[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009014334A - Gasification melting equipment and method of feeding air for combustion in melting furnace of gasification melting equipment - Google Patents

Gasification melting equipment and method of feeding air for combustion in melting furnace of gasification melting equipment Download PDF

Info

Publication number
JP2009014334A
JP2009014334A JP2008139812A JP2008139812A JP2009014334A JP 2009014334 A JP2009014334 A JP 2009014334A JP 2008139812 A JP2008139812 A JP 2008139812A JP 2008139812 A JP2008139812 A JP 2008139812A JP 2009014334 A JP2009014334 A JP 2009014334A
Authority
JP
Japan
Prior art keywords
combustion air
melting
gasification
melting furnace
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008139812A
Other languages
Japanese (ja)
Other versions
JP5086177B2 (en
Inventor
Toshiya Tada
俊哉 多田
Hiroyuki Hosoda
博之 細田
Koji Minagawa
公司 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Eco Solutions Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2008139812A priority Critical patent/JP5086177B2/en
Publication of JP2009014334A publication Critical patent/JP2009014334A/en
Application granted granted Critical
Publication of JP5086177B2 publication Critical patent/JP5086177B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/24Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/30Pyrolysing
    • F23G2201/303Burning pyrogases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasification melting equipment and a method of feeding air for combustion in the melting furnace of the gasification melting equipment, capable of preventing sticking of clinker to the upper inner wall of the primary combustion chamber of the melting furnace. <P>SOLUTION: The gasification melting equipment 10 includes a gasification furnace 20, the melting furnace 30 combusting pyrolysis gas contained in produced gas and also converting ash contents into a fused slag, and a gas duct 40 for guiding the produced gas within the gasification furnace 20 to the produced gas introduction port of the melting furnace 30. The produced gas introduction port of the melting furnace 30 is provided on the upper sidewall of the primary combustion chamber 31. First combustion air supply nozzles 41a-41c, 42a-42c for supplying combustion air amounting to 70% or more of the total quantity of combustion air for the primary combustion chamber of the melting furnace 30 are provided in the vicinity of the produced gas introduction port in the gas duct 40. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガス化溶融設備及びガス化溶融設備の溶融炉燃焼用空気供給方法に関するものである。   The present invention relates to a gasification melting facility and a method for supplying air for melting furnace combustion in the gasification melting facility.

ガス化溶融設備は、ガス化溶融施設の中心をなす設備であり、一般には、都市ごみ、産業廃棄物などの廃棄物を熱分解して生成ガス(熱分解ガス及びチャー)を生成するガス化炉と、生成ガスがガス化炉と連結されたガスダクトによって生成ガス導入口から導入され、この生成ガス中の熱分解ガス(可燃性ガス)を燃焼させるとともに、該生成ガス中の灰分を溶融スラグ化する溶融炉とを備えている。   The gasification and melting equipment is the equipment that forms the center of the gasification and melting facility. In general, gasification and pyrolysis gas is generated by pyrolyzing waste such as municipal waste and industrial waste. The product gas is introduced from the furnace and the gas duct connected to the gasification furnace through the product gas inlet, and the pyrolysis gas (combustible gas) in the product gas is combusted and the ash content in the product gas is molten slag. And a melting furnace.

この種のガス化溶融設備では、図7及び図8に示すように、溶融炉80の一次燃焼室82の上部内壁(溶融炉80の炉頂部内壁)にクリンカ84が付着しやすい。このクリンカ84が成長すると、ガスダクト86から前記一次燃焼室82内に導入される生成ガスの適正な燃焼に必要な当該生成ガスの滞留時間を保てなくなって燃焼効率が低下したり、前記一次燃焼室82の室内形状を適正に保てず一次燃焼室内での旋回生成ガス流が阻害されてスラグ化率(生成ガス中の灰分の捕集率)が低下したりする。また、ガス化溶融設備では、前記クリンカ84が成長して前記一次燃焼室82を閉塞したり、クリンカ84の落下による溶融炉80の損傷やスラグ出滓口の閉塞が発生したりするおそれがある。   In this type of gasification and melting equipment, as shown in FIGS. 7 and 8, the clinker 84 is likely to adhere to the upper inner wall of the primary combustion chamber 82 of the melting furnace 80 (the inner wall at the top of the melting furnace 80). When this clinker 84 grows, the residence time of the product gas necessary for proper combustion of the product gas introduced from the gas duct 86 into the primary combustion chamber 82 cannot be maintained, and the combustion efficiency is lowered or the primary combustion is performed. The indoor shape of the chamber 82 cannot be maintained properly, and the swirl generation gas flow in the primary combustion chamber is hindered, and the slag conversion rate (the collection rate of ash in the generated gas) decreases. Further, in the gasification and melting facility, the clinker 84 may grow and block the primary combustion chamber 82, or the melting furnace 80 may be damaged or the slag outlet may be blocked due to the clinker 84 falling. .

従来、前記のようなガス化溶融炉設備の溶融炉において前記クリンカの付着を防止するための技術が、特許文献1に記載されている。この特許文献1に記載される溶融炉は、一次燃焼室を構成する側壁及び天井壁と、これらの側壁及び天井壁にそれぞれ設けられ、先端部が開口する複数の燃焼用ガス供給ノズルとを備える。これらの燃焼用ガス供給ノズルから前記一次燃焼室内に燃焼用ガス(燃焼用空気)が吹き込まれることにより、この燃焼用ガスと生成ガスとの混合をより促進して速やかに昇温することが可能となり、これによって、溶融炉の一次燃焼室の上部内壁へのクリンカの付着が防止される。   Conventionally, Patent Document 1 discloses a technique for preventing the clinker from adhering in the melting furnace of the gasification melting furnace equipment as described above. The melting furnace described in Patent Document 1 includes a side wall and a ceiling wall that constitute a primary combustion chamber, and a plurality of combustion gas supply nozzles that are respectively provided on the side wall and the ceiling wall and that open at the tip. . Combustion gas (combustion air) is blown into the primary combustion chamber from these combustion gas supply nozzles, so that the mixing of the combustion gas and the product gas can be further promoted to quickly raise the temperature. This prevents the clinker from adhering to the upper inner wall of the primary combustion chamber of the melting furnace.

しかし、この溶融炉では、溶融炉の一次燃焼室の上部内壁へのクリンカの付着を防止するにあたり、溶融炉の一次燃焼用の燃焼用空気を供給する燃焼用空気供給ノズルを設ける位置についてさらに改善の余地がある。
特開2003−4214号公報(全文)
However, in this melting furnace, in order to prevent the clinker from adhering to the upper inner wall of the primary combustion chamber of the melting furnace, the position where the combustion air supply nozzle for supplying combustion air for the primary combustion of the melting furnace is further improved. There is room for.
JP 2003-4214 A (full text)

本発明の目的は、ガス化炉及び溶融炉と、これらを連結するガスダクトとを備えたガス化溶融設備において、溶融炉の一次燃焼室の上部内壁へのクリンカの付着をより有効に防止することを可能にするガス化溶融設備及びガス化溶融設備の溶融炉燃焼用空気供給方法を提供することにある。   An object of the present invention is to more effectively prevent clinker from adhering to the upper inner wall of a primary combustion chamber of a melting furnace in a gasification and melting equipment including a gasification furnace and a melting furnace and a gas duct connecting them. It is an object of the present invention to provide a gasification and melting facility and an air supply method for combustion in the melting furnace of the gasification and melting facility.

前記目的を達成するための手段として、本発明に係るガス化溶融設備は、廃棄物を熱分解して生成ガスを生成するガス化炉と、生成ガス導入口を有し、この生成ガス導入口から導入される前記生成ガス中の熱分解ガスを燃焼させるとともに、該生成ガス中の灰分を溶融スラグ化するための溶融炉と、前記ガス化炉と前記溶融炉とを連結し、前記ガス化炉で生成された前記生成ガスを前記生成ガス導入口に導くガスダクトとを備える。そして、前記生成ガス導入口は、前記溶融炉の一次燃焼室の上部側壁に設けられ、前記ガスダクトにおいて前記生成ガス導入口の近傍の部位に、前記溶融炉の一次燃焼室に供給される燃焼用空気の全量の70%以上の燃焼用空気を供給する第1の燃焼用空気供給ノズルが設けられる。   As a means for achieving the above object, a gasification and melting facility according to the present invention has a gasification furnace for generating a product gas by thermally decomposing waste, and a product gas introduction port. The pyrolysis gas in the product gas introduced from the combustion gas is combusted, and a melting furnace for melting ash in the product gas into a molten slag, and the gasification furnace and the melting furnace are connected, and the gasification A gas duct for guiding the generated gas generated in a furnace to the generated gas inlet. The product gas introduction port is provided on the upper side wall of the primary combustion chamber of the melting furnace, and is used for combustion supplied to the primary combustion chamber of the melting furnace at a location near the product gas introduction port in the gas duct. A first combustion air supply nozzle that supplies combustion air of 70% or more of the total amount of air is provided.

また本発明は、廃棄物を熱分解して生成ガスを生成するガス化炉と、生成ガス導入口を有し、この生成ガス導入口から導入される前記生成ガス中の熱分解ガスを燃焼させるとともに、該生成ガス中の灰分を溶融スラグ化するための溶融炉と、前記ガス化炉と前記溶融炉とを連結し、前記ガス化炉で生成された前記生成ガスを前記生成ガス導入口に導くガスダクトとを備えたガス化溶融設備の溶融炉に燃焼用空気を供給するための方法であって、前記生成ガス導入口を前記溶融炉の一次燃焼室の上部側壁に設けること、前記ガスダクトのうち前記生成ガス導入口の近傍部位に第1の燃焼用空気供給ノズルを設けること、この第1の燃焼用空気供給ノズルから、前記溶融炉の一次燃焼室に供給される燃焼用空気の全量の70%以上の燃焼用空気を供給することを含む。   The present invention also includes a gasification furnace for pyrolyzing waste to generate a product gas and a product gas inlet, and the pyrolysis gas in the product gas introduced from the product gas inlet is burned. In addition, a melting furnace for melting ash in the generated gas into a molten slag, the gasifying furnace and the melting furnace are connected, and the generated gas generated in the gasifying furnace is connected to the generated gas inlet. A method for supplying combustion air to a melting furnace of a gasification melting facility having a gas duct for guiding, wherein the generated gas inlet is provided on an upper side wall of a primary combustion chamber of the melting furnace, Of these, the first combustion air supply nozzle is provided in the vicinity of the product gas inlet, and the total amount of combustion air supplied from the first combustion air supply nozzle to the primary combustion chamber of the melting furnace. 70% or more of combustion air Which comprises feeding.

前記ガス化溶融設備及び前記ガス化溶融設備の溶融炉燃焼用空気供給方法では、前記ガスダクトのうち、前記溶融炉の一次燃焼室の上部側壁に設けられた生成ガス導入口の近傍の部位に第1の燃焼用空気供給ノズルが設けられ、このノズルから、前記溶融炉の一次燃焼室に供給される燃焼用空気の全量の70%以上の燃焼用空気が供給されるので、前記ガス化炉から前記ガスダクトを通じて前記一次燃焼室内に導かれる生成ガスの発熱量が高い状態で、該生成ガスと、燃焼用空気全量の大部分を占める前記第1の燃焼用空気供給ノズルによる燃焼用空気とを混合させることができる。このことは、溶融炉の一次燃焼室上部の炉内温度を生成ガスに含まれる灰分の溶融温度以上に高温化して溶融炉の一次燃焼室の上部内壁へのクリンカの付着の防止を可能にする。   In the gasification and melting facility and the method for supplying air for melting furnace combustion in the gasification and melting facility, the gas duct is provided with a portion near a generated gas inlet provided in an upper side wall of a primary combustion chamber of the melting furnace. 1 combustion air supply nozzle is provided, from which 70% or more of the combustion air supplied to the primary combustion chamber of the melting furnace is supplied from the gasification furnace. The generated gas and the combustion air from the first combustion air supply nozzle occupying most of the combustion air are mixed in a state where the heat generation amount of the generated gas introduced into the primary combustion chamber through the gas duct is high. Can be made. This makes it possible to prevent the clinker from adhering to the upper inner wall of the primary combustion chamber of the melting furnace by raising the temperature inside the primary combustion chamber of the melting furnace to be higher than the melting temperature of ash contained in the product gas. .

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の一実施形態によるガス化溶融設備の全体構成を示す図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of a gasification melting facility according to an embodiment of the present invention.

図1〜図5に示されるガス化溶融設備10は、流動床式ガス化炉20と、旋回流溶融炉30と、ガスダクト40とを備える。前記流動床式ガス化炉20内では、廃棄物Aの熱分解により熱分解ガス及びチャーを含む生成ガスBが生成される。旋回流溶融炉30は、生成ガス導入口33を有し、この生成ガス導入口33内から当該旋回流溶融炉30内に前記流動床式ガス化炉20からの生成ガスBが導入される。旋回流溶融炉30内では、前記生成ガスB中の熱分解ガス(可燃性ガス)が燃焼するとともに、該生成ガスB中の灰分が溶融スラグ化される。前記ガスダクト40は、前記流動床式ガス化炉20と前記旋回流溶融炉30とを連結し、流動床式ガス化炉20で生成された生成ガスBを前記旋回流溶融炉30の生成ガス導入口33に導く。   The gasification and melting equipment 10 shown in FIGS. 1 to 5 includes a fluidized bed gasification furnace 20, a swirling flow melting furnace 30, and a gas duct 40. In the fluidized bed gasification furnace 20, a product gas B containing pyrolysis gas and char is generated by thermal decomposition of the waste A. The swirling flow melting furnace 30 has a product gas introduction port 33, and the product gas B from the fluidized bed gasification furnace 20 is introduced into the swirl flow melting furnace 30 from the product gas introduction port 33. In the swirl-flow melting furnace 30, the pyrolysis gas (combustible gas) in the product gas B burns, and the ash in the product gas B is melted into slag. The gas duct 40 connects the fluidized bed gasification furnace 20 and the swirling flow melting furnace 30, and introduces the generated gas B generated in the fluidized bed gasification furnace 20 into the swirling flow melting furnace 30. Guide to mouth 33.

旋回流溶融炉30は、一次燃焼室31と二次燃焼室32とを有している。流動床式ガス化炉20からの生成ガスBは、ガスダクト40を通して旋回流溶融炉30の一次燃焼室31に供給されて該一次燃焼室31内で旋回流を形成する。一次燃焼室31は天井壁を有し、その頂部には(図では1個の)第2の燃焼用空気供給ノズル34が設けられている。この第2の燃焼用空気供給ノズル34は、開口する先端部を有し、その先端部から一次燃焼室31内に燃焼用空気f2を吹き込む。   The swirling flow melting furnace 30 has a primary combustion chamber 31 and a secondary combustion chamber 32. The product gas B from the fluidized bed gasification furnace 20 is supplied to the primary combustion chamber 31 of the swirling flow melting furnace 30 through the gas duct 40 to form a swirling flow in the primary combustion chamber 31. The primary combustion chamber 31 has a ceiling wall, and a second combustion air supply nozzle 34 (one in the figure) is provided at the top thereof. The second combustion air supply nozzle 34 has a tip portion that opens, and blows combustion air f2 into the primary combustion chamber 31 from the tip portion.

図2〜図4は前記ガスダクト40及び前記旋回流溶融炉30の要部を示す図であって、図2は平面図、図3は図2におけるIII矢視側面図、図4は図2におけるIV矢視側面図である。   2 to 4 are views showing the main parts of the gas duct 40 and the swirling flow melting furnace 30, wherein FIG. 2 is a plan view, FIG. 3 is a side view taken along arrow III in FIG. 2, and FIG. It is IV arrow side view.

図2に示すように、前記生成ガス導入口33は、旋回流溶融炉30の一次燃焼室31の上部側壁に設けられ、この生成ガス導入口33に前記ガスダクト40が接続されている。そして、このガスダクト40のうち前記生成ガス導入口33の近傍の部位に、複数(図では6個)の第1の燃焼用空気供給ノズル41a〜41c及び42a〜42cが設けられている。これら第1の燃焼用空気供給ノズル41a〜41c,42a〜42cは、開口する先端部を有し、その先端部から一次燃焼室31内に燃焼用空気f1を吹き込むものであり、前記生成ガスBの流れ方向に沿うように傾斜した姿勢で設けられている(図2参照)。   As shown in FIG. 2, the product gas introduction port 33 is provided in the upper side wall of the primary combustion chamber 31 of the swirling flow melting furnace 30, and the gas duct 40 is connected to the product gas introduction port 33. A plurality (six in the figure) of first combustion air supply nozzles 41 a to 41 c and 42 a to 42 c are provided in a portion of the gas duct 40 near the product gas inlet 33. These first combustion air supply nozzles 41a to 41c, 42a to 42c have leading end portions that open, and blow combustion air f1 into the primary combustion chamber 31 from the leading end portions, and the generated gas B It is provided with the attitude | position inclined so that the flow direction of this may be followed (refer FIG. 2).

より具体的に、前記第1の燃焼用空気供給ノズル41a〜41cは、前記ガスダクト40の外側の側壁43(ダクト幅中心線CLを挟んで対向する一方のガスダクト側壁部位)に、互いに上下に並ぶように配設され、この外側の側壁43から前記生成ガスBの流れ方向に沿うように傾斜しながら燃焼用空気を供給するように配設される。これに対して前記第1の燃焼用空気供給ノズル42a〜42cは、前記ガスダクト40の内側の側壁44(ダクト幅中心線CLを挟んで対向する他方のガスダクト側壁部位)に、互いに上下に並ぶように配設され、この内側の側壁44から前記生成ガスBの流れ方向に沿うように傾斜しながら燃焼用空気を供給するように配設される。   More specifically, the first combustion air supply nozzles 41a to 41c are arranged one above the other on the side wall 43 on the outer side of the gas duct 40 (one gas duct side wall portion facing the duct width center line CL). It arrange | positions so that combustion air may be supplied from this outer side wall 43, inclining so that the flow direction of the said production | generation gas B may be followed. On the other hand, the first combustion air supply nozzles 42a to 42c are arranged vertically on the side wall 44 (the other gas duct side wall portion facing the duct width center line CL) inside the gas duct 40. It is arrange | positioned so that combustion air may be supplied from this inner side wall 44, inclining so that the flow direction of the said production | generation gas B may be followed.

図5は、図3のV−V線断面図である。この図5に示すように、第1の燃焼用空気供給ノズル41aは、一次燃焼室31上部の炉内温度(室内温度)を高温化するため、平面視において生成ガス導入口33の近傍におけるガスダクト40のダクト幅中心線CLと生成ガス導入口33との交点位置P1に向けて燃焼用空気f1を吹き込むように設けられている。すなわち、平面視において前記第1の燃焼用空気供給ノズル41aの軸線の延長線が前記交点位置P1を通過するように、同ノズル41aの位置が決められている。   5 is a cross-sectional view taken along line VV in FIG. As shown in FIG. 5, the first combustion air supply nozzle 41a raises the furnace temperature (indoor temperature) above the primary combustion chamber 31, so that the gas duct in the vicinity of the product gas inlet 33 in a plan view. Combustion air f <b> 1 is blown toward the intersection position P <b> 1 between the 40 duct width center line CL and the product gas introduction port 33. That is, the position of the nozzle 41a is determined so that the extension line of the axis of the first combustion air supply nozzle 41a passes through the intersection position P1 in plan view.

仮に、前記第1の燃焼用空気供給ノズル41aが、平面視において前記交点位置P1より上流の位置(例えば位置P2)に向けて燃焼用空気f1を吹き込むように設けられている場合には、ガスダクト40内の温度が上昇して当該ガスダクト40がクリンカにより閉塞するおそれがある。逆に、前記第1の燃焼用空気供給ノズル41aが、平面視において前記交点位置P1より下流の位置(例えば位置P3)に向けて燃焼用空気f1を吹き込むように設けられている場合には、燃焼用空気が混合された生成ガスBが一次燃焼室31の内壁に衝突するまでの燃焼時間が不足するため、一次燃焼室31上部の炉内温度を高温化する効果が得られにくくなる。   If the first combustion air supply nozzle 41a is provided so as to blow combustion air f1 toward a position upstream of the intersection position P1 (for example, position P2) in plan view, a gas duct is provided. There is a possibility that the temperature inside the gas 40 rises and the gas duct 40 is blocked by the clinker. Conversely, when the first combustion air supply nozzle 41a is provided so as to blow combustion air f1 toward a position downstream of the intersection position P1 (for example, position P3) in plan view, Since the combustion time until the product gas B mixed with the combustion air collides with the inner wall of the primary combustion chamber 31 is insufficient, it is difficult to obtain the effect of increasing the furnace temperature above the primary combustion chamber 31.

また、前記第1の燃焼用空気供給ノズル41aが、平面視において前記交点位置P1に対してダクト幅中心線CLより外側の位置(例えば位置P4)に向けて燃焼用空気f1を吹き込むように設けられている場合には、燃焼用空気が混合された生成ガスBが一次燃焼室31内壁に衝突するまでの燃焼時間が不足するため、一次燃焼室31上部の炉内温度を高温化する効果が得られにくい。一方、前記第1の燃焼用空気供給ノズル41aが、平面視において前記交点位置P1に対してダクト幅中心線CLより内側の位置(例えば位置P5)に向けて燃焼用空気f1を吹き込むように設けられている場合には、この燃焼用空気f1が一次燃焼室31内の旋回流の流れを妨げることによりスラグ化率(灰分の捕集率)を低下させるおそれがある。   Further, the first combustion air supply nozzle 41a is provided so as to blow combustion air f1 toward a position (for example, position P4) outside the duct width center line CL with respect to the intersection position P1 in plan view. In this case, since the combustion time until the product gas B mixed with the combustion air collides with the inner wall of the primary combustion chamber 31 is insufficient, there is an effect of increasing the furnace temperature above the primary combustion chamber 31. It is difficult to obtain. On the other hand, the first combustion air supply nozzle 41a is provided so as to blow combustion air f1 toward a position (for example, position P5) inside the duct width center line CL with respect to the intersection position P1 in plan view. If this is the case, the combustion air f <b> 1 may hinder the flow of the swirling flow in the primary combustion chamber 31, thereby reducing the slag conversion rate (ash content collection rate).

したがって、第1の燃焼用空気供給ノズル41aは、前述したように、平面視においてダクト幅中心線CLと生成ガス導入口33との交点位置P1に向けて燃焼用空気f1を吹き込むように設けられることが好ましい。この点は、他の燃焼用空気供給ノズル41b,41c及び42a〜42cについても、同様である。かかる理由により、この実施の形態に係る燃焼用空気供給ノズル41a〜41cは、前記ダクト幅中心線CLよりも外側のガスダクト側壁43に設けられてこの側壁43から前記交点位置P1に向けて燃焼用空気を吹き込むように配置される一方、燃焼用空気供給ノズル42a〜42cは、前記ダクト幅中心線CLよりも内側のガスダクト側壁44に設けられてこの側壁44から前記交点位置P1に向けて燃焼用空気を吹き込むように配置されている。   Therefore, as described above, the first combustion air supply nozzle 41a is provided so as to blow the combustion air f1 toward the intersection position P1 between the duct width center line CL and the product gas introduction port 33 in plan view. It is preferable. This also applies to the other combustion air supply nozzles 41b, 41c and 42a to 42c. For this reason, the combustion air supply nozzles 41a to 41c according to this embodiment are provided on the gas duct side wall 43 outside the duct width center line CL, and are used for combustion from the side wall 43 toward the intersection point P1. On the other hand, the combustion air supply nozzles 42a to 42c are arranged on the gas duct side wall 44 inside the duct width center line CL, and are arranged for combustion from the side wall 44 toward the intersection point P1. It is arranged to blow air.

この旋回流溶融炉30は、一次燃焼室の上部に複数の燃焼用空気供給ノズルが分散して設けられる従来の溶融炉とは違って、ガス化溶融設備10において、旋回流溶融炉30の一次燃焼室31の上部側壁に設けられた生成ガス導入口33の近傍におけるガスダクト40に設けた第1の燃焼用空気供給ノズル41a〜41c,42a〜42c、及び、一次燃焼室31の天井壁に設けた第2の燃焼用空気供給ノズル34のみにより、旋回流溶融炉30の一次燃焼室用の燃焼用空気を供給するように構成されている。そして、前記第1の燃焼用空気供給ノズル41a〜41c,42a〜42cによる燃焼用空気供給量と、前記第2の燃焼用空気供給ノズル34による燃焼用空気供給量との配分比率については、前記第1の燃焼用空気供給ノズル41a〜41c,42a〜42cが前記一次燃焼室31に供給される燃焼用空気の全量の70%以上の燃焼用空気を供給するように、設定されている。   Unlike the conventional melting furnace in which a plurality of combustion air supply nozzles are dispersedly provided in the upper part of the primary combustion chamber, the swirling flow melting furnace 30 is the primary of the swirling flow melting furnace 30 in the gasification melting facility 10. The first combustion air supply nozzles 41 a to 41 c and 42 a to 42 c provided in the gas duct 40 in the vicinity of the generated gas inlet 33 provided in the upper side wall of the combustion chamber 31, and the ceiling wall of the primary combustion chamber 31 are provided. Only the second combustion air supply nozzle 34 is configured to supply combustion air for the primary combustion chamber of the swirling flow melting furnace 30. The distribution ratio between the combustion air supply amount by the first combustion air supply nozzles 41a to 41c and 42a to 42c and the combustion air supply amount by the second combustion air supply nozzle 34 is as described above. The first combustion air supply nozzles 41 a to 41 c and 42 a to 42 c are set so as to supply combustion air that is 70% or more of the total amount of combustion air supplied to the primary combustion chamber 31.

図6は、旋回流溶融炉30の一次燃焼室用の燃焼用空気全量に対するガスダクト40に設けた第1の燃焼用空気供給ノズルによる燃焼用空気供給量の配分比率ηと、一次燃焼室上部の炉内温度Tとの関係を示すグラフである。   6 shows the distribution ratio η of the combustion air supply amount by the first combustion air supply nozzle provided in the gas duct 40 with respect to the total amount of combustion air for the primary combustion chamber of the swirling flow melting furnace 30, and the upper part of the primary combustion chamber. It is a graph which shows the relationship with the furnace temperature T.

図6に示すように、前記配分比率ηが46%では炉内温度Tの実測値が1015℃〜1149℃(平均値1082℃)であり、当該配分比率ηが63%では炉内温度Tの実測値が1154℃〜1198℃(平均値1176℃)であり、当該配分比率ηが84%では炉内温度Tの実測値が1165℃〜1238℃(平均値1201℃)であった。この試験結果から、配分比率ηが70%以上であれば、一次燃焼室上部の炉内温度Tを、チャーに含まれる灰分の融点以上の温度である1200℃を超えるように昇温できるという結論が得られた。すなわち、図6に示す結果によると、配分比率ηは70%以上を満たすように設定するとよいことがわかった。   As shown in FIG. 6, when the distribution ratio η is 46%, the measured value of the furnace temperature T is 1015 ° C. to 1149 ° C. (average value 1082 ° C.), and when the distribution ratio η is 63%, the furnace temperature T The actually measured values were 1154 ° C. to 1198 ° C. (average value 1176 ° C.), and when the distribution ratio η was 84%, the actually measured values of the furnace temperature T were 1165 ° C. to 1238 ° C. (average value 1201 ° C.). From this test result, it is concluded that if the distribution ratio η is 70% or more, the furnace temperature T in the upper part of the primary combustion chamber can be raised to exceed 1200 ° C. which is a temperature equal to or higher than the melting point of ash contained in the char. was gotten. That is, according to the result shown in FIG. 6, it was found that the distribution ratio η should be set to satisfy 70% or more.

なお、前記流動床式ガス化炉20における燃焼用空気量(図1に示す押込み空気Eの空気量)、並びに、第1の燃焼用空気供給ノズル41a〜41c,42a〜42c及び第2の燃焼用空気供給ノズル34が供給する一次燃焼室用の燃焼用空気量は、いずれも、空気比(空気比は、原料である廃棄物中の可燃物が完全燃焼するのに最低限必要な空気量に対して供給する空気量の比である)にして1.0〜1.2が適正である。これは、固体燃料とガス燃料の混合物である生成ガスを効率良く燃焼させるためであり、該空気比が低くても、あるいは高くても、一次燃焼室上部における必要な炉内温度が得られない。また、第1及び第2の燃焼用空気供給ノズルによって供給する一次燃焼室用の燃焼用空気の流速は、ブロワ能力と配管設計で決定されるが、例えば30〜100m/sといった比較的高い流速が、燃焼用空気と生成ガスとの混合を促進して燃焼効率を高くする。   It should be noted that the amount of combustion air in the fluidized bed gasifier 20 (the amount of the pushing air E shown in FIG. 1), the first combustion air supply nozzles 41a to 41c, 42a to 42c, and the second combustion. The amount of combustion air for the primary combustion chamber supplied by the air supply nozzle 34 is the air ratio (the air ratio is the minimum amount of air required for complete combustion of the combustible material in the waste material. 1.0 to 1.2 is appropriate. This is to efficiently burn the product gas, which is a mixture of solid fuel and gas fuel, and even if the air ratio is low or high, the required furnace temperature in the upper part of the primary combustion chamber cannot be obtained. . The flow rate of the combustion air for the primary combustion chamber supplied by the first and second combustion air supply nozzles is determined by the blower capacity and the piping design, but is relatively high, for example, 30 to 100 m / s. However, mixing of combustion air and product gas is promoted to increase combustion efficiency.

また、流動床式ガス化炉20から旋回流溶融炉30への生成ガスの供給速度は、15〜25m/s(より好ましくは、18〜20m/s)に設定されるのが、よい。生成ガスの供給速度は高い方がよいが、高すぎると旋回流溶融炉30の一次燃焼室31内壁への衝突圧が過度に上昇してクリンカの付着を誘起するため、最大でも前記の25m/sに規制することがよい。   Further, the supply speed of the product gas from the fluidized bed gasification furnace 20 to the swirling flow melting furnace 30 is preferably set to 15 to 25 m / s (more preferably 18 to 20 m / s). Although it is preferable that the supply speed of the product gas is high, if the pressure is too high, the collision pressure against the inner wall of the primary combustion chamber 31 of the swirling flow melting furnace 30 increases excessively and induces clinker adhesion. It is good to restrict to s.

次に、前記のように構成されたガス化溶融設備10を用いたガス化溶融設備の溶融炉燃焼用空気供給方法について説明する。   Next, a method for supplying air for melting furnace combustion in a gasification and melting facility using the gasification and melting facility 10 configured as described above will be described.

流動床式ガス化炉20内では、炉床下部から挿入される押込み空気Eが砂等の流動媒体Cを流動させることにより流動層を形成する。そして、この流動床式ガス化炉20内に投入された廃棄物Aが前記流動層内で熱分解(ガス化)される。この廃棄物Aのうちガス化されない不燃物Dは、前記流動層の下部から炉外に排出される。   In the fluidized bed gasification furnace 20, the pushing air E inserted from the bottom of the hearth causes the fluidized medium C such as sand to flow to form a fluidized bed. And the waste A thrown into this fluidized bed type gasification furnace 20 is thermally decomposed (gasified) in the said fluidized bed. Among the waste A, the non-combustible material D that is not gasified is discharged from the lower part of the fluidized bed to the outside of the furnace.

前記流動床式ガス化炉20で生成した生成ガス(熱分解ガス及びチャー)Bは、ガスダクト40によって旋回流溶融炉30の生成ガス導入口33に導かれる。この生成ガスBは、生成ガス導入口33の近傍においてガスダクト40に設けられた第1の燃焼用空気供給ノズル41a〜41c,42a〜42cからの一次燃焼室用の燃焼用空気f1と混合されながら、生成ガス導入口33から旋回流溶融炉30の一次燃焼室31に導入され、一次燃焼室31内にて旋回流を形成し、さらに、一次燃焼室31の天井壁に設けられた第2の燃焼用空気供給ノズル34からの一次燃焼室用の燃焼用空気f2と混合され、一次燃焼室31内にて燃焼される。このとき、一次燃焼室用の燃焼用空気f1,f2の供給に際し、第1の燃焼用空気供給ノズル41a〜41c,42a〜42cにより、旋回流溶融炉30の一次燃焼室用の燃焼用空気全量の70%以上、例えば75%の燃焼用空気が供給される。   The product gas (pyrolysis gas and char) B generated in the fluidized bed gasification furnace 20 is guided to the product gas inlet 33 of the swirling flow melting furnace 30 by the gas duct 40. The generated gas B is mixed with the combustion air f1 for the primary combustion chamber from the first combustion air supply nozzles 41a to 41c and 42a to 42c provided in the gas duct 40 in the vicinity of the generated gas introduction port 33. The product gas introduction port 33 is introduced into the primary combustion chamber 31 of the swirling flow melting furnace 30 to form a swirling flow in the primary combustion chamber 31, and further, a second provided on the ceiling wall of the primary combustion chamber 31. It is mixed with the combustion air f2 for the primary combustion chamber from the combustion air supply nozzle 34 and burned in the primary combustion chamber 31. At this time, when supplying the combustion air f1, f2 for the primary combustion chamber, the total amount of combustion air for the primary combustion chamber of the swirling flow melting furnace 30 by the first combustion air supply nozzles 41a-41c, 42a-42c. 70% or more, for example, 75% of the combustion air is supplied.

この方法は、流動床式ガス化炉20からガスダクト40によって一次燃焼室31に導かれる生成ガスBの発熱量が高い状態で、該生成ガスBと、燃焼用空気全量の大部分を占める第1の燃焼用空気供給ノズル41a〜41c,42a〜42cによる燃焼用空気f1とを混合させ、該生成ガスBを一気に燃焼させることを可能にする。このことは、一次燃焼室31上部の炉内温度をチャーに含まれる灰分の溶融温度1200℃以上に高温化して一次燃焼室31の上部内壁へのクリンカの付着を防止することを可能にする。   In this method, the generated gas B introduced from the fluidized bed gasifier 20 to the primary combustion chamber 31 by the gas duct 40 has a high calorific value, and the generated gas B and the first amount occupying most of the combustion air. The combustion air f1 produced by the combustion air supply nozzles 41a to 41c and 42a to 42c is mixed, and the product gas B can be burned at once. This makes it possible to prevent the clinker from adhering to the upper inner wall of the primary combustion chamber 31 by increasing the furnace temperature above the primary combustion chamber 31 to a melting temperature of 1200 ° C. or higher in the ash contained in the char.

溶融された灰分は、一次燃焼室31の内壁を伝わって流下し、一次燃焼室31下部で溶融される灰分とともに旋回流溶融炉底部(スラグ分離部)を流れ下って、スラグ出滓口35から溶融スラグHとして外部に排出される。また、一次燃焼室31から二次燃焼室32に導かれた生成ガスは、二次燃焼室32にて二次燃焼室用の燃焼用空気Gと混合されて完全燃焼される。二次燃焼室32で完全燃焼された後の燃焼排ガスJは、旋回流溶融炉30から排出され、熱回収装置、バグフィルタ等を経た後、大気中に放出される。   The melted ash flows down along the inner wall of the primary combustion chamber 31, flows down the swirl flow melting furnace bottom (slag separation unit) together with the ash melted at the lower portion of the primary combustion chamber 31, and passes through the slag outlet 35. The molten slag H is discharged to the outside. Further, the product gas introduced from the primary combustion chamber 31 to the secondary combustion chamber 32 is mixed with the combustion air G for the secondary combustion chamber in the secondary combustion chamber 32 and completely burned. The combustion exhaust gas J after being completely burned in the secondary combustion chamber 32 is discharged from the swirling flow melting furnace 30, passes through a heat recovery device, a bag filter, and the like, and then is released into the atmosphere.

このように、本発明によるガス化溶融設備の溶融炉燃焼用空気供給方法によれば、旋回流溶融炉30の一次燃焼室31の上部内壁へのクリンカの付着を防止することができる。したがって、クリンカの落下による旋回流溶融炉30の損傷やスラグ出滓口35の閉塞の防止、クリンカの成長による旋回流溶融炉30の一次燃焼室31の閉塞の防止、及びクリンカの付着・成長による燃焼効率の低下とスラグ化率の低下の防止が可能となり、その結果、ガス化溶融設備10の適正な状態での安定した運転を長期間にわたって行うことが可能となる。   Thus, according to the method for supplying air for melting furnace combustion in the gasification melting facility according to the present invention, it is possible to prevent clinker from adhering to the upper inner wall of the primary combustion chamber 31 of the swirling flow melting furnace 30. Accordingly, the swirling flow melting furnace 30 is prevented from being damaged and the slag outlet 35 is blocked by the clinker dropping, the primary combustion chamber 31 is prevented from being blocked by the clinker growth, and the clinker is attached and grown. It is possible to prevent a decrease in combustion efficiency and a decrease in the slag rate, and as a result, it is possible to perform a stable operation of the gasification melting facility 10 in an appropriate state for a long period of time.

すなわち、本発明に係るガス化溶融設備及びガス化溶融設備の溶融炉燃焼用空気供給方法によれば、前記溶融炉の一次燃焼室の上部側壁に設けられた生成ガス導入口の近傍におけるガスダクトに第1の燃焼用空気供給ノズルが設けられ、このノズルから前記溶融炉の一次燃焼室に供給される燃焼用空気の全量の70%以上の燃焼用空気が供給されることが、前記ガス化炉から前記ガスダクトを通じて前記一次燃焼室内に導かれる生成ガスの発熱量が高い状態で、該生成ガスと、燃焼用空気全量の大部分を占める前記第1の燃焼用空気供給ノズルによる燃焼用空気とを混合させることを可能にし、これにより、溶融炉の一次燃焼室上部の炉内温度を生成ガスに含まれる灰分の溶融温度以上に高温化して溶融炉の一次燃焼室の上部内壁へのクリンカの付着を防止することを可能にする。このことは、クリンカの落下による溶融炉の損傷やスラグ出滓口の閉塞の防止、クリンカの成長による溶融炉の一次燃焼室の閉塞の防止、及び、クリンカの付着・成長による燃焼効率の低下とスラグ化率の低下の防止を可能にし、その結果、ガス化溶融設備の適正な状態での安定した運転を長期間にわたって行うことを可能にする。   That is, according to the gasification and melting equipment and the gas supply and melting method of the gasification and melting equipment according to the present invention, the gas duct in the vicinity of the product gas inlet provided on the upper side wall of the primary combustion chamber of the melting furnace is provided. The gasification furnace is provided with a first combustion air supply nozzle and 70% or more of the combustion air supplied from the nozzle to the primary combustion chamber of the melting furnace is supplied. The generated gas and the combustion air from the first combustion air supply nozzle occupying most of the total amount of combustion air in a state where the heat generation amount of the generated gas introduced into the primary combustion chamber through the gas duct is high This makes it possible to increase the temperature in the upper part of the primary combustion chamber of the melting furnace to be higher than the melting temperature of the ash contained in the product gas, and to clean the upper inner wall of the primary combustion chamber of the melting furnace. It makes it possible to prevent adhesion. This means that the melting furnace is prevented from being damaged and the slag outlet is blocked due to the clinker falling, the primary combustion chamber from being blocked due to the clinker growth, and the combustion efficiency is reduced due to the adhesion and growth of the clinker. It is possible to prevent a reduction in the slag rate, and as a result, it is possible to perform a stable operation in an appropriate state of the gasification melting equipment for a long period of time.

ここで、前記第1の燃焼用空気供給ノズルは、平面視において前記生成ガス導入口の近傍における前記ガスダクトのダクト幅中心線と前記生成ガス導入口との交点位置に向けて燃焼用空気を吹き込むように設けられることが、より好ましい。このことは、ガスダクト内の温度が上昇して当該ガスダクトがクリンカで閉塞するのを防ぎながら、燃焼用空気を含む生成ガスが一次燃焼室の内壁に衝突するまでの燃焼時間を確保して一次燃焼室の上部の炉内温度を高温化することを可能にする。   Here, the first combustion air supply nozzle blows combustion air toward the intersection of the duct width center line of the gas duct and the product gas introduction port in the vicinity of the product gas introduction port in a plan view. It is more preferable that they are provided. This means that the combustion time until the generated gas containing the combustion air collides with the inner wall of the primary combustion chamber is secured while preventing the temperature of the gas duct from rising and clogging with the clinker. It is possible to increase the temperature in the furnace at the top of the chamber.

この場合において、前記第1の燃焼用空気供給ノズルは、前記ダクト幅中心線に沿うように傾斜しながら前記交点位置に向けて燃焼用空気を吹き込む姿勢で前記ガスダクトに設けられていることが、より好ましい。このことは、当該ノズルから前記一次燃焼室内への円滑な燃焼用空気の供給を可能にする。   In this case, the first combustion air supply nozzle is provided in the gas duct in a posture in which combustion air is blown toward the intersection position while inclining along the duct width center line. More preferred. This enables a smooth supply of combustion air from the nozzle into the primary combustion chamber.

さらに、前記第1の燃焼用空気供給ノズルには、前記ダクト幅中心線よりも外側のガスダクト側壁に設けられてこの側壁から前記交点位置に向けて燃焼用空気を吹き込むノズルと、前記ダクト幅中心線よりも内側のガスダクト側壁に設けられてこの側壁から前記交点位置に向けて燃焼用空気を吹き込むノズルとが含まれることが、より好ましい。このことは、前記ガスダクトの両側壁から前記交点位置に向けて十分な量の燃焼用空気を供給することを可能にする。しかも、各第1の燃焼用空気供給ノズルは前記ダクト幅中心線に沿うように傾斜しながら燃焼用空気を供給するように設けられているので、外側の側壁から供給される燃焼用空気と内側の側壁から供給される燃焼用空気とが互いに干渉する要素が少ない。   Further, the first combustion air supply nozzle includes a nozzle that is provided on a gas duct side wall outside the duct width center line and blows combustion air from the side wall toward the intersection point, and the duct width center. More preferably, a nozzle provided on the side wall of the gas duct inside the line and injecting combustion air from the side wall toward the intersection point is more preferable. This makes it possible to supply a sufficient amount of combustion air from both side walls of the gas duct toward the intersection position. In addition, each of the first combustion air supply nozzles is provided so as to supply combustion air while being inclined along the duct width center line, so that the combustion air supplied from the outer side wall and the inner side There are few elements that interfere with the combustion air supplied from the side walls of the cylinder.

また本発明では、前記第1の燃焼用空気供給ノズルと、前記溶融炉の前記一次燃焼室の天井壁に設けられた第2の燃焼用空気供給ノズルとのみによって、前記溶融炉の一次燃焼室に燃焼用空気が供給されてもよい。   Further, in the present invention, the primary combustion chamber of the melting furnace is constituted only by the first combustion air supply nozzle and the second combustion air supply nozzle provided on the ceiling wall of the primary combustion chamber of the melting furnace. Combustion air may be supplied.

本発明の一実施形態に係るガス化溶融設備の全体構成を示す図である。It is a figure showing the whole gasification melting equipment composition concerning one embodiment of the present invention. 図1におけるガスダクト及び旋回流溶融炉の要部を示す平面図である。It is a top view which shows the principal part of the gas duct in FIG. 1, and a swirling flow melting furnace. 図2のIII矢視側面図である。FIG. 3 is a side view taken along the arrow III in FIG. 2. 図2のIV矢視側面図である。It is IV arrow side view of FIG. 図3のV−V線断面図である。It is the VV sectional view taken on the line of FIG. 旋回流溶融炉の一次燃焼室用の燃焼用空気全量に対するガスダクトに設けた第1の燃焼用空気供給ノズルによる燃焼用空気供給量の配分比率ηと、一次燃焼室上部の炉内温度Tとの関係を示すグラフである。The distribution ratio η of the combustion air supply amount by the first combustion air supply nozzle provided in the gas duct to the total amount of combustion air for the primary combustion chamber for the swirling flow melting furnace, and the furnace temperature T in the upper part of the primary combustion chamber It is a graph which shows a relationship. 旋回流溶融炉の一次燃焼室の上部内壁へのクリンカの付着の様子を示す平面図である。It is a top view which shows the mode of adhesion of the clinker to the upper inner wall of the primary combustion chamber of a swirling flow melting furnace. 旋回流溶融炉の一次燃焼室の上部内壁へのクリンカの付着の様子を示す側面図である。It is a side view which shows the mode of adhesion of the clinker to the upper inner wall of the primary combustion chamber of a swirling flow melting furnace.

符号の説明Explanation of symbols

10…ガス化溶融設備
20…流動床式ガス化炉
30…旋回流溶融炉
31…一次燃焼室
32…二次燃焼室
33…生成ガス導入口
34…第2の燃焼用空気供給ノズル
35…スラグ出滓口
40…ガスダクト
41a〜41c,42a〜42c…第1の燃焼用空気供給ノズル
43,44…ガスダクト側壁
A…廃棄物
B…生成ガス
C…流動媒体
D…不燃物
E…押込み空気
f1,f2…一次燃焼室用の燃焼用空気
G…二次燃焼室用の燃焼用空気
H…溶融スラグ
J…燃焼排ガス
DESCRIPTION OF SYMBOLS 10 ... Gasification melting equipment 20 ... Fluidized bed type gasification furnace 30 ... Swirling flow melting furnace 31 ... Primary combustion chamber 32 ... Secondary combustion chamber 33 ... Generated gas inlet 34 ... Second combustion air supply nozzle 35 ... Slag Outlet 40 ... Gas duct 41a-41c, 42a-42c ... First combustion air supply nozzle 43, 44 ... Gas duct side wall A ... Waste B ... Generated gas C ... Fluid medium D ... Non-combustible material E ... Pushed air f1, f2 ... Combustion air for primary combustion chamber G ... Combustion air for secondary combustion chamber H ... Molten slag J ... Combustion exhaust gas

Claims (10)

ガス化溶融設備であって、
廃棄物を熱分解して生成ガスを生成するガス化炉と、
生成ガス導入口を有し、この生成ガス導入口から導入される前記生成ガス中の熱分解ガスを燃焼させるとともに、該生成ガス中の灰分を溶融スラグ化するための溶融炉と、
前記ガス化炉と前記溶融炉とを連結し、前記ガス化炉で生成された前記生成ガスを前記生成ガス導入口に導くガスダクトとを備え、
前記生成ガス導入口は、前記溶融炉の一次燃焼室の上部側壁に設けられ、
前記ガスダクトにおいて前記生成ガス導入口の近傍の部位に、前記溶融炉の一次燃焼室に供給される燃焼用空気の全量の70%以上の燃焼用空気を供給する第1の燃焼用空気供給ノズルが設けられている、
ガス化溶融設備。
Gasification and melting equipment,
A gasifier that pyrolyzes waste to produce product gas;
A melting furnace having a product gas inlet, burning the pyrolysis gas in the product gas introduced from the product gas inlet, and slagging the ash in the product gas;
A gas duct that connects the gasification furnace and the melting furnace and guides the product gas generated in the gasification furnace to the product gas inlet;
The product gas inlet is provided on the upper side wall of the primary combustion chamber of the melting furnace,
A first combustion air supply nozzle that supplies combustion air that is 70% or more of the total amount of combustion air supplied to the primary combustion chamber of the melting furnace to a portion near the product gas inlet in the gas duct. Provided,
Gasification and melting equipment.
前記第1の燃焼用空気供給ノズルが、平面視において前記生成ガス導入口の近傍における前記ガスダクトのダクト幅中心線と前記生成ガス導入口との交点位置に向けて燃焼用空気を吹き込むように設けられている、請求項1記載のガス化溶融設備。   The first combustion air supply nozzle is provided so as to blow combustion air toward an intersection point between a duct width center line of the gas duct and the generated gas inlet in the vicinity of the generated gas inlet in a plan view. The gasification and melting equipment according to claim 1, wherein 前記第1の燃焼用空気供給ノズルが、前記ダクト幅中心線に沿うように傾斜しながら前記交点位置に向けて燃焼用空気を吹き込む姿勢で前記ガスダクトに設けられている、請求項2記載のガス化溶融設備。   3. The gas according to claim 2, wherein the first combustion air supply nozzle is provided in the gas duct in a posture in which combustion air is blown toward the intersection point while inclining along the duct width center line. Chemical melting equipment. 前記第1の燃焼用空気供給ノズルには、前記ダクト幅中心線よりも外側のガスダクト側壁に設けられてこの側壁から前記交点位置に向けて燃焼用空気を吹き込むノズルと、前記ダクト幅中心線よりも内側のガスダクト側壁に設けられてこの側壁から前記交点位置に向けて燃焼用空気を吹き込むノズルとが含まれる、請求項3記載のガス化溶融設備。   The first combustion air supply nozzle is provided on a gas duct side wall outside the duct width center line, and a nozzle for blowing combustion air from the side wall toward the intersection position, and the duct width center line 4. The gasification and melting equipment according to claim 3, further comprising a nozzle that is provided on a side wall of the inner gas duct and blows in combustion air from the side wall toward the intersection position. 前記溶融炉の前記一次燃焼室の天井壁に第2の燃焼用空気供給ノズルが設けられ、前記第1及び前記第2の燃焼用空気供給ノズルのみにより、前記溶融炉の一次燃焼室に燃焼用空気が供給される、請求項1〜4のいずれか1項に記載のガス化溶融設備。   A second combustion air supply nozzle is provided on the ceiling wall of the primary combustion chamber of the melting furnace, and the first combustion chamber is used for combustion in the primary combustion chamber of the melting furnace only by the first and second combustion air supply nozzles. The gasification melting equipment according to any one of claims 1 to 4, wherein air is supplied. 廃棄物を熱分解して生成ガスを生成するガス化炉と、生成ガス導入口を有し、この生成ガス導入口から導入される前記生成ガス中の熱分解ガスを燃焼させるとともに、該生成ガス中の灰分を溶融スラグ化するための溶融炉と、前記ガス化炉と前記溶融炉とを連結し、前記ガス化炉で生成された前記生成ガスを前記生成ガス導入口に導くガスダクトとを備えたガス化溶融設備の溶融炉に燃焼用空気を供給するための方法であって、
前記生成ガス導入口を前記溶融炉の一次燃焼室の上部側壁に設けること、
前記ガスダクトのうち前記生成ガス導入口の近傍部位に第1の燃焼用空気供給ノズルを設けること、
この第1の燃焼用空気供給ノズルから、前記溶融炉の一次燃焼室に供給される燃焼用空気の全量の70%以上の燃焼用空気を供給することを含む、
ガス化溶融設備の溶融炉燃焼用空気供給方法。
A gasification furnace for pyrolyzing waste to generate a product gas, and a product gas introduction port, the pyrolysis gas in the product gas introduced from the product gas introduction port is combusted, and the product gas A melting furnace for melting ash in the melt, and a gas duct connecting the gasification furnace and the melting furnace and guiding the generated gas generated in the gasification furnace to the generated gas inlet. A method for supplying combustion air to a melting furnace of a gasification melting facility,
Providing the product gas inlet on the upper side wall of the primary combustion chamber of the melting furnace;
Providing a first combustion air supply nozzle in the vicinity of the product gas inlet in the gas duct;
Including supplying 70% or more of combustion air from the first combustion air supply nozzle to 70% or more of the total amount of combustion air supplied to the primary combustion chamber of the melting furnace,
An air supply method for combustion in a melting furnace of a gasification melting facility.
前記第1の燃焼用空気供給ノズルにより、平面視において前記生成ガス導入口の近傍における前記ガスダクトのダクト幅中心線と前記生成ガス導入口との交点位置に向けて燃焼用空気が吹き込まれる、請求項6記載のガス化溶融設備の溶融炉燃焼用空気供給方法。   Combustion air is blown by the first combustion air supply nozzle toward the intersection of the duct width center line of the gas duct and the product gas inlet in the vicinity of the product gas inlet in plan view. Item 7. A method for supplying air for melting furnace combustion in a gasification melting facility according to Item 6. 前記第1の燃焼用空気供給ノズルが、前記ダクト幅中心線に沿うように傾斜しながら前記交点位置に向けて燃焼用空気を吹き込む姿勢で前記ガスダクトに設けられる、請求項7記載のガス化溶融設備の溶融炉燃焼用空気供給方法。   The gasification and melting according to claim 7, wherein the first combustion air supply nozzle is provided in the gas duct in a posture in which combustion air is blown toward the intersection point while inclining along the duct width center line. Method of supplying air for melting furnace combustion of equipment. 前記第1の燃焼用空気供給ノズルには、前記ダクト幅中心線よりも外側のガスダクト側壁に設けられてこの側壁から前記交点位置に向けて燃焼用空気を吹き込むノズルと、前記ダクト幅中心線よりも内側のガスダクト側壁に設けられてこの側壁から前記交点位置に向けて燃焼用空気を吹き込むノズルとが含まれる、請求項8記載のガス化溶融設備の溶融炉燃焼用空気供給方法。   The first combustion air supply nozzle is provided on a gas duct side wall outside the duct width center line, and a nozzle for blowing combustion air from the side wall toward the intersection position, and the duct width center line And a nozzle for injecting combustion air from the side wall toward the intersection position. The method for supplying air for combustion in a melting furnace of a gasification and melting facility. さらに、前記溶融炉の前記一次燃焼室の天井壁に第2の燃焼用空気供給ノズルを設けることを含み、前記第1及び前記第2の燃焼用空気供給ノズルのみにより、前記溶融炉の一次燃焼室用の燃焼用空気が供給される、請求項6〜9のいずれか1項に記載のガス化溶融設備の溶融炉燃焼用空気供給方法。   Furthermore, a second combustion air supply nozzle is provided on the ceiling wall of the primary combustion chamber of the melting furnace, and the primary combustion of the melting furnace is performed only by the first and second combustion air supply nozzles. The method for supplying air for combustion in a melting furnace of a gasification melting facility according to any one of claims 6 to 9, wherein combustion air for the chamber is supplied.
JP2008139812A 2007-06-08 2008-05-28 Gasification melting equipment and air supply method for combustion in combustion furnace of gasification melting equipment Expired - Fee Related JP5086177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139812A JP5086177B2 (en) 2007-06-08 2008-05-28 Gasification melting equipment and air supply method for combustion in combustion furnace of gasification melting equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007153059 2007-06-08
JP2007153059 2007-06-08
JP2008139812A JP5086177B2 (en) 2007-06-08 2008-05-28 Gasification melting equipment and air supply method for combustion in combustion furnace of gasification melting equipment

Publications (2)

Publication Number Publication Date
JP2009014334A true JP2009014334A (en) 2009-01-22
JP5086177B2 JP5086177B2 (en) 2012-11-28

Family

ID=40129493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139812A Expired - Fee Related JP5086177B2 (en) 2007-06-08 2008-05-28 Gasification melting equipment and air supply method for combustion in combustion furnace of gasification melting equipment

Country Status (4)

Country Link
EP (1) EP2180254B1 (en)
JP (1) JP5086177B2 (en)
KR (1) KR20100018554A (en)
WO (1) WO2008152880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011418A (en) * 2011-06-30 2013-01-17 Kawasaki Heavy Ind Ltd Melting furnace of gasifying melting equipment
JP2016125790A (en) * 2015-01-07 2016-07-11 株式会社神鋼環境ソリューション Waste disposal system and operating method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295823A (en) * 2001-03-30 2002-10-09 Hitachi Zosen Corp Burner-type ash melting furnace
JP2003004214A (en) * 2001-04-20 2003-01-08 Ebara Corp Melting furnace for gasifying melting furnace facility and method of supplying combustion gas to the melting furnace
JP2007078239A (en) * 2005-09-14 2007-03-29 Mitsubishi Heavy Ind Ltd Melting furnace of waste gasifying melting device, and control method and device for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173523A (en) * 1997-12-10 1999-06-29 Ebara Corp Method and device for treating waste through combustion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295823A (en) * 2001-03-30 2002-10-09 Hitachi Zosen Corp Burner-type ash melting furnace
JP2003004214A (en) * 2001-04-20 2003-01-08 Ebara Corp Melting furnace for gasifying melting furnace facility and method of supplying combustion gas to the melting furnace
JP2007078239A (en) * 2005-09-14 2007-03-29 Mitsubishi Heavy Ind Ltd Melting furnace of waste gasifying melting device, and control method and device for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011418A (en) * 2011-06-30 2013-01-17 Kawasaki Heavy Ind Ltd Melting furnace of gasifying melting equipment
JP2016125790A (en) * 2015-01-07 2016-07-11 株式会社神鋼環境ソリューション Waste disposal system and operating method therefor

Also Published As

Publication number Publication date
KR20100018554A (en) 2010-02-17
WO2008152880A1 (en) 2008-12-18
EP2180254A4 (en) 2014-05-07
EP2180254A1 (en) 2010-04-28
EP2180254B1 (en) 2018-09-05
JP5086177B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
CN108026458A (en) Industrial furnace is integrated with biomass gasification system
JP4126316B2 (en) Operation control method of gasification and melting system and system
EP2940386B1 (en) Waste melting furnace
JP5611418B2 (en) Combustion control method for gasification melting system and system
JP5154094B2 (en) Combustion control method for gasification melting system and system
JP5086177B2 (en) Gasification melting equipment and air supply method for combustion in combustion furnace of gasification melting equipment
JP2003004214A (en) Melting furnace for gasifying melting furnace facility and method of supplying combustion gas to the melting furnace
CN101046293B (en) Firing machine type thermal decomposition furnace
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP2010065932A (en) Device and method for controlling combustion in secondary combustion furnace for pyrolysis gas
JP6016196B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
JP2003074817A (en) Waste gasifying/melting equipment, and its operation method
JP7270193B2 (en) Gasification melting system
JP2019190730A (en) Waste gasification melting device and waste gasification melting method
JP2005213460A (en) Operation method of gasification furnace
JP2007078197A (en) Incinerator and incinerating method of waste
JP2010236733A (en) Gasification melting method and gasification melting facility for waste
JP4791157B2 (en) Waste gasification melting equipment melting furnace
JP2014190598A (en) Mixture gas blowing device, waste gasification melting furnace with the same, mixture gas blowing method, and waste gasification melting method using the same
JP5981696B2 (en) Gasification melting equipment melting furnace
JP2005187610A (en) Operation method of gasfication furnace and waste gasifying and melting furnace
JP2014190597A (en) Mixture gas blowing device, waste gasification melting furnace with the same, mixture gas blowing method, and waste gasification melting method using the same
JP2014190595A (en) Mixture gas blowing device, waste gasification melting furnace with the same, mixture gas blowing method, and waste gasification melting method using the same
JP2006207924A (en) Rotary melting furnace and its operation method
JP2018141573A (en) Burner, gasification furnace facility comprising the same, and integrated gasification combined cycle power generation facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5086177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees