[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009038361A - Three-dimensional printed circuit board, and its manufacturing method - Google Patents

Three-dimensional printed circuit board, and its manufacturing method Download PDF

Info

Publication number
JP2009038361A
JP2009038361A JP2008177731A JP2008177731A JP2009038361A JP 2009038361 A JP2009038361 A JP 2009038361A JP 2008177731 A JP2008177731 A JP 2008177731A JP 2008177731 A JP2008177731 A JP 2008177731A JP 2009038361 A JP2009038361 A JP 2009038361A
Authority
JP
Japan
Prior art keywords
connection layer
printed wiring
wiring board
dimensional printed
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008177731A
Other languages
Japanese (ja)
Inventor
Sadashi Nakamura
禎志 中村
Shogo Hirai
昌吾 平井
Fumio Echigo
文雄 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008177731A priority Critical patent/JP2009038361A/en
Publication of JP2009038361A publication Critical patent/JP2009038361A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a package substrate wherein a thin mounting substrate is indispensable for actualizing down-sizing, small thickness, light weight, high definition, multifunction or the like for mobile devices, or compact, low height and three-dimensional mounting corresponding to multifunction and multi pin of semiconductors can be easily actualized. <P>SOLUTION: The three-dimensional printed circuit board 15 is provided with a frame-like upper substrate 1, a planar lower substrate 2, and a connecting layer 3 connecting these substrates. In this case, the thickness of the lower substrate 2 is smaller than the total sum of those of the upper substrate 1 and the connecting layer 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パソコン、移動体通信用電話機、ビデオカメラ等の各種電子機器に広く用いられる立体プリント配線板に関するものである。   The present invention relates to a three-dimensional printed wiring board widely used in various electronic devices such as a personal computer, a mobile communication telephone, and a video camera.

近年、更なる電子機器の小型化、軽量化に対応するために、薄型プリント配線基板に電子部品を実装することが多く、基板自体の強度が低く、反りやねじれが発生しやすくなるため、自動化が困難になっている。特に厚みが500μm以下になると、反りやねじれのために、電子部品の表面実装工程であるクリームはんだ印刷や電子部品自動搭載機での作業やリフロー工程での生産性を低下させている。   In recent years, electronic components are often mounted on thin printed circuit boards in order to cope with further downsizing and weight reduction of electronic devices, and the strength of the board itself is low, and warping and twisting are likely to occur. Has become difficult. In particular, when the thickness is 500 μm or less, because of warping and twisting, productivity in cream solder printing, which is a surface mounting process of electronic components, work in an electronic component automatic mounting machine, and a reflow process is reduced.

そこで、上述の課題を解決するために、先行技術として、特許文献1に示すような薄型プリント配線板への表面実装工程における生産性を向上させることができる搬送用キャリアを用いた薄型プリント配線板の実装方法が提案されている。   Therefore, in order to solve the above-described problems, as a prior art, a thin printed wiring board using a carrier for conveyance that can improve productivity in a surface mounting process to a thin printed wiring board as shown in Patent Document 1 An implementation method has been proposed.

この搬送用キャリア21は、図11に示す通り、板体よりなるベース基材23の表面に、薄型プリント配線板25を剥離可能に貼着するための弱粘着性接着剤層22を形成してあり、搬送用キャリア21の表面に弱粘着性接着剤層22を介して薄型プリント配線板25を貼着すると、搬送用キャリア21が薄型プリント配線板25を補強し、弱粘着性接着剤層22が薄型プリント配線板25の反りやねじれを規制し、位置を固定する。   As shown in FIG. 11, the carrier for transport 21 is formed by forming a weak adhesive layer 22 for releasably attaching a thin printed wiring board 25 on the surface of a base substrate 23 made of a plate. Yes, when the thin printed wiring board 25 is attached to the surface of the carrier 21 for transportation via the weak adhesive layer 22, the carrier 21 reinforces the thin printed wiring board 25, and the weak adhesive layer 22. Restricts warping and twisting of the thin printed wiring board 25 and fixes the position.

この搬送用キャリアを用いた薄型プリント配線板の実装方法は、図12に示す通り、(a)弱粘着性接着剤層22を形成して成る搬送用キャリア21の表面に、弱粘着性接着剤層22を介して薄型プリント配線板25を貼着し、(b)必要個所に孔が穿設されたメタルマスク31を薄型プリント配線板25の表面に位置合わせして重合した後、クリームはんだ32をメタルマスク31の孔へ充填し、(c)次に、メタルマスクを除去してから、薄型プリント配線板25上に残ったクリームはんだ32の上に半導体チップ26等の電子部品を搭載して、リフロー炉等を用いて加熱し、(d)その後、搬送用キャリアを除去する。   As shown in FIG. 12, the thin printed wiring board mounting method using the carrier for carrier has (a) a weakly adhesive adhesive on the surface of the carrier 21 formed by forming a weakly adhesive layer 22 as shown in FIG. A thin printed wiring board 25 is pasted through the layer 22, and (b) a metal mask 31 having holes drilled at necessary locations is aligned with the surface of the thin printed wiring board 25 and polymerized, and then cream solder 32 (C) Next, after removing the metal mask, an electronic component such as a semiconductor chip 26 is mounted on the cream solder 32 remaining on the thin printed wiring board 25. Then, heating is performed using a reflow furnace or the like. (D) Thereafter, the carrier for transport is removed.

なお、弱粘着性接着剤層は、耐熱性に富み、常温やリフロー時にも樹脂の転写が起こらないか、若しくは転写量が極少の弱粘着性樹脂を素材としている。
特開2001−144430号公報
The weak adhesive layer is made of a weak adhesive resin that has high heat resistance and does not cause resin transfer even at room temperature or reflow, or has a very small transfer amount.
JP 2001-144430 A

特に総厚が薄いプリント配線板は剛性が不足しているために、リフロー工程等の高温中や半導体チップのような大型部品を実装する場合、上記の搬送用キャリアを使用しないと工程を通すことができなかった。   In particular, the printed wiring board with a thin total thickness is insufficient in rigidity, so when mounting large parts such as semiconductor chips at high temperatures such as in reflow processes, the process must be carried out without using the above carrier for transportation. I could not.

本発明は、上記課題を鑑みて成されたものであり、リフロー工程等の高温中や半導体チップのような大型部品を実装した後でも反りが小さく、搬送用キャリアが不要で薄型の実装体を構成することが可能な立体プリント配線板を提供するものである。   The present invention has been made in view of the above problems, and has a thin mounting body that is small in warpage even after mounting a large part such as a semiconductor chip at a high temperature such as a reflow process, and does not require a carrier for transportation. A three-dimensional printed wiring board that can be configured is provided.

上記目的を達成するために、本発明は額縁状の枠形状をした上側基板と、平面状の下側基板と、これらの基板の間を接続する接続層とから構成された立体プリント配線板であって、前記下側基板の厚さが前記上側基板と前記接続層の厚さの総和よりも薄く構成されたことを特徴とする立体プリント配線板であり、このような構成にすることにより、上側基板が額縁状の枠形状をしているので、形成される凹部に部品実装が可能で、かつプリント配線板としての厚さを増すこともできるため、基板の剛性を確保することができ、リフロー工程等の高温中や半導体チップのような大型部品を実装した後でも反りが小さく、搬送用キャリアが不要で薄型の実装体を構成することが可能となり、薄型の立体プリント配線板を実現することができる。   In order to achieve the above object, the present invention is a three-dimensional printed wiring board comprising a frame-shaped upper substrate, a planar lower substrate, and a connection layer connecting these substrates. The three-dimensional printed wiring board is characterized in that the thickness of the lower substrate is configured to be thinner than the sum of the thicknesses of the upper substrate and the connection layer. Since the upper board has a frame-like frame shape, component mounting is possible in the formed recess, and the thickness as a printed wiring board can be increased, so that the rigidity of the board can be secured, Even during high temperatures during reflow processes and after mounting large parts such as semiconductor chips, warping is small, and it is possible to configure a thin mounting body without the need for a carrier for transport, realizing a thin three-dimensional printed wiring board be able to.

以上のように本発明は、リフロー工程等の高温中や半導体チップのような大型部品を実装した後でも反りが小さく、かつ基板内での配線密度も高めることが可能となるため、モバイル機器の小型、薄型、軽量、高精細、多機能化等を実現するために必要な、半導体の高機能・多ピン化に対応した小型、低背、三次元実装化を容易に実現する実装形態を提供することが可能となる。   As described above, the present invention can reduce warping and increase the wiring density in a substrate even during high temperatures such as a reflow process or after mounting a large component such as a semiconductor chip. Providing a mounting form that easily realizes small size, low profile, and three-dimensional mounting corresponding to high functionality and multiple pins of semiconductors necessary for realizing compact, thin, lightweight, high definition, multi-functionality, etc. It becomes possible to do.

(実施の形態1)
以下本発明の実施の形態1について、図面を参照しながら説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings.

図1は本発明の実施の形態における立体プリント配線板の斜視図および断面図である。本実施の形態の立体プリント配線板は、額縁状の枠形状をした上側基板1と、少なくとも表面に配線が形成された平面状の下側基板2と、これらの基板の間を接続する接続層3で構成され、上側基板1と下側基板2とが異なる形状を有しているために、図1(A)に示すようにキャビティとなる凹部4が形成されることになる。本発明において、下側基板2の厚さは、上側基板1と接続層3の厚さの総和よりも薄く構成されている。   FIG. 1 is a perspective view and a cross-sectional view of a three-dimensional printed wiring board according to an embodiment of the present invention. The three-dimensional printed wiring board according to the present embodiment includes a frame-shaped upper substrate 1, a planar lower substrate 2 on which wiring is formed on at least the surface, and a connection layer that connects these substrates 3, the upper substrate 1 and the lower substrate 2 have different shapes, so that a recess 4 serving as a cavity is formed as shown in FIG. In the present invention, the thickness of the lower substrate 2 is configured to be thinner than the total thickness of the upper substrate 1 and the connection layer 3.

接続層3は、厚みが30〜300μm、さらに好ましくは30〜250μmであることが望ましい。30μm未満ならば、配線の埋め込み性が悪くなり、300μmを超えるとビアのアスペクト比を維持するためビアの小径化が困難になったり接続信頼性が損なわれることがある。   The connection layer 3 desirably has a thickness of 30 to 300 μm, more preferably 30 to 250 μm. If the thickness is less than 30 μm, the embedding property of the wiring is deteriorated, and if it exceeds 300 μm, the via aspect ratio is maintained, so that it is difficult to reduce the diameter of the via or connection reliability may be impaired.

図1(B)に示すように、この凹部4に実装部品5を実装することによって、実装体としての総厚を薄くすることが可能となり、本発明においては下側基板2が400μm以下の極薄基板であっても剛性を確保することができる。また、本発明は、基板本体の剛性を持たせるため、上側基板1が額縁状の枠形状として設けられている。なお、本発明において、上側基板1は配線を有していても有していなくてもよく、また、ビアを有していても有していなくても枠として利用が可能となる。また、立体プリント配線板としての剛性を有する構成であれば、額縁状の枠形状をした上側基板1と接続層3の厚さの総和が、凹部4内に実装される実装部品5のうち最も高い部品の高さ以下の厚さで形成してもよい。   As shown in FIG. 1B, by mounting the mounting component 5 in the recess 4, the total thickness of the mounting body can be reduced. In the present invention, the lower substrate 2 has a pole of 400 μm or less. Even a thin substrate can ensure rigidity. Further, in the present invention, the upper substrate 1 is provided as a frame-like frame shape in order to give the rigidity of the substrate body. In the present invention, the upper substrate 1 may or may not have wiring, and can be used as a frame regardless of whether or not it has a via. Moreover, if it is the structure which has rigidity as a three-dimensional printed wiring board, the sum total of the thickness of the upper board | substrate 1 and the connection layer 3 which were frame-shaped frame shape is the most among the mounting components 5 mounted in the recessed part 4. You may form with the thickness below the height of a high component.

本実施の形態における接続層3の拡大断面図を図1(C)に示す。接続層3は、無機フィラーが熱硬化性樹脂に分散されてなる絶縁性材料で構成されている。本発明において、図1(C)のようにこの接続層3の所定の位置に貫通孔を有し、この貫通孔に導電性ペースト6を充填してビア7を形成していてもよく、ビア7を有していなくてもよい。   An enlarged cross-sectional view of the connection layer 3 in this embodiment is shown in FIG. The connection layer 3 is made of an insulating material in which an inorganic filler is dispersed in a thermosetting resin. In the present invention, as shown in FIG. 1C, a through hole may be formed at a predetermined position of the connection layer 3, and the via 7 may be formed by filling the through hole with the conductive paste 6. 7 may not be included.

本発明において、接続層3における無機フィラーは、シリカ、アルミナ、チタン酸バリウムの内少なくとも一種以上のもので構成されていることが好ましい。また、接続層3における無機フィラーの粒径は1〜15μm、無機フィラーの含有率は70〜90重量%であることが好ましい。無機フィラーの含有率が70%未満ならば、接続層3を形成する無機フィラー量が熱硬化性樹脂の量に対して少なく粗な状態となり、熱硬化性樹脂がプレス中に流動する際に、同時に無機フィラーも流動してしまい、90%を超えると、接続層3の樹脂量が少なくなり過ぎ、配線の埋込性や密着性が損なわれることがある。   In the present invention, the inorganic filler in the connection layer 3 is preferably composed of at least one of silica, alumina, and barium titanate. Moreover, it is preferable that the particle size of the inorganic filler in the connection layer 3 is 1 to 15 μm, and the content of the inorganic filler is 70 to 90% by weight. If the content of the inorganic filler is less than 70%, the amount of the inorganic filler forming the connection layer 3 is less than the amount of the thermosetting resin and is in a rough state, and when the thermosetting resin flows during the press, At the same time, the inorganic filler also flows, and if it exceeds 90%, the resin amount of the connection layer 3 becomes too small, and the embeddability and adhesion of the wiring may be impaired.

本発明の立体プリント配線板に使用される導電性ペースト6は、銅、銀、金、パラジウム、ビスマス、錫およびこれらの合金の内から構成され、粒径は1〜20μmであることが好ましい。   The conductive paste 6 used for the three-dimensional printed wiring board of the present invention is composed of copper, silver, gold, palladium, bismuth, tin, and alloys thereof, and preferably has a particle size of 1 to 20 μm.

次に、本実施の形態の立体プリント配線板の製造プロセスについて、図2〜5を用いて詳細に説明する。   Next, the manufacturing process of the three-dimensional printed wiring board of this Embodiment is demonstrated in detail using FIGS.

まず、図2(A)に示すように、接続層3の両面にPETフィルム8を貼り付ける。次に図2(B)に示すように、接続層3を上側基板1とほぼ同形状に切断し、上側基板1と下側基板2の配線とを接続させる位置に貫通孔9を形成する。その後図2(C)に示すように、貫通孔9内に銅または銅合金からなる導電性ペースト6を充填し、ビア7を形成する。次に図2(D)に示すように、接続層3を上側基板1または下側基板2のいずれか一方と接着させるために、一方の面のPETフィルム8を剥離する。ここでは、下側基板2と先に接着させるために下面のPETフィルムを剥離しているが、先に上側のPETフィルムを剥離してもよい。   First, as shown in FIG. 2A, the PET film 8 is attached to both surfaces of the connection layer 3. Next, as shown in FIG. 2B, the connection layer 3 is cut into substantially the same shape as the upper substrate 1, and a through hole 9 is formed at a position where the wiring of the upper substrate 1 and the lower substrate 2 are connected. Thereafter, as shown in FIG. 2C, the through-hole 9 is filled with a conductive paste 6 made of copper or a copper alloy, and a via 7 is formed. Next, as shown in FIG. 2D, in order to bond the connection layer 3 to either the upper substrate 1 or the lower substrate 2, the PET film 8 on one surface is peeled off. Here, the lower PET film is peeled off in order to adhere to the lower substrate 2 first, but the upper PET film may be peeled off first.

次に、図3(A)に示すように、接続層3を平面状の下側基板2の所望の位置に位置合わせしながら重ね合わせて配置し、図3(B)に示すように、接続層3を下側基板2に形成された配線10上に仮止めする。この積層時に配線10は接続層3に埋め込まれる。こうすることにより導電性ペースト6が圧縮されるので、配線10との接続性が向上する。その後、図3(C)に示すように、先に剥離しなかった面のPETフィルム8を剥離する。ここでは、接続層3がビア7を有する構成について説明したが、上述のように、接続層3はビア7を有していてもいなくても良い。   Next, as shown in FIG. 3 (A), the connection layer 3 is arranged while being aligned with a desired position of the planar lower substrate 2, and the connection layer 3 is connected as shown in FIG. 3 (B). The layer 3 is temporarily fixed on the wiring 10 formed on the lower substrate 2. The wiring 10 is embedded in the connection layer 3 during this lamination. By doing so, the conductive paste 6 is compressed, so that the connectivity with the wiring 10 is improved. Thereafter, as shown in FIG. 3C, the PET film 8 on the surface that has not been peeled first is peeled off. Here, the configuration in which the connection layer 3 includes the via 7 has been described. However, as described above, the connection layer 3 may or may not have the via 7.

次に図4(A)に示すように、額縁状の枠形状をした上側基板1を接続層3上に配置し、その後図4(B)に示すように、加熱加圧させながら積層させ、立体プリント配線板15を完成させる。この積層時に配線10は接続層3に埋め込まれる。こうすることにより導電性ペースト6がさらに圧縮されるので、配線10との接続性が大幅に向上する。   Next, as shown in FIG. 4 (A), the upper substrate 1 having a frame-like frame shape is disposed on the connection layer 3, and then, as shown in FIG. The three-dimensional printed wiring board 15 is completed. The wiring 10 is embedded in the connection layer 3 during this lamination. By doing so, the conductive paste 6 is further compressed, so that the connectivity with the wiring 10 is greatly improved.

本発明の立体プリント配線板は、上側基板1が額縁状の枠形状として設けられているので、下側基板2が400μm以下のような薄いプリント配線板であっても基板の剛性を確保することが可能となる。   In the three-dimensional printed wiring board of the present invention, since the upper substrate 1 is provided in a frame-like frame shape, the rigidity of the substrate is ensured even if the lower substrate 2 is a thin printed wiring board of 400 μm or less. Is possible.

なお、本発明において、接続層3を配置する前に下側基板2とともに上側基板1の表面に予めソルダレジストを形成することが好ましく、さらにソルダレジスト形成後に上側基板1に形成された表層の配線において少なくとも接続層と接触する領域を粗化するとより好ましい。   In the present invention, it is preferable that a solder resist is formed in advance on the surface of the upper substrate 1 together with the lower substrate 2 before the connection layer 3 is disposed, and the surface layer wiring formed on the upper substrate 1 after the solder resist is formed. It is more preferable to roughen at least the region in contact with the connection layer.

また本実施の形態においては、下側基板2と接続層3を重ね合わせた後上側基板1を重ね合わせたが、上側基板1と接続層3を先に重ね合わせ、その後下側基板2を重ね合わせて積層してもかまわない。   In this embodiment, the lower substrate 2 and the connection layer 3 are overlapped and then the upper substrate 1 is overlapped. However, the upper substrate 1 and the connection layer 3 are overlapped first, and then the lower substrate 2 is overlapped. They may be laminated together.

なお、一般に、窪みすなわち凹部を有する構造の場合、凹部の隅部分にゴミや基材の粉末等がたまりやすくなる。凹部を有さない平滑なプリント配線板であれば、ゴミ取り用粘着ロールでゴミや粉末等を容易に除去していたが、凹部の隅部分は粘着ロールでの除去が困難であった。   In general, in the case of a structure having a dent, that is, a recess, dust, base powder, and the like are easily collected in the corner of the recess. In the case of a smooth printed wiring board having no recess, dust and powder were easily removed with a dust-removing adhesive roll, but it was difficult to remove the corner portion of the recess with the adhesive roll.

そこで、凹部4内へのゴミや粉末が入るのを防止するために、上側基板1、下側基板2、接続層3の凹部4への粉末の飛散、凹部4へのゴミ等の付着およびそれによる実装の不具合を防止するために、図5に示すように、5〜30μmの厚みのドライフィルム状の永久レジスト11を貼り付け、上側基板1、下側基板2、接続層3の壁面を被覆することが、本発明の立体プリント配線板としてより好ましい。これにより凹部4内の特に隅の部分への粉末やゴミの付着の防止をはかることができる。永久レジスト11の厚みが5μm未満の場合ピンホールが発生しやすくなるのでコーティングが不十分となり、30μmを超えると基板への追従性が悪くなることがある。   Therefore, in order to prevent dust and powder from entering the recess 4, powder scattering to the recess 4 of the upper substrate 1, lower substrate 2 and connection layer 3, adhesion of dust and the like to the recess 4, and so on In order to prevent mounting defects due to the above, as shown in FIG. 5, a dry film-like permanent resist 11 having a thickness of 5 to 30 μm is pasted to cover the walls of the upper substrate 1, the lower substrate 2, and the connection layer 3. It is more preferable as the three-dimensional printed wiring board of the present invention. As a result, it is possible to prevent the powder and dust from adhering to the corner portions of the recess 4 in particular. When the thickness of the permanent resist 11 is less than 5 μm, pinholes are likely to be generated, resulting in insufficient coating. When the thickness exceeds 30 μm, the followability to the substrate may be deteriorated.

本発明の接続層3の熱膨張係数は、上側基板1および下側基板2の熱膨張係数以下、すなわち65ppm/℃以下もしくはプリント配線板の熱膨張係数よりも低いということが望ましい。   The thermal expansion coefficient of the connection layer 3 of the present invention is desirably lower than the thermal expansion coefficient of the upper substrate 1 and the lower substrate 2, that is, 65 ppm / ° C. or lower, or lower than the thermal expansion coefficient of the printed wiring board.

65ppm/℃を超える場合、または上側基板1および下側基板2の熱膨張係数よりも高い場合、接続層3の変形により立体プリント配線板の反りや変形が発生しやすくなることがある。   When it exceeds 65 ppm / ° C. or higher than the thermal expansion coefficients of the upper substrate 1 and the lower substrate 2, warping or deformation of the three-dimensional printed wiring board may easily occur due to deformation of the connection layer 3.

また、接続層3のガラス転移点(DMA法Dynamic Mechanical Analysis 動的粘弾性測定法)は、185℃以上もしくは上側基板1および下側基板2と比較して10℃以上高いことが望ましい。185℃未満または差が10℃未満ならば、例えばリフローのような高温を要するような工程で基板の反りやうねりが複雑な形状になったり不可逆になることがある。   Further, the glass transition point (DMA method Dynamic Mechanical Analysis dynamic viscoelasticity measurement method) of the connection layer 3 is desirably 185 ° C. or higher or higher by 10 ° C. or more than the upper substrate 1 and the lower substrate 2. If the temperature is less than 185 ° C. or the difference is less than 10 ° C., the warpage or undulation of the substrate may become a complicated shape or become irreversible in a process requiring a high temperature such as reflow.

また、接続層3は、織布、不織布、フィルムなどの芯材を含まない構成のものを用いる。芯材を含む場合、上述の通り上側および下側のプリント配線板表面に形成された配線パターンの埋め込みが困難となる。   Moreover, the connection layer 3 uses the structure which does not contain core materials, such as a woven fabric, a nonwoven fabric, and a film. When the core material is included, it is difficult to embed the wiring patterns formed on the upper and lower printed wiring board surfaces as described above.

接続層3の最低溶融粘度は、図6の溶融粘度曲線に示すように、1000〜100000Pa・sが適切である。1000Pa・s未満の場合、樹脂流れが大きくなり、凹部4内への流れ込みが発生するおそれがあり、100000Pa・sを超える場合、プリント配線板との接着不良や配線10への埋め込み不良が発生するおそれがある。   The minimum melt viscosity of the connection layer 3 is suitably 1000 to 100,000 Pa · s as shown in the melt viscosity curve of FIG. If the pressure is less than 1000 Pa · s, the resin flow becomes large and may flow into the recess 4. If the pressure exceeds 100000 Pa · s, poor adhesion to the printed wiring board or poor embedding in the wiring 10 occurs. There is a fear.

また、接続層3は、着色剤を含有していてもよい。この場合、実装性、光反射性が向上する。   The connection layer 3 may contain a colorant. In this case, mountability and light reflectivity are improved.

また、接続層3の樹脂フローを抑制するためすなわち凹部4内に樹脂が流れるのを防止する必要があるため、樹脂フローを抑制するためのエラストマーを含有している。   Moreover, in order to suppress the resin flow of the connection layer 3, that is, since it is necessary to prevent the resin from flowing into the recess 4, an elastomer for suppressing the resin flow is contained.

なお、本実施の形態において、凹部4を覆うようにシールド層を設けてもよく、こうすることで立体プリント配線板15の強度をさらに向上させるとともに、シールド効果を向上させることもできる。   In the present embodiment, a shield layer may be provided so as to cover the concave portion 4, whereby the strength of the three-dimensional printed wiring board 15 can be further improved and the shielding effect can be improved.

なお、上側基板1および下側基板2は、スルーホール配線板や全層IVH構造のALIVH配線板など、樹脂基板であれば特に限定されるものではなく、両面基板であっても多層基板であってもよい。また、プリント配線板と接続層を交互に複数層積層してもよい。   The upper substrate 1 and the lower substrate 2 are not particularly limited as long as they are resin substrates such as through-hole wiring boards and all-layer IVH structure ALIVH wiring boards, and even double-sided boards are multilayer boards. May be. Also, a plurality of printed wiring boards and connection layers may be laminated alternately.

また、上側基板1および下側基板2に用いる絶縁材料は、ガラス織布とエポキシ系樹脂の複合材としたが、アラミド、全芳香族ポリエステルから選ばれる有機質繊維およびガラス繊維、アルミナ繊維より選ばれる無機質繊維のいずれかで構成される織布と熱硬化性樹脂の複合材からなる場合、p−アラミド、ポリイミド、ポリ−p−フェニレンベンゾビスオキサゾ−ル、全芳香族ポリエステル、PTFE、ポリエーテルスルフォン、ポリエーテルイミドから選ばれる有機質繊維およびガラス繊維、アルミナ繊維より選ばれる無機質繊維のいずれかで構成される不織布と熱硬化性樹脂の複合材からなる場合および、p−アラミド、ポリ−p−フェニレンベンゾビスオキサゾール、全芳香族ポリエステル、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリエーテルサルフォン、ポリエステルテレフタレート、ポリイミドおよびポリフェニレンサルファイドの少なくともいずれかの合成樹脂フィルムの両面に熱硬化性樹脂層を形成した複合材を用いて絶縁材料を形成してもよい。   The insulating material used for the upper substrate 1 and the lower substrate 2 is a composite of glass woven fabric and epoxy resin, but is selected from organic fibers, glass fibers, and alumina fibers selected from aramid and wholly aromatic polyesters. When composed of a composite material of a woven fabric composed of any of inorganic fibers and a thermosetting resin, p-aramid, polyimide, poly-p-phenylene benzobisoxazole, wholly aromatic polyester, PTFE, polyether A case where it is made of a composite material of a non-woven fabric and a thermosetting resin composed of organic fibers and glass fibers selected from sulfone and polyetherimide, and inorganic fibers selected from alumina fibers; and p-aramid and poly-p- Phenylenebenzobisoxazole, wholly aromatic polyester, polyetherimide, polyether keto Using a composite material in which a thermosetting resin layer is formed on both sides of a synthetic resin film of at least one of polyether ether ketone, polyethylene terephthalate, polytetrafluoroethylene, polyether sulfone, polyester terephthalate, polyimide and polyphenylene sulfide An insulating material may be formed.

熱硬化性樹脂としては、エポキシ樹脂、ポリブタジエン樹脂、フェノール樹脂、ポリイミド樹脂、ポリアミド樹脂、およびシアネート樹脂から選ばれる少なくとも一つの熱硬化性樹脂を利用することができる。   As the thermosetting resin, at least one thermosetting resin selected from an epoxy resin, a polybutadiene resin, a phenol resin, a polyimide resin, a polyamide resin, and a cyanate resin can be used.

(実施の形態2)
以下本発明の実施の形態2について、図面を参照しながら説明する。なお、実施の形態1と同一の構成を有するものについては、同一の符号を付し、その説明を省略する。
(Embodiment 2)
Embodiment 2 of the present invention will be described below with reference to the drawings. In addition, about what has the same structure as Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図7は本発明の実施の形態における立体プリント配線板の斜視図および断面図である。本実施の形態の立体プリント配線板は、実施の形態1の立体プリント配線板と同一の構成である。実施の形態2の特徴は、接続層3が、熱可塑性樹脂を含む絶縁性材料で構成されている。   FIG. 7 is a perspective view and a sectional view of a three-dimensional printed wiring board according to the embodiment of the present invention. The three-dimensional printed wiring board of the present embodiment has the same configuration as the three-dimensional printed wiring board of the first embodiment. A feature of the second embodiment is that the connection layer 3 is made of an insulating material containing a thermoplastic resin.

接続層3がペーストビアを有する場合、本発明の立体プリント配線板に使用される導電性ペースト6は、実施の形態1と同様、銅、銀、金、パラジウム、ビスマス、錫およびこれらの合金の内から構成され、粒径は1〜20μmであることが好ましい。接続層3はビアを有していても有していなくてもよい。   When the connection layer 3 has paste vias, the conductive paste 6 used for the three-dimensional printed wiring board of the present invention is made of copper, silver, gold, palladium, bismuth, tin and alloys thereof as in the first embodiment. It is comprised from the inside and it is preferable that a particle size is 1-20 micrometers. The connection layer 3 may or may not have vias.

図7(B)に示すように、この凹部4に実装部品5を実装することによって、実装体としての総厚を薄くすることが可能となり、本発明においては下側基板2が400μm以下の極薄基板であっても剛性を確保することができる。すなわち本発明は、基板本体の剛性を持たせるため、上側基板1が、額縁状の枠形状にて設けられている。なお、本発明において、上側基板1は配線を有していても有していなくてもよく、また、ビアを有していても有していなくても枠として利用が可能となる。また、立体プリント配線板としての剛性を有する構成であれば、額縁状の枠形状をした上側基板1と接続層3の厚さの総和が、凹部4内に実装される実装部品5のうち最も高い部品の高さ以下の厚さで形成してもよい。   As shown in FIG. 7B, by mounting the mounting component 5 in the recess 4, the total thickness of the mounting body can be reduced. In the present invention, the lower substrate 2 has a pole of 400 μm or less. Even a thin substrate can ensure rigidity. That is, in the present invention, the upper substrate 1 is provided in a frame-like frame shape in order to give the rigidity of the substrate body. In the present invention, the upper substrate 1 may or may not have wiring, and can be used as a frame regardless of whether or not it has a via. Moreover, if it is the structure which has rigidity as a three-dimensional printed wiring board, the sum total of the thickness of the upper board | substrate 1 and the connection layer 3 which were frame-shaped frame shape is the most among the mounting components 5 mounted in the recessed part 4. You may form with the thickness below the height of a high component.

次に、本実施の形態の立体プリント配線板の製造プロセスについて、図8,9を用いて詳細に説明する。   Next, the manufacturing process of the three-dimensional printed wiring board of this Embodiment is demonstrated in detail using FIG.

まず、本実施の形態における接続層3は、接着性を有しないため、カバーフィルム13を貼り付けるための仮止め手段として、厚み1〜10μmの熱硬化性樹脂からなる糊層12を形成する。なお、厚みが1μm未満の場合、ピンホールが発生するため、また、10μmの場合、後工程でカバーフィルム13が剥離されなくなるおそれがあるため不適切である。糊層12を形成後、接続層3の両面にカバーフィルム13を貼り付ける。この状態を図8(A)に示す。なお、糊層12は、実施の形態1に記載の接続層すなわち無機フィラーが熱硬化性樹脂に分散されてなる絶縁性材料に貼り付けてもよい。   First, since the connection layer 3 in the present embodiment does not have adhesiveness, the adhesive layer 12 made of a thermosetting resin having a thickness of 1 to 10 μm is formed as a temporary fixing means for attaching the cover film 13. In addition, when the thickness is less than 1 μm, pinholes are generated, and when the thickness is 10 μm, the cover film 13 may not be peeled off in a subsequent process, which is inappropriate. After forming the adhesive layer 12, cover films 13 are attached to both surfaces of the connection layer 3. This state is shown in FIG. Note that the adhesive layer 12 may be attached to an insulating material in which the connection layer described in Embodiment 1, that is, an inorganic filler is dispersed in a thermosetting resin.

また、糊層12は、ラミネート性を向上させるために常温時にタック性のないものが好ましい。次に図8(B)に示すように、接続層3を上側基板1の形状に切断し、上側基板1と下側基板2の配線とを接続させる位置に貫通孔9を形成する。次に図8(C)に示すように、貫通孔9内に銅または銅合金からなる導電性ペースト6を充填し、ビア7を形成する。次に図8(D)に示すように、接続層3を上側基板1および下側基板2と接着させるために、両面のカバーフィルム13を剥離する。   The adhesive layer 12 preferably has no tackiness at room temperature in order to improve laminating properties. Next, as shown in FIG. 8B, the connection layer 3 is cut into the shape of the upper substrate 1, and a through hole 9 is formed at a position where the wiring of the upper substrate 1 and the lower substrate 2 are connected. Next, as shown in FIG. 8C, the through-hole 9 is filled with a conductive paste 6 made of copper or a copper alloy, and a via 7 is formed. Next, as shown in FIG. 8D, in order to adhere the connection layer 3 to the upper substrate 1 and the lower substrate 2, the cover films 13 on both sides are peeled off.

次に、図9(A)に示すように、接続層3を額縁状の枠である上側基板1および下側基板2の所望の位置に位置合わせしながら重ね合わせて配置し、図9(B)に示すように、接続層3を上側基板1および下側基板2で挟み込むように重ね合わせ、加熱加圧させながら積層させ、立体プリント配線板15を完成させる。この積層時に配線10は接続層3に埋め込まれる。こうすることにより導電性ペースト6はさらに圧縮されるので、配線10との接続性が大幅に向上する。なお、本実施の形態において、実施の形態1の図3〜4の積層方法を用いてもよい。   Next, as shown in FIG. 9A, the connection layer 3 is arranged so as to be overlapped while being aligned with desired positions of the upper substrate 1 and the lower substrate 2 which are frame frames. 3), the connection layer 3 is overlapped so as to be sandwiched between the upper substrate 1 and the lower substrate 2 and laminated while being heated and pressed to complete the three-dimensional printed wiring board 15. The wiring 10 is embedded in the connection layer 3 during this lamination. By doing so, the conductive paste 6 is further compressed, so that the connectivity with the wiring 10 is greatly improved. In this embodiment, the stacking method of FIGS. 3 to 4 of Embodiment 1 may be used.

さらに、実施の形態1と同様、上側基板1が額縁状の枠形状として設けられているので、下側基板2が400μm以下のような薄いプリント配線板であっても基板の剛性を確保することが可能となる。   Further, as in the first embodiment, since the upper substrate 1 is provided in a frame-like frame shape, the rigidity of the substrate is ensured even if the lower substrate 2 is a thin printed wiring board of 400 μm or less. Is possible.

また、実施の形態1においても、接続層3にPETフィルム8を形成する前に糊層12を形成してもよく、この場合接続層3の材料破砕を防止する効果を得ることができる。   Also in the first embodiment, the adhesive layer 12 may be formed before the PET film 8 is formed on the connection layer 3. In this case, the effect of preventing the material of the connection layer 3 from being crushed can be obtained.

なお、実施の形態1と同様に、上側基板1、下側基板2、凹部4へのゴミ等の付着およびそれによる実装の不具合を防止するために、図10に示すように、5〜30μmの厚みのドライフィルム状の永久レジスト11を貼り付け、上側基板1、下側基板2、接続層3の壁面を被覆することが、本発明の立体プリント配線板としてより好ましい。これにより凹部4内の特に隅の部分へのゴミ等の付着の防止をはかることができる。永久レジスト11の厚みが5μm未満の場合ピンホールが発生しやすくなるのでコーティングが不十分となり、30μmを超えると基板への追従性が悪くなることがある。   As in the first embodiment, in order to prevent dust and the like from adhering to the upper substrate 1, the lower substrate 2, and the concave portion 4 and mounting defects due to this, as shown in FIG. It is more preferable for the three-dimensional printed wiring board of the present invention to apply a dry film-like permanent resist 11 having a thickness to cover the wall surfaces of the upper substrate 1, the lower substrate 2 and the connection layer 3. As a result, it is possible to prevent dust and the like from adhering to the corners of the recess 4. When the thickness of the permanent resist 11 is less than 5 μm, pinholes are likely to be generated, resulting in insufficient coating. When the thickness exceeds 30 μm, the followability to the substrate may be deteriorated.

本実施の形態における接続層3の熱可塑性樹脂は、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)、PES(ポリエーテルサルフォン)、熱可塑性ポリイミド等が用いられる。   As the thermoplastic resin of the connection layer 3 in the present embodiment, PPS (polyphenylene sulfide), PEEK (polyether ether ketone), PES (polyether sulfone), thermoplastic polyimide, or the like is used.

本発明の接続層3の熱膨張係数は、上側基板1および下側基板2の熱膨張係数以下、すなわち65ppm/℃以下もしくはプリント配線板の熱膨張係数よりも低いということが望ましい。   The thermal expansion coefficient of the connection layer 3 of the present invention is desirably lower than the thermal expansion coefficient of the upper substrate 1 and the lower substrate 2, that is, 65 ppm / ° C. or lower, or lower than the thermal expansion coefficient of the printed wiring board.

また、接続層3のガラス転移点(DMA法)は、185℃以上もしくは上側基板1および下側基板2と比較して10℃以上高いことが望ましい。   The glass transition point (DMA method) of the connection layer 3 is preferably 185 ° C. or higher or higher by 10 ° C. or more than the upper substrate 1 and the lower substrate 2.

また、接続層3は、織布、不織布、フィルムなどの芯材を含まない構成のものを用いる。芯材を含む場合、上述の通り上側および下側のプリント配線板表面に形成された配線パターンの埋め込みが困難となる。   Moreover, the connection layer 3 uses the structure which does not contain core materials, such as a woven fabric, a nonwoven fabric, and a film. When the core material is included, it is difficult to embed the wiring patterns formed on the upper and lower printed wiring board surfaces as described above.

また、接続層3の最低溶融粘度は、実施の形態1と同様、図6の溶融粘度曲線に示すように、1000〜100000Pa・sが適切である。   As in the first embodiment, the minimum melt viscosity of the connection layer 3 is suitably 1000 to 100,000 Pa · s as shown in the melt viscosity curve of FIG.

なお、本実施の形態において、凹部4を覆うようにシールド層を設けてもよく、こうすることで立体プリント配線板15の強度をさらに向上させるとともに、シールド効果を向上させることもできる。   In the present embodiment, a shield layer may be provided so as to cover the concave portion 4, whereby the strength of the three-dimensional printed wiring board 15 can be further improved and the shielding effect can be improved.

なお、上側基板1および下側基板2は、スルーホール配線板や全層IVH構造のALIVH配線板など、樹脂基板であれば特に限定されるものではなく、両面基板であっても多層基板であってもよい。また、プリント配線板と接続層を交互に複数層積層してもよい。   The upper substrate 1 and the lower substrate 2 are not particularly limited as long as they are resin substrates such as through-hole wiring boards and all-layer IVH structure ALIVH wiring boards, and even double-sided boards are multilayer boards. May be. Also, a plurality of printed wiring boards and connection layers may be laminated alternately.

また、上側基板1および下側基板2に用いる絶縁材料は、ガラス織布とエポキシ系樹脂の複合材としたが、アラミド、全芳香族ポリエステルから選ばれる有機質繊維およびガラス繊維、アルミナ繊維より選ばれる無機質繊維のいずれかで構成される織布と熱硬化性樹脂の複合材からなる場合、p−アラミド、ポリイミド、ポリ−p−フェニレンベンゾビスオキサゾ−ル、全芳香族ポリエステル、PTFE、ポリエーテルスルフォン、ポリエーテルイミドから選ばれる有機質繊維およびガラス繊維、アルミナ繊維より選ばれる無機質繊維のいずれかで構成される不織布と熱硬化性樹脂の複合材からなる場合および、p−アラミド、ポリ−p−フェニレンベンゾビスオキサゾール、全芳香族ポリエステル、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリエーテルサルフォン、ポリエステルテレフタレート、ポリイミドおよびポリフェニレンサルファイドの少なくともいずれかの合成樹脂フィルムの両面に熱硬化性樹脂層を形成した複合材を用いて絶縁材料を形成してもよい。   The insulating material used for the upper substrate 1 and the lower substrate 2 is a composite of glass woven fabric and epoxy resin, but is selected from organic fibers, glass fibers, and alumina fibers selected from aramid and wholly aromatic polyesters. When composed of a composite material of a woven fabric composed of any of inorganic fibers and a thermosetting resin, p-aramid, polyimide, poly-p-phenylene benzobisoxazole, wholly aromatic polyester, PTFE, polyether A case where it is made of a composite material of a non-woven fabric and a thermosetting resin composed of organic fibers and glass fibers selected from sulfone and polyetherimide, and inorganic fibers selected from alumina fibers; and p-aramid and poly-p- Phenylenebenzobisoxazole, wholly aromatic polyester, polyetherimide, polyether keto Using a composite material in which a thermosetting resin layer is formed on both sides of a synthetic resin film of at least one of polyether ether ketone, polyethylene terephthalate, polytetrafluoroethylene, polyether sulfone, polyester terephthalate, polyimide and polyphenylene sulfide An insulating material may be formed.

熱硬化性樹脂としては、エポキシ樹脂、ポリブタジエン樹脂、フェノール樹脂、ポリイミド樹脂、ポリアミド樹脂、およびシアネート樹脂から選ばれる少なくとも一つの熱硬化性樹脂を利用することができる。   As the thermosetting resin, at least one thermosetting resin selected from an epoxy resin, a polybutadiene resin, a phenol resin, a polyimide resin, a polyamide resin, and a cyanate resin can be used.

本発明にかかる立体プリント配線板は、部品実装後の実装体としての基板総厚を薄く形成することができるため、パソコン、デジタルカメラ、携帯電話など小型、薄型、軽量、高精細、多機能化等に対応するための基板として用いることができ、半導体パッケージの低背化、三次元実装化を容易に実現する方法の一つとして利用可能であり、これらの実装基板に関する用途に適用できる。   The three-dimensional printed wiring board according to the present invention can be formed with a thin total board thickness as a mounting body after component mounting, so that it is small, thin, lightweight, high definition, multifunctional such as a personal computer, a digital camera, a mobile phone, etc. It can be used as a substrate for dealing with the above and the like, and can be used as one of methods for easily realizing a low-profile and three-dimensional mounting of a semiconductor package, and can be applied to applications related to these mounting substrates.

本発明の実施の形態1における立体プリント配線板の一例を示す斜視図および断面図The perspective view and sectional drawing which show an example of the three-dimensional printed wiring board in Embodiment 1 of this invention 本発明の実施の形態1における立体プリント配線板の製造工程を示す断面図Sectional drawing which shows the manufacturing process of the three-dimensional printed wiring board in Embodiment 1 of this invention 本発明の実施の形態1における立体プリント配線板の製造工程を示す断面図Sectional drawing which shows the manufacturing process of the three-dimensional printed wiring board in Embodiment 1 of this invention 本発明の実施の形態1における立体プリント配線板の製造工程を示す断面図Sectional drawing which shows the manufacturing process of the three-dimensional printed wiring board in Embodiment 1 of this invention 本発明の実施の形態1における立体プリント配線板の一例を示す断面図Sectional drawing which shows an example of the three-dimensional printed wiring board in Embodiment 1 of this invention 本発明の実施の形態1,2における立体プリント配線板の接続層の溶融粘度を示す図The figure which shows the melt viscosity of the connection layer of the three-dimensional printed wiring board in Embodiment 1, 2 of this invention 本発明の実施の形態2における立体プリント配線板の一例を示す斜視図および断面図The perspective view and sectional drawing which show an example of the three-dimensional printed wiring board in Embodiment 2 of this invention 本発明の実施の形態2における立体プリント配線板の製造工程を示す断面図Sectional drawing which shows the manufacturing process of the three-dimensional printed wiring board in Embodiment 2 of this invention 本発明の実施の形態2における立体プリント配線板の製造工程を示す断面図Sectional drawing which shows the manufacturing process of the three-dimensional printed wiring board in Embodiment 2 of this invention 本発明の実施の形態2における立体プリント配線板の一例を示す断面図Sectional drawing which shows an example of the three-dimensional printed wiring board in Embodiment 2 of this invention 従来のプリント配線板の断面図Sectional view of a conventional printed wiring board 従来のプリント配線板の断面図Sectional view of a conventional printed wiring board

符号の説明Explanation of symbols

1 上側基板
2 下側基板
3 接続層
4 凹部
5 実装部品
6 導電性ペースト
7 ビア
8 PETフィルム
9 貫通孔
10 配線
11 永久レジスト
12 糊層
13 カバーフィルム
15 立体プリント配線板
DESCRIPTION OF SYMBOLS 1 Upper substrate 2 Lower substrate 3 Connection layer 4 Recessed part 5 Mounting component 6 Conductive paste 7 Via 8 PET film 9 Through-hole 10 Wiring 11 Permanent resist 12 Glue layer 13 Cover film 15 Three-dimensional printed wiring board

Claims (15)

額縁状の枠形状をした上側基板と、平面状の下側基板と、これらの基板の間を接続する接続層とから構成された立体プリント配線板であって、前記下側基板の厚さが前記上側基板と前記接続層の厚さの総和よりも薄く構成されたことを特徴とする立体プリント配線板。 A three-dimensional printed wiring board composed of an upper substrate having a frame-like frame shape, a planar lower substrate, and a connection layer connecting these substrates, and the thickness of the lower substrate is A three-dimensional printed wiring board characterized by being configured to be thinner than the total thickness of the upper substrate and the connection layer. 額縁状の枠形状をした上側基板と接続層の厚さの総和が実装される部品のうち最も高い部品の高さ以下であることを特徴とする請求項1に記載の立体プリント配線板。 2. The three-dimensional printed wiring board according to claim 1, wherein a sum of thicknesses of the upper substrate having a frame-like frame shape and the connection layer is equal to or less than a height of a highest component among components to be mounted. 額縁状の枠形状をした上側基板と、平面状の下側基板と、これらの基板の間を接続する接続層とから構成された立体プリント配線板であって、前記接続層は樹脂を含む絶縁性材料であり、この絶縁層の所定の位置に貫通孔が形成され、この貫通孔に導電性ペーストが充填されたビアを有することを特徴とする請求項1に記載の立体プリント配線板。 A three-dimensional printed wiring board comprising an upper substrate having a frame-like frame shape, a planar lower substrate, and a connection layer connecting these substrates, wherein the connection layer includes an insulating resin The three-dimensional printed wiring board according to claim 1, wherein the three-dimensional printed wiring board is made of a conductive material, and has a through hole formed at a predetermined position of the insulating layer, and the through hole is filled with a conductive paste. 接続層は無機フィラーが熱硬化性樹脂に分散されてなる請求項1に記載の立体プリント配線板。 The three-dimensional printed wiring board according to claim 1, wherein the connection layer is formed by dispersing an inorganic filler in a thermosetting resin. 接続層は熱可塑性樹脂からなる請求項1に記載の立体プリント配線板。 The three-dimensional printed wiring board according to claim 1, wherein the connection layer is made of a thermoplastic resin. 接続層は、芯材を含まない請求項1に記載の立体プリント配線板。 The three-dimensional printed wiring board according to claim 1, wherein the connection layer does not include a core material. 前記接続層および前記上側基板および下側基板の壁面は、絶縁性被膜で被覆されている請求項1に記載の立体プリント配線板。 The three-dimensional printed wiring board according to claim 1, wherein wall surfaces of the connection layer, the upper substrate, and the lower substrate are covered with an insulating film. 絶縁性被膜は耐電防止剤が含有されている請求項7に記載の立体プリント配線板。 The three-dimensional printed wiring board according to claim 7, wherein the insulating coating contains an antistatic agent. 前記接続層は、着色剤が含有されている請求項1に記載の立体プリント配線板。 The three-dimensional printed wiring board according to claim 1, wherein the connection layer contains a colorant. 額縁状の枠形状をした上側基板と、少なくとも表面に配線が形成された下側基板と、これらの基板の間を接続するための樹脂を含む絶縁性材料を有する接続層とを準備し、立体形状を形成するために前記接続層を前記上側基板と概同形状に切断する工程と、前記下側基板あるいは前記上側基板上に前記接続層を位置合わせしながら重ね合わせる工程と、前記下側基板と前記接続層と前記上側基板とを加熱加圧しながら積層する工程とを少なくとも備えたことを特徴とする立体プリント配線板の製造方法。 An upper substrate having a frame-like frame shape, a lower substrate having wiring formed on at least a surface thereof, and a connection layer having an insulating material containing a resin for connecting between the substrates are prepared. Cutting the connection layer into a shape substantially the same as the upper substrate to form a shape, overlaying the connection layer on the lower substrate or the upper substrate while aligning the lower substrate, and the lower substrate And a step of laminating the connection layer and the upper substrate while being heated and pressed. A method for producing a three-dimensional printed wiring board, comprising: 接続層の所定の位置に貫通孔を形成する工程と、前記貫通孔に導電性ペーストを充填する工程とを備えた請求項10に記載の立体プリント配線板の製造方法。 The manufacturing method of the three-dimensional printed wiring board of Claim 10 provided with the process of forming a through-hole in the predetermined position of a connection layer, and the process of filling the said through-hole with an electrically conductive paste. 額縁状の枠形状をした上側基板と、少なくとも表面に配線が形成された下側基板と、これらの基板の間を接続するための樹脂を含む絶縁性材料を有する接続層を準備する前に、前記下側基板の表面に予めソルダレジストを形成する工程とを備えた請求項10に記載の立体プリント配線板の製造方法。 Before preparing a connection layer having an insulating substrate containing a resin for connecting between these substrates, an upper substrate having a frame-like frame shape, a lower substrate having wiring formed on at least the surface, The manufacturing method of the three-dimensional printed wiring board of Claim 10 provided with the process of forming a soldering resist previously on the surface of the said lower side board | substrate. 上側基板の表面に予めソルダレジストを形成する工程を備えた請求項12に記載の立体プリント配線板の製造方法。 The manufacturing method of the three-dimensional printed wiring board of Claim 12 provided with the process of previously forming a soldering resist on the surface of an upper board | substrate. 前記下側基板と前記接続層と前記上側基板とを積層する工程の前に、予め前記下側基板に形成された表層の配線において少なくとも前記接続層と接触する領域を粗化する工程を備えた請求項10に記載の立体プリント配線板の製造方法。 Before the step of laminating the lower substrate, the connection layer, and the upper substrate, the method includes a step of roughening at least a region in contact with the connection layer in the surface layer wiring previously formed on the lower substrate. The manufacturing method of the three-dimensional printed wiring board of Claim 10. 前記下側基板と前記接続層と前記上側基板とを積層する工程の前に、予め前記上側基板に形成された表層の配線において少なくとも前記接続層と接触する領域を粗化する工程とを備えた請求項10に記載の立体プリント配線板の製造方法。 Before the step of laminating the lower substrate, the connection layer, and the upper substrate, the method includes a step of roughening at least a region in contact with the connection layer in the surface layer wiring previously formed on the upper substrate. The manufacturing method of the three-dimensional printed wiring board of Claim 10.
JP2008177731A 2007-07-09 2008-07-08 Three-dimensional printed circuit board, and its manufacturing method Pending JP2009038361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177731A JP2009038361A (en) 2007-07-09 2008-07-08 Three-dimensional printed circuit board, and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007179538 2007-07-09
JP2008177731A JP2009038361A (en) 2007-07-09 2008-07-08 Three-dimensional printed circuit board, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009038361A true JP2009038361A (en) 2009-02-19

Family

ID=40439965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177731A Pending JP2009038361A (en) 2007-07-09 2008-07-08 Three-dimensional printed circuit board, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009038361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083967A1 (en) * 2012-11-29 2014-06-05 オリンパスメディカルシステムズ株式会社 Board structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083967A1 (en) * 2012-11-29 2014-06-05 オリンパスメディカルシステムズ株式会社 Board structure
JP5548324B1 (en) * 2012-11-29 2014-07-16 オリンパスメディカルシステムズ株式会社 Board structure
US9060447B2 (en) 2012-11-29 2015-06-16 Olympus Medical Systems Corp. Substrate structure

Similar Documents

Publication Publication Date Title
TWI393511B (en) Dimensional printed wiring board and manufacturing method thereof
JP4935823B2 (en) Circuit board and manufacturing method thereof
JP4272693B2 (en) Manufacturing method of module with built-in components
US8278565B2 (en) Three-dimensional wiring board
WO2013008415A1 (en) Wiring board and method for manufacturing three-dimensional wiring board
JP2001044641A (en) Wiring board incorporating semiconductor element and its manufacture
JP4783843B2 (en) Electronic component built-in printed circuit board
WO2014125973A1 (en) Resin multi-layer substrate with built-in component, and resin multi-layer substrate
JP3441368B2 (en) Multilayer wiring board and manufacturing method thereof
US8253033B2 (en) Circuit board with connection layer with fillet
JP5286988B2 (en) Rigid flexible printed wiring board and manufacturing method thereof
JP2011233915A (en) Composite wiring board, manufacturing method thereof, mounting body of electronic component, and manufacturing method of electronic component
JP5358928B2 (en) 3D printed circuit board
JP2007194516A (en) Compound wiring board and its manufacturing method, mounted shape of electronic component, and manufacturing method
JP2010283300A (en) Wiring board with bump electrode, and method of manufacturing the same
JP2009038361A (en) Three-dimensional printed circuit board, and its manufacturing method
JP5228626B2 (en) Three-dimensional printed wiring board and manufacturing method thereof
JP2009038362A (en) Three-dimensional printed circuit board, and its manufacturing method
JP5186927B2 (en) 3D printed circuit board
KR20220061099A (en) Circuit board, manufacturing method of circuit board, and electronic device
JP5130833B2 (en) 3D printed circuit board
JP2009038364A (en) Three-dimensional printed circuit board, and its manufacturing method
JP5251212B2 (en) 3D printed circuit board
JP2009060019A (en) Solid printed circuit board
JP5194653B2 (en) 3D printed circuit board