JP2009013467A - Treatment liquid for chromium-less tensile film, method for forming chromium-less tensile film, and chromium-less tensile film-coated grain oriented electromagnetic steel sheet - Google Patents
Treatment liquid for chromium-less tensile film, method for forming chromium-less tensile film, and chromium-less tensile film-coated grain oriented electromagnetic steel sheet Download PDFInfo
- Publication number
- JP2009013467A JP2009013467A JP2007176395A JP2007176395A JP2009013467A JP 2009013467 A JP2009013467 A JP 2009013467A JP 2007176395 A JP2007176395 A JP 2007176395A JP 2007176395 A JP2007176395 A JP 2007176395A JP 2009013467 A JP2009013467 A JP 2009013467A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- chromium
- coating
- parts
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910000831 Steel Inorganic materials 0.000 title abstract description 13
- 239000010959 steel Substances 0.000 title abstract description 13
- 229910052742 iron Inorganic materials 0.000 claims abstract description 49
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000008119 colloidal silica Substances 0.000 claims abstract description 29
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 24
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 21
- 235000021317 phosphate Nutrition 0.000 claims abstract description 21
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 16
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 15
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 15
- 229910052788 barium Inorganic materials 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 10
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 10
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 10
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims abstract description 6
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 4
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 4
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 4
- 229910052718 tin Inorganic materials 0.000 claims abstract description 4
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims abstract description 3
- 150000001642 boronic acid derivatives Chemical class 0.000 claims abstract 2
- 238000000576 coating method Methods 0.000 claims description 92
- 239000011248 coating agent Substances 0.000 claims description 90
- 238000000137 annealing Methods 0.000 claims description 28
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 23
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 33
- 230000000694 effects Effects 0.000 abstract description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 83
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 17
- 239000010452 phosphate Substances 0.000 description 15
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 10
- 229910052698 phosphorus Inorganic materials 0.000 description 10
- 239000011574 phosphorus Substances 0.000 description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 8
- 239000011651 chromium Substances 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 239000011572 manganese Substances 0.000 description 8
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 7
- 239000004137 magnesium phosphate Substances 0.000 description 7
- 229960002261 magnesium phosphate Drugs 0.000 description 7
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 7
- 235000010994 magnesium phosphates Nutrition 0.000 description 7
- 230000001603 reducing effect Effects 0.000 description 7
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 6
- 238000010828 elution Methods 0.000 description 6
- 239000011575 calcium Substances 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 229910001510 metal chloride Inorganic materials 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 3
- 150000001845 chromium compounds Chemical class 0.000 description 3
- 229910001430 chromium ion Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- -1 boric acid compound Chemical class 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229910052839 forsterite Inorganic materials 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000221535 Pucciniales Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
- C23C22/182—Orthophosphates containing manganese cations containing also zinc cations
- C23C22/184—Orthophosphates containing manganese cations containing also zinc cations containing also nickel cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
- C23C22/188—Orthophosphates containing manganese cations containing also magnesium cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/20—Orthophosphates containing aluminium cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/22—Orthophosphates containing alkaline earth metal cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/24—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
- C23C22/33—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/74—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
本発明は、クロムレス張力被膜用処理液に関し、特に、方向性電磁鋼板表面に、クロムレス張力被膜を被覆する際に、従来、不可避的に発生していた付与張力不足と耐吸湿性の低下を効果的に防止し、クロムを含む張力被膜と同等の高い付与張力と優れた耐吸湿性を確保することができるクロムレス張力被膜用処理液に関するものである。
また、本発明は、上記クロムレス張力被膜用処理液を用いたクロムレス張力被膜の形成方法およびこの方法で形成したクロムレス張力被膜をそなえるクロムレス張力被膜付き方向性電磁鋼板に関するものである。
The present invention relates to a treatment liquid for a chromeless tension coating, and in particular, when coating a chromeless tension coating on the surface of a grain-oriented electrical steel sheet, the effect of insufficient tension applied and a decrease in moisture absorption, which have been inevitably generated in the past, are effective. The present invention relates to a treatment liquid for a chromium-less tension coating, which can prevent the damage and ensure a high applied tension equivalent to that of a tension coating containing chromium and excellent moisture absorption resistance.
The present invention also relates to a method for forming a chromeless tension coating using the chromeless tension coating treatment solution and a grain-oriented electrical steel sheet with a chromeless tension coating provided with the chromeless tension coating formed by this method.
一般に、方向性電磁鋼板においては、絶縁性、加工性および防錆性等を付与するために表面に被膜をもうける。かかる表面被膜は、最終仕上焼鈍時に形成されるフォルステライトを主体とする下地被膜とその上に形成されるリン酸塩系の上塗り被膜からなる。 In general, a grain-oriented electrical steel sheet is provided with a coating on the surface in order to provide insulation, workability, rust prevention, and the like. Such a surface film is composed of a base film mainly composed of forsterite formed at the time of final finish annealing and a phosphate-based topcoat film formed thereon.
これらの被膜は高温で形成され、しかも低い熱膨張率を持つことから室温まで下がったときの鋼板と被膜との熱膨張率の差異により鋼板に張力を付与し、鉄損を低減させる効果がある。そのため、できるだけ高い張力を鋼板に付与することが望まれている。 These coatings are formed at a high temperature and have a low coefficient of thermal expansion, so there is an effect of reducing the iron loss by applying tension to the steel sheet due to the difference in coefficient of thermal expansion between the steel sheet and the coating when lowered to room temperature. . Therefore, it is desired to apply as high tension as possible to the steel sheet.
このような要望を満たすために、従来から種々の被膜が提案されている。例えば、特許文献1には、リン酸マグネシウム、コロイド状シリカおよび無水クロム酸を主体とする被膜が、また特許文献2には、リン酸アルミニウム、コロイド状シリカおよび無水クロム酸を主体とする被膜がそれぞれ提案されている。
一方、近年の環境保全への関心の高まりにより、クロムや鉛等の有害物質を含まない製品に対する要望が高まっており、方向性電磁鋼板においてもクロムレス被膜の開発が望まれていた。しかし、クロムレス被膜の場合、著しい耐吸湿性の低下や張力付与不足による鉄損低減効果が十分でないなど品質上の問題が発生するため、クロムレスとすることができなかった。 On the other hand, due to the recent increase in interest in environmental conservation, there has been a growing demand for products that do not contain harmful substances such as chromium and lead, and the development of a chromium-less coating has also been desired for grain-oriented electrical steel sheets. However, in the case of a chromeless coating, it was not possible to achieve a chromeless coating because quality problems such as a significant decrease in moisture absorption resistance and an insufficient iron loss reduction effect due to insufficient application of tension occurred.
上述の問題を解決する方法として、特許文献3でコロイド状シリカとリン酸アルミニウム、ホウ酸および硫酸塩からなる処理液を用いた被膜形成方法が提案された。これにより、耐吸湿性や張力付与による鉄損低減効果は改善されたものの、この方法のみでは、クロムを含む被膜を形成した場合に比べると、鉄損および耐吸湿性の改善効果は十分とはいえなかった。
これを解決するために、例えば、処理液中のコロイド状シリカを増量するなどの試みがなされた。これにより、張力付与不足は解消して鉄損低減効果は増したものの、耐吸湿性はむしろ低下した。また、硫酸塩の添加量を増すことも試みられたが、この場合は、耐吸湿性は改善されるものの、張力付与不足となり鉄損低減効果が十分でなく、いずれの場合も両方の特性を同時に満足させることはできなかった。 In order to solve this problem, for example, an attempt has been made to increase the amount of colloidal silica in the treatment liquid. As a result, insufficient tension was eliminated and the iron loss reduction effect was increased, but the moisture absorption resistance was rather lowered. Although attempts have been made to increase the amount of sulfate added, in this case, although the moisture absorption resistance is improved, tension is insufficient and the effect of reducing iron loss is not sufficient. At the same time, I could not be satisfied.
これら以外にもクロムレスの被膜形成方法として、例えば特許文献4にはクロム化合物の代わりにホウ酸化合物を添加する方法が、特許文献5には酸化物コロイドを添加する方法が、特許文献6には金属有機酸塩を添加する方法が、それぞれ開示されている。しかしながら、いずれの技術を用いても、耐吸湿性と張力付与による鉄損低減効果の両者を、クロムを含む被膜を形成した場合と同レベルまで到達させるには至らず、完全な解決策とはなり得なかった。
これらの事情から、発明者らは、被膜組成を改良することにとらわれず、下地被膜の性質を特定したり、被膜を二重に形成したりして耐吸湿性と鉄損低減効果の二つ同時に満足させることを検討した。その結果、特許文献7において下地被膜の表面粗度を、また特許文献8において酸素目付量を、さらに特許文献9において下地被膜中のTi濃度をそれぞれ最適化する技術を提案した。また、特許文献10では二重に被覆する技術を提案している。
これらにより、方向性電磁鋼板に対してはクロムを含む被膜とほぼ同じレベルの被膜品質を得るに至った。
As a result, for the grain-oriented electrical steel sheet, the film quality of almost the same level as that of the film containing chromium was obtained.
しかしながら、近年、方向性電磁鋼板の特性改善が進み、従来のようにクロムレス張力被膜に最適化した下地被膜とすることが難しくなってきた。
例えば、方向性電磁鋼板の磁気特性の向上を目的として、下地被膜中のTi量の上昇を防止するために、焼鈍分離剤中に添加するTiO2量を少なくすることが、最近の傾向である。これにより、下地被膜中に含まれるTi濃度が以前の電磁鋼板と比較して低くなってきており、特許文献9に記載のTi濃度範囲を満足することが難しくなってきている。
また、できるかぎり被膜を薄くして占積率を向上させるという観点から、特許文献10に記載されているような二重被膜は行われなくなっている。
However, in recent years, the properties of grain-oriented electrical steel sheets have been improved, and it has become difficult to obtain a base coating optimized for a chromeless tension coating as in the past.
For example, for the purpose of improving the magnetic properties of grain-oriented electrical steel sheets, the recent trend is to reduce the amount of TiO 2 added to the annealing separator in order to prevent an increase in the amount of Ti in the undercoat. . As a result, the Ti concentration contained in the undercoat is becoming lower than that of the previous electrical steel sheet, and it is difficult to satisfy the Ti concentration range described in Patent Document 9.
Further, from the viewpoint of improving the space factor by making the coating as thin as possible, the double coating as described in Patent Document 10 is not performed.
本発明は、上記の実情に鑑み開発されたもので、下地被膜の性状をクロムレス張力被膜に最適化したり、上塗りを二重に施したりすることなく、優れた耐吸湿性と十分な張力付与による高い鉄損低減効果を同時に有するクロムレス張力被膜を得ることできるクロムレス張力被膜用処理液を、この処理液を用いたクロムレス張力被膜形成方法およびこの方法で形成したクロムレス張力被膜付き方向性電磁鋼板と共に提供することを目的とする。 The present invention has been developed in view of the above circumstances, and by optimizing the properties of the undercoat to a chromeless tension coating or applying a double overcoat, it has excellent moisture absorption resistance and sufficient tension. Providing a chromeless tension coating treatment solution capable of obtaining a chromeless tension coating that simultaneously has a high iron loss reduction effect, together with a chromeless tension coating method using this treatment solution, and a grain-oriented electrical steel sheet with a chromeless tension coating formed by this method The purpose is to do.
さて、上記の課題を解決すべく、本発明者らは、クロムレス被膜で所望の耐吸湿性と張力付与による鉄損低減効果を得るために種々の試みを行った。
その結果、クロム化合物の代わりに金属塩化物を用い、この金属塩化物にコロイド状シリカとリン酸塩に加えた処理液で被膜を形成することにより、方向性電磁鋼板における耐吸湿性と張力付与による鉄損低減効果とが、同時に著しく改善されることの新規知見を得た。また、この処理液に、ホウ酸塩または硫酸塩をさらに加えることで、耐吸湿性が一層向上し、下地被膜の如何にかかわらず、クロムを含む張力被膜処理液を用いた場合と同等の耐吸湿性と張力付与による鉄損低減効果が得られることも併せて知見した。
本発明は、上記の知見に立脚するものである。
Now, in order to solve the above-mentioned problems, the present inventors have made various attempts to obtain desired moisture absorption resistance and an effect of reducing iron loss by applying tension with a chromeless coating.
As a result, by using metal chloride instead of chromium compound and forming a film with the treatment solution of this metal chloride added to colloidal silica and phosphate, moisture absorption resistance and tension imparting in grain oriented electrical steel sheet The new knowledge that the iron loss reduction effect by the stencil is remarkably improved at the same time was obtained. Further, by further adding borate or sulfate to this treatment liquid, the moisture absorption resistance is further improved, and the same resistance to resistance as when using a tension film treatment liquid containing chromium, regardless of the underlying film. It was also found that the iron loss reduction effect by hygroscopicity and tension application was obtained.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は、次の通りである。 That is, the gist configuration of the present invention is as follows.
(1)固形分換算でコロイド状シリカ:20質量部に対して、Mg、Al、Ca、FeおよびMnのリン酸塩のうちから選んだ1種または2種以上:10〜80質量部と、Mg、Al、Fe、Bi、Co、Mn、Zn、Ca、Ba、SrおよびNiのうちから選んだいずれかの塩化物:3〜30質量部を配合したことを特徴とするクロムレス張力被膜用処理液。 (1) Colloidal silica in terms of solid content: 20 parts by mass, or one or more selected from Mg, Al, Ca, Fe and Mn phosphates: 10 to 80 parts by mass; Any chloride selected from Mg, Al, Fe, Bi, Co, Mn, Zn, Ca, Ba, Sr and Ni: Treatment for chromium-less tension film characterized by containing 3 to 30 parts by mass liquid.
(2)固形分換算でコロイド状シリカ:20質量部に対して、Mg、Al、Ca、FeおよびMnのリン酸塩のうちから選んだ1種または2種以上:10〜80質量部と、Mg、Al、Fe、Bi、Co、Mn、Zn、Ca、Ba、SrおよびNiのうちから選んだいずれかの塩化物:3〜30質量部ならびにLi、Na、K、Mg、Mn、Ca、Ba、Sr、Sn、Fe、Co、Ni、Cu、Zn、AlおよびBiのホウ酸塩または硫酸塩のうちから選んだ1種または2種以上:1〜10質量部を配合したことを特徴とするクロムレス張力被膜用処理液。 (2) Colloidal silica in terms of solid content: 20 parts by mass, or one or more selected from Mg, Al, Ca, Fe and Mn phosphates: 10 to 80 parts by mass; Any chloride selected from Mg, Al, Fe, Bi, Co, Mn, Zn, Ca, Ba, Sr and Ni: 3 to 30 parts by mass and Li, Na, K, Mg, Mn, Ca, One or more selected from Ba, Sr, Sn, Fe, Co, Ni, Cu, Zn, Al and Bi borate or sulfate: 1 to 10 parts by mass Treatment liquid for chromeless tension coating.
(3)(1)または(2)に記載の処理液を、最終仕上焼鈍後の方向性電磁鋼板の表面に塗布、焼付けすることを特徴とするクロムレス張力被膜の形成方法。 (3) A method for forming a chromeless tension coating, comprising applying and baking the treatment liquid according to (1) or (2) on the surface of a grain-oriented electrical steel sheet after final finish annealing.
(4)(1)または(2)に記載の処理液を、最終仕上焼鈍後の方向性電磁鋼板の表面に塗布、焼付けして得たことを特徴とするクロムレス張力被膜付き方向性電磁鋼板。 (4) A directional electrical steel sheet with a chromiumless tension coating obtained by applying and baking the treatment liquid according to (1) or (2) on the surface of a directional electrical steel sheet after final finish annealing.
本発明によれば、クロムレス張力被膜用に下地被膜を特別に最適化することなく、また、二重に被膜することによって占積率を低下させることなしに、優れた耐吸湿性と十分な鉄損低減効果を兼ね備えたクロムレス張力被膜を得ることができる。 According to the present invention, excellent moisture absorption resistance and sufficient iron can be obtained without specially optimizing the base coating for the chromeless tension coating and without reducing the space factor by double coating. It is possible to obtain a chromeless tension coating having a loss reducing effect.
以下、本発明の基礎となった実験結果について説明する。
まず、試料を次のようにして製作した。
公知の方法で製造された板厚:0.23mmの仕上焼鈍済みの方向性電磁鋼板を300mm×100mmの大きさにせん断し、未反応の焼鈍分離剤を除去した後、歪取焼鈍(800℃、2時間)した。
次に、リン酸で酸洗した後、次の4種類の張力被膜用処理液を塗布した。
No.1:リン酸マグネシウム:30質量部およびコロイド状シリカ:20質量部の配合割合からなる張力被膜用処理液を、両面で10g/m2塗布。
No.2:リン酸マグネシウム:30質量部、コロイド状シリカ:20質量部および無水クロム酸:5質量部の配合割合からなる張力被膜用処理液を、両面で10g/m2塗布。
No.3:リン酸マグネシウム:30重量部、コロイド状シリカ:20質量部および塩化ビスマス:5質量部の配合割合からなる張力被膜用処理液を、両面で10g/m2塗布。
No.4:リン酸マグネシウム:30質量部、コロイド状シリカ:20質量部、塩化ビスマス:5質量部および硫酸マンガン:5質量部の配合割合からなる張力被膜用処理液を、両面で10g/m2塗布。
次に、これらの張力被膜用処理液を塗布した方向性電磁鋼板を乾燥炉に装入し(300℃、1分間)、その後、平坦化焼鈍と張力被膜の焼付けを兼ねた熱処理(800℃、2分間)を施した。さらにその後、2回目の歪取焼鈍(800℃、2時間)を行った。
Hereinafter, the experimental results on which the present invention is based will be described.
First, a sample was manufactured as follows.
Thickness: 0.23mm finished annealed grain-oriented electrical steel sheet sheared to a size of 300mm x 100mm after removing unreacted annealing separator, then strain relief annealing (800 ° C, 2 hours).
Next, after pickling with phosphoric acid, the following four types of treatment solutions for tension coating were applied.
No.1: Applying 10g / m 2 on both sides of a tension coating treatment liquid consisting of 30 parts by mass of magnesium phosphate and 20 parts by mass of colloidal silica.
No.2: Applying 10 g / m 2 of tension coating solution on both sides with a blending ratio of magnesium phosphate: 30 parts by mass, colloidal silica: 20 parts by mass and chromic anhydride: 5 parts by mass.
No.3: A coating solution for tension coating consisting of 30 parts by weight of magnesium phosphate, 20 parts by weight of colloidal silica, and 5 parts by weight of bismuth chloride was applied at 10 g / m 2 on both sides.
No.4: Magnesium phosphate: 30 parts by mass, Colloidal silica: 20 parts by mass, Bismuth chloride: 5 parts by mass and Manganese sulfate: 5 parts by mass A tensile coating treatment solution on both sides of 10 g / m 2 application.
Next, the grain-oriented electrical steel sheet coated with these treatment solutions for tension coating was placed in a drying furnace (300 ° C., 1 minute), and then heat treatment (800 ° C., both for flattening annealing and baking of the tension coating) For 2 minutes). Thereafter, a second strain relief annealing (800 ° C., 2 hours) was performed.
かくして得られた試料の、張力付与による鉄損低減効果と耐吸湿性を調査した。
鉄損低減効果は、SST試験機(単板磁気試験機)で測定した磁気特性によって評価した。測定は、各試料について張力被膜用処理液塗布直前、張力被膜の焼付け直後および2回目の歪取焼鈍直後にそれぞれ行った。
また、耐吸湿性は、リンの溶出試験により評価した。この試験は、張力被膜の焼付け直後の鋼板から50mm×50mmの試験片を3枚切出し、これらを100℃の蒸留水中で5分間沸騰することにより張力被膜表面からリンを溶出させ、その溶出量によって張力被膜の水分に対する溶解のしやすさを判断するものである。
The iron loss reduction effect and moisture absorption resistance of the sample thus obtained by applying tension were investigated.
The iron loss reduction effect was evaluated based on the magnetic characteristics measured with an SST tester (single plate magnetic tester). The measurement was performed on each sample immediately before application of the treatment solution for the tension coating, immediately after baking of the tension coating, and immediately after the second strain relief annealing.
The moisture absorption resistance was evaluated by a phosphorus dissolution test. In this test, 3 pieces of 50mm x 50mm test pieces were cut out from a steel plate immediately after baking of the tension coating, and these were boiled in distilled water at 100 ° C for 5 minutes to elute phosphorus from the surface of the tension coating. This is to determine the ease of dissolution of the tension film in moisture.
表1に、磁気特性およびリン溶出量の測定結果を示す。なお、表中の各項目は、次の通りである。
・塗布前B8(R):張力被膜用処理液塗布直前の磁束密度
・塗布後△B=B8(C)−B8(R) ただし、B8(C):張力被膜の焼付け直後の磁束密度
・歪取焼鈍後△B=B8(A)−B8(R) ただし、B8(A):2回目の歪取焼鈍直後の磁束密度
・W17/50(R):張力被膜用処理液塗布直前の鉄損
・塗布後△W=W17/50(C)−W17/50(R) ただし、W17/50(C):張力被膜の焼付け直後の鉄損
・歪取焼鈍後△W=W17/50(A)−W17/50(R) ただし、W17/50(A):2回目の歪取焼鈍直後の鉄損
・リンの溶出量:張力被膜の焼付け直後に測定
Table 1 shows the measurement results of magnetic characteristics and phosphorus elution amount. Each item in the table is as follows.
・ Before coating B 8 (R): Magnetic flux density immediately before application of treatment liquid for tension coating ・ After coating ΔB = B 8 (C) −B 8 (R) where B 8 (C): Immediately after baking of tension coating After magnetic flux density and strain relief annealing ΔB = B 8 (A)-B 8 (R) where B 8 (A): Magnetic flux density immediately after the second strain relief annealing, W 17/50 (R): Tension coating Iron loss immediately before application of treatment liquid, after application △ W = W 17/50 (C) -W 17/50 (R) However, W 17/50 (C): Iron loss / strain removal immediately after baking of tension coating After annealing △ W = W 17/50 (A) -W 17/50 (R) However, W 17/50 (A): Iron loss and phosphorus elution amount immediately after the second strain relief annealing: Baking of tension coating Immediately after measurement
No.1は、従来のクロムレス張力被膜用処理液であるが、この場合は、耐吸湿性が著しく劣っており、鉄損低減効果も低い。No.2は従来のクロムを含む張力被膜用処理液の場合であり、鉄損低減効果および耐吸湿性に優れている。
これに対し、No.3および4が発明例であり、本発明に従うクロムレス張力被膜用処理液でもNo.3の塩化ビスマスを加えた場合は、鉄損低減効果は、No.2の場合と遜色ない結果が得られた。また、耐吸湿性についても、No.2にはやや劣るものの、実用上問題のないレベルに達している。
一方、硫酸マンガンを加えたNo.4のクロムレス張力被膜用処理液の場合は、鉄損低減効果、耐吸湿性ともにNo.2と遜色のない結果が得られている。
No. 1 is a conventional chromeless tension coating treatment liquid, but in this case, the moisture absorption resistance is remarkably inferior and the effect of reducing iron loss is low. No. 2 is a conventional treatment liquid for tension coating containing chromium, and is excellent in iron loss reduction effect and moisture absorption resistance.
On the other hand, No. 3 and 4 are invention examples, and when the bismuth chloride of No. 3 was added even in the chromeless tension coating treatment liquid according to the present invention, the iron loss reduction effect was inferior to that of No. 2. No results were obtained. In addition, the moisture absorption resistance has reached a level where there is no practical problem although it is slightly inferior to No. 2.
On the other hand, in the case of the No. 4 treatment solution for chromium-less tension coating to which manganese sulfate was added, results comparable to No. 2 were obtained in both iron loss reduction effect and moisture absorption resistance.
以上の実験結果から、リン酸マグネシウムとコロイド状シリカに金属塩化物を加えることが重要であることが判明した。
従来、張力被膜用処理液中の塩化物は、鋼板を錆びさせることから有害元素と考えられていた。しかしながら、発明者らは、張力被膜用処理液中に塩化物を添加することで、耐吸湿性と鉄損低減効果の両方が向上するという全く予想外の結果を得た。
From the above experimental results, it was found that it is important to add a metal chloride to magnesium phosphate and colloidal silica.
Conventionally, chloride in the treatment liquid for tension coating has been considered a harmful element because it rusts the steel sheet. However, the inventors have obtained a completely unexpected result that both the moisture absorption resistance and the iron loss reduction effect are improved by adding chloride to the tension coating solution.
この結果について、発明者らは次のように考えている。
従来の知見から、張力被膜用処理液中のクロムイオンは、フリーのリン酸イオンをトラップすることにより被膜中のリンの溶出を抑える働きがある。また、このトラップによって被膜を強固にもするため、鉄損低減効果を高める働きがある。
The inventors consider this result as follows.
From the conventional knowledge, the chromium ions in the treatment solution for tension coating have a function of suppressing the elution of phosphorus in the coating by trapping free phosphate ions. In addition, since the film is strengthened by this trap, it works to increase the iron loss reduction effect.
これに対して、クロム以外の金属化合物を用いた場合には、金属イオンがクロムイオンの代わりにリン酸イオンをトラップする働きがあり、被膜中のリンの溶出を抑えている。しかしながら、金属イオンの効果はクロムイオンの代替となる程ほど強くないので、従来のクロムレス皮膜では、耐吸湿性が十分に改善できなかった。 On the other hand, when a metal compound other than chromium is used, metal ions have a function of trapping phosphate ions instead of chromium ions, thereby suppressing the elution of phosphorus in the film. However, since the effect of metal ions is not so strong as to replace chromium ions, the conventional chromeless coating cannot sufficiently improve the moisture absorption resistance.
そこで、本発明の張力被膜用処理液では、金属イオンとともに塩化物イオンを導入することにより、リンの溶出抑制効果を向上させるのである。すなわち、この塩化物イオンは、下地被膜と反応して下地被膜表面の凸部を優先的に溶解させ、下地被膜の表面粗度を低くする働きがあり、これにより、リンの溶出を効果的に抑制するのである。表面粗度が低いと、上塗り被膜の焼付け時に溶媒が発砲する起点を減少させることができ、被膜にクラックが発生しにくくなる。これに対し、クラックが発生すると、被膜の強度が下がり、方向性電磁鋼板に効果的に張力を付与できないため、鉄損低減効果が低下する。また、クラックから被膜中のリンが溶出し、耐吸湿性も劣化する。なお、塩化物イオンそのものは、昇温中に揮発して外気に放出されるために、鋼板を錆びさせるといった不具合は発生しない。
以上から、被膜に発生するクラックを如何に抑えるかがポイントであり、クラック防止の手段として塩化物イオンを供給する金属塩化物の添加が重要であることが究明されたのである。
Therefore, the treatment liquid for tension coating of the present invention improves the phosphorus elution suppression effect by introducing chloride ions together with metal ions. That is, the chloride ions react with the base coating to preferentially dissolve the convex portions on the surface of the base coating and lower the surface roughness of the base coating, thereby effectively preventing phosphorus from being eluted. It suppresses. When the surface roughness is low, the starting point at which the solvent fires during baking of the topcoat film can be reduced, and cracks are unlikely to occur in the film. On the other hand, when cracks occur, the strength of the coating is lowered, and tension cannot be effectively applied to the grain-oriented electrical steel sheet, so the iron loss reduction effect is reduced. Further, phosphorus in the coating is eluted from the cracks, and the moisture absorption resistance is also deteriorated. In addition, since the chloride ions themselves volatilize during the temperature rise and are released to the outside air, the problem of causing the steel sheet to rust does not occur.
From the above, the point was how to suppress cracks generated in the coating, and it was investigated that the addition of metal chloride supplying chloride ions is important as means for preventing cracks.
また、このような塩化物に加え、さらにホウ酸塩または硫酸塩を加えることによって、クロム化合物を含む張力被膜用処理液を使用した場合と比較して、やや劣っていた耐吸湿性も改善され、良好な耐吸湿性と鉄損低減効果を兼備させ得ることも併せて見出された。 Further, by adding borate or sulfate in addition to such chlorides, the moisture absorption resistance, which was slightly inferior compared with the case of using a treatment liquid for tension coating containing a chromium compound, was also improved. It has also been found that it is possible to combine good moisture absorption resistance and iron loss reduction effect.
次に、本発明の各構成要件の限定理由について述べる。
まず、本発明で対象とする鋼板は、方向性電磁鋼板であれば特に鋼種を問わない。通常、かような方向性電磁鋼板は、含珪素鋼スラブを、公知の方法で熱間圧延し、1回もしくは中間焼鈍を挟む複数回の冷間圧延により最終板厚に仕上げたのち、一次再結晶焼鈍を施し、ついで焼鈍分離剤を塗布してから最終仕上焼鈍を行うことによって製造される。このとき、一般的な方向性電磁鋼板は、最終仕上焼鈍後に鋼板表面にフォルステライト下地被膜を有しているが、場合によっては焼鈍分離剤としてアルミナを用いたり、マグネシアに塩化物を添加した粉体を用いたりして、表面にほとんど下地被膜を形成させないようにして打抜き性や磁気特性を向上させるものもある。本発明は、このような、ほとんど下地被膜を形成させない場合においても表面の粗度を低くする働きがあり有効である。
Next, the reasons for limiting the respective constituent requirements of the present invention will be described.
First, the steel sheet to be used in the present invention is not particularly limited as long as it is a grain-oriented electrical steel sheet. Usually, such a grain-oriented electrical steel sheet is obtained by hot rolling a silicon-containing steel slab by a known method and finishing it to the final thickness by one or multiple cold rollings with intermediate annealing. It is manufactured by subjecting it to crystal annealing, then applying an annealing separator and then performing final finish annealing. At this time, a general grain-oriented electrical steel sheet has a forsterite undercoating on the surface of the steel sheet after final finish annealing, but in some cases, a powder using alumina as an annealing separator or adding magnesia to chloride. Some use a body to improve the punchability and magnetic characteristics so that the base film is hardly formed on the surface. The present invention is effective because it has a function of reducing the roughness of the surface even when such an undercoat is hardly formed.
次に、張力被膜用処理液について述べる。
本発明では、コロイド状シリカとリン酸塩および塩化物とを必須成分とする。
ここに、コロイド状シリカは、鋼板に張力を付与して鉄損を低減するために必要な成分である。また、リン酸塩は、シリカのバインダーとして働くことにより、コーティングの成膜性を向上させ、被膜密着性の向上に有効に寄与する。そして、本発明では、上記のコロイド状シリカとリン酸塩に、さらに塩化物を配合するところに最大の特徴があり、この塩化物を配合することによって、鉄損低減効果と耐吸湿性の向上を図るものである。
ここに、各成分の配合比は次の通りとする。
固形分換算でコロイド状シリカ:20質量部に対して、Mg、Al、Ca、FeおよびMnのリン酸塩のうちから選んだ1種または2種以上を10〜80質量部とする。というのは、リン酸塩が、10質量部に満たないと被膜のクラックが大きくなり、上塗り被膜として重要な耐吸湿性が不十分となり、一方、リン酸塩が80質量部を超えるとコロイド状シリカが相対的に少なくなるために、張力が低下して鉄損低減効果が小さくなるからである。より好ましくは、コロイド状シリカ:20質量部に対して、リン酸塩:15〜40質量部の範囲である。
Next, the treatment liquid for tension coating will be described.
In the present invention, colloidal silica, phosphate and chloride are essential components.
Here, colloidal silica is a component necessary for imparting tension to the steel sheet to reduce iron loss. Further, the phosphate works as a silica binder, thereby improving the film-forming property of the coating and effectively contributing to the improvement of the film adhesion. In the present invention, the greatest feature is that the above colloidal silica and phosphate are further mixed with chloride. By adding this chloride, the iron loss reduction effect and the moisture absorption resistance are improved. Is intended.
Here, the blending ratio of each component is as follows.
Colloidal silica in terms of solid content: One type or two or more types selected from phosphates of Mg, Al, Ca, Fe, and Mn are 10 to 80 parts by mass with respect to 20 parts by mass. This is because if the phosphate content is less than 10 parts by mass, cracks in the coating will increase, resulting in insufficient hygroscopic resistance, which is important as an overcoat, while if the phosphate content exceeds 80 parts by mass, it will be colloidal. This is because the silica is relatively reduced, so that the tension is reduced and the iron loss reduction effect is reduced. More preferably, it is the range of phosphate: 15-40 mass parts with respect to colloidal silica: 20 mass parts.
また、さらに、固形分換算でコロイド状シリカ:20質量部に対して、Mg、Al、Fe、Bi、Co、Mn、Zn、Ca、Ba、SrおよびNiのうちから選んだいずれかの塩化物を3〜30質量部添加する。というのは、塩化物が、3質量部に満たないと、耐吸湿性、鉄損改善効果が不十分となり、一方、30質量部を超えるとコロイド状シリカが相対的に少なくなるために、張力が低下して鉄損低減効果が低くなるとともに、塩化物イオンが被膜中から除去しきれず錆びが発生しやすくなるからである。より好ましい添加量は、コロイド状シリカ:20質量部に対して、6〜15質量部の範囲である。 Further, colloidal silica in terms of solid content: any chloride selected from Mg, Al, Fe, Bi, Co, Mn, Zn, Ca, Ba, Sr and Ni with respect to 20 parts by mass Is added in an amount of 3 to 30 parts by mass. This is because if the amount of chloride is less than 3 parts by mass, the moisture absorption resistance and iron loss improvement effect will be insufficient, while if it exceeds 30 parts by mass, the amount of colloidal silica will be relatively small, This is because the iron loss reduction effect is lowered and the chloride ions cannot be completely removed from the coating, and rusting is likely to occur. A more preferable addition amount is in the range of 6 to 15 parts by mass with respect to 20 parts by mass of colloidal silica.
さらに、本発明では、耐吸湿性の一層の改善を目的として、Li、Na、K、Mg、Mn、Ca、Ba、Sr、Sn、Fe、Co、Ni、Cu、Zn、AlおよびBiのホウ酸塩または硫酸塩のうちから選んだ1種または2種以上を配合することができる。しかしながら、配合比が固形物換算で、コロイド状態シリカ:20重量部に対して、1質量部に満たないと、その添加効果に乏しく、一方、10質量部を超えると、これらの添加物が張力被膜用処理液液中で溶解しきれずに表面にザラツキが発生するので、かようなホウ酸塩または硫酸塩の配合量は、1〜10質量部とすることが好ましい。より好ましい添加量は、コロイド状シリカ:20質量部に対して、4〜8質量部の範囲である。 Furthermore, in the present invention, boron, Li, Na, K, Mg, Mn, Ca, Ba, Sr, Sn, Fe, Co, Ni, Cu, Zn, Al and Bi are used for the purpose of further improving the moisture absorption resistance. One or more selected from acid salts or sulfates can be blended. However, if the compounding ratio is less than 1 part by mass with respect to 20 parts by weight of colloidal silica in terms of solid matter, the effect of addition is poor, while if it exceeds 10 parts by mass, these additives are in tension. Since the surface is not completely dissolved in the coating solution and the surface is rough, the amount of borate or sulfate is preferably 1 to 10 parts by mass. A more preferable addition amount is in the range of 4 to 8 parts by mass with respect to 20 parts by mass of colloidal silica.
その他、シリカやアルミナなどの無機鉱物粒子は、耐スティッキング性の改善に有効なので、併せて使用することが可能である。ただし、添加量については、占積率を低下させないために最大でもコロイド状シリカ:20質量部に対して、1質量部とすることが好ましい。 In addition, inorganic mineral particles such as silica and alumina are effective for improving the sticking resistance, and can be used together. However, the addition amount is preferably 1 part by mass with respect to 20 parts by mass of colloidal silica in order not to reduce the space factor.
上記した処理液を電磁鋼板の表面に塗布、焼付けて張力被膜を形成する。被膜の目付け量は、両面で4〜15g/m2とすることが好ましい。4g/m2より少ないと層間抵抗が低下し、15g/m2より多いと占積率が低下するためである。
かかる張力被膜の焼付けは、平坦化焼鈍を兼ねて700℃〜950℃の温度範囲で2〜120秒の均熱時間とすることが好ましい。温度が低すぎたり、時間が短すぎると、平坦化が不十分で形状不良のために歩留りが低下する。一方、温度が高すぎたり、時間が長すぎると、平坦化焼鈍の効果が強すぎてクリープ変形して磁気特性が劣化する。
The above-mentioned treatment liquid is applied to the surface of the electrical steel sheet and baked to form a tension coating. The basis weight of the coating is preferably 4 to 15 g / m 2 on both sides. Less the interlayer resistance than 4g / m 2 is reduced, because the larger the space factor than 15 g / m 2 is reduced.
The baking of the tension coating is preferably performed in a temperature range of 700 ° C. to 950 ° C. for 2 to 120 seconds so as to perform flattening annealing. If the temperature is too low or the time is too short, flattening is insufficient and the yield is reduced due to shape defects. On the other hand, if the temperature is too high or the time is too long, the effect of the flattening annealing is too strong, and creep deformation occurs and the magnetic properties deteriorate.
板厚:0.23mmの仕上焼鈍済みの方向性電磁鋼板を準備した。このときの方向性電磁鋼板の磁束密度B8は1.923Tであった。この方向性電磁鋼板を、リン酸酸洗後、種々のクロムレス張力被膜用処理液を両面で10g/m2塗布したのち、850℃、30秒の条件で焼付け処理を行った。その後、800℃、2時間の条件で歪取焼鈍を実施した。 Thickness: 0.23 mm finished annealed grain-oriented electrical steel sheet. The magnetic flux density B 8 of a grain-oriented electromagnetic steel sheet at this time was 1.923T. This grain-oriented electrical steel sheet was washed with phosphoric acid, and after applying various treatment solutions for chromeless tension coating on both sides at 10 g / m 2 , baking treatment was performed at 850 ° C. for 30 seconds. Thereafter, strain relief annealing was performed at 800 ° C. for 2 hours.
なお、クロムレス張力被膜用処理液としては、固形分換算でコロイド状シリカ:20質量部に対して、表2に示す配合比でリン酸塩および塩化物を加え、さらに耐熱性改善のために微粉末シリカ粒子を0.5質量部添加した組成のものを用いた。 In addition, as a treatment liquid for a chromeless tension coating, phosphate and chloride are added at a compounding ratio shown in Table 2 with respect to 20 parts by mass of colloidal silica in terms of solid content, and further for improving heat resistance. A composition having 0.5 parts by mass of powdered silica particles was used.
このようにして得られたクロムレス張力被膜付きの方向性電磁鋼板の諸特性を調査した。その結果を表2に併記する。なお、各特性の評価は次のようにして行った。
・発粉性:走査形電子顕微鏡による表面観察で確認
○:表面にフクレ、割れがない
△:わずかに表面にフクレ、割れあり
×:表面のフクレ、割れが激しい
・W17/50(R):張力被膜用処理液塗布直前の鉄損
・塗布後△W=W17/50(C)−W17/50(R) ただし、W17/50(C):張力被膜の焼付け直後の鉄損
・歪取焼鈍後△W=W17/50(A)−W17/50(R) ただし、W17/50(A):歪取焼鈍直後の鉄損
・耐熱性:50mm×50mmの試験片10枚を乾燥窒素雰囲気中にて19.6MPaの圧縮荷重付与下で、800℃×2時間の焼鈍後、500gの分銅を落下させ、試験片が全て剥離したときの落下高さにより判定。○:20cm △:40cm ×:60cm以上。
・密着性:非剥離最小曲げ径(mm)
・占積率:JIS Z 2550の方法に準拠
・外観:目視観察
・防錆性:温度:50℃、露点:50℃の空気中に50時間保持後、表面を観察。
○:錆がほとんどない △:若干錆が発生 ×:激しく錆が発生
・リンの溶出量:50mm×50mmの試験片3枚を100℃の蒸留水中で5分間煮沸した後、分析。
Various properties of the grain-oriented electrical steel sheet with the chromiumless tension coating thus obtained were investigated. The results are also shown in Table 2. Each characteristic was evaluated as follows.
・ Powderability: Confirmed by surface observation with a scanning electron microscope ○: No blistering or cracking on the surface
△: Slight swelling and cracks on the surface ×: Severe swelling and cracking on the surface ・ W 17/50 (R): Iron loss immediately before application of the treatment liquid for tension coating ・ After application △ W = W 17/50 (C ) -W 17/50 (R) However, W 17/50 (C): After iron loss and strain relief annealing immediately after baking of tension coating △ W = W 17/50 (A) -W 17/50 (R) However, W 17/50 (A): Iron loss and heat resistance immediately after strain relief annealing: 10 test pieces of 50 mm x 50 mm in a dry nitrogen atmosphere under a compressive load of 19.6 MPa, 800 ° C x 2 hours After annealing, the weight of 500g is dropped, and it is determined by the drop height when all the test pieces are peeled off. ○: 20 cm △: 40 cm ×: 60 cm or more.
・ Adhesiveness: Non-peeling minimum bending diameter (mm)
-Space factor: Conforms to the method of JIS Z 2550-Appearance: Visual observation-Rust prevention: Temperature: 50 ° C, Dew point: 50 ° C Hold in air for 50 hours, then observe the surface.
○: Almost no rust △: Slightly rusted X: Severely rusted ・ Phosphorus elution amount: Three test pieces of 50 mm x 50 mm were boiled in distilled water at 100 ° C for 5 minutes, and then analyzed.
表2に示した通り、リン酸塩および塩化物の添加量が共に本発明の範囲内の場合には、すべて良好な鉄損と耐吸湿性が得られた。
これに対して、比較例であるNo.5、すなわち、塩化物の添加量が適正範囲であっても、リン酸塩の添加量が少ない場合には、鉄損が著しく劣化した。
No.9、すなわち、塩化物の添加量が適正範囲であっても、リン酸塩の添加量が適正範囲よりも多い場合は、鉄損、耐吸湿性ともに劣化した。
No.10または26、すなわち、リン酸塩の添加量が適正範囲であっても、塩化物の添加量が適正範囲よりも少ない、あるいは塩化物を添加しない場合は、鉄損、耐吸湿性ともに劣化した。
No.13、すなわち、リン酸塩の添加量が適正範囲であっても、塩化物が適正範囲よりも多い場合は、鉄損が著しく劣化した。
As shown in Table 2, when both the addition amounts of phosphate and chloride were within the range of the present invention, good iron loss and moisture absorption resistance were obtained.
On the other hand, even though the comparative example No. 5, that is, the amount of chloride added was within the proper range, the iron loss was significantly deteriorated when the amount of phosphate added was small.
No. 9, that is, even if the addition amount of chloride was in the proper range, both the iron loss and moisture absorption resistance were deteriorated when the addition amount of phosphate was larger than the proper range.
No. 10 or 26, that is, even if the amount of phosphate added is within the proper range, if the amount of chloride added is less than the appropriate range, or if no chloride is added, both iron loss and moisture absorption resistance Deteriorated.
No. 13, that is, even if the amount of phosphate added was in the proper range, if the amount of chloride was larger than the proper range, the iron loss was remarkably deteriorated.
磁区細分化処理として、4mmピッチで深さ20μmの溝を、圧延方向と直交する方向から10度傾けた角度で形成した板厚:0.23mmの仕上焼鈍済み方向性電磁鋼板を準備した。このときの方向性電磁鋼板の磁束密度B8(R)は、1.887Tであった。これをリン酸で酸洗した後、種々のクロムレス張力被膜用処理液を両面で10g/m2塗布して、850℃、30秒で焼付け処理を施した。その後、800℃、2時間の条件で歪取焼鈍を実施した。 As a magnetic domain subdivision treatment, a finish annealed grain-oriented electrical steel sheet having a thickness of 0.23 mm, in which grooves having a depth of 20 μm and a pitch of 4 mm were formed at an angle of 10 degrees from the direction perpendicular to the rolling direction, was prepared. At this time, the magnetic flux density B 8 (R) of the grain-oriented electrical steel sheet was 1.887T. After pickling this with phosphoric acid, 10 g / m 2 of various treatment solutions for chromeless tension coating were applied on both sides and baked at 850 ° C. for 30 seconds. Thereafter, strain relief annealing was performed at 800 ° C. for 2 hours.
なお、塗布したクロムレス張力被膜用処理液の成分組成は、固形分換算でコロイド状シリカ:20質量部に対して、リン酸マグネシウム:30質量部、塩化アルミニウム:10質量部および表3の配合比でホウ酸塩または硫酸塩を加え、さらに耐熱性改善のための微粉末アルミナ粒子0.5質量部添加したものとした。 The component composition of the applied treatment liquid for the chromeless tension coating was as follows: in terms of solid content, colloidal silica: 20 parts by mass, magnesium phosphate: 30 parts by mass, aluminum chloride: 10 parts by mass, and the mixing ratio of Table 3 Then, borate or sulfate was added, and 0.5 parts by mass of finely divided alumina particles were added to improve heat resistance.
このようにして得られたクロムレス張力被膜付きの方向性電磁鋼板の諸特性を調査した結果を、表3に併記する。なお、表中の各項目についての説明は表2と同様である。 The results of investigating the properties of the grain-oriented electrical steel sheet with the chromiumless tension coating obtained in this way are also shown in Table 3. The description of each item in the table is the same as that in Table 2.
表3に示した通り、本発明に従い、コロイド状シリカ、リン酸塩および金属塩化物からなる処理液中に、さらにホウ酸塩や硫酸塩を添加することにより、一層良好な耐吸湿性が得られている。 As shown in Table 3, in accordance with the present invention, further better moisture absorption resistance can be obtained by further adding borate or sulfate to the treatment liquid composed of colloidal silica, phosphate and metal chloride. It has been.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007176395A JP5098466B2 (en) | 2007-07-04 | 2007-07-04 | Treatment liquid for chromeless tension coating, method of forming chromeless tension coating, and grain-oriented electrical steel sheet with chromeless tension coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007176395A JP5098466B2 (en) | 2007-07-04 | 2007-07-04 | Treatment liquid for chromeless tension coating, method of forming chromeless tension coating, and grain-oriented electrical steel sheet with chromeless tension coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009013467A true JP2009013467A (en) | 2009-01-22 |
JP5098466B2 JP5098466B2 (en) | 2012-12-12 |
Family
ID=40354732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007176395A Active JP5098466B2 (en) | 2007-07-04 | 2007-07-04 | Treatment liquid for chromeless tension coating, method of forming chromeless tension coating, and grain-oriented electrical steel sheet with chromeless tension coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5098466B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014196536A (en) * | 2013-03-29 | 2014-10-16 | Jfeスチール株式会社 | Method of flattening and annealing grain-oriented electrical steel sheet and method of producing grain-oriented electrical steel sheet |
WO2015162837A1 (en) * | 2014-04-24 | 2015-10-29 | Jfeスチール株式会社 | Treatment liquid for forming chromium-free insulating coating film on grain-oriented electromagnetic steel sheet and grain-oriented electromagnetic steel sheet coated with chromium-free insulating film |
WO2017057513A1 (en) * | 2015-09-29 | 2017-04-06 | 新日鐵住金株式会社 | Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet |
WO2018051902A1 (en) * | 2016-09-13 | 2018-03-22 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet with chrome-free insulation/tension coating, and production method thereof |
JP7448819B2 (en) | 2020-08-20 | 2024-03-13 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet and its manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54143737A (en) * | 1978-04-28 | 1979-11-09 | Kawasaki Steel Co | Formation of chromiummfree insulating top coating for directional silicon steel plate |
JPH09316655A (en) * | 1996-05-30 | 1997-12-09 | Toyobo Co Ltd | Composition for surface treatment of chromium-free silicon steel sheet and surface treated silicon steel sheet |
-
2007
- 2007-07-04 JP JP2007176395A patent/JP5098466B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54143737A (en) * | 1978-04-28 | 1979-11-09 | Kawasaki Steel Co | Formation of chromiummfree insulating top coating for directional silicon steel plate |
JPH09316655A (en) * | 1996-05-30 | 1997-12-09 | Toyobo Co Ltd | Composition for surface treatment of chromium-free silicon steel sheet and surface treated silicon steel sheet |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014196536A (en) * | 2013-03-29 | 2014-10-16 | Jfeスチール株式会社 | Method of flattening and annealing grain-oriented electrical steel sheet and method of producing grain-oriented electrical steel sheet |
US20170137633A1 (en) * | 2014-04-24 | 2017-05-18 | Jfe Steel Corporation | Treatment solution for chromium-free insulating coating for grain-oriented electrical steel sheet and grain-oriented electrical steel sheet coated with chromium-free insulating coating |
WO2015162837A1 (en) * | 2014-04-24 | 2015-10-29 | Jfeスチール株式会社 | Treatment liquid for forming chromium-free insulating coating film on grain-oriented electromagnetic steel sheet and grain-oriented electromagnetic steel sheet coated with chromium-free insulating film |
CN106232870A (en) * | 2014-04-24 | 2016-12-14 | 杰富意钢铁株式会社 | Orientation electromagnetic steel plate chrome-free insulating tunicle treatment fluid and the orientation electromagnetic steel plate of band chrome-free insulating tunicle |
JPWO2015162837A1 (en) * | 2014-04-24 | 2017-04-13 | Jfeスチール株式会社 | Chromium-free insulation coating solution for grain-oriented electrical steel sheet and grain-oriented electrical steel sheet with chromium-free insulation film |
KR20180044947A (en) * | 2015-09-29 | 2018-05-03 | 신닛테츠스미킨 카부시키카이샤 | METHOD FOR MANUFACTURING ORGANIC ELECTRON SHEET |
WO2017057513A1 (en) * | 2015-09-29 | 2017-04-06 | 新日鐵住金株式会社 | Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet |
CN108026645A (en) * | 2015-09-29 | 2018-05-11 | 新日铁住金株式会社 | The manufacture method of grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet |
JPWO2017057513A1 (en) * | 2015-09-29 | 2018-08-30 | 新日鐵住金株式会社 | Directional electrical steel sheet and method for manufacturing the grain oriented electrical steel sheet |
RU2688982C1 (en) * | 2015-09-29 | 2019-05-23 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Electrotechnical steel sheet with directed crystallization and method for its production |
KR102071515B1 (en) * | 2015-09-29 | 2020-01-30 | 닛폰세이테츠 가부시키가이샤 | Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet |
CN108026645B (en) * | 2015-09-29 | 2020-09-08 | 日本制铁株式会社 | Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet |
US11072861B2 (en) | 2015-09-29 | 2021-07-27 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
WO2018051902A1 (en) * | 2016-09-13 | 2018-03-22 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet with chrome-free insulation/tension coating, and production method thereof |
JP6299938B1 (en) * | 2016-09-13 | 2018-03-28 | Jfeスチール株式会社 | Directional electrical steel sheet with chromium-free insulating tension coating and method for producing the same |
US20210287834A1 (en) * | 2016-09-13 | 2021-09-16 | Jfe Steel Corporation | Grain-oriented magnetic steel sheets having chromium-free insulating tension coating, and methods for producing such steel sheets |
US11756713B2 (en) * | 2016-09-13 | 2023-09-12 | Jfe Steel Corporation | Grain-oriented magnetic steel sheets having chromium-free insulating tension coating, and methods for producing such steel sheets |
JP7448819B2 (en) | 2020-08-20 | 2024-03-13 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP5098466B2 (en) | 2012-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2182091B1 (en) | Insulating film treating liquid for grain oriented electromagnetic steel plate, and process for producing grain oriented electromagnetic steel plate with insulating film | |
JP5181571B2 (en) | Chromium-free insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film | |
JP6593442B2 (en) | Insulating coating solution and method for producing metal with insulating coating | |
JP6547835B2 (en) | Directional electromagnetic steel sheet and method of manufacturing directional electromagnetic steel sheet | |
JP6031951B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
WO2015115036A1 (en) | Treatment solution for chromium-free tensile stress coating film, method for forming chromium-free tensile stress coating film, and oriented electromagnetic steel sheet having chromium-free tensile stress coating film attached thereto | |
WO2015162837A1 (en) | Treatment liquid for forming chromium-free insulating coating film on grain-oriented electromagnetic steel sheet and grain-oriented electromagnetic steel sheet coated with chromium-free insulating film | |
JP6299938B1 (en) | Directional electrical steel sheet with chromium-free insulating tension coating and method for producing the same | |
JP5098466B2 (en) | Treatment liquid for chromeless tension coating, method of forming chromeless tension coating, and grain-oriented electrical steel sheet with chromeless tension coating | |
JP6558325B2 (en) | Treatment liquid for forming chromium-free tension coating, grain-oriented electrical steel sheet with chromium-free tension film, method for producing grain-oriented electrical steel sheet with chromium-free tension film, and core for transformer | |
JP5633402B2 (en) | Directional electrical steel sheet with chromeless tension coating | |
CN115627332A (en) | Grain-oriented electromagnetic steel sheet and method for producing same | |
JP5633401B2 (en) | Treatment liquid for chromeless tension coating and method for forming chromeless tension coating | |
JP4635457B2 (en) | A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance. | |
JP4321181B2 (en) | Method for forming an overcoat insulating film containing no chromium | |
JP6455414B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4305040B2 (en) | Method for forming chromeless coating for grain-oriented electrical steel sheet | |
JP2006137972A (en) | Chromiumless film coated grain-oriented electrical steel sheet, and manufacturing method therefor | |
JP4449454B2 (en) | Method for forming chromium-free insulating coating for grain-oriented electrical steel sheet | |
WO2020066469A1 (en) | Treating agent for use in formation of chromium-free insulating coating film, and oriented electromagnetic steel sheet having insulating coating film attached thereto and method for manufacturing same | |
JPWO2020066469A1 (en) | Chromium-free insulating film forming treatment agent, grain-oriented electrical steel sheet with insulating film, and its manufacturing method | |
JP6939870B2 (en) | Chromium-free insulating film forming treatment agent, grain-oriented electrical steel sheet with insulating film, and its manufacturing method | |
JP7131693B2 (en) | Grain-oriented electrical steel sheet with insulation coating and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120828 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120910 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5098466 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |