[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009017876A - New pyruvate orthophosphate dikinase and method for producing the same - Google Patents

New pyruvate orthophosphate dikinase and method for producing the same Download PDF

Info

Publication number
JP2009017876A
JP2009017876A JP2008152403A JP2008152403A JP2009017876A JP 2009017876 A JP2009017876 A JP 2009017876A JP 2008152403 A JP2008152403 A JP 2008152403A JP 2008152403 A JP2008152403 A JP 2008152403A JP 2009017876 A JP2009017876 A JP 2009017876A
Authority
JP
Japan
Prior art keywords
orthophosphate dikinase
pyruvate orthophosphate
activity
ppdk
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008152403A
Other languages
Japanese (ja)
Other versions
JP5352788B2 (en
JP2009017876A5 (en
Inventor
Haruhiko Sakuraba
春彦 櫻庭
Junji Hayashi
順司 林
Shinichi Sakasegawa
信一 酒瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Pharma Corp
University of Tokushima NUC
Original Assignee
Asahi Kasei Pharma Corp
University of Tokushima NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Pharma Corp, University of Tokushima NUC filed Critical Asahi Kasei Pharma Corp
Priority to JP2008152403A priority Critical patent/JP5352788B2/en
Publication of JP2009017876A publication Critical patent/JP2009017876A/en
Publication of JP2009017876A5 publication Critical patent/JP2009017876A5/ja
Application granted granted Critical
Publication of JP5352788B2 publication Critical patent/JP5352788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pyruvate orthophosphate dikinase having excellent storage stability in a low-temperature region and freeze storage stability and high heat stability. <P>SOLUTION: The pyruvate orthophosphate dikinase is derived from Thermotoga maritima. The method for producing the same is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低温域における保存安定性及び凍結保存安定性に優れ、かつ熱安定性が高いピルベートオルトホスフェートジキナーゼとその製造に関する。   The present invention relates to pyruvate orthophosphate dikinase having excellent storage stability and cryopreservation stability in a low temperature range and high heat stability, and production thereof.

ピルベートオルトホスフェートジキナーゼ((Pyruvate orthophosphatedikinase(以下PPDKと記載する場合もある)、ピルビン酸リン酸ジキナーゼ、EC2.7.9.1)は、マグネシウムイオン等の存在下で、アデノシン5’一リン酸(以下AMPと記載する場合もある)、ホスホエノールピルビン酸(以下PEPと記載する場合もある)及びピロリン酸(以下PPiと記載する場合もある)に作用して、アデノシン5’三リン酸(以下ATPと記載する場合もある)、ピルビン酸及びリン酸(以下Piと記載する場合もある)を生ずる反応及びその逆反応を触媒する酵素である。   Pyruvate orthophosphate dikinase ((Pyruvate orthophosphate dikinase (hereinafter sometimes referred to as PPDK), pyruvate phosphate dikinase, EC 2.7.9.1) is adenosine 5 ′ monophosphate in the presence of magnesium ion or the like. Acts on acid (hereinafter sometimes referred to as AMP), phosphoenolpyruvate (hereinafter sometimes referred to as PEP) and pyrophosphate (hereinafter also referred to as PPi), and adenosine 5 ′ triphosphate (Hereinafter also referred to as ATP), an enzyme that catalyzes a reaction that produces pyruvic acid and phosphoric acid (hereinafter sometimes referred to as Pi) and the reverse reaction thereof.

PPDKは、植物においてC4回路を構成する酵素の一つであると考えられ、例えば、トウモロコシ葉由来(非特許文献1)、サトウキビ葉由来(非特許文献2)、及び菊科植物由来(非特許文献3)のPPDKが報告されている。その他、微生物由来のPPDKとして、Propionibacteriumshermanii由来(非特許文献4)、Bacteroides symbiosus由来(非特許文献5と6)、Acetobacterxylinum由来(非特許文献7)等が報告されている。   PPDK is considered to be one of the enzymes constituting the C4 circuit in plants. For example, it is derived from corn leaves (Non-patent Document 1), sugar cane leaves (Non-patent Document 2), and chrysanthemum plants (non-patented). The PPDK of literature 3) has been reported. In addition, as PPDK derived from microorganisms, those derived from Propionibacterium shermanii (Non-patent document 4), Bacteroides symbiosus (Non-patent documents 5 and 6), Acetobacterylinum derived (Non-patent document 7) and the like have been reported.

PPDKは4量体であるが、低温条件(12℃以下)で2量体もしくは単量体に解離し、急速にその活性を失う。例えば、トウモロコシ葉由来PPDKは0℃、20分の処理で約80%の活性が失われる(非特許文献1)。また、比較的低温耐性があるとされる菊科植物由来のPPDKも、0℃において失活が認められる(非特許文献3)。そこで低温域における保存安定性及び凍結保存安定性に優れたPPDKとして、ミクロビスポーラ属由来PPDKが開発された(特許文献1)。   PPDK is a tetramer, but dissociates into a dimer or a monomer under a low temperature condition (12 ° C. or lower) and rapidly loses its activity. For example, corn leaf-derived PPDK loses about 80% of its activity after treatment at 0 ° C. for 20 minutes (Non-patent Document 1). In addition, inactivation of PPDK derived from chrysanthemums plants, which are relatively resistant to low temperatures, is observed at 0 ° C. (Non-patent Document 3). Therefore, as a PPDK excellent in storage stability and cryopreservation stability in a low temperature range, PPDK derived from Microvispora was developed (Patent Document 1).

酵素はタンパク質なので、腐敗や変性を防ぐために、製造(精製)工程を低温で行い、製造(精製)工程を一旦休止する場合は凍結保存することが多い。したがって、低温域での安定性、凍結保存安定性が高い酵素の方が製造上有利である。そのような観点からは、上記文献に開示されているPPDKのうち、植物や常温性の微生物由来のPPDKは低温域における保存安定性及び凍結保存安定性が悪く、酵素の製造上不利であるが、ミクロビスポーラ属由来PPDK(特許文献1)は低温域における保存安定性及び凍結保存安定性に優れており、製造上有利である。   Since an enzyme is a protein, in order to prevent spoilage and denaturation, the production (purification) process is often performed at a low temperature, and when the production (purification) process is temporarily stopped, it is often stored frozen. Therefore, an enzyme having higher stability in a low temperature range and higher stability in cryopreservation is advantageous in production. From such a viewpoint, among the PPDKs disclosed in the above-mentioned documents, PPDKs derived from plants and normal temperature microorganisms have poor storage stability and cryopreservation stability in a low temperature range, which is disadvantageous in enzyme production. Microbispora-derived PPDK (Patent Document 1) is superior in storage stability and cryopreservation stability in a low temperature range, and is advantageous in production.

ところで、目的酵素を製造する方法として、目的酵素をコードする遺伝子を含む組換え体プラスミドを作成し、該組換え体プラスミドを含む形質転換体を培地で培養し、培養物中に該目的酵素を組み換え体酵素として生成蓄積させ、該培養物から該目的酵素を採取する製造方法がある。この製造方法において、該組換え体プラスミドを移入する宿主微生物としては、エシェリヒア・コリ(以下大腸菌と記載する場合もある)に属する微生物、バチラス属に属する微生物、ストレプトマイセス属に属する微生物、サッカロマイセス・セルビシエ等が通常用いられる。これらの宿主微生物は、通常10から45℃程度で生育する微生物であるため、宿主微生物が生成蓄積するタンパク質や酵素は、通常80℃程度の熱処理で不活性化し凝集しやすくなる。したがって、目的酵素が、例えば80℃でも不活性化や凝集しない安定な酵素であれば、熱処理工程を製造工程に取り入れることによって他の酵素との分離が容易となり、酵素の製造上大変優位である。   By the way, as a method for producing a target enzyme, a recombinant plasmid containing a gene encoding the target enzyme is prepared, a transformant containing the recombinant plasmid is cultured in a medium, and the target enzyme is introduced into the culture. There is a production method for producing and accumulating a recombinant enzyme and collecting the target enzyme from the culture. In this production method, host microorganisms to which the recombinant plasmid is transferred include microorganisms belonging to Escherichia coli (hereinafter sometimes referred to as E. coli), microorganisms belonging to the genus Bacillus, microorganisms belonging to the genus Streptomyces, Saccharomyces・ Servicier is usually used. Since these host microorganisms usually grow at about 10 to 45 ° C., the proteins and enzymes produced and accumulated by the host microorganism are usually inactivated and easily aggregated by heat treatment at about 80 ° C. Therefore, if the target enzyme is a stable enzyme that does not inactivate or aggregate even at 80 ° C., for example, it can be easily separated from other enzymes by incorporating the heat treatment step into the production step, which is very advantageous in the production of the enzyme. .

しかし、上記の植物や常温性の微生物由来のPDDKは熱安定性に優れたものでははない。また、保存安定性及び凍結保存安定性に優れるとして開発されたミクロビスポーラ属由来PPDKは、ミクロビスポーラ属が好熱性の放線菌であるため(非特許文献8)、比較的熱安定性は高いがそれでも70℃では完全に失活してしまうため(特許文献1)、製造上の優位性については不十分なものであった。したがって、低温域における保存安定性及び凍結保存安定性に優れ、かつ熱安定性が十分に高いPPDKは製造上大変優位であるといえる。   However, PDDK derived from the above-mentioned plants and normal temperature microorganisms is not excellent in thermal stability. Moreover, since the microvispora-derived PPDK developed as having excellent storage stability and cryopreservation stability is a thermophilic actinomycete (Non-patent Document 8), the relatively thermal stability is relatively low. Although it is high, it is still completely deactivated at 70 ° C. (Patent Document 1), so that the manufacturing superiority is insufficient. Therefore, it can be said that PPDK, which is excellent in storage stability in a low temperature range and frozen storage stability and has sufficiently high thermal stability, is very advantageous in production.

特開平08−168375号公報JP 08-168375 A Biochemistry 12,2862−2867(1973)Biochemistry 12, 2862-2867 (1973) The Biochemical Journal 114,117−125 (1969)The Biochemical Journal 114, 117-125 (1969) Plant and Cell Physiology 31,29 5−297 (1990)Plant and Cell Physiology 31, 29 5-297 (1990) Biochemistry 10,721−729 (1971)Biochemistry 10,721-729 (1971) Methods in Enzymology 42,199−212(1975)Methods in Enzymology 42, 199-212 (1975) The BiochemicalJournal 125,531−539(1971)The Biochemical Journal 125,531-539 (1971) Journal of Bacteriology 104,211−218 (1970)Journal of Bacteriology 104, 211-218 (1970) Biochimica et Biophysica Acta 1431,363−373(1999)Biochimica et Biophysica Acta 1431, 363-373 (1999)

低温域における保存安定性及び凍結保存安定性に優れ、かつ熱安定性が高いPPDKを提供することを目的とする。   An object of the present invention is to provide PPDK which is excellent in storage stability and cryopreservation stability in a low temperature region and has high thermal stability.

酵素の製造上大変優位である低温域における保存安定性及び凍結保存安定性に優れ、かつ熱安定性が高いPPDKを得るために本発明者らは鋭意研究を重ねた結果、Thermotoga maritima DSM 3109株の遺伝子TM0272がPPDKをコードする遺伝子である事を見出し、そして、Thermotoga maritima DSM 3109株由来PPDKの理化学的性質を調べた結果、Thermotoga maritima DSM 3109株由来PPDKが、低温域における保存安定性及び凍結保存安定性に優れ、かつ、熱安定性の高い新規なPPDKであることを見出した。さらに該酵素の製造方法を確立して本発明を完成するに至った。   As a result of intensive research in order to obtain PPDK having excellent storage stability and cryopreservation stability in a low temperature range, which is extremely superior in the production of the enzyme, and the thermostability, the Thermotoga maritima DSM 3109 strain was obtained. Was found to be a gene encoding PPDK, and the physicochemical properties of PPDK derived from Thermotoga maritima DSM 3109 were examined. As a result, Thermotoga maritima DSM 3109 strain PPDK was preserved and frozen in a low temperature range. It has been found that this is a new PPDK having excellent storage stability and high thermal stability. Furthermore, the manufacturing method of this enzyme was established and it came to complete this invention.

ここで、Thermotoga maritima DSM 3109株の遺伝子TM0272はClostridium symbiosum由来PPDK遺伝子と59%の同一性があるが(非特許文献8およびJ.Biol.Chem.276,37630−37639(2001)など)、Thermotoga maritima DSM 3109株の遺伝子TM0272がコードするタンパク質の性質はこれまでに解明されていなかった。すなわち、Clostridium symbiosum由来PPDKは凍結融解を繰り返すと活性を失い沈澱するなど温度変化に対して不安定であった(非特許文献5およびAdv.Enzymol.Rel.Areas Mol.Biol.45、85−155(1977)など)が、Thermotoga maritima 由来のPPDKは、低温域における保存安定性及び凍結保存安定性に優れ、かつ熱安定性が高い、本発明により初めて見出された非常に有用な新規なPPDKである。   Here, the gene TM0272 of the Thermotoga maritima DSM 3109 strain has 59% identity with the PPDK gene derived from Clostridium symbiosum (Non-patent Document 8 and J. Biol. Chem. 276, 37630-37639 (2001), etc.) The nature of the protein encoded by the gene TM0272 of maritima DSM 3109 strain has not been elucidated so far. That is, Clostridium symbiosum-derived PPDK is unstable to temperature changes such as loss of activity and precipitation upon repeated freezing and thawing (Non-patent Document 5 and Adv. Enzymol. Rel. Area Mol. Biol. 45, 85-155). (1977), etc.), however, PPDK derived from Thermotoga maritima has excellent storage stability and cryopreservation stability in a low temperature range and high thermal stability, and is a very useful novel PPDK discovered for the first time by the present invention. It is.

すなわち、本発明は以下に関する。
1)下記の理化学的性質を有するピルベートオルトホスフェートジキナーゼ。
(1)作用
マグネシウムイオン等の存在下で、アデノシン5’一リン酸、ホスホエノールピルビン酸及びピロリン酸に作用して、アデノシン5’三リン酸、ピルビン酸、及びリン酸を生ずる反応及びその逆反応を触媒する;
(2)至適pH
pH7〜7.5;
(3)pH安定性
50℃、20分間でpH4.5から11の範囲で80%以上の活性を保持する;
(4)熱安定性
80℃、1時間の熱処理で90%以上の活性を保持し、かつ、4℃で少なくとも27日間保存後も70%以上の活性を保持する;
(5)補酵素特異性
マグネシウムイオン存在下で、ホスホエノールピルビン酸及びピロリン酸を基質とした場合、アデノシン5’一リン酸に対して特異的に補酵素として作用し、アデノシン5’二リン酸(以下ADPと記載する場合もある)、イノシン5’一リン酸(以下IMPと記載する場合もある)、シチジン5’一リン酸(以下CMPと記載する場合もある)、グアノシン5’一リン酸(以下GMPと記載する場合もある)、チミジン5’一リン酸(以下TMPと記載する場合もある)又はウリジン5’一リン酸(以下UMPと記載する場合もある)に作用しない;
(6)金属イオン
マグネシウムイオンを使用した場合を100%として、コバルトイオンを使用した場合に74%、ニッケルイオンを使用した場合に29%の相対活性を示す;
(7)分子量
SDSポリアクリルアミドゲル電気泳動法による分子量が、約83kDa;
(8)Km値
ホスホエノールピルビン酸に対して0.32mM、ピロリン酸に対して1.12mM、アデノシン5’一リン酸に対して0.065mM;
2)さらに以下(9)の理化学的性質を有する前記1)に記載のピルベートオルトホスフェートジキナーゼ。
(9)−20℃で2週間保存後、90%以上の活性を保持する
3)Thermotoga maritima由来であることを特徴とする前記1)又は2)に記載のピルベートオルトホスフェートジキナーゼ。
4)以下の(a)又は(b)のアミノ酸配列を有する前記1)から3)のいずれかに記載のピルベートオルトホスフェートジキナーゼ。
(a)配列表の配列番号2のアミノ酸配列
(b)(a)のアミノ酸配列から1又は数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
5)配列表の配列番号2に記載のアミノ酸配列で表されるピルベートオルトホスフェートジキナーゼ。
6)以下の(a)〜(e)のいずれかの塩基配列からなるDNA。
(a)配列表の配列番号1で表される塩基配列からなるDNA
(b)(a)の塩基配列において、1又は複数の塩基が欠失、置換もしくは付加されており、かつ、ピルベートオルトホスフェートジキナーゼ活性を有するタンパク質をコードしているDNA
(c)(a)の塩基配列において、1から120個の塩基が置換されており、かつ、ピルベートオルトホスフェートジキナーゼ活性を有するタンパク質をコードしているDNA
(d)(a)の塩基配列において、120個の塩基が置換されており、かつ、ピルベートオルトホスフェートジキナーゼ活性を有するタンパク質をコードしているDNA
(e)配列表の配列番号6に記載の塩基配列で表されるDNA
7)前記6)に記載のDNAを含む組み換え体プラスミド。
8)前記7)に記載の組み換え体プラスミドを含む形質転換体。
9)前記8)に記載の形質転換体を培地で培養し、培養物中に前記1)から5)のいずれかに記載のピルベートオルトホスフェートジキナーゼを生成蓄積させ、該培養物からピルベートオルトホスフェートジキナーゼを採取することを特徴とするピルベートオルトホスフェートジキナーゼの製造方法。
10)前記9)に記載のピルベートオルトホスフェートジキナーゼの製造方法で採取したピルベートオルトホスフェートジキナーゼを、80℃以上で15分以上熱処理する工程を有するピルベートオルトホスフェートジキナーゼの製造方法。
11)前記10)に記載のピルベートオルトホスフェートジキナーゼの製造方法で、さらにイオン交換体を用いたカラムクロマトグラフィー工程を有するピルベートオルトホスフェートジキナーゼの製造方法。
12)前記11)に記載のピルベートオルトホスフェートジキナーゼの製造方法で、さらに疎水的クロマトグラフィー工程を有するピルベートオルトホスフェートジキナーゼの製造方法。
13)前記12)に記載のピルベートオルトホスフェートジキナーゼの製造方法で、さらに脱塩する工程を有するピルベートオルトホスフェートジキナーゼの製造方法。
14)前記8)に記載の形質転換体を液体培養し、該培養液から以下の工程を経て得られるピルベートオルトホスフェートジキナーゼ。
(a)培養液を遠心分離して集菌し、菌体を生理的食塩水で洗い、菌体湿重量の4倍量の20mM HEPES/NaOH(pH 7.5)に懸濁し、超音波破砕した後、遠心分離して粗酵素液を得る工程
(b)粗酵素液を80℃で15分間熱処理し、遠心分離して粗精製液を得る工程
15)前記1)〜5)のいずれかに記載のピルベートオルトホスフェートジキナーゼ、前記6)に記載のDNA、前記7)に記載の組み換え体プラスミド、及び、前記8)に記載の形質転換体のうち少なくともいずれかを含む試薬。
That is, the present invention relates to the following.
1) Pyruvate orthophosphate dikinase having the following physicochemical properties:
(1) Action In the presence of magnesium ions, etc., a reaction that acts on adenosine 5 ′ monophosphate, phosphoenolpyruvate and pyrophosphate to produce adenosine 5 ′ triphosphate, pyruvate, and phosphate, and vice versa. Catalyze the reaction;
(2) Optimum pH
pH 7-7.5;
(3) pH stability Retains 80% or more of the activity in the range of pH 4.5 to 11 at 50 ° C. for 20 minutes;
(4) Thermal stability Maintains 90% or more activity after heat treatment at 80 ° C for 1 hour, and retains 70% or more activity after storage at 4 ° C for at least 27 days;
(5) When phosphoenolpyruvate and pyrophosphate are used as substrates in the presence of coenzyme-specific magnesium ions, it acts specifically as a coenzyme for adenosine 5 ′ monophosphate, and adenosine 5 ′ diphosphate (Hereinafter also referred to as ADP), inosine 5 ′ monophosphate (hereinafter sometimes referred to as IMP), cytidine 5 ′ monophosphate (hereinafter sometimes referred to as CMP), guanosine 5 ′ monophosphate Does not act on acid (hereinafter sometimes referred to as GMP), thymidine 5 ′ monophosphate (hereinafter sometimes referred to as TMP) or uridine 5 ′ monophosphate (hereinafter sometimes referred to as UMP);
(6) The relative activity is 74% when cobalt ions are used, and 29% when nickel ions are used, when the metal ions magnesium ions are used as 100%;
(7) Molecular weight The molecular weight by SDS polyacrylamide gel electrophoresis is about 83 kDa;
(8) Km value 0.32 mM for phosphoenolpyruvate, 1.12 mM for pyrophosphate, 0.065 mM for adenosine 5 ′ monophosphate;
2) The pyruvate orthophosphate dikinase according to 1), which further has the following physicochemical properties (9):
(9) The pyruvate orthophosphate dikinase according to 1) or 2) above, wherein the pyruvate orthophosphate dikinase is derived from Thermotoga maritima, which retains an activity of 90% or more after storage at −20 ° C. for 2 weeks.
4) The pyruvate orthophosphate dikinase according to any one of 1) to 3) having the following amino acid sequence (a) or (b):
(A) amino acid sequence of SEQ ID NO: 2 in the sequence listing (b) amino acid sequence in which one or several amino acids are deleted, substituted or added from the amino acid sequence of (a) 5) described in SEQ ID NO: 2 of the sequence listing A pyruvate orthophosphate dikinase represented by an amino acid sequence.
6) DNA comprising any one of the following base sequences (a) to (e):
(A) DNA comprising the base sequence represented by SEQ ID NO: 1 in the sequence listing
(B) DNA encoding a protein having pyruvate orthophosphate dikinase activity, wherein one or more bases are deleted, substituted or added in the base sequence of (a)
(C) DNA in which 1 to 120 bases are substituted in the base sequence of (a) and which encodes a protein having pyruvate orthophosphate dikinase activity
(D) DNA in which 120 bases are substituted in the base sequence of (a) and which encodes a protein having pyruvate orthophosphate dikinase activity
(E) DNA represented by the base sequence set forth in SEQ ID NO: 6 in the sequence listing
7) A recombinant plasmid comprising the DNA of 6) above.
8) A transformant comprising the recombinant plasmid described in 7) above.
9) The transformant according to 8) above is cultured in a medium, and the pyruvate orthophosphate dikinase according to any one of 1) to 5) above is produced and accumulated in the culture, and pyruvate is produced from the culture. A method for producing pyruvate orthophosphate dikinase, which comprises collecting orthophosphate dikinase.
10) A method for producing pyruvate orthophosphate dikinase, comprising a step of heat-treating pyruvate orthophosphate dikinase collected by the method for producing pyruvate orthophosphate dikinase according to 9) above at 80 ° C. for 15 minutes or more.
11) The method for producing pyruvate orthophosphate dikinase according to 10) above, further comprising a column chromatography step using an ion exchanger.
12) The method for producing pyruvate orthophosphate dikinase according to 11) above, further comprising a hydrophobic chromatography step.
13) The method for producing pyruvate orthophosphate dikinase according to 12) above, further comprising a desalting step.
14) A pyruvate orthophosphate dikinase obtained by subjecting the transformant according to 8) above to liquid culture and the following step from the culture solution.
(A) The culture solution is collected by centrifugation, and the cells are washed with physiological saline, suspended in 20 mM HEPES / NaOH (pH 7.5) 4 times the wet weight of the cells, and ultrasonically disrupted. After that, the step of obtaining a crude enzyme solution by centrifugation (b) The step of heat-treating the crude enzyme solution at 80 ° C. for 15 minutes and obtaining the crude purified solution by centrifugation 15) Any one of 1) to 5) A reagent comprising at least one of the pyruvate orthophosphate dikinase described in the above, the DNA described in 6), the recombinant plasmid described in 7), and the transformant described in 8).

本発明により、低温域における保存安定性及び凍結保存安定性に優れ、かつ熱安定性が高いピルベートオルトホスフェートジキナーゼを提供することができ、このような性質を有する酵素の製造は、他に比べて非常に優位に行うことができる。   According to the present invention, it is possible to provide pyruvate orthophosphate dikinase which is excellent in storage stability and cryopreservation stability in a low temperature region and has high heat stability. Compared to this, it can be carried out very advantageously.

本発明で実験に使用した試薬類は、特に断らない限り、和光純薬工業株式会社製、国産化学株式会社製、シグマアルドリッチ社製、関東化学株式会社製、タカラバイオ株式会社製等市販で容易に入手できるものを使用した。   Unless otherwise specified, the reagents used in the experiments in the present invention are commercially available, such as Wako Pure Chemical Industries, Ltd., Kokusan Chemical Co., Ltd., Sigma Aldrich Co., Kanto Chemical Co., Ltd., Takara Bio Co., Ltd. We used what was available in

ピルベートオルトホスフェートジキナーゼ(Pyruvate orthophosphate dikinase)はEC 2.7.9.1であり、ピルベートホスフェートジキナーゼ(Pyruvate phosphate dikinase)ともいう。
<酵素作用>
ピルベートオルトホスフェートジキナーゼの酵素作用は、マグネシウムイオン等の存在下で式1に示す通りである(酵素ハンドブック、朝倉書店、1984年参照)。ATP、ピルビン酸、及びPiを基質として用いたときの反応式は式1の右方向である。AMP、PEP、及びPPiを基質として用いたときの反応式は式1の左方向である。PPDKの酵素活性は、下記PPDK活性測定方法1又はPPDK活性測定方法2によって測定することができる。下記PPDK活性測定方法1又はPPDK活性測定方法2はそれぞれの特徴に応じて使い分けた。
Pyruvate orthophosphate dikinase is EC 2.7.9.1 and is also referred to as pyruvate phosphate dikinase.
<Enzyme action>
The enzymatic action of pyruvate orthophosphate dikinase is as shown in Formula 1 in the presence of magnesium ions and the like (see Enzyme Handbook, Asakura Shoten, 1984). The reaction formula when ATP, pyruvic acid, and Pi are used as substrates is the right direction of Formula 1. The reaction equation when AMP, PEP, and PPi are used as substrates is the left direction of Equation 1. The enzyme activity of PPDK can be measured by the following PPDK activity measurement method 1 or PPDK activity measurement method 2. The following PPDK activity measurement method 1 or PPDK activity measurement method 2 was used depending on the respective characteristics.

PPDK活性測定方法1は、第一反応がThermotoga maritimaの生育至適温度(80℃)に近い温度(50℃)なので、本発明のPPDK本来の性質に近い性質を調べることが出来るが、一方でトリクロロ酢酸を使用するので取り扱い上危険であり、また、二段階で活性測定するため操作が煩雑で、一度に多くの試料の活性測定することが出来ない。   In the PPDK activity measurement method 1, since the first reaction is a temperature (50 ° C.) close to the optimum temperature (80 ° C.) of Thermotoga maritima, the properties close to the original properties of PPDK of the present invention can be investigated. Since trichloroacetic acid is used, it is dangerous in handling, and since the activity is measured in two steps, the operation is complicated and the activity of many samples cannot be measured at once.

PPDK活性測定方法2は、一段階で活性測定するため、一度に多くの試料の活性測定が出来るが、一方で、乳酸デヒドロゲナーゼの熱安定性を考慮し37℃で測定するため本発明のPPDK本来の性質を調べることは出来ない。   Since the PPDK activity measurement method 2 measures the activity in a single step, the activity of many samples can be measured at one time. On the other hand, in consideration of the thermal stability of lactate dehydrogenase, the measurement is performed at 37 ° C. It is not possible to investigate the nature of.

活性測定方法1のほうが本発明のPPDKの至適温度に近いので、活性測定方法2に比べて高い活性値になる。   Since the activity measurement method 1 is closer to the optimum temperature of PPDK of the present invention, the activity value is higher than that of the activity measurement method 2.

[式1]
ATP + ピルビン酸 + Pi <=> AMP + PEP + PPi
本発明のPPDK活性とは、PPDKの触媒作用を指す

<PPDK活性測定方法1>
(試薬組成)
PPDK活性測定用反応試薬1−1(濃度は最終濃度)
100mM HEPES/NaOH pH 7.5
5mM PEP
2mM AMP
5mM MgCl2
5mM PPi
酵素液と蒸留水を加えて400μlとする。
[Formula 1]
ATP + pyruvic acid + Pi <=> AMP + PEP + PPi
The PPDK activity of the present invention refers to the catalytic action of PPDK.

<PPDK activity measurement method 1>
(Reagent composition)
Reaction reagent 1-1 for measuring PPDK activity (concentration is final concentration)
100 mM HEPES / NaOH pH 7.5
5 mM PEP
2 mM AMP
5 mM MgCl2
5 mM PPi
Add enzyme solution and distilled water to make 400 μl.

PPDK活性測定用反応試薬1−2(濃度は最終濃度)
1.15M Tris/HCl pH 8.0
0.135mM NADH
5U/ml 乳酸デヒドロゲナーゼ
遠心上精400μlを加えて1mlとする。
(測定方法)
PPDK活性測定方法1は、酵素反応を2段階に分けて活性測定する方法である。適当な濃度に希釈した本発明のPPDKを用いてPPDK活性測定用反応試薬1−1を調製した。このとき、酵素を加えずに調製したものを「ブランク」とし、酵素を加えたものを「テスト」とした。予め50℃に調製したPPDK活性測定用反応試薬1−1にPPDK液と蒸留水を添加して400μlとして反応を開始し、10分間インキュベートして1段階目の反応を行った。続いてこの反応液を氷冷して50%トリクロロ酢酸を50μl加えて反応を停止した。反応液を4℃、15,000rpmで10分間遠心して得られた上清400μlを、新しいエッペンドルフチューブに予め準備しておいたPPDK活性測定用反応試薬1−2に移した。これを37℃で10分間インキュベートすることにより2段階目の反応を行った後、「ブランク」と「テスト」の340nmの吸光度を測定してそれぞれAb、Atとした。酵素活性1単位(1ユニット)は、37℃で1分間に1マイクロモルのホスホエノールピルビン酸をピルビン酸に変化させる酵素量として、PPDK活性測定用反応試薬1−2中でのNADHのミリモル吸光係数は6.22として、Ab−Atより酵素活性を求めた。
<PPDK活性測定方法2>
(試薬組成)
PPDK活性測定用反応試薬2
100mM HEPES/NaOH pH 7.5
5mM PEP
2mM AMP
10mM MgCl2
10mM PPi
0.135mM NADH
(測定方法)
PPDK活性測定方法2は、酵素反応を1段階で活性測定する方法である。1mlのPPDK活性測定用反応試薬2を層長1cmの石英セル中で37℃1分間予備加温した後、5,000U/mlの乳酸デヒドロゲナーゼを1μl添加し、さらに1分間加温した。これに適当な濃度に希釈した本発明のPPDKを10μl混和して酵素反応を開始し、反応開始後1分後から5分後までの340nmにおけるNADHの吸光度差を測定した(As)。酵素活性1単位(1ユニット)は、37℃で1分間に1マイクロモルのNADHを変化させる酵素量として、上記反応液中でのNADHのミリモル吸光係数は6.22として、酵素活性を求めた。
<タンパク質濃度測定法>
タンパク質濃度はバイオラッド社のプロテインアッセイキット(ブラッドフォード法)を用いて使用説明書記載の方法に従って測定し、BSAをスタンダードとして算出した。
<至適pH>
PPDK活性測定方法1における緩衝液(終濃度100mM)を、pH6からpH7の範囲測定用としてBis−Tris/HCl緩衝液(図1中○印)、pH7からpH8の範囲測定用としてHEPES/NaOH緩衝液(図1中△印)、pH8からpH9の範囲測定用としてグリシルグリシン/NaOH(図1中□印)にそれぞれ変更して本発明のPPDKの活性測定を行い、本発明のPPDKの至適pHを測定した。図1に、最大活性を100%とした相対活性(%)としてその結果を示した。本発明のPPDKの至適pHはpH7からpH7.5であった。
<pH安定性>
本発明のPPDKをその濃度が0.064mg/mlの濃度になるように、100mMのpH4からpH6.5範囲測定用としてクエン酸/クエン酸ナトリウム緩衝液(図2中○印)、pH6.5からpH7範囲測定用としてイミダゾール/HCl緩衝液(図2中△印)、pH7からpH8範囲測定用としてHEPES/NaOH緩衝液(図2中□印)、pH8からpH9範囲測定用としてグリシルグリシン/NaOH緩衝液(図2中●印)、pH9からpH11範囲測定用としてグリシン/NaOH緩衝液にそれぞれ溶解し(図2中▲印)、50℃20分間で保存してその残存活性をPPDK活性測定方法1で測定し、最大活性が得られたものを100%として残存活性(%)を図2に示した。その結果、本発明のPPDKは50℃、20分間でpH4.5から11の範囲で80%以上の活性を保持した。
<補酵素特異性>
PPDK活性測定方法1におけるAMPを、ADP、IMP、CMP、GMP、TMP、及びUMPにそれぞれ変更して活性測定を行った。その結果、本発明のPPDKはマグネシウムイオン存在下で、ホスホエノールピルビン酸及びピロリン酸を基質とした場合、AMPに対して特異的に補酵素として作用し、ADP、IMP、CMP、GMP、TMP、及びUMPに作用しなかった。
<金属イオン>
PPDK活性測定方法1におけるMgClを、CoCl、NiCl、CaCl、及びZnClにそれぞれ変更して、予め1mM EDTA及び0.2Mの硫酸ナトリウムを含む100倍量の20mM HEPES/NaOH(pH7.5)で2回透析した本発明のPPDKの活性測定を行った。その結果、本発明のPPDKは、金属イオンの無い場合、CaCl及びZnClの場合は活性を示さなかったが、CoClの場合、NiClの場合は、MgClの場合を100%として、それぞれ74%、29%の相対活性を示した。
<分子量>
98,102(アミノ酸の一次配列からの計算値)。83,000(SDS−PAGEによる測定値(図3の矢印))。
<Km値>
PEP、PPi及びAMPに対する見かけのKmを測定した。見かけのKmは、PPDK活性測定方法1のPPDK活性測定用反応試薬1−1中のPEP、PPi及びAMPの濃度をそれぞれ図4、図5、及び図6の横軸に示した濃度になるように調製して、図4、図5、及び図6に示したようにラインウェーバー・バーク逆数プロットにより算出した。PEP、PPi及びAMPに対する見かけのKmは、それぞれ0.32mM、1.12mM、0.065mMであった。
Reaction reagent 1-2 for measuring PPDK activity (concentration is final concentration)
1.15M Tris / HCl pH 8.0
0.135 mM NADH
Add 400 μl of 5 U / ml lactate dehydrogenase supernatant to 1 ml.
(Measuring method)
The PPDK activity measurement method 1 is a method for measuring activity by dividing an enzyme reaction into two stages. Using the PPDK of the present invention diluted to an appropriate concentration, a reaction reagent 1-1 for measuring PPDK activity was prepared. At this time, the one prepared without adding the enzyme was designated as “blank”, and the one added with the enzyme was designated as “test”. A PPDK solution and distilled water were added to the reaction reagent 1-1 for measuring PPDK activity prepared in advance at 50 ° C. to start the reaction to 400 μl, and incubated for 10 minutes to carry out the first-stage reaction. Subsequently, this reaction solution was ice-cooled, and 50 μl of 50% trichloroacetic acid was added to stop the reaction. 400 μl of the supernatant obtained by centrifuging the reaction solution at 4 ° C. and 15,000 rpm for 10 minutes was transferred to a reaction reagent 1-2 for PPDK activity measurement prepared in advance in a new Eppendorf tube. This was incubated at 37 ° C. for 10 minutes to carry out the second stage reaction, and then the “blank” and “test” absorbances at 340 nm were measured to be Ab and At, respectively. One unit of enzyme activity (one unit) is expressed in millimolar absorbance of NADH in reaction reagent 1-2 for measuring PPDK activity as the amount of enzyme that changes 1 micromole of phosphoenolpyruvate to pyruvate per minute at 37 ° C. The coefficient was 6.22, and the enzyme activity was determined from Ab-At.
<Method 2 for measuring PPDK activity>
(Reagent composition)
Reaction reagent 2 for measuring PPDK activity
100 mM HEPES / NaOH pH 7.5
5 mM PEP
2 mM AMP
10 mM MgCl2
10 mM PPi
0.135 mM NADH
(Measuring method)
PPDK activity measurement method 2 is a method for measuring the activity of an enzyme reaction in one step. 1 ml of reaction reagent 2 for measuring PPDK activity was preheated in a quartz cell having a layer length of 1 cm at 37 ° C. for 1 minute, 1 μl of 5,000 U / ml lactate dehydrogenase was added, and the mixture was further heated for 1 minute. The enzyme reaction was started by mixing 10 μl of the PPDK of the present invention diluted to an appropriate concentration, and the difference in absorbance of NADH at 340 nm from 1 minute to 5 minutes after the start of the reaction was measured (As). One unit of enzyme activity (one unit) was determined as the amount of enzyme that changes 1 micromole of NADH per minute at 37 ° C., and the NADH millimolar extinction coefficient in the above reaction solution was 6.22. .
<Protein concentration measurement method>
The protein concentration was measured using a BioRad protein assay kit (Bradford method) according to the method described in the instruction manual, and calculated using BSA as a standard.
<Optimum pH>
The buffer solution in PPDK activity measurement method 1 (final concentration 100 mM) is a Bis-Tris / HCl buffer solution (marked with a circle in FIG. 1) for pH 6 to pH 7 measurement, and a HEPES / NaOH buffer for pH 7 to pH 8 measurement. The activity of the PPDK of the present invention was measured by changing the solution (Δ in FIG. 1) to glycylglycine / NaOH (□ in FIG. 1) for pH 8 to pH 9 measurement. Appropriate pH was measured. FIG. 1 shows the results as relative activity (%) with the maximum activity as 100%. The optimum pH of PPDK of the present invention was pH 7 to pH 7.5.
<PH stability>
The citric acid / sodium citrate buffer (circle mark in FIG. 2), pH 6.5 for 100 mM pH 4 to pH 6.5 range measurement so that the concentration of the PPDK of the present invention is 0.064 mg / ml. To pH7 range measurement, imidazole / HCl buffer (Δ in FIG. 2), pH7 to pH8 range measurement, HEPES / NaOH buffer (□ in FIG. 2), pH8 to pH9 range measurement, glycylglycine / NaOH buffer (marked with ● in Fig. 2), dissolved in glycine / NaOH buffer for pH 9 to pH 11 measurement (marked with ▲ in Fig. 2), stored at 50 ° C for 20 minutes, and the remaining activity was measured for PPDK activity The residual activity (%) is shown in FIG. 2 with the maximum activity measured by method 1 as 100%. As a result, the PPDK of the present invention retained an activity of 80% or more in the range of pH 4.5 to 11 at 50 ° C. for 20 minutes.
<Coenzyme specificity>
Activity was measured by changing AMP in PPDK activity measurement method 1 to ADP, IMP, CMP, GMP, TMP, and UMP, respectively. As a result, PPDK of the present invention acts as a coenzyme specifically for AMP when phosphoenolpyruvate and pyrophosphate are used as substrates in the presence of magnesium ions, and ADP, IMP, CMP, GMP, TMP, And did not affect UMP.
<Metal ion>
MgCl 2 in PPDK activity measurement method 1 was changed to CoCl 2 , NiCl 2 , CaCl 2 , and ZnCl 2 , respectively, and 100 times 20 mM HEPES / NaOH (pH 7) containing 1 mM EDTA and 0.2 M sodium sulfate in advance. The activity of PPDK of the present invention dialyzed twice in 5) was measured. As a result, the PPDK of the present invention showed no activity in the absence of metal ions, in the case of CaCl 2 and ZnCl 2 , but in the case of CoCl 2 , in the case of NiCl 2 , the case of MgCl 2 was taken as 100%. The relative activities were 74% and 29%, respectively.
<Molecular weight>
98,102 (calculated value from primary sequence of amino acids). 83,000 (measured value by SDS-PAGE (arrow in FIG. 3)).
<Km value>
The apparent Km for PEP, PPi and AMP was measured. The apparent Km is such that the concentrations of PEP, PPi and AMP in the reaction reagent 1-1 for PPDK activity measurement in PPDK activity measurement method 1 are the concentrations shown on the horizontal axes of FIGS. 4, 5, and 6, respectively. As shown in FIGS. 4, 5, and 6, it was calculated by a line Weber-Burk reciprocal plot. Apparent Km for PEP, PPi and AMP were 0.32 mM, 1.12 mM and 0.065 mM, respectively.

本発明の一態様として、本発明のPPDKを構成するアミノ酸配列は、配列表の配列番号2のアミノ酸配列の1から881で表される。   As one embodiment of the present invention, the amino acid sequence constituting the PPDK of the present invention is represented by 1 to 881 of the amino acid sequence of SEQ ID NO: 2 in the sequence listing.

また、本発明のPPDKを構成するアミノ酸配列は、配列表の配列番号2のアミノ酸配列の1から881で表されるアミノ酸配列からなるポリペプチドによる酵素活性発現と同様の活性を発現する配列であればよく、配列番号2のアミノ酸配列の1から881のアミノ酸配列と実質的に均等なアミノ酸配列や、酵素活性発現に関与しない一部のアミノ酸の配列を変異させたもの、例えば1又は数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列などの均等物も含まれる。このような均等物として、配列表の配列番号6で表されるDNAがコードするタンパク質が例示される。   In addition, the amino acid sequence constituting the PPDK of the present invention may be a sequence that expresses the same activity as the expression of enzyme activity by a polypeptide consisting of the amino acid sequence represented by 1 to 881 of the amino acid sequence of SEQ ID NO: 2 in the sequence listing. An amino acid sequence substantially equivalent to the amino acid sequence from 1 to 881 of the amino acid sequence of SEQ ID NO: 2, or a partial amino acid sequence not involved in enzyme activity expression, such as one or several Equivalents such as amino acid sequences in which amino acids are deleted, substituted or added are also included. An example of such an equivalent is a protein encoded by the DNA represented by SEQ ID NO: 6 in the Sequence Listing.

本発明の配列表の配列番号2のアミノ酸配列1から881で表されるアミノ酸配列をコードするDNAは、そのN末端側及びC末端側のアミノ酸残基又はポリペプチド残基を含めたアミノ酸配列の各アミノ酸に対応する一連のコドンのうちいずれか1個のコドンからなるDNAであれば良い。   The DNA encoding the amino acid sequence represented by amino acid sequence 1 to 881 of SEQ ID NO: 2 in the sequence listing of the present invention is an amino acid sequence including amino acid residues or polypeptide residues on the N-terminal side and C-terminal side thereof. What is necessary is just DNA which consists of any one codon among the series of codons corresponding to each amino acid.

また、本発明のPPDKをコードするDNAは、配列表の配列番号2のアミノ酸配列1から881で表されるアミノ酸配列からなるポリペプチドによる酵素活性発現と同様の活性を発現するDNAであればよく、アミノ酸配列1から881中のアミノ酸配列と実質的に均等なアミノ酸配列をコードするDNAであってもよく、また、酵素活性発現に関与しない一部のアミノ酸の配列を変異させたもの、例えば1〜複数個(例えば、40個、好ましくは1〜40個、より好ましくは1〜10個、最も好ましくは1〜数個)のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列の均等物をコードするDNAであっても良い。すなわち、配列表の配列番号2のアミノ酸配列1から881で表されるアミノ酸配列をコードするDNA(配列表の配列番号1の塩基配列からなるDNA)から、1〜複数個(例えば、120個、好ましくは1〜120個、より好ましくは1〜30個、最も好ましくは1〜数個)の塩基が欠失、置換もしくは付加されており、かつ、ピルベートオルトホスフェートジキナーゼ活性を有するタンパク質をコードしているDNAであってもよい。さらに、配列表の配列番号1に記載の塩基配列と相同性(例えば、70%以上、好ましくは80%以上、より好ましくは90%以上、最も好ましくは95%以上)を有する塩基配列で表されるDNAであって、ピルベートオルトホスフェートジキナーゼ活性を有するタンパク質をコードしているDNAであってもよい。そのようなDNAの一例としては、配列表の配列番号6のDNAが挙げられる。さらに、本発明の配列表の配列番号2のアミノ酸配列1から881で表されるPPDKのアミノ酸配列をコードするDNAにおいて、その配列番号2のアミノ酸配列の1から881で表記されるアミノ酸配列のN末端側及びC末端側は、アミノ酸残基又はポリペプチド残基を含む場合であってもよく、そのアミノ酸残基としてはシグナルペプチド又はT7タグ、Hisタグ、Sタグ、Trxタグ、CBDタグ、DsbAタグ、GSTタグ、Nusタグ、TEE配列等が挙げられる。   In addition, the DNA encoding PPDK of the present invention may be any DNA as long as it expresses the same activity as the enzyme activity expressed by the polypeptide consisting of the amino acid sequence represented by amino acid sequence 1 to 881 of SEQ ID NO: 2 in the sequence listing. DNA that encodes an amino acid sequence substantially equivalent to the amino acid sequence in amino acid sequences 1 to 881 may be used, or a sequence of a part of amino acids not involved in enzyme activity expression may be mutated, for example, 1 Codes an equivalent of an amino acid sequence in which a plurality of (for example, 40, preferably 1 to 40, more preferably 1 to 10, most preferably 1 to several) amino acids are deleted, substituted or added It may also be DNA. That is, from DNA encoding the amino acid sequence represented by amino acid sequence 1 to 881 of SEQ ID NO: 2 of the sequence listing (DNA consisting of the base sequence of SEQ ID NO: 1 of the sequence listing), 1 to plural (for example, 120, Preferably 1 to 120, more preferably 1 to 30, most preferably 1 to several) bases are deleted, substituted or added, and encodes a protein having pyruvate orthophosphate dikinase activity It may be the DNA that is being processed. Furthermore, it is represented by a base sequence having homology (for example, 70% or more, preferably 80% or more, more preferably 90% or more, most preferably 95% or more) with the base sequence set forth in SEQ ID NO: 1 in the sequence listing. DNA encoding a protein having pyruvate orthophosphate dikinase activity may be used. An example of such a DNA is the DNA of SEQ ID NO: 6 in the sequence listing. Furthermore, in the DNA encoding the amino acid sequence of PPDK represented by amino acid sequence 1 to 881 of SEQ ID NO: 2 in the sequence listing of the present invention, N of the amino acid sequence represented by 1 to 881 of the amino acid sequence of SEQ ID NO: 2 The terminal side and the C-terminal side may contain an amino acid residue or a polypeptide residue, and the amino acid residue includes a signal peptide or T7 tag, His tag, S tag, Trx tag, CBD tag, DsbA Tags, GST tags, Nus tags, TEE sequences and the like.

PPDKをコードするDNAの供与体である微生物としては、PPDKを生産するバクテリアであればなんら限定されるものではないが、好ましくはThermotoga maritimaが挙げられ、そのうちでもThermotoga maritima DSM 3109株が挙げられる。   The microorganism that is a donor of the DNA encoding PPDK is not particularly limited as long as it is a bacterium that produces PPDK, but preferably Thermotoga maritima, among which Thermotoga maritima DSM 3109 is mentioned.

本発明のPPDKをコードするDNAを組み込むベクターとしては、宿主微生物体内で自律的に増殖しうるファージ又はプラスミドのうち遺伝子組み換え用として構築されたものが適しており、ファージベクターとしては、例えば、エシェリヒア・コリに属する微生物を宿主とする場合にはλgt・λC、λgt・λB等が使用できる。また、プラスミドベクターとしては、例えば、エシェリヒア・コリを宿主とする場合には、プラスミドpET−3a、pET−21a、pET−32a等のpETベクター(Novagen)又はpBR322、pBR325、pACYC184、pUC12、pUC13、pUC18、pUC19、pUC118、pINI、BluescriptKS+、枯草菌を宿主とする場合にはpWH1520、pUB110、pKH300PLK、放線菌を宿主とする場合にはpIJ680、pIJ702、酵母特にサッカロマイセス・セレビジアエを宿主とする場合にはYRp7、pYC1、YEp13等が使用できる。このようなベクターを、PPDKをコードするDNAの切断に使用した制限酵素により生成するDNA末端と、同じ末端を生成する制限酵素により切断してベクター断片を作成し、PPDKをコードするDNA断片とベクター断片とを、DNAリガーゼにより常法に従って結合させてPPDKをコードするDNAを目的のベクターに組み込むことができる。   As a vector into which DNA encoding the PPDK of the present invention is incorporated, a phage or plasmid constructed for gene recombination among phages or plasmids that can autonomously grow in the host microorganism is suitable. Examples of the phage vector include Escherichia When using a microorganism belonging to E. coli as a host, λgt · λC, λgt · λB, etc. can be used. Moreover, as a plasmid vector, for example, when Escherichia coli is used as a host, pET vectors (Novagen) such as plasmids pET-3a, pET-21a, and pET-32a, or pBR322, pBR325, pACYC184, pUC12, pUC13, When pUC18, pUC19, pUC118, pINI, BluescriptKS +, Bacillus subtilis are used as hosts, pWH1520, pUB110, pKH300PLK, when actinomycetes are used as hosts, pIJ680, pIJ702, and yeasts, particularly Saccharomyces cerevisiae as hosts. YRp7, pYC1, YEp13, etc. can be used. A vector fragment is prepared by cleaving such a vector with the restriction endonuclease that produces the same end as the DNA end produced by the restriction enzyme used to cleave the DNA encoding PPDK, and the DNA fragment encoding the PPDK and the vector The fragment can be ligated by DNA ligase according to a conventional method, and DNA encoding PPDK can be incorporated into the target vector.

組換え体プラスミドを移入する宿主微生物としては、組み換えDNAが安定かつ自律的に増殖可能であればよく、例えば宿主微生物がエシェリヒア・コリに属する微生物の場合、エシェリヒア・コリBL21、エシェリヒア・コリBL21(DE3)、エシェリヒア・コリ BL21trxB、エシェリヒア・コリRosetta(DE3)、エシェリヒア・コリ Rosetta、エシェリヒア・コリRosetta(DE3)pLysS、エシェリヒア・コリ Rosetta(DE3)pLacl、エシェリヒア・コリRosettaBlue、エシェリヒア・コリRosetta−gami、エシェリヒア・コリOrigami、エシェリヒア・コリ Origami、エシェリヒア・コリTuner、エシェリヒア・コリ DH1、エシェリヒア・コリ JM109、エシェリヒア・コリ JM101、エシェリヒア・コリ W3110、エシェリヒア・コリC600等が利用できる。また、宿主微生物がバチラス属に属する微生物の場合、バチラス・サチリス、バチラス・メガテリウム等、放線菌に属する微生物の場合、ストレプトマイセス・リビダンスTK24等、サッカロマイセス・セルビシエに属する微生物の場合、サッカロマイセス・セルビシエINVSC1等が使用できる。   The host microorganism into which the recombinant plasmid is transferred may be any microorganism as long as the recombinant DNA can be stably and autonomously propagated. For example, when the host microorganism belongs to Escherichia coli, Escherichia coli BL21, Escherichia coli BL21 ( DE3), Escherichia coli BL21trxB, Escherichia coli Rosetta (DE3), Escherichia coli Rosetta, Escherichia coli Rosetta (DE3) pLysS, Escherichia coli Rosetta (DE3) pLaclet, Escherichia coli , Escherichia coli Origami, Escherichia coli Origami, Escherichia coli Tuner, Escherichia coli DH1, Essi Rihia coli JM109, Escherichia coli JM101, Escherichia coli W3110, Escherichia coli C600, or the like can be used. Further, when the host microorganism is a microorganism belonging to the genus Bacillus, Bacillus subtilis, Bacillus megaterium, etc., a microorganism belonging to actinomycetes, Streptomyces lividans TK24, etc., a microorganism belonging to Saccharomyces cerevisiae, Saccharomyces cerevisiae INVSC1 etc. can be used.

また、本発明のPPDKは公知の遺伝子操作手段により、本来の反応を触媒する性質を損なわない程度にペプチドの変異をなしてもよく、このような変異体遺伝子は、本発明のPPDK遺伝子から遺伝子工学的手法により作製される人工変異遺伝子を意味し、この人工変異遺伝子は部位特異的変異法や、目的遺伝子の特定DNA断片を人工変異DNAで置換する等の種々の遺伝子工学的方法を使用して得られる。かくして取得されたPPDK遺伝子をベクターに挿入して宿主微生物に移入させることによって変異体PPDKを発現させることが可能であり、優れた性質を有する変異体PPDKを製造することも可能である。   In addition, the PPDK of the present invention may be mutated by a known gene manipulation means to such an extent that the nature of catalyzing the original reaction is not impaired. Such a mutant gene is a gene derived from the PPDK gene of the present invention. It means an artificially mutated gene produced by an engineering technique. This artificially mutated gene uses various genetic engineering methods such as site-specific mutagenesis and substitution of a specific DNA fragment of the target gene with an artificially mutated DNA. Obtained. It is possible to express the mutant PPDK by inserting the PPDK gene thus obtained into a vector and transferring it to a host microorganism, and it is also possible to produce a mutant PPDK having excellent properties.

本発明のPPDKは、本発明のPPDKを産生する微生物を培養することによって製造することができ、天然のPPDK産生微生物や、例えばThermotoga maritima DSM 3109株を用いてもよく、さらに前記の遺伝子工学的手法を用いて、前記PPDK産生微生物の遺伝子を導入した形質転換体を用いてPPDKを製造することもできる。形質転換体を用いてPPDKを製造する場合、該形質転換体を自体公知の栄養培地で培養して菌体内又は培養液中に該PPDKを生成蓄積させ、該培養物から該PPDKを採取すればよい。該PPDKが菌体内に産生される場合は培養終了後、得られた培養物を濾過又は遠心分離等の手段により菌体を採集し、次いでこの菌体を機械的方法又はリゾチーム等の酵素的方法で破壊し、又、必要に応じてEDTA及び/又は適当な界面活性剤等を添加して該PPDKを濃縮するか、又は濃縮する事なく硫安分画、ゲル濾過、アフィニティークロマトグラフィー等の吸着クロマトグラフィー、イオン交換クロマトグラフィー、疎水的クロマトグラフィー又は脱塩を適宜組み合わせることにより処理して、純度の良いPPDKを得ることができる。また、これらの方法に従って採取されたPPDKを80℃で15分間熱処理することが好ましい。形質転換体の培養条件はその栄養生理的性質を考慮して培養条件を選択すれば良く、通常多くの場合は、液体培養で行うが、工業的には深部通気撹拌培養を行うのが有利である。培地の栄養源としては、微生物の培養に通常用いられるものが広く使用されうる。培養温度は宿主となる微生物が発育し、PPDKを生産する範囲で適宜変更し得るが、エシェリヒア・コリの場合、好ましくは、10から45℃程度、さらに好ましくは15から42℃程度である。培養条件は、条件によって多少異なるが、PPDKが最高収量に達する時期を見計らって適当な時期に培養を終了すればよく、エシェリヒア・コリの場合、通常は12から48時間程度である。培地pHは菌が発育し、PPDKを生産する範囲で適宜変更し得るが、エシェリヒア・コリの場合、好ましくはpH6から8程度である。   The PPDK of the present invention can be produced by culturing a microorganism that produces the PPDK of the present invention, and natural PPDK-producing microorganisms such as Thermotoga maritima DSM 3109 strain may be used. Using this method, PPDK can also be produced using a transformant into which the gene of the PPDK-producing microorganism has been introduced. When PPDK is produced using a transformant, the transformant is cultured in a nutrient medium known per se, the PPDK is produced and accumulated in the cells or in the culture solution, and the PPDK is collected from the culture. Good. When the PPDK is produced in the microbial cells, the microbial cells are collected by means of filtration or centrifugation after completion of the culture, and then the microbial cells are mechanically processed or enzymatic methods such as lysozyme. In addition, if necessary, EDTA and / or an appropriate surfactant are added to concentrate the PPDK, or adsorption concentrate such as ammonium sulfate fractionation, gel filtration, affinity chromatography without concentration. It is possible to obtain PPDK having a high purity by processing by appropriately combining chromatography, ion exchange chromatography, hydrophobic chromatography or desalting. Moreover, it is preferable to heat-process PPDK extract | collected according to these methods at 80 degreeC for 15 minutes. The culture conditions of the transformant may be selected in consideration of the nutritional physiological properties. Usually, the culture is performed by liquid culture in many cases, but industrially, it is advantageous to perform deep aeration and agitation culture. is there. As a nutrient source for the medium, those commonly used for culturing microorganisms can be widely used. The culture temperature can be appropriately changed within the range in which microorganisms serving as a host grow and produce PPDK, but in the case of Escherichia coli, it is preferably about 10 to 45 ° C, more preferably about 15 to 42 ° C. The culture conditions vary slightly depending on the conditions, but the culture may be terminated at an appropriate time in anticipation of the time when PPDK reaches the maximum yield. In the case of Escherichia coli, it is usually about 12 to 48 hours. The pH of the medium can be appropriately changed within the range in which the bacteria grow and produce PPDK. In the case of Escherichia coli, the pH is preferably about 6 to 8.

本発明の酵素は主としてその菌体内に含有、蓄積されており、その菌体内から抽出すれば良い。抽出法を例示すればまず培養物を固液分離し、得られた湿潤菌体をリン酸緩衝液やTris/HCl緩衝液等の溶液に分散し、リゾチーム処理、超音波処理、フレンチプレス処理、ダイノミル処理等の菌体破砕手段を適宜選択組み合わせて、本発明の粗酵素液を得る。   The enzyme of the present invention is mainly contained and accumulated in the fungus body and may be extracted from the fungus body. To illustrate the extraction method, the culture is firstly solid-liquid separated, and the obtained wet cells are dispersed in a solution such as phosphate buffer or Tris / HCl buffer, lysozyme treatment, ultrasonic treatment, French press treatment, The crude enzyme solution of the present invention is obtained by appropriately selecting and combining cell disruption means such as dynomill treatment.

本発明の粗酵素液から公知のタンパク質や酵素等の単離、精製手段を用いて精製酵素を得る。例えば、粗製の本発明の酵素液にアセトン、メタノール、エタノール等の有機溶媒による分別沈殿法、硫酸アンモニウム、食塩等による塩析法等を適用して目的酵素を沈殿させ、回収する。さらに、この沈殿物を必要に応じて透析、等電点沈殿を行った後、電気泳動法等で単一の帯を示すまで、イオン交換体、疎水的クロマト吸着体、ゲル濾過剤、吸着体等を用いるカラムクロマトグラフィー等により精製する。また、これらの方法を適当に組み合わせることにより目的酵素の精製度が上がる場合は適宜組み合わせて行うことができる。本発明の酵素は、80℃における熱処理が特に精製度が上がる製造(精製)工程である。   A purified enzyme is obtained from the crude enzyme solution of the present invention by means of isolation and purification of known proteins and enzymes. For example, the target enzyme is precipitated and recovered by applying a fractional precipitation method using an organic solvent such as acetone, methanol, ethanol or the like, a salting out method using ammonium sulfate, sodium chloride, or the like to the crude enzyme solution of the present invention. Furthermore, after performing dialysis and isoelectric precipitation of this precipitate as necessary, until a single band is shown by electrophoresis or the like, ion exchanger, hydrophobic chromatographic adsorbent, gel filter agent, adsorbent Purify by column chromatography etc. Moreover, when the purification degree of a target enzyme increases by combining these methods appropriately, it can carry out combining suitably. The enzyme of the present invention is a production (purification) process in which heat treatment at 80 ° C. particularly increases the degree of purification.

これらの方法によって得られる酵素は安定化剤として、各種の塩類、糖類、タンパク質、脂質、海面活性化剤等を加え、あるいは加えることなく、限外濾過濃縮、凍結乾燥等の方法により、液状又は固形のPPDKを得ることができ、また、適宜凍結乾燥を行ってもよく、この場合安定化剤としてサッカロース、マンニトール、食塩、アルブミン等を0.5から10%程度添加しても良い。   Enzymes obtained by these methods can be used as stabilizers in the form of a liquid or a mixture of various salts, saccharides, proteins, lipids, sea surface activators, etc., with or without addition, by methods such as ultrafiltration concentration and freeze-drying. Solid PPDK can be obtained, and may be freeze-dried as appropriate. In this case, saccharose, mannitol, sodium chloride, albumin or the like may be added as a stabilizer in an amount of about 0.5 to 10%.

本発明のPPDKは、同一反応を触媒する公知の酵素とは性質の異なる新規な酵素であり、特に公知の酵素より低温下及び高温下において高い安定性を示す。   The PPDK of the present invention is a novel enzyme having properties different from those of known enzymes that catalyze the same reaction, and exhibits higher stability especially at lower and higher temperatures than known enzymes.

本発明の試薬は、本発明のピルベートオルトホスフェートジキナーゼ、本発明のDNA、本発明の組み換え体プラスミド、及び、本発明の形質転換体のうち少なくともいずれかを含む試薬である。本発明の試薬には、その他、緩衝液、反応停止液、反応生成物の検出剤(例えば、乳酸デヒドロゲナーゼ、NADHなど)、反応希釈液、アデノシン5´―リン酸、及び金属イオン(例えば、マグネシウムイオン、コバルトイオン、ニッケルイオン)など試薬を用いた測定の実施に必要な物質を含むことができる。本試薬は、例えば、試料中のAMPやPEPの測定用試薬として用い得る。
以下、本発明を実施例に基づいて説明するが、本発明の範囲は以下の実施例に限定されることはない。なお、本明細書中、常法に従い、と記述した技術は、例えばマニアティスらの方法(例えば、Maniatis,T.,et al.Molecular Cloning.Cold Spring Harbor Laboratory 1982、1989参照)やタンパク質・酵素の基礎実験法(例えば、改訂第2版、堀尾武一、1994年南光堂参照)、又は、市販の各種酵素、キット類に添付された手順に従えば実施できるものである。
The reagent of the present invention is a reagent comprising at least one of pyruvate orthophosphate dikinase of the present invention, DNA of the present invention, recombinant plasmid of the present invention, and transformant of the present invention. In addition, the reagent of the present invention includes a buffer solution, a reaction stop solution, a reaction product detection agent (eg, lactate dehydrogenase, NADH, etc.), a reaction diluent, adenosine 5′-phosphate, and a metal ion (eg, magnesium). (Ion, cobalt ion, nickel ion) and other substances necessary for carrying out the measurement using a reagent. This reagent can be used, for example, as a reagent for measuring AMP or PEP in a sample.
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, the scope of the present invention is not limited to a following example. In the present specification, a technique described in accordance with a conventional method includes, for example, the method of Maniatis et al. (See, for example, Maniatis, T., et al. Molecular Cloning. Cold Spring Harbor Laboratory 1982, 1989), and proteins and enzymes. Can be carried out according to the procedures attached to the basic experimental methods (see, for example, revised second edition, Takeichi Horio, Nankodo, 1994) or various commercially available enzymes and kits.

[実施例1]
<DNAの抽出>
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHから購入したThermotoga maritima DSM 3109株の菌体を50mM Tris/HCl(pH8.0)、50mM EDTA、15%シュークロースを含む1mg/mlリゾチーム溶液で37℃、10分処理した後、SDSを最終濃度0.25%になるよう添加して菌体を溶解した。さらに等量のフェノール/クロロホルムの1:1混合液を加え、30分攪拌した後、遠心分離(12,000rpm、15分間)して水層を回収した。回収した水層に10分の1量の3Mの酢酸ナトリウム(pH5.5)を混合後、2倍量のエタノールを静かに重層し、ゲノムDNAをガラス棒に巻き付かせて分離した。分離したゲノムDNAを、10mM Tris/HCl(pH8.0)、1mM EDTA水溶液(以下TEと記載する場合もある)に溶解し、適量のRNaseAを加え、37℃で1時間保温し、混在しているRNAを分解した。次いで、等量のフェノール/クロロホルムの1:1混合液を加え、前記と同様に処理して、水層を分取した。分取した水層に10分の1量の3Mの酢酸ナトリウム(pH5.5)と2倍量のエタノールを加えて前記の方法でもう一度ゲノムDNAを分離した。この染色体をTEに溶解し、TE飽和のフェノールとクロロホルムの1:1混合液を加え、全体を懸濁した後、同様の遠心分離を繰り返し、上層を再び別の容器に移した。この分離した上層に3Mの酢酸ナトリウム緩衝液(pH5.5)とエタノールを加え、撹拌後、−70℃で5分間冷却した後、遠心分離(2,000G、4℃、15分)し、沈澱した染色体を75%エタノールで洗い、減圧乾燥した。以上の操作によりThermotoga maritima DSM 3109株のDNA標品を得た。
[Example 1]
<Extraction of DNA>
Cell of Thermotoga maritima DSM 3109 purchased from Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH with 50 mM Tris / HCl (pH 8.0), 10 mM EDTA, 15 mg sucrose solution After that, SDS was added to a final concentration of 0.25% to dissolve the cells. Further, an equal volume of a 1: 1 mixture of phenol / chloroform was added, stirred for 30 minutes, and then centrifuged (12,000 rpm, 15 minutes) to recover the aqueous layer. A 1/10 volume of 3M sodium acetate (pH 5.5) was mixed with the recovered aqueous layer, and then twice the amount of ethanol was gently overlaid, and the genomic DNA was wrapped around a glass rod and separated. Dissolve the separated genomic DNA in 10 mM Tris / HCl (pH 8.0), 1 mM EDTA aqueous solution (hereinafter sometimes referred to as TE), add an appropriate amount of RNase A, incubate at 37 ° C. for 1 hour, and mix RNA was degraded. Next, an equal amount of a 1: 1 mixture of phenol / chloroform was added and treated in the same manner as above to separate the aqueous layer. One-tenth volume of 3M sodium acetate (pH 5.5) and twice the volume of ethanol were added to the collected aqueous layer, and genomic DNA was separated once again by the method described above. This chromosome was dissolved in TE, a 1: 1 mixture of TE-saturated phenol and chloroform was added to suspend the whole, and the same centrifugation was repeated, and the upper layer was again transferred to another container. To the separated upper layer, 3M sodium acetate buffer (pH 5.5) and ethanol were added, stirred, cooled at -70 ° C for 5 minutes, centrifuged (2,000 G, 4 ° C, 15 minutes), and precipitated. The chromosomes were washed with 75% ethanol and dried under reduced pressure. The DNA preparation of Thermotoga maritima DSM 3109 strain was obtained by the above operation.

[実施例2]
<PCR法による配列番号1に示す遺伝子の増幅>
pET21a(+)又はpET28a(+)(Novagen)のマルチクローニングサイトNdeI及びHindIII部位に配列表の配列番号1に記載の遺伝子を挿入するように、配列番号3と配列番号4のプライマーを設計した。pUC118を使用する場合は、マルチクローニングサイトにXbaI及びHindIII部位に配列番号1に記載の遺伝子を挿入するように配列番号4と配列番号5のプライマーを設計した。PCRは、KODDNAポリメラーゼを用いて常法に従って行った。得られた約2.7kbpのPCR産物は、例えばQIAGEN QIAquick PCR Purification Kitを用いる等、常法に従って精製した。
[Example 2]
<Amplification of gene shown in SEQ ID NO: 1 by PCR method>
The primers of SEQ ID NO: 3 and SEQ ID NO: 4 were designed so that the gene described in SEQ ID NO: 1 in the sequence listing was inserted into the multicloning site NdeI and HindIII sites of pET21a (+) or pET28a (+) (Novagen). When pUC118 was used, the primers of SEQ ID NO: 4 and SEQ ID NO: 5 were designed so that the gene described in SEQ ID NO: 1 was inserted into the XbaI and HindIII sites at the multiple cloning site. PCR was performed according to a conventional method using KOD DNA polymerase. The obtained approximately 2.7 kbp PCR product was purified according to a conventional method such as using QIAGEN QIAquick PCR Purification Kit.

[実施例3]
<発現ベクターとのライゲーション>
実施例2で精製した配列番号3と配列番号4のプライマーを使用したPCR産物はNdeI及びHindIIIにより常法に従って制限酵素処理した(インサートA)。実施例2で精製した配列番号4と配列番号5のプライマーを使用したPCR産物はXbaI及びHindIIIにより常法に従って制限酵素処理した(インサートB)。これらインサートAとBは、例えばQIAGEN QIAquick PCR Purification Kitを用いる等、常法に従って精製した。インサートAはNdeI及びHindIIIにより制限酵素処理し精製したpET21a(+)又はpET28a(+)と常法に従ってライゲーションし、pET21a(+)/TM0272又はpET28a(+)/TM0272を作成した。インサートBはXbaI及びHindIIIにより制限酵素処理し精製したpUC118と常法に従ってライゲーションし、pUC118/TM0272を作成した。コロニーダイレクトPCR法によるポジティブクローンから精製した組換え体プラスミドは、DNAシーケンスしてインサート配列が正しい事を確認した。
[Example 3]
<Ligation with expression vector>
The PCR product using the primers of SEQ ID NO: 3 and SEQ ID NO: 4 purified in Example 2 was subjected to restriction enzyme treatment with NdeI and HindIII according to a conventional method (insert A). The PCR product using the primers of SEQ ID NO: 4 and SEQ ID NO: 5 purified in Example 2 was subjected to restriction enzyme treatment with XbaI and HindIII according to a conventional method (insert B). These inserts A and B were purified by a conventional method such as using QIAGEN QIAquick PCR Purification Kit. Insert A was ligated with pET21a (+) or pET28a (+) purified by restriction enzyme treatment with NdeI and HindIII according to a conventional method to prepare pET21a (+) / TM0272 or pET28a (+) / TM0272. Insert B was ligated with pUC118 purified by restriction enzyme treatment with XbaI and HindIII according to a conventional method to prepare pUC118 / TM0272. The recombinant plasmid purified from the positive clone by the colony direct PCR method was DNA sequenced to confirm that the insert sequence was correct.

[実施例4]
<pET21a(+)/TM0272、pET28a(+)/TM0272又はpUC118/TM0272の発現チェック>
pET21a(+)/TM0272、pET28a(+)/TM0272又をエシェリヒア・コリBL21(DE3)に、pUC118/TM0272をエシェリヒア・コリJM109に常法に従って形質転換し、50μg/mlのアンピシリンを含むSB培地(トリプトン12g、酵母エキス24g、グリセロール5mlを蒸留水0.9Lに溶かして121℃20分間滅菌する。リン酸一水素カリウム12.5g、リン酸二水素カリウム3.8gを蒸留水0.1Lに溶かして121℃20分間滅菌する。それぞれを室温まで冷却後混合して1LのSB培地とした。)に植菌した。37℃で3時間培養後にIPTGを終濃度1mMになるように加えて、さらに3時間培養を行った。培養液を遠心分離して集菌し、菌体を生理的食塩水で洗い、菌体湿重量の4倍量の20mM HEPES/NaOH(pH7.5)に懸濁、超音波破砕して、遠心分離し、得られた上清を粗酵素液とした。
[Example 4]
<Expression check of pET21a (+) / TM0272, pET28a (+) / TM0272 or pUC118 / TM0272>
pET21a (+) / TM0272, pET28a (+) / TM0272 or Escherichia coli BL21 (DE3), pUC118 / TM0272 was transformed into Escherichia coli JM109 according to a conventional method, and SB medium containing 50 μg / ml ampicillin ( Dissolve 12 g of tryptone, 24 g of yeast extract and 5 ml of glycerol in 0.9 L of distilled water and sterilize for 20 minutes at 121 ° C. Dissolve 12.5 g of potassium monohydrogen phosphate and 3.8 g of potassium dihydrogen phosphate in 0.1 L of distilled water. Sterilized for 20 minutes at 121 ° C. Each was cooled to room temperature and mixed to obtain 1 L of SB medium. After culturing at 37 ° C. for 3 hours, IPTG was added to a final concentration of 1 mM, and further cultured for 3 hours. The culture is centrifuged to collect the cells, and the cells are washed with physiological saline, suspended in 20 mM HEPES / NaOH (pH 7.5) 4 times the wet weight of the cells, sonicated and centrifuged. The supernatant obtained after separation was used as a crude enzyme solution.

[実施例5]
<粗酵素液の熱処理>
実施例4で得た粗酵素液は80℃で15分間熱処理し遠心分離して、上清を粗精製液とした。この粗精製液のSDS−PAGEを図3に示した。
[Example 5]
<Heat treatment of crude enzyme solution>
The crude enzyme solution obtained in Example 4 was heat-treated at 80 ° C. for 15 minutes and centrifuged, and the supernatant was used as a crude purified solution. SDS-PAGE of this crude purified solution is shown in FIG.

[実施例6]
<PPDKの精製1>
20mM HEPES/NaOH(pH7.5)で平衡化したバイオラッド社のUnoQ(登録商標)陰イオン交換クロマトグラフィーカラムに、実施例5の粗精製液をアプライした。カラムをベッド体積の5倍以上の20mM HEPES/NaOH(pH7.5)で洗浄した後、20mM HEPES/NaOH(pH7.5)と0.5M NaClを含む20mM HEPES/NaOH(pH7.5)を用いたベッド体積の12倍量のリニアグラジエント溶出を行った。活性画分を回収し、100倍量の20mM HEPES/NaOH(pH7.5)で透析する事により脱塩した。
[Example 6]
<PDK purification 1>
The crude purified solution of Example 5 was applied to a BioRad UnoQ® anion exchange chromatography column equilibrated with 20 mM HEPES / NaOH (pH 7.5). After washing the column with 20 mM HEPES / NaOH (pH 7.5) at 5 times the bed volume, 20 mM HEPES / NaOH (pH 7.5) containing 20 mM HEPES / NaOH (pH 7.5) and 0.5 M NaCl is used. Linear gradient elution was carried out 12 times the bed volume. The active fraction was collected and desalted by dialysis against 100 volumes of 20 mM HEPES / NaOH (pH 7.5).

[実施例7]
<PPDKの精製2>
10mM リン酸カリウム(pH7.5)で平衡化したバイオラッド社のハイドロキシアパタイトを用いたカラムに実施例6の脱塩したPPDKをアプライした。カラムをベッド体積の5倍以上の10mM リン酸カリウム(pH7.5)で洗浄した後、300mM リン酸カリウム(pH7.5)を用いてベッド体積の12倍量のリニアグラジエント溶出を行った。活性画分を回収し、1mMのDTTを含む100倍量の20mM HEPES/NaOH(pH7.5)で透析する事により脱塩し、精製酵素とした。
[Example 7]
<PDK purification 2>
The desalted PPDK of Example 6 was applied to a column using Hydrorad hydroxyapatite equilibrated with 10 mM potassium phosphate (pH 7.5). The column was washed with 10 mM potassium phosphate (pH 7.5) having a bed volume of 5 times or more, and then linear gradient elution was carried out with 12 times the bed volume using 300 mM potassium phosphate (pH 7.5). The active fraction was collected and desalted by dialyzing against 100 volumes of 20 mM HEPES / NaOH (pH 7.5) containing 1 mM DTT to obtain a purified enzyme.

[実施例8]
<PPDKの精製3>
10mM リン酸カリウム(pH7.5)で平衡化したバイオラッド社のハイドロキシアパタイトを用いたカラムに実施例6の脱塩したPPDKをアプライした。カラムをベッド体積の5倍以上の10mM リン酸カリウム(pH7.5)で洗浄した後、300mM リン酸カリウム(pH7.5)を用いてベッド体積の12倍量のリニアグラジエント溶出を行った。活性画分を回収し、1mMのDTTを含む20mM HEPES/NaOHで平衡化したゲル濾過剤であるG−25(GEヘルスケアバイオサイエンス社製)を使用して脱塩し、精製酵素とした。
[Example 8]
<PDK purification 3>
The desalted PPDK of Example 6 was applied to a column using Hydrorad hydroxyapatite equilibrated with 10 mM potassium phosphate (pH 7.5). The column was washed with 10 mM potassium phosphate (pH 7.5) having a bed volume of 5 times or more, and then linear gradient elution was carried out with 12 times the bed volume using 300 mM potassium phosphate (pH 7.5). The active fraction was collected and desalted using G-25 (manufactured by GE Healthcare Bioscience), a gel filtration agent equilibrated with 20 mM HEPES / NaOH containing 1 mM DTT, to obtain a purified enzyme.


実施例4において、pUC118/TM0272を形質転換したエシェリヒア・コリ JM109を500ml培養し、得られた粗酵素液を実施例5から実施例7に従って精製し、各精製工程で得られたPDDK活性を測定し結果を表1に示した。PPDK活性はPPDK活性測定方法1で測定した。これより、粗酵素液を80℃で15分間熱処理し遠心分離する事により、比活性は11倍以上向上しており、熱処理工程が大変有効な製造(精製)工程である事が分かる。

In Example 4, 500 ml of Escherichia coli JM109 transformed with pUC118 / TM0272 was cultured, and the resulting crude enzyme solution was purified according to Examples 5 to 7, and the PDDK activity obtained in each purification step was measured. The results are shown in Table 1. PPDK activity was measured by PPDK activity measurement method 1. From this, it can be seen that the specific activity is improved 11 times or more by heat-treating the crude enzyme solution at 80 ° C. for 15 minutes and centrifuging, and that the heat-treatment process is a very effective production (purification) process.

[実施例9]
<PPDKの精製4>
実施例4において、pET28a(+)/TM0272を形質転換したエシェリヒア・コリBL21(DE3)を500ml培養し、得られた粗酵素液を用いて実施例5に記載の方法で粗精製液を得た場合は、以下のような精製も実施した。
[Example 9]
<PDK purification 4>
In Example 4, 500 ml of Escherichia coli BL21 (DE3) transformed with pET28a (+) / TM0272 was cultured, and a crude purified solution was obtained by the method described in Example 5 using the obtained crude enzyme solution. In some cases, the following purification was also performed.

0.2MのNaClを含む20mM HEPES/NaOH(pH7.5)で平衡化したシグマアルドリッチ社のニッケルアフィニティーゲルクロマトグラフィーカラムに、上記の粗精製液をアプライした。0.2MのNaClを含む20mM HEPES/NaOH(pH7.5)でカラムをベッド体積の5倍以上洗浄した後、0.2MのNaClと0.2Mのイミダゾールを含む20mM HEPES/NaOH(pH7.5)で吸着画分の溶出を行った。   The above crude purified solution was applied to a Sigma-Aldrich nickel affinity gel chromatography column equilibrated with 20 mM HEPES / NaOH (pH 7.5) containing 0.2 M NaCl. The column was washed with 20 mM HEPES / NaOH (pH 7.5) containing 0.2 M NaCl at least 5 times the bed volume, and then 20 mM HEPES / NaOH (pH 7.5) containing 0.2 M NaCl and 0.2 M imidazole. ) To elute the adsorbed fraction.

溶出した活性画分に20%の硫酸アンモニウムを添加し、20%の硫酸アンモニウムを含む20mM HEPES/NaOH(pH7.5)で平衡化したフェニルトヨパールクロマトグラフィーカラム(東ソー社製)にアプライした。20%の硫酸アンモニウムを含む20mM HEPES/NaOH(pH7.5)でカラムをベッド体積の5倍以上洗浄した後、20mM HEPES/NaOH(pH7.5)を用いたベッド体積の12倍量のリニアグラジエント溶出を行った。溶出した活性画分の一部は100倍量の1mMのDTTを含む20mM HEPES/NaOH(pH7.5)で透析する事により脱塩した。又は、1mMのDTTを含む20mM HEPES/NaOHで平衡化したゲル濾過剤であるG−25を使用して脱塩した。透析する事により脱塩した場合、及び、G−25を使用して脱塩した場合の本実施例により得られたPPDKの比活性は、7U/mgだった。   20% ammonium sulfate was added to the eluted active fraction and applied to a phenyl Toyopearl chromatography column (manufactured by Tosoh Corporation) equilibrated with 20 mM HEPES / NaOH (pH 7.5) containing 20% ammonium sulfate. After washing the column with 20 mM HEPES / NaOH (pH 7.5) containing 20% ammonium sulfate at least 5 times the bed volume, linear gradient elution of 12 times the bed volume with 20 mM HEPES / NaOH (pH 7.5) Went. A portion of the eluted active fraction was desalted by dialysis against 20 mM HEPES / NaOH (pH 7.5) containing 100 volumes of 1 mM DTT. Alternatively, desalting was performed using G-25, a gel filtration agent equilibrated with 20 mM HEPES / NaOH containing 1 mM DTT. The specific activity of PPDK obtained in this example when desalted by dialysis and when desalted using G-25 was 7 U / mg.

[実施例10]
<PPDK活性の確認>
AMPを基質とした時に反応によって生ずるATPを高速液体クロマトグラフィー(以下HPLCと記載する場合もある)によって検出することで本発明のPPDKの活性を確認した。100mM HEPES/NaOH(pH7.5)、1mM AMP、1mM MgCl2、1mM PEP、1mM PPiからなる反応液に実施例7で得たPPDK 10μlを添加し、50℃で20分間反応した。反応液をAsahipak GS−320(昭和電工株式会社製)を用いたHPLCで分析した。移動相は200mM リン酸ナトリウム(pH3)で、流速は0.5ml/分、カラム温度は室温で260nmの吸光を測定した。図7はこの条件でATP、ADP、AMP及びアデノシンを分離した結果である。図8は反応前の反応液を分離した結果である。図9は反応後の反応液を分離した結果である。これらの分析結果から明らかなように、AMPを基質とした時にATPが反応によって生じており、PPDK活性が確認できた。
[Example 10]
<Confirmation of PPDK activity>
The activity of the PPDK of the present invention was confirmed by detecting ATP produced by the reaction when AMP was used as a substrate by high performance liquid chromatography (hereinafter sometimes referred to as HPLC). 10 μl of PPDK obtained in Example 7 was added to a reaction solution composed of 100 mM HEPES / NaOH (pH 7.5), 1 mM AMP, 1 mM MgCl 2, 1 mM PEP, 1 mM PPi, and reacted at 50 ° C. for 20 minutes. The reaction solution was analyzed by HPLC using Asahipak GS-320 (manufactured by Showa Denko KK). The mobile phase was 200 mM sodium phosphate (pH 3), the flow rate was 0.5 ml / min, the column temperature was room temperature, and the absorbance at 260 nm was measured. FIG. 7 shows the result of separating ATP, ADP, AMP and adenosine under these conditions. FIG. 8 shows the result of separating the reaction solution before the reaction. FIG. 9 shows the result of separating the reaction solution after the reaction. As apparent from these analysis results, when AMP was used as a substrate, ATP was generated by the reaction, and PPDK activity was confirmed.

[実施例11]
<PPDK凍結保存安定性>
実施例9で得た脱塩していないPPDKをそのまま−20℃で凍結保存して2週間後に融解し、凍結保存前後の活性を比較した結果、凍結保存後も94%の残存活性があり、凍結保存安定性に優れている事が示された。なお、PPDK活性はPPDK活性測定方法2で測定した。
[Example 11]
<PPDK frozen storage stability>
The non-desalted PPDK obtained in Example 9 was stored frozen at −20 ° C. as it was and thawed after 2 weeks. As a result of comparing the activities before and after cryopreservation, there was 94% residual activity even after cryopreservation. It was shown to be excellent in frozen storage stability. PPDK activity was measured by PPDK activity measurement method 2.

[実施例12]
<PPDK冷蔵保存安定性>
実施例9で得た脱塩していないPPDKをそのまま4℃で保存して、0、5、8、12、19、27日後に活性測定した結果を図10に示した。その結果、本発明のPPDKは冷蔵保存下で、27日保存後も80%以上の残存活性があり、低温域における保存安定性に優れている事が示された。なお、PPDK活性はPPDK活性測定方法1で測定した。
[実施例13]
<熱安定性1>
213μg/mlの実施例7で得た脱塩したPPDKを50℃から100℃の範囲で20分間熱処理した。残存活性をPPDK活性測定方法1で測定し、未処理の酵素活性を100%として残存活性(%)を図11に示した。その結果、本発明のPPDKは90℃、20分間の熱処理で、90%以上の活性を保持した。
[Example 12]
<PPDK refrigerated storage stability>
FIG. 10 shows the results of measuring the activity of the non-desalted PPDK obtained in Example 9 as it was at 4 ° C. and after 0, 5, 8, 12, 19, and 27 days. As a result, it was shown that the PPDK of the present invention has a residual activity of 80% or more even after storage for 27 days under refrigerated storage and is excellent in storage stability in a low temperature range. PPDK activity was measured by PPDK activity measurement method 1.
[Example 13]
<Thermal stability 1>
213 μg / ml of desalted PPDK obtained in Example 7 was heat-treated in the range of 50 ° C. to 100 ° C. for 20 minutes. The residual activity was measured by PPDK activity measuring method 1, and the residual activity (%) is shown in FIG. 11 with the untreated enzyme activity as 100%. As a result, the PPDK of the present invention retained 90% or more of the activity after heat treatment at 90 ° C. for 20 minutes.

[実施例14]
<熱安定性2>
213μg/mlの実施例7で得た脱塩したPPDKを80℃又は90℃で、0から1時間の範囲で熱処理した。残存活性をPPDK活性測定方法1で測定し、未処理の酵素活性を100%として残存活性(%)を図12に示した。その結果、本発明のPPDKは90℃、1時間の熱処理で、70%以上の活性を保持し、80℃、1時間の熱処理で90%以上の活性を保持した。
[実施例15]
<PPDK発現の改良>
配列表の配列番号1に示す遺伝子の中で、大腸菌において使用頻度が低いと考えられるコドン(AGA、AGG、ATA、CGG、CCC、CUA)全てを大腸菌において使用頻度が高いコドンに変換して配列表の配列番号6の遺伝子を作成した。コドン変換は、合成プライマーを使用したPCRによる常法で行い、実施例2、3、4と同様の方法で粗酵素液を得た。本粗酵素液をさらに実施例5と同様の方法で熱処理して、熱処理された粗精製液を得た。本粗精製液をSDS−PAGE処理することにより、配列表の配列番号1の遺伝子によるPPDKの発現量(図13(A))と配列表の配列番号6の遺伝子によるPPDKの発現量(図13(B))を比較した。配列表の配列番号6の遺伝子によるPPDKの発現量は、配列表の配列番号1の遺伝子によるPPDKの発現量に比べて改善された。又、配列表の配列番号6の遺伝子によるPPDKの培養力価は、配列表の配列番号1の遺伝子によるPPDKの培養力価に比べて約3倍高くなった。
[Example 14]
<Thermal stability 2>
213 μg / ml of the desalted PPDK obtained in Example 7 was heat-treated at 80 ° C. or 90 ° C. for 0 to 1 hour. Residual activity was measured by PPDK activity measurement method 1, and the residual activity (%) is shown in FIG. As a result, the PPDK of the present invention retained an activity of 70% or more by heat treatment at 90 ° C. for 1 hour, and retained 90% or more activity by heat treatment at 80 ° C. for 1 hour.
[Example 15]
<Improvement of PPDK expression>
Among the genes shown in SEQ ID NO: 1 in the Sequence Listing, all codons (AGA, AGG, ATA, CGG, CCC, CUA) that are considered to be less frequently used in E. coli are converted into codons that are frequently used in E. coli. The gene of SEQ ID NO: 6 in the column table was created. Codon conversion was performed by a conventional method using PCR using a synthetic primer, and a crude enzyme solution was obtained in the same manner as in Examples 2, 3, and 4. This crude enzyme solution was further heat-treated in the same manner as in Example 5 to obtain a heat-treated crude purified solution. By subjecting this crude purified solution to SDS-PAGE, the expression level of PPDK by the gene of SEQ ID NO: 1 in the sequence listing (FIG. 13A) and the expression level of PPDK by the gene of SEQ ID NO: 6 in the sequence listing (FIG. 13). (B)) was compared. The expression level of PPDK by the gene of SEQ ID NO: 6 in the sequence listing was improved compared to the expression level of PPDK by the gene of SEQ ID NO: 1 in the sequence listing. Moreover, the culture titer of PPDK by the gene of SEQ ID NO: 6 in the sequence listing was about 3 times higher than the culture titer of PPDK by the gene of SEQ ID NO: 1 in the sequence listing.

本酵素は、低温域における保存安定性及び凍結保存安定性に優れ、かつ熱安定性の高いピルベートオルトホスフェートジキナーゼであるので、効率よく製造することができる。   Since this enzyme is a pyruvate orthophosphate dikinase which is excellent in storage stability and cryopreservation stability in a low temperature region and has high heat stability, it can be efficiently produced.

本発明のピルベートオルトホスフェートジキナーゼの至適pHを示す。The optimum pH of the pyruvate orthophosphate dikinase of the present invention is shown. 本発明のピルベートオルトホスフェートジキナーゼのpH安定性を示す。Figure 2 shows the pH stability of pyruvate orthophosphate dikinase of the present invention. 本発明のピルベートオルトホスフェートジキナーゼのSDS−PAGEを示す。本発明のピルベートオルトホスフェートジキナーゼの位置を矢印で示す。1 shows SDS-PAGE of pyruvate orthophosphate dikinase of the present invention. The position of the pyruvate orthophosphate dikinase of the present invention is indicated by an arrow. 本発明のピルベートオルトホスフェートジキナーゼのPEPに対するラインウェーバー・バーク逆数プロットを示す。FIG. 2 shows a Reinweber-Burk reciprocal plot for PEP of pyruvate orthophosphate dikinase of the present invention. 本発明のピルベートオルトホスフェートジキナーゼのPPiに対するラインウェーバー・バーク逆数プロットを示す。FIG. 2 shows a Reinweber-Burk reciprocal plot for PPi of pyruvate orthophosphate dikinase of the present invention. 本発明のピルベートオルトホスフェートジキナーゼのAMPに対するラインウェーバー・バーク逆数プロットを示す。FIG. 2 shows a Reinweber-Burk reciprocal plot for AMP of pyruvate orthophosphate dikinase of the present invention. 実施例10記載のHPLC条件で、ATP、ADP、AMP及びアデノシンを分離した結果を示す。The result of having isolate | separated ATP, ADP, AMP, and adenosine on the HPLC conditions of Example 10 is shown. 実施例10記載の反応液の反応前を、実施例10記載のHPLC条件で分離した結果を示す。The result of having separated before the reaction of the reaction liquid described in Example 10 under the HPLC conditions described in Example 10 is shown. 実施例10記載の反応液に実施例7で得たPPDK 10μlを添加し、50℃で20分間反応した反応液を、実施例10記載のHPLC条件で分離した結果を示す。The result of separating the reaction solution obtained by adding 10 μl of PPDK obtained in Example 7 to the reaction solution described in Example 10 and reacting at 50 ° C. for 20 minutes under the HPLC conditions described in Example 10 is shown. 本発明のピルベートオルトホスフェートジキナーゼの冷蔵保存(4℃)安定性を示す。The stability of the pyruvate orthophosphate dikinase of the present invention stored at refrigeration (4 ° C.) is shown. 本発明のピルベートオルトホスフェートジキナーゼの熱安定性を示す。Figure 2 shows the thermal stability of the pyruvate orthophosphate dikinase of the present invention. 本発明のピルベートオルトホスフェートジキナーゼの熱安定性を示す。Figure 2 shows the thermal stability of the pyruvate orthophosphate dikinase of the present invention. 配列表の配列番号1の遺伝子によるPPDKとの発現量(A)と、配列表の配列番号6の遺伝子によるPPDKの発現量(B)を比較したSDS−PAGEを示す。7 shows SDS-PAGE in which the expression level (A) of PPDK by the gene of SEQ ID NO: 1 in the sequence listing is compared with the expression level (B) of PPDK by the gene of SEQ ID NO: 6 in the sequence listing.

Claims (15)

下記の理化学的性質を有するピルベートオルトホスフェートジキナーゼ。
(1)作用
マグネシウムイオン等の存在下で、アデノシン5’一リン酸、ホスホエノールピルビン酸及びピロリン酸に作用して、アデノシン5’三リン酸、ピルビン酸、及びリン酸を生ずる反応及びその逆反応を触媒する;
(2)至適pH
pH7〜7.5;
(3)pH安定性
50℃、20分間でpH4.5から11の範囲で80%以上の活性を保持する;
(4)熱安定性
80℃、1時間の熱処理で90%以上の活性を保持し、かつ、4℃で少なくとも27日間保存後も70%以上の活性を保持する;
(5)補酵素特異性
マグネシウムイオン存在下で、ホスホエノールピルビン酸及びピロリン酸を基質とした場合、アデノシン5’一リン酸に対して特異的に補酵素として作用し、アデノシン5’二リン酸、イノシン5’一リン酸、シチジン5’一リン酸、グアノシン5’一リン酸、チミジン5’一リン酸又はウリジン5’一リン酸に作用しない;
(6)金属イオン
マグネシウムイオンを使用した場合を100%として、コバルトイオンを使用した場合に74%、ニッケルイオンを使用した場合に29%の相対活性を示す;
(7)分子量
SDSポリアクリルアミドゲル電気泳動法による分子量が、約83kDa;
(8)Km値
ホスホエノールピルビン酸に対して0.32mM、ピロリン酸に対して1.12mM、アデノシン5’一リン酸に対して0.065mM;
A pyruvate orthophosphate dikinase having the following physicochemical properties:
(1) Action In the presence of magnesium ions, etc., a reaction that acts on adenosine 5 ′ monophosphate, phosphoenolpyruvate and pyrophosphate to produce adenosine 5 ′ triphosphate, pyruvate, and phosphate, and vice versa. Catalyze the reaction;
(2) Optimum pH
pH 7-7.5;
(3) pH stability Retains 80% or more of the activity in the range of pH 4.5 to 11 at 50 ° C. for 20 minutes;
(4) Thermal stability Maintains 90% or more activity after heat treatment at 80 ° C for 1 hour, and retains 70% or more activity after storage at 4 ° C for at least 27 days;
(5) When phosphoenolpyruvate and pyrophosphate are used as substrates in the presence of coenzyme-specific magnesium ions, it acts specifically as a coenzyme for adenosine 5 ′ monophosphate, and adenosine 5 ′ diphosphate Does not act on inosine 5 ′ monophosphate, cytidine 5 ′ monophosphate, guanosine 5 ′ monophosphate, thymidine 5 ′ monophosphate or uridine 5 ′ monophosphate;
(6) The relative activity is 74% when cobalt ions are used, and 29% when nickel ions are used, when the metal ions magnesium ions are used as 100%;
(7) Molecular weight The molecular weight by SDS polyacrylamide gel electrophoresis is about 83 kDa;
(8) Km value 0.32 mM for phosphoenolpyruvate, 1.12 mM for pyrophosphate, 0.065 mM for adenosine 5 ′ monophosphate;
さらに以下(9)の理化学的性質を有する請求項1に記載のピルベートオルトホスフェートジキナーゼ。
(9)−20℃で2週間保存後、90%以上の活性を保持する
The pyruvate orthophosphate dikinase according to claim 1, which further has the following physicochemical properties (9):
(9) Maintain 90% or more activity after 2 weeks storage at -20 ° C
Thermotoga maritima由来であることを特徴とする請求項1又は2に記載のピルベートオルトホスフェートジキナーゼ。 The pyruvate orthophosphate dikinase according to claim 1 or 2, which is derived from Thermotoga maritima. 以下の(a)又は(b)のアミノ酸配列を有する請求項1から3のいずれかに記載のピルベートオルトホスフェートジキナーゼ。
(a)配列表の配列番号2のアミノ酸配列
(b)(a)のアミノ酸配列から1又は数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
The pyruvate orthophosphate dikinase according to any one of claims 1 to 3, which has the following amino acid sequence (a) or (b):
(A) Amino acid sequence of SEQ ID NO: 2 in the sequence listing (b) Amino acid sequence in which one or several amino acids are deleted, substituted or added from the amino acid sequence of (a)
配列表の配列番号2に記載のアミノ酸配列で表されるピルベートオルトホスフェートジキナーゼ。 A pyruvate orthophosphate dikinase represented by the amino acid sequence set forth in SEQ ID NO: 2 in the Sequence Listing. 以下の(a)〜(d)のいずれかの塩基配列からなるDNA。
(a)配列表の配列番号1で表される塩基配列からなるDNA
(b)(a)の塩基配列において、1又は複数の塩基が欠失、置換もしくは付加されており、かつ、ピルベートオルトホスフェートジキナーゼ活性を有するタンパク質をコードしているDNA
(c)(a)の塩基配列において、1から120個の塩基が置換されており、かつ、ピルベートオルトホスフェートジキナーゼ活性を有するタンパク質をコードしているDNA
(d)配列表の配列番号6に記載の塩基配列で表されるDNA
DNA comprising any one of the following base sequences (a) to (d):
(A) DNA comprising the base sequence represented by SEQ ID NO: 1 in the sequence listing
(B) DNA encoding a protein having pyruvate orthophosphate dikinase activity, wherein one or more bases are deleted, substituted or added in the base sequence of (a)
(C) DNA in which 1 to 120 bases are substituted in the base sequence of (a) and which encodes a protein having pyruvate orthophosphate dikinase activity
(D) DNA represented by the base sequence set forth in SEQ ID NO: 6 in the sequence listing
請求項6に記載のDNAを含む組み換え体プラスミド。 A recombinant plasmid comprising the DNA according to claim 6. 請求項7に記載の組み換え体プラスミドを含む形質転換体。 A transformant comprising the recombinant plasmid according to claim 7. 請求項8に記載の形質転換体を培地で培養し、培養物中に請求項1から5のいずれかに記載のピルベートオルトホスフェートジキナーゼを生成蓄積させ、該培養物からピルベートオルトホスフェートジキナーゼを採取することを特徴とするピルベートオルトホスフェートジキナーゼの製造方法。 The transformant according to claim 8 is cultured in a medium, the pyruvate orthophosphate dikinase according to any one of claims 1 to 5 is produced and accumulated in the culture, and the pyruvate orthophosphate dikinase is accumulated from the culture. A method for producing pyruvate orthophosphate dikinase, which comprises collecting a kinase. 請求項9に記載のピルベートオルトホスフェートジキナーゼの製造方法で採取したピルベートオルトホスフェートジキナーゼを、80℃以上で15分以上熱処理する工程を有するピルベートオルトホスフェートジキナーゼの製造方法。 The manufacturing method of pyruvate orthophosphate dikinase which has the process of heat-treating pyruvate orthophosphate dikinase extract | collected with the manufacturing method of pyruvate orthophosphate dikinase of Claim 9 at 80 degreeC or more for 15 minutes or more. 請求項10に記載のピルベートオルトホスフェートジキナーゼの製造方法で、さらにイオン交換体を用いたカラムクロマトグラフィー工程を有するピルベートオルトホスフェートジキナーゼの製造方法。 The method for producing pyruvate orthophosphate dikinase according to claim 10, further comprising a column chromatography step using an ion exchanger. 請求項11に記載のピルベートオルトホスフェートジキナーゼの製造方法で、さらに疎水的クロマトグラフィー工程を有するピルベートオルトホスフェートジキナーゼの製造方法。 The method for producing pyruvate orthophosphate dikinase according to claim 11, further comprising a hydrophobic chromatography step. 請求項12に記載のピルベートオルトホスフェートジキナーゼの製造方法で、さらに脱塩する工程を有するピルベートオルトホスフェートジキナーゼの製造方法。 The method for producing pyruvate orthophosphate dikinase according to claim 12, further comprising a desalting step. 請求項8に記載の形質転換体を液体培養し、該培養液から以下の工程を経て得られるピルベートオルトホスフェートジキナーゼ。
(a)培養液を遠心分離して集菌し、菌体を生理的食塩水で洗い、菌体湿重量の4倍量の20mM HEPES/NaOH(pH 7.5)に懸濁し、超音波破砕した後、遠心分離して粗酵素液を得る工程
(b)粗酵素液を80℃で15分間熱処理し、遠心分離して粗精製液を得る工程
Pyruvate orthophosphate dikinase obtained by subjecting the transformant according to claim 8 to liquid culture and the following step from the culture solution.
(A) The culture solution is collected by centrifugation, and the cells are washed with physiological saline, suspended in 20 mM HEPES / NaOH (pH 7.5) 4 times the wet weight of the cells, and ultrasonically disrupted. (B) A step of heat-treating the crude enzyme solution at 80 ° C. for 15 minutes and centrifuging to obtain a crude purified solution
請求項1〜5のいずれかに記載のピルベートオルトホスフェートジキナーゼ、請求項6に記載のDNA、請求項7に記載の組み換え体プラスミド、及び、請求項8に記載の形質転換体のうち少なくともいずれかを含む試薬。 At least among the pyruvate orthophosphate dikinase according to any one of claims 1 to 5, the DNA according to claim 6, the recombinant plasmid according to claim 7, and the transformant according to claim 8. Reagents containing either.
JP2008152403A 2007-06-12 2008-06-11 Novel pyruvate orthophosphate dikinase and method for producing the same Active JP5352788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152403A JP5352788B2 (en) 2007-06-12 2008-06-11 Novel pyruvate orthophosphate dikinase and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007154806 2007-06-12
JP2007154806 2007-06-12
JP2008152403A JP5352788B2 (en) 2007-06-12 2008-06-11 Novel pyruvate orthophosphate dikinase and method for producing the same

Publications (3)

Publication Number Publication Date
JP2009017876A true JP2009017876A (en) 2009-01-29
JP2009017876A5 JP2009017876A5 (en) 2009-06-04
JP5352788B2 JP5352788B2 (en) 2013-11-27

Family

ID=40358064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152403A Active JP5352788B2 (en) 2007-06-12 2008-06-11 Novel pyruvate orthophosphate dikinase and method for producing the same

Country Status (1)

Country Link
JP (1) JP5352788B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105766B2 (en) 2008-02-28 2012-01-31 Asahi Kasei Pharma Corporation Method of measuring pyrophosphate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168375A (en) * 1994-12-19 1996-07-02 Kikkoman Corp Pyruvateorthophosphatedikinase and method for producing the same
JP3329820B2 (en) * 1993-12-03 2002-09-30 日本たばこ産業株式会社 Polypeptide having low-temperature-resistant pyruvate phosphate dikinase activity, DNA encoding the same, recombinant vector containing the DNA, and transformed plant
US20030233675A1 (en) * 2002-02-21 2003-12-18 Yongwei Cao Expression of microbial proteins in plants for production of plants with improved properties

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329820B2 (en) * 1993-12-03 2002-09-30 日本たばこ産業株式会社 Polypeptide having low-temperature-resistant pyruvate phosphate dikinase activity, DNA encoding the same, recombinant vector containing the DNA, and transformed plant
JPH08168375A (en) * 1994-12-19 1996-07-02 Kikkoman Corp Pyruvateorthophosphatedikinase and method for producing the same
US20030233675A1 (en) * 2002-02-21 2003-12-18 Yongwei Cao Expression of microbial proteins in plants for production of plants with improved properties

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013024854; Biochemistry Vol.45, 2006, p.1702-1711 *
JPN6013024857; Biochimica et Biophysica Acta Vol.1431, 1999, p.363-373 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105766B2 (en) 2008-02-28 2012-01-31 Asahi Kasei Pharma Corporation Method of measuring pyrophosphate

Also Published As

Publication number Publication date
JP5352788B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
US8900814B2 (en) Variant reverse transcriptase
US11028376B2 (en) DNA polymerases from the red sea brine pool
US9896705B2 (en) L-arabinose isomerase variants with improved conversion activity and method for production of D-tagatose using them
AU2018378002B2 (en) Sucrose phosphorylase
JPWO2020116331A1 (en) Modified chrysanthemic acid esterase
Hao et al. Cloning, expression, and characterization of sialic acid synthases
JPWO2012036241A1 (en) Novel extracellular secretory nuclease
But et al. Properties of recombinant ATP-dependent fructokinase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z
JP5352788B2 (en) Novel pyruvate orthophosphate dikinase and method for producing the same
Suryanti et al. Cloning, over-expression, purification, and characterisation of N-acetylneuraminate synthase from Streptococcus agalactiae
RU2730602C2 (en) Novel polyphosphate-dependent glucokinase and a method of producing glucose-6-phosphate using it
JP5570731B2 (en) Method for measuring pyrophosphate
WO2013129427A1 (en) Practical method for enzymatically synthesizing cyclic di-gmp
JP4146095B2 (en) Thermostable glucokinase gene, recombinant vector containing the same, transformant containing the recombinant vector, and method for producing thermostable glucokinase using the transformant
KR101303990B1 (en) Thermococcus pacificus dna polymerase variant, and uses thereof
CA2582686A1 (en) Method of producing uridine 5&#39;-diphospho-n-acetylgalactosamine
Wei et al. Discovery and biochemical characterization of UDP-glucose dehydrogenase from Granulibacter bethesdensis
Lee et al. Saci_1816: a trehalase that catalyzes trehalose degradation in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius
JP6504586B1 (en) How to measure fructosyl lysine
US20020119506A1 (en) Genes encoding UMP kinase, methods for purifying UMP kinase and methods of characterizing UMP kinase
US20240209406A1 (en) Enzymatic synthesis of ntp and nqp
JP5531272B2 (en) Modified glycerol kinase with improved thermal stability
KR101142950B1 (en) DNA polymerase derived from Thermococcus marinus and its use
KR101296882B1 (en) Thermococcus waiotapuensis DNA polymerase variants, and uses thereof
JP5162870B2 (en) Stable NADH dehydrogenase

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5352788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250