塩を形成できるものであればよい。具体的には、該陰イオンは、リン酸イオン、リン酸一水素イオン、リン酸二水素イオン、炭酸イオン、炭酸水素イオン、硫酸イオン、硫酸水素イオン及び水酸化物イオンから成る群より選ばれる少なくとも1種の陰イオンである。これらのうち、硫酸イオン、リン酸イオン、炭酸イオン及び水酸化物イオンから成る群より選ばれる少なくとも1種が好ましい。 On the other hand, the anion which should exist in a to-be-processed liquid should just be a thing which can form a hardly water-soluble salt by the coupling | bonding with at least 1 type of the said cation in a to-be-processed liquid. Specifically, the anion is selected from the group consisting of phosphate ion, monohydrogen phosphate ion, dihydrogen phosphate ion, carbonate ion, bicarbonate ion, sulfate ion, hydrogen sulfate ion, and hydroxide ion. At least one anion. Among these, at least one selected from the group consisting of sulfate ion, phosphate ion, carbonate ion and hydroxide ion is preferable.
上記した陽イオン及び陰イオンの被処理液中の濃度は、被処理液中に析出させるべき難水溶性塩の量に応じて適宜選択することができ、特に限定されないが、通常、それぞれ0.001mM〜3M程度、特に0.01mM〜1M程度である。複数の陽イオンを用いる場合には、その合計量が上記範囲内であればよい。複数の陰イオンを用いる場合も同様に、その合計量が上記範囲内であればよい。 The concentration of the above cation and anion in the liquid to be treated can be appropriately selected according to the amount of the poorly water-soluble salt to be precipitated in the liquid to be treated, and is not particularly limited, but usually 0.001 mM each. About 3M, especially about 0.01mM to 1M. When using a some cation, the total amount should just be in the said range. Similarly, when a plurality of anions are used, the total amount may be within the above range.
被処理液中に上記陽イオン及び陰イオンを含ませる方法としては、例えば、溶解により水溶液中で所望のイオンを生じる水溶性化合物(以下「イオン供給源」という)をそのまま被処理液に添加する方法や、イオン供給源を水溶液の形態にして被処理液に添加する方法が挙げられるが、これらに限定されない。陽イオン供給源及び陰イオン供給源を添加する順番は特に限定されず、陽イオン供給源を先に添加し、次いで陰イオン供給源を添加してもよいし、その逆であってもよい。また、被処理液中に上記陽イオン及び陰イオンの一方が既に所望の濃度で存在する場合には、他方のみを被処理液に添加すればよい。例えば、被処理液がリン酸緩衝液の溶液である場合、被処理液中のリン酸イオンを利用することができるので、リン酸イオンとの結合により難水溶性塩を生じさせることができる少なくとも1種の陽イオン供給源を被処理液に添加することにより、被処理液中に難水溶性のリン酸塩を生じさせることができる。また、被分離物質がウイルス等であって、被処理液がウイルス等の培養液である場合、培養液のpH調整剤としてしばしば炭酸ガスが用いられるが、炭酸ガスでpHを調整した培養液中には炭酸イオンが含まれるため、この炭酸イオンを難水溶性塩形成に利用することができる。 As a method of including the cation and the anion in the liquid to be treated, for example, a water-soluble compound that generates desired ions in an aqueous solution by dissolution (hereinafter referred to as “ion supply source”) is directly added to the liquid to be treated. Examples thereof include a method and a method of adding an ion supply source to the liquid to be treated in the form of an aqueous solution, but are not limited thereto. The order of adding the cation source and the anion source is not particularly limited, and the cation source may be added first, and then the anion source may be added, or vice versa. Further, when one of the cation and the anion is already present in a desired concentration in the liquid to be treated, only the other is added to the liquid to be treated. For example, when the solution to be treated is a phosphate buffer solution, phosphate ions in the solution to be treated can be used, so that at least a poorly water-soluble salt can be generated by binding with phosphate ions. By adding one kind of cation supply source to the liquid to be treated, a poorly water-soluble phosphate can be generated in the liquid to be treated. In addition, when the substance to be separated is a virus or the like, and the liquid to be treated is a culture medium such as a virus, carbon dioxide is often used as a pH adjuster for the culture liquid. Since carbonate ion is contained in, this carbonate ion can be used for forming a hardly water-soluble salt.
なお、本発明において、「イオン供給源を添加する」とは、イオン供給源である上記水溶性化合物をそのままの形態(固体、液体又は気体)で添加することのみならず、水溶液の形態で添加することも包含する。例えば、被処理液中に供給すべきイオンが炭酸イオンである場合、「炭酸イオン供給源を添加する」とは、炭酸水素ナトリウム等の固体を被処理液中に直接溶解させること、炭酸水素ナトリウム等を一旦水に溶解して水溶液を調製し、該水溶液を添加すること、被処理液に炭酸ガスを通気すること等を包含する。 In the present invention, “adding an ion source” means not only adding the water-soluble compound as an ion source in the form (solid, liquid or gas) but also in the form of an aqueous solution. To include. For example, when the ions to be supplied into the liquid to be processed are carbonate ions, “adding a carbonate ion source” means that a solid such as sodium hydrogen carbonate is directly dissolved in the liquid to be processed, sodium hydrogen carbonate And the like are once dissolved in water to prepare an aqueous solution, the aqueous solution is added, and carbon dioxide gas is passed through the liquid to be treated.
被処理液のpHは、特に限定されないが、被分離物質の性質が損なわれないように中性付近とすることが望ましく、好ましくはpH5〜9程度、より好ましくはpH6〜8程度である。 The pH of the liquid to be treated is not particularly limited, but is desirably near neutral so that the properties of the substance to be separated are not impaired, preferably about pH 5 to 9, more preferably about pH 6 to 8.
難水溶性塩を析出させる反応は、いずれの温度で行なってもよく、特に限定されないが、被分離物質の生化学活性等の性質が損なわれないような温度条件で行なうことが望ましく、4℃〜室温程度が好ましい。被分離物質が特に不安定な物質ではなく、低温を維持する必要がない場合には、室温程度で反応させることが簡便で好ましい。 The reaction for precipitating the sparingly water-soluble salt may be carried out at any temperature, and is not particularly limited, but is desirably carried out under temperature conditions that do not impair the properties such as biochemical activity of the substance to be separated. About room temperature is preferable. When the substance to be separated is not a particularly unstable substance and it is not necessary to maintain a low temperature, it is convenient and preferable to carry out the reaction at about room temperature.
本発明の分離方法で分離される被分離物質とは、難水溶性塩に吸着するものであれば特に限定されないが、例えば従来硫酸バリウム等の難水溶性塩から成る吸着剤を用いて分離・精製されている物質が好ましく、ペプチド性物質、核酸、及びこれらの複合体等のような生体物質であることが好ましい。 The substance to be separated to be separated by the separation method of the present invention is not particularly limited as long as it is adsorbed to a hardly water-soluble salt. For example, it is conventionally separated using an adsorbent composed of a hardly water-soluble salt such as barium sulfate. A purified substance is preferable, and biological substances such as peptidic substances, nucleic acids, and complexes thereof are preferable.
「ペプチド性物質」とは、複数(2個以上)のアミノ酸がペプチド結合により結合した分子から成る物質を意味し、構成するアミノ酸数が少ない分子(オリゴペプチド)から成る物質及び構成するアミノ酸数が多い分子から成る物質の他、全長タンパク質も包含する。また、「ペプチド性物質」には、各種修飾(糖鎖修飾、化学修飾等)を受けた物質も包含される。ペプチド性物質の具体例としては、酵素、抗体、抗原、糖タンパク質、リポタンパク質及び標識酵素等、並びにこれらの断片等が挙げられるが、これらに限定されない。 “Peptidic substance” means a substance composed of molecules in which a plurality of (two or more) amino acids are linked by peptide bonds. In addition to substances consisting of many molecules, it also includes full-length proteins. The “peptidic substance” also includes substances that have undergone various modifications (sugar chain modification, chemical modification, etc.). Specific examples of peptidic substances include, but are not limited to, enzymes, antibodies, antigens, glycoproteins, lipoproteins and labeling enzymes, and fragments thereof.
上記核酸としては、RNAでもDNAでもよく、生化学分野及び医療学分野で通常核酸と分類されるいかなるものであってもよい。具体例としては、ssDNA、dsDNA、RNA、プラスミドDNA等が挙げられるが、これらに限定されない。 The nucleic acid may be RNA or DNA, and any nucleic acid that is usually classified as a nucleic acid in the biochemical field and the medical field. Specific examples include, but are not limited to, ssDNA, dsDNA, RNA, plasmid DNA and the like.
ペプチド性物質と核酸の複合体とは、上記したペプチド性物質と核酸とが結合したものを指す。代表的なものとしては核タンパク質が挙げられ、具体例としてはウイルス、ファージ等が挙げられるが、これらに限定されない。 The complex of peptidic substance and nucleic acid refers to a combination of the above peptidic substance and nucleic acid. Representative examples include nucleoproteins, and specific examples include, but are not limited to, viruses and phages.
本発明の分離方法により被処理液中に形成される、被分離物質が吸着された難水溶性塩([被分離物質−難水溶性塩]複合体)は、一般的な遠心分離法、濾過法等により固液分離することができる。 A hardly water-soluble salt ([substance to be separated-water-insoluble salt] complex) adsorbed to a substance to be separated formed in a liquid to be treated by the separation method of the present invention is a general centrifugal method, filtration. Solid-liquid separation can be performed by a method or the like.
固液分離した[被分離物質−難水溶性塩]複合体に溶出液を作用させて被分離物質を溶出させることにより、被分離物質を回収することができる。すなわち、本発明は、上記本発明の分離方法により得られた、被分離物質が吸着された難水溶性塩に溶出液を作用させることを含む、前記被分離物質の精製方法をも提供する。 The substance to be separated can be recovered by allowing the substance to be separated to elute by allowing the eluate to act on the solid-liquid separated [substance to be separated-water-insoluble salt] complex. That is, the present invention also provides a method for purifying the substance to be separated, which comprises allowing an eluent to act on the poorly water-soluble salt adsorbed with the substance to be separated obtained by the separation method of the present invention.
溶出液としては、難水溶性塩から成る吸着剤を用いた分離・精製方法において通常用いられている公知の溶出液のいずれでも好ましく用いることができる。そのような公知の溶出液の一部を例示すると、リン酸塩溶液、クエン酸塩溶液およびこれらの混合溶液等が挙げられる。特に限定されないが、溶出液の塩類濃度は通常0.005M〜3M程度(好ましくは0.1M〜2M)である(複数の塩類が含まれる場合はその合計を指す)。具体的には、下記実施例で用いられている1Mグルコース-12%クエン酸ナトリウム-6%塩化ナトリウム溶出液(pH 7.3)等を用いることができるが、これに限定されない。 As the eluent, any known eluent that is usually used in a separation / purification method using an adsorbent composed of a hardly water-soluble salt can be preferably used. Examples of such a known eluate include a phosphate solution, a citrate solution, and a mixed solution thereof. Although not particularly limited, the salt concentration of the eluate is usually about 0.005 M to 3 M (preferably 0.1 M to 2 M) (when a plurality of salts are included, the total is indicated). Specifically, 1M glucose-12% sodium citrate-6% sodium chloride eluate (pH 7.3) used in the following examples can be used, but is not limited thereto.
溶出液のpHは、特に限定されないが、被分離物質が生体物質である場合においてその生化学活性を保持したいときには、好ましくはpH5〜9程度、さらに好ましくはpH6〜8程度の中性付近とすることが望ましい。中性付近の溶出液を用いることにより、該被分離物質の活性を損なわずに溶出することができる。[被分離物質−難水溶性塩]複合体に溶出液を作用させる方法としては、該複合体を溶出液中に懸濁して15分間〜2時間程度放置後、遠心分離や濾過等により固液分離する方法や、濾過膜上に該複合体を保持したまま溶出液を通液する方法等の、公知の常法が挙げられ、特に限定されない。 The pH of the eluate is not particularly limited. However, when the substance to be separated is a biological substance, the pH is preferably about 5 to 9, more preferably about 6 to 8 when the biochemical activity is to be maintained. It is desirable. By using an eluate near neutrality, elution can be performed without impairing the activity of the substance to be separated. As a method of allowing the eluate to act on the [substance to be separated-slightly water-soluble salt] complex, the complex is suspended in the eluate, left for about 15 minutes to 2 hours, and then solid-liquid by centrifugation or filtration. Known conventional methods such as a method of separating and a method of passing an eluate while holding the complex on a filtration membrane are exemplified, and are not particularly limited.
溶出液を作用させる際の温度は、特に限定されないが、被分離物質の生化学活性等の性質が損なわれないような温度条件で行なうことが望ましく、4℃〜室温程度が好ましい。被分離物質が特に不安定な物質ではなく、低温を維持する必要がない場合には、室温程度で反応させることが簡便で好ましい。 The temperature at which the eluate is allowed to act is not particularly limited, but it is desirable that the temperature is such that the properties such as biochemical activity of the substance to be separated are not impaired, and about 4 ° C. to room temperature is preferable. When the substance to be separated is not a particularly unstable substance and it is not necessary to maintain a low temperature, it is convenient and preferable to carry out the reaction at about room temperature.
被分離物質の溶出に先立ち、[被分離物質−難水溶性塩]複合体からの被分離物質の溶出効果が少ない液体を洗浄液として用いて、該複合体に該洗浄液を作用させることにより、該複合体から夾雑物を除去することができる。このような洗浄工程をさらに含ませることにより、回収される被分離物質の精製度を高めることができる。洗浄液としては、難水溶性塩から成る吸着剤を用いた分離・精製方法において通常用いられている公知の洗浄液を用いることができる。具体的には、水及び溶出液より塩類濃度の低い(特に限定されないが塩類合計で通常0M〜1M程度)水溶液等が挙げられるが、これらに限定されない。洗浄液のpH条件、洗浄液を作用させる方法及び温度条件は、上記した溶出工程と同様である。 Prior to the elution of the substance to be separated, a liquid having a low elution effect of the substance to be separated from the [substance to be separated-water-insoluble salt] complex is used as a washing liquid, and the washing liquid is allowed to act on the complex by Contaminants can be removed from the complex. By further including such a washing step, the degree of purification of the separated substance to be recovered can be increased. As the cleaning liquid, a known cleaning liquid that is usually used in a separation / purification method using an adsorbent composed of a poorly water-soluble salt can be used. Specific examples include, but are not limited to, an aqueous solution having a lower salt concentration than water and an eluate (although not particularly limited, the total salt is generally about 0M to 1M). The pH conditions of the washing liquid, the method for operating the washing liquid and the temperature conditions are the same as those in the elution step described above.
また、上記精製方法においては、[被分離物質−難水溶性塩]複合体に低塩類濃度の前処理液から溶出液まで塩類濃度を段階的もしくは直線勾配又は曲線勾配のいずれかにより増加させて該複合体に作用させることにより、難水溶性塩に吸着した物質のうち、吸着力の弱い物質から順次溶出することができる。これにより、目的とする被分離物質と夾雑物とを選択的に分離精製することが可能であり、目的とする被分離物質が難水溶性塩に複数種類吸着されている場合等に有利である。 In the above purification method, the salt concentration is increased stepwise or by a linear gradient or a curve gradient from the low salt concentration pretreatment solution to the eluate in the [substance to be separated-poorly water-soluble salt] complex. By acting on the complex, among substances adsorbed on the poorly water-soluble salt, substances having weak adsorptive power can be sequentially eluted. As a result, it is possible to selectively separate and purify the target substance to be separated and contaminants, which is advantageous when a plurality of kinds of target substances to be separated are adsorbed on the poorly water-soluble salt. .
以下、本発明を実施例に基づきより具体的に説明する。 Hereinafter, the present invention will be described more specifically based on examples.
1.ウイルスの吸着及び回収試験
下記に示す手順にてインフルエンザウイルスの難水溶性塩への吸着、ウイルス-難水溶性塩複合体の固液分離およびウイルスの回収を行った。使用した吸着担体もしくは被検液中で難水溶性塩を生じさせる陽イオン供給源をそれぞれ下記に示した。
1. Virus Adsorption and Recovery Test Adsorption of influenza virus to sparingly water-soluble salts, solid-liquid separation of virus- sparingly water-soluble salt complex, and recovery of viruses were performed according to the following procedure. The cation supply sources for generating poorly water-soluble salts in the used adsorption carrier or test solution are shown below.
従来法で使用する吸着担体(比較例1〜4)
試薬A : 硫酸バリウム(BaSO4 : MW 233.39) 日本薬局方 (株)伏見製作所
(注射用水で25w/v%とし、高圧蒸気滅菌(121℃、20分間)した懸濁液を使用)
被検液中で難水溶性塩を生じさせる陽イオン供給源(実施例1及び2)
試薬B : 塩化バリウム2水和物(BaCl2・2H2O : MW 244.26) WAKO 試薬特級
試薬C : 塩化カルシウム2水和物(CaCl2・2H2O : MW 147.01) WAKO試薬特級
Adsorption carrier used in conventional method (Comparative Examples 1-4)
Reagent A: Barium sulfate (BaSO 4 : MW 233.39) Japanese Pharmacopoeia Fushimi Manufacturing Co., Ltd.
(Use a suspension with 25% water / water for injection and autoclaved at 121 ° C for 20 minutes)
Cation source for producing a poorly water-soluble salt in the test solution (Examples 1 and 2)
Reagent B: Barium chloride dihydrate (BaCl 2 · 2H 2 O: MW 244.26) WAKO reagent special grade Reagent C: Calcium chloride dihydrate (CaCl 2 · 2H 2 O: MW 147.01) WAKO reagent special grade
(1) 培養液からのウイルスの吸着(培養液からの除去)
常法である細胞培養法により得られたH1N1 A/New Caledonia株インフルエンザウイルス培養液(炭酸イオン濃度20mmol/L)4mLに、試薬A〜Cの何れかを0.9mmol添加し、室温で穏やかに60分間攪拌した。
(2) ウイルス-難水溶性塩複合体の固液分離
懸濁液を遠心分離(2000rpm、10分間、4℃)後、上清(吸着工程上清)を傾斜法により除去し、沈渣を回収した。
(3) ウイルスの回収
固液分離工程(2)で得られたウイルス-難水溶性塩複合体に、1Mグルコース-12%クエン酸ナトリウム-6%塩化ナトリウム溶出液(pH 7.3)2mLを添加し、室温で穏やかに30分間攪拌した。
(4) 固液分離
懸濁液を遠心分離(2000rpm、10分間、4℃)後、上清(溶出工程上清)を傾斜法により回収した。
(1) Adsorption of virus from culture solution (removal from culture solution)
Add 0.9 mmol of any of reagents A to C to 4 mL of H1N1 A / New Caledonia strain influenza virus culture solution (carbonate concentration 20 mmol / L) obtained by the conventional cell culture method, and gently 60 Stir for minutes.
(2) Solid-liquid separation of virus-poor water-soluble salt complex After centrifuging the suspension (2000 rpm, 10 minutes, 4 ° C), the supernatant (adsorption process supernatant) is removed by the gradient method, and the sediment is collected. did.
(3) Virus recovery Add 2 mL of 1M glucose-12% sodium citrate-6% sodium chloride eluate (pH 7.3) to the virus-poor water-soluble salt complex obtained in the solid-liquid separation step (2). Stir gently at room temperature for 30 minutes.
(4) Solid-liquid separation After centrifuging the suspension (2000 rpm, 10 minutes, 4 ° C), the supernatant (elution step supernatant) was collected by a gradient method.
2.ウイルス除去率及び回収率の評価
吸着工程上清、溶出工程上清及び試薬添加前の培養液について、インフルエンザウイルス核タンパク質(NP)に対する抗体(デンカ生研社製)を用いて、常法に基づきNP-ELISA法を行ない、インフルエンザウイルスNP抗原量を測定した。培養液のNP抗原量を100%とし、各上清のNP抗原量をその相対値として算出して、ウイルス残存率(担体に吸着されなかったウイルス量、%)及び回収率(溶出されたウイルス量の、培養液中のウイルス量に対する割合、%)を求めた。結果を表1に示す。
2. Evaluation of virus removal rate and recovery rate Adsorption process supernatant, elution process supernatant, and culture solution before addition of reagents, using an antibody against influenza virus nucleoprotein (NP) (manufactured by Denka Seiken Co., Ltd.) based on conventional methods -ELISA was performed to measure the amount of influenza virus NP antigen. The amount of NP antigen in the culture solution is taken as 100%, and the amount of NP antigen in each supernatant is calculated as the relative value. The virus residual rate (the amount of virus not adsorbed on the carrier,%) and the recovery rate (eluted virus) The ratio of the amount to the amount of virus in the culture solution,%) was determined. The results are shown in Table 1.
また、試薬Aの添加量を0.08mmolとした以外は上記と同様の方法により、ウイルス残存率及び回収率を求めた(比較例2)。 Moreover, the virus residual rate and the recovery rate were calculated | required by the method similar to the above except the addition amount of the reagent A having been 0.08 mmol (comparative example 2).
また、従来法について、硫酸バリウムの添加量を変更した以外は上記と同様にして、非吸着ウイルス量(ウイルス残存率)を求めたところ、添加量と非吸着ウイルス量(ウイルス残存率)には相関が見られた(表2)。 In addition, regarding the conventional method, the amount of non-adsorbed virus (virus residual rate) was determined in the same manner as above except that the amount of barium sulfate added was changed. A correlation was seen (Table 2).
吸着工程
実施例1、2及び比較例1では、吸着工程における被検液中のウイルス残存率がほとんど0に近いことから、被検液中のウイルスのほぼ全量が難水溶性塩に吸着されていることがわかる。また、目視で確認したところ、実施例1及び2で固液分離により回収される難水溶性塩残渣量は、比較例1で固液分離により回収される硫酸バリウム残渣量よりも著しく少なかった。
Adsorption process In Examples 1 and 2 and Comparative Example 1, since the virus remaining rate in the test solution in the adsorption process is almost close to 0, almost all of the virus in the test solution is adsorbed by the hardly water-soluble salt. I understand that. Moreover, when visually confirmed, the amount of the hardly water-soluble salt residue recovered by solid-liquid separation in Examples 1 and 2 was significantly smaller than the amount of barium sulfate residue recovered by solid-liquid separation in Comparative Example 1.
実施例1及び2では、炭酸イオンが0.08 mmol含まれる被検液(炭酸イオン濃度20mmol/Lの培養液を4mL)と陽イオン供給源0.9mmolとを反応させていることから、被検液中に生じる難水溶性塩は0.08 mmolになると推定出来る。実施例1および実施例2の吸着工程における被検液中のウイルス残存率はほとんど0であった。その一方、従来法により硫酸バリウムを0.08mmol添加した場合には(比較例2)、ウイルス残存率は30%以上と非常に高かった。このことから、処理液中で難水溶性塩を生じさせる方法では、硫酸バリウムを処理液に添加する方法と比較して、より少ない量の難水溶性塩で同等のウイルス除去率を達成できることがわかった。 In Examples 1 and 2, since a test solution containing 0.08 mmol of carbonate ions (4 mL of a culture solution having a carbonate ion concentration of 20 mmol / L) was reacted with 0.9 mmol of the cation supply source, It can be estimated that the slightly water-soluble salt produced in is 0.08 mmol. The virus remaining rate in the test solution in the adsorption steps of Example 1 and Example 2 was almost zero. On the other hand, when 0.08 mmol of barium sulfate was added by the conventional method (Comparative Example 2), the virus residual rate was as high as 30% or more. From this, the method of generating a poorly water-soluble salt in the treatment liquid can achieve the same virus removal rate with a smaller amount of the poorly water-soluble salt compared to the method of adding barium sulfate to the treatment liquid. all right.
溶出工程
実施例1及び2では、溶出後のウイルス回収率は、従来法である比較例1より低収率となった。しかし、吸着工程において被検液中に存在するほぼ全量のウイルスが吸着されて除去されていることから、上記条件下において、ウイルスの一部が難水溶性塩複合体に固定されたままで、溶出していないと考えられる。
Elution process In Examples 1 and 2, the virus recovery rate after elution was lower than that of Comparative Example 1 which is a conventional method. However, since almost all of the virus present in the test solution is adsorbed and removed in the adsorption step, elution is performed while a part of the virus remains immobilized on the poorly water-soluble salt complex under the above conditions. It is thought that it is not.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007207412A JP2009039038A (en) | 2007-08-09 | 2007-08-09 | Method for separating substance to be separated and method for purifying the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007207412A JP2009039038A (en) | 2007-08-09 | 2007-08-09 | Method for separating substance to be separated and method for purifying the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009039038A true JP2009039038A (en) | 2009-02-26 |
Family
ID=40440496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007207412A Pending JP2009039038A (en) | 2007-08-09 | 2007-08-09 | Method for separating substance to be separated and method for purifying the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009039038A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2220957A1 (en) | 2009-02-23 | 2010-08-25 | Tosiki Namiki | Supporting earring along root of ear |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000014380A (en) * | 1998-07-03 | 2000-01-18 | Nissui Pharm Co Ltd | Concentration of microbial cell and microbial cell concentrating reagent |
-
2007
- 2007-08-09 JP JP2007207412A patent/JP2009039038A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000014380A (en) * | 1998-07-03 | 2000-01-18 | Nissui Pharm Co Ltd | Concentration of microbial cell and microbial cell concentrating reagent |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2220957A1 (en) | 2009-02-23 | 2010-08-25 | Tosiki Namiki | Supporting earring along root of ear |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022171925A (en) | Methods of purifying recombinant adamts13 and other proteins, and compositions thereof | |
JP2019215352A (en) | Sterile chromatography resin and use thereof in manufacturing processes | |
JP6410734B2 (en) | Method for reducing the aggregate content of a protein preparation | |
JP2020121995A (en) | Sterile chromatography and manufacturing processes | |
JP6720288B2 (en) | Aseptic purification process for viruses | |
JP2016509069A (en) | Protein purification with high conductivity in the presence of nonionic organic polymers | |
CN113166792B (en) | A method for removing or eliminating endotoxin from endotoxin-containing sources or potentially endotoxin-containing sources | |
KR20160122754A (en) | Fractionation method | |
JP2009039038A (en) | Method for separating substance to be separated and method for purifying the same | |
EP4038184A1 (en) | Purification process based on magnetic beads | |
WO2020127505A1 (en) | A method for removing nucleosomal contaminants from bioprocessing solutions | |
JP5389342B2 (en) | Adsorption carrier and production method of adsorption carrier | |
JP5137491B2 (en) | Method for modifying adsorbability and / or elution of aluminum hydroxide adsorbent | |
CN106749623B (en) | Method for separating human albumin by expanded bed adsorption based on mixed mode | |
JP2010070490A (en) | Method for antibody purification | |
WO2016005363A1 (en) | Process for the preparation of magnetic sulfated cellulose particles, magnetic sulfated cellulose particles and its use | |
JP2007238474A (en) | Method for eluting organic material adsorbed to sparingly water-soluble metal compound and method for purification of organic material by using said elution method | |
JP5682850B1 (en) | Compounds for labeling glycan samples | |
JP4841749B2 (en) | Method for producing purified antigen | |
JP2013159567A (en) | Method of capturing virus by sulfated sugar chain immobilized gold nanoparticle and dextran sulfate immobilized gold nanoparticle, fractionating method, immunizing method, and method of producing antiviral antibody | |
JPH0548240B2 (en) | ||
JP6067889B2 (en) | Selective removal of one protein from a protein mixture using activated carbon by adjusting solution conditions | |
CN108913685B (en) | The method for removing primer dimer | |
CN109400670A (en) | The method and kit of albumen are expressed in a kind of aptamer purifying gene engineering | |
JP2019163212A (en) | Concentration method and purification method of spheroid formation accelerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121029 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130305 |