[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009012781A - Cylindrical shrink label, container having cylindrical shrink label, and method for manufacturing them - Google Patents

Cylindrical shrink label, container having cylindrical shrink label, and method for manufacturing them Download PDF

Info

Publication number
JP2009012781A
JP2009012781A JP2007173317A JP2007173317A JP2009012781A JP 2009012781 A JP2009012781 A JP 2009012781A JP 2007173317 A JP2007173317 A JP 2007173317A JP 2007173317 A JP2007173317 A JP 2007173317A JP 2009012781 A JP2009012781 A JP 2009012781A
Authority
JP
Japan
Prior art keywords
label
cylindrical shrink
shrink label
heat
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007173317A
Other languages
Japanese (ja)
Other versions
JP5088019B2 (en
Inventor
Taeko Matsushita
田恵子 松下
Katsunobu Ito
克伸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007173317A priority Critical patent/JP5088019B2/en
Publication of JP2009012781A publication Critical patent/JP2009012781A/en
Application granted granted Critical
Publication of JP5088019B2 publication Critical patent/JP5088019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/38Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses
    • B29C63/42Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings
    • B29C63/423Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings specially applied to the mass-production of externally coated articles, e.g. bottles
    • B29C63/426Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor by liberation of internal stresses using tubular layers or sheathings specially applied to the mass-production of externally coated articles, e.g. bottles in combination with the in situ shaping of the external tubular layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/36Bending and joining, e.g. for making hollow articles
    • B29C53/38Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges
    • B29C53/40Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of definite length, i.e. discrete articles
    • B29C53/42Bending and joining, e.g. for making hollow articles by bending sheets or strips at right angles to the longitudinal axis of the article being formed and joining the edges for articles of definite length, i.e. discrete articles using internal forming surfaces, e.g. mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • B29C65/7847Holding or clamping means for handling purposes using vacuum to hold at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/49Internally supporting the, e.g. tubular, article during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5324Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length
    • B29C66/53245Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially annular, i.e. of finite length said articles being hollow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7371General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
    • B29C66/73711General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7371General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
    • B29C66/73711General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented
    • B29C66/73712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7371General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable
    • B29C66/73715General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined oriented or heat-shrinkable heat-shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C3/00Labelling other than flat surfaces
    • B65C3/06Affixing labels to short rigid containers
    • B65C3/065Affixing labels to short rigid containers by placing tubular labels around the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/744Labels, badges, e.g. marker sleeves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical shrink label having superior productivity which is formed by the welding with semi-conductor laser beams. <P>SOLUTION: A longitudinally and uniaxially oriented heat-shrinkable base material film is cut to a predetermined size in an orienting direction to cut out a label. The label is formed in a cylindrical shape with both cut ends thereof vertically overlapped each other, and the overlapped portion and the lower label in a vicinity of the overlapped portion are irradiated with semi-conductor laser beams to perform the welding of the overlapped portion with semi-conductor laser beams. The cylindrical shrink label has superior heat shrinkage and superior adhesive strength. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、延伸方向で切断したラベルの両端を筒状に重ねた後に半導体レーザー光、ファイバーレーザー光またはディスクレーザー光で溶着してなる筒状シュリンクラベル、該筒状シュリンクラベルを装着した容器およびこれらの製造方法に関する。   The present invention relates to a cylindrical shrink label formed by laminating both ends of a label cut in the stretching direction in a cylindrical shape and then welding with a semiconductor laser beam, a fiber laser beam or a disk laser beam, a container equipped with the cylindrical shrink label, and The present invention relates to these manufacturing methods.

従来から、飲料などの容器に全周にわたる筒状シュリンクラベルが使用され、このようなシュリンクラベルを装着した容器として、予め筒状のシュリンクラベルを調製し、これを容器外周に外嵌し、ついで熱処理してシュリンク形成するものがある(特許文献1)。該特許文献1では、筒状シュリンクラベルを製造する際に、シュリンクラベルの両端部にホットメルト型接着剤を貼付し、このホットメルト型接着剤を介してラベル両端を筒状に張り合わせている。   Conventionally, a cylindrical shrink label is used for a container such as a beverage, and a cylindrical shrink label is prepared in advance as a container equipped with such a shrink label. There exists what heat-processes and shrink-forms (patent document 1). In this patent document 1, when manufacturing a cylindrical shrink label, a hot-melt-type adhesive is affixed to the both ends of a shrink label, and both ends of a label are stuck together cylindrically via this hot-melt-type adhesive.

また、筒状にシュリンクラベルを接着する際に、レーザー光によって溶着し、得られた筒状シュリンクラベルを容器に外嵌装着する方法もある(特許文献2)。前記特許文献2で使用するラベルは、印刷が施された合成樹脂製フィルムの両端部を重ね合わせてレーザー光の照射によって溶着して筒状に形成したラベルであって、基材と、該基材の両面側に積層された表面層とを備え、該表面層は、前記基材よりも融点の低い材料からなり、前記両端部の溶着面は、印刷層が施されていない無印刷部に形成されている、というものである。   In addition, there is a method in which when a shrink label is bonded in a cylindrical shape, it is welded by laser light, and the obtained cylindrical shrink label is externally attached to a container (Patent Document 2). The label used in Patent Document 2 is a label formed in a cylindrical shape by superimposing both ends of a printed synthetic resin film and welding them by laser light irradiation. A surface layer laminated on both sides of the material, and the surface layer is made of a material having a melting point lower than that of the base material, and the welded surfaces of the both end portions are in a non-printed portion where no printing layer is applied. It is formed.

また、筒状シュリンクラベルの製造方法として、検出マークが印刷されたシュリンクラベル用ロールをラベル長に切断した後に筒状に成形してなる筒状シュリンクラベルもある(特許文献3)。長尺の熱収縮性のフィルム基材には、所定間隔ごとに検出マークが印刷され、該検出マークをセンサで検出することによりラベルの位置合わせなどを行うが、前記検出マークを熱収縮時の熱で消去可能なインキで印刷することで、別途特別な加熱工程を経ることなく検出マークを目立たなくすることができ、各ラベル及びフィルムに施したデザイン等の所定の表示の邪魔になるのを防止できる、という。特許文献3では、熱収縮フィルムの熱収縮方向の両端部を接着して筒状に成形するため、熱収縮フィルムを切断した後に切断ラベルを90度回転させ、ラベル両端を筒状に接着している。
特開2006−117269号公報 特開2000−141469号公報 特開2003−43922号公報
Moreover, as a manufacturing method of a cylindrical shrink label, there is also a cylindrical shrink label formed by cutting a shrink label roll on which a detection mark is printed into a label length and then forming it into a cylindrical shape (Patent Document 3). Detection marks are printed on a long heat-shrinkable film substrate at predetermined intervals, and label detection is performed by detecting the detection marks with a sensor. By printing with heat erasable ink, the detection mark can be made inconspicuous without going through a special heating process, and it can interfere with the predetermined display such as the design on each label and film. It can be prevented. In patent document 3, in order to adhere | attach the both ends of the heat shrink direction of a heat-shrink film, and shape | mold into a cylinder shape, after cut | disconnecting a heat-shrink film, a cutting label is rotated 90 degree | times and the both ends of a label are adhere | attached on a cylinder shape. Yes.
JP 2006-117269 A JP 2000-141469 A JP 2003-43922 A

しかしながら、上記特許文献1記載の筒状シュリンクラベルは、ホットメルト型接着剤によって容器と筒状シュリンクラベルとを接着する方法であるため、接着後に容器が高温条件下にある場合には、ホットメルト型接着剤が溶融し外観を損なう場合がある。特に、該容器の内容物が加温製品の場合には、内容物の保管温度によって移送中や販売期間内にホットメルト型接着剤が溶融する恐れがあり、シュリンクラベルの場合には熱収縮処理を行う際にホットメルト型接着剤が溶け出す場合がある。加えて、反応性ホットメルト型接着剤を使用すると、硬化後に熱に対する耐性を有するが、反応時間が長いために生産性が低下する。   However, since the cylindrical shrink label described in Patent Document 1 is a method of bonding a container and the cylindrical shrink label with a hot melt adhesive, if the container is in a high temperature condition after bonding, The mold adhesive may melt and impair the appearance. In particular, when the contents of the container are heated products, the hot melt adhesive may melt during transfer or within the sales period depending on the storage temperature of the contents. In some cases, the hot-melt adhesive may melt out. In addition, when a reactive hot melt adhesive is used, it has heat resistance after curing, but the productivity is lowered due to the long reaction time.

また、特許文献2記載のラベルは、レーザー光によって筒状ラベルとしたものであるが、レーザーでの接着性を確保するため、使用するラベルの層構成が複雑となる場合がある。特に、レーザー光はレーザーの波長によって作用が異なり、炭酸ガスレーザーは水に吸収され半導体レーザーなどは色素に吸収されるなど、物質に対する影響が異なる。このためPETフィルムに炭酸ガスレーザー光を照射するとフィルムに吸収されフィルム表面が溶融し、製品の外観を損ねる場合がある。   Moreover, although the label of patent document 2 is used as the cylindrical label with the laser beam, in order to ensure the adhesiveness with a laser, the layer structure of the label to be used may become complicated. In particular, the action of laser light differs depending on the wavelength of the laser, the carbon dioxide laser is absorbed by water, the semiconductor laser is absorbed by the dye, and the influence on the substance is different. For this reason, when a PET film is irradiated with a carbon dioxide laser beam, it is absorbed by the film and the film surface melts, which may impair the appearance of the product.

一方、シュリンクラベルは延伸方向に熱収縮するため、延伸方向と胴巻き方向とを一致させて容器に装着する。従来は、横一軸延伸フィルムを使用し、例えば特許文献3の図3に示すように、所定ラベル長さに切断した後に切断ラベルを90度回転させた後に筒状に成形し、直立する容器の上部から筒状ラベルを鉛直方向に装着していた。すなわち、シュリンクラベル用ロールの切断面を接着部として使用できないため、筒状に接着する際にラベルを90度回転させる工程が必要となっている。しかしながら、このような工程をなくすことができれば、筒状シュリンクラベルの製造がより簡単な工程で製造できる。   On the other hand, since the shrink label is thermally contracted in the stretching direction, it is attached to the container with the stretching direction and the body winding direction aligned. Conventionally, a laterally uniaxially stretched film is used. For example, as shown in FIG. 3 of Patent Document 3, a cut label is rotated 90 degrees after being cut into a predetermined label length, then formed into a cylindrical shape, and an upright container A cylindrical label was mounted vertically from the top. That is, since the cut surface of the shrink label roll cannot be used as an adhesive portion, a step of rotating the label by 90 degrees is required when adhering in a cylindrical shape. However, if such a process can be eliminated, the cylindrical shrink label can be manufactured in a simpler process.

また、重ね部を溶着する際に、重ね部よりも溶着幅が狭いと、未溶着シロが残り、ラベルの熱収縮処理後に硬くなって立ち上がり、外観を損ねる場合がある。   Further, when welding the overlapped portion, if the welding width is narrower than that of the overlapped portion, an unwelded white remains, which may become hard after the heat shrinkage treatment of the label and impair the appearance.

上記現状に鑑み、本発明は、接着剤を使用することなく製造され、接着強度および外観に優れる筒状シュリンクラベルを提供するものである。   In view of the above-mentioned present situation, the present invention provides a cylindrical shrink label that is manufactured without using an adhesive and is excellent in adhesive strength and appearance.

また本発明は、凹凸が際立つ容器にも装着することができ、容器形状の多様化、消費者の購買意欲を満たしうる、熱収縮率に優れる筒状シュリンクラベルを提供するものである。   In addition, the present invention provides a cylindrical shrink label that can be attached to a container with concavities and convexities, can satisfy the diversification of the container shape, and satisfy the consumer's desire to purchase, and has an excellent heat shrinkage rate.

また本発明は、このような筒状シュリンクラベルを装着した容器を提供するものである。   The present invention also provides a container equipped with such a cylindrical shrink label.

更に本発明は、簡便な工程で迅速に、生産効率に優れる筒状シュリンクラベルの製造方法を提供するものである。   Furthermore, this invention provides the manufacturing method of the cylindrical shrink label which is excellent in production efficiency rapidly by a simple process.

本発明者は、筒状シュリンクラベルについて詳細に検討した結果、熱収縮率に優れる縦一軸延伸フィルムを使用して筒状シュリンクラベルを製造すれば、延伸方向と移送方向とを同方向にできるため、フィルムを所定のラベル長に切断した後に切断面を溶着部として筒状に形成でき、ラベルを90度回転する工程を省略できること、ラベル重ね部を半導体レーザー光で溶着すれば接着剤の使用を行うことなくかつ短時間で効率的に溶着することができること、特に発振波長750〜1200nmの半導体レーザーや、ファイバーレーザーまたはディスクレーザーであれば、ラベルが2枚重なっている重ね部のほかに一枚のラベル部分に照射してもフィルムを切断したりフィルム表面を溶融することなく外観に優れる製品を製造しうること、および重ね部にレーザー光吸収剤を含まない場合であっても、重ね部を金属製の押さえ具で挟んでから半導体レーザー光を照射すると安定してラベルを溶着しうることを見出し、本発明を完成させた。   As a result of examining the cylindrical shrink label in detail, the inventor can produce a cylindrical shrink label using a longitudinally uniaxially stretched film having an excellent heat shrinkage rate, so that the stretching direction and the transport direction can be made the same direction. After cutting the film into a predetermined label length, the cut surface can be formed into a cylindrical shape as a welded portion, the step of rotating the label 90 degrees can be omitted, and if the label overlap portion is welded with semiconductor laser light, the use of an adhesive It can be welded efficiently and in a short time, especially if it is a semiconductor laser with a wavelength of 750 to 1200 nm, a fiber laser or a disk laser, in addition to the overlapping part where two labels overlap. It is possible to produce a product with excellent appearance without cutting the film or melting the film surface even if the label part is irradiated. Even when the laser beam absorber is not included in the overlapped portion, it has been found that the label can be stably welded by irradiating the semiconductor laser light after the overlapped portion is sandwiched between metal pressing tools. Completed.

すなわち本発明は、熱収縮性基材フィルムの延伸方向にあるラベル両端を溶着してなる筒状シュリンクラベルであって、縦一軸延伸した熱収縮性基材フィルムを延伸方向の所定サイズに切断してラベルを切り出し、前記ラベルの切断端を上下に重ねてラベルを筒状に成形し、前記重ね部と、重ね部近傍の前記下ラベルとを半導体レーザー光、ファイバーレーザー光またはディスクレーザー光で照射し、前記重ね部を前記レーザー光で溶着することを特徴とする、筒状シュリンクラベルを提供するものである。   That is, the present invention is a cylindrical shrink label formed by welding both ends of the label in the stretching direction of the heat-shrinkable base film, and the heat-shrinkable base film stretched in the longitudinal direction is cut into a predetermined size in the stretching direction. The label is cut out, the cut ends of the label are stacked vertically to form a label, and the overlapped portion and the lower label in the vicinity of the overlapped portion are irradiated with semiconductor laser light, fiber laser light, or disk laser light. And the cylindrical shrink label characterized by welding the said overlap part with the said laser beam is provided.

また、前記筒状シュリンクラベルを装着し、熱収縮処理してなる筒状シュリンクラベル付き容器を提供するものである。   The present invention also provides a container with a cylindrical shrink label, which is provided with the cylindrical shrink label and subjected to a heat shrink process.

また、縦一軸延伸してなる熱収縮性基材フィルムを延伸方向に搬送し、前記フィルムを延伸方向の所定ラベル長に切断し、前記ラベルを鉛直に配置されたシリンダにまき付けて、前記ラベルの切断端を上下に重ねて重ね部を成形し、前記重ね部を前記シリンダと押さえ具とではさみ、前記押さえ具側から前記重ね部と、重ね部近傍の前記下ラベルとに半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を照射して前記重ね部を溶着して筒状シュリンクラベルを成形することを特徴とする、筒状シュリンクラベルの製造方法を提供するものである。   Further, the heat-shrinkable base film formed by uniaxial stretching in the longitudinal direction is conveyed in the stretching direction, the film is cut into a predetermined label length in the stretching direction, and the label is attached to a cylinder arranged vertically, The cut end of is overlapped up and down to form an overlapped portion, the overlapped portion is sandwiched between the cylinder and the pressing tool, and the semiconductor laser beam is applied to the overlapping portion and the lower label near the overlapping portion from the pressing tool side, The present invention provides a method for manufacturing a cylindrical shrink label, which comprises irradiating a fiber laser beam or a disk laser beam to weld the overlapped portion to form a cylindrical shrink label.

さらに、縦一軸延伸してなる熱収縮性基材フィルムを延伸方向に搬送し、前記フィルムを延伸方向の所定ラベル長に切断し、前記ラベルを鉛直に配置されたシリンダにまき付けて、前記ラベルの切断端を上下に重ねて重ね部を成形し、前記重ね部を前記シリンダと押さえ具とではさみ、前記押さえ具側から前記重ね部と、重ね部近傍の前記下ラベルとに半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を照射して前記重ね部を溶着して筒状シュリンクラベルを成形し、前記筒状シュリンクラベルの下部側または上部側から前記シリンダを抜き出し、かつラベルの上部側または下部側から容器を挿入して前記容器に筒状シュリンクラベルを装着し、ついで熱収縮処理することを特徴とする、筒状シュリンクラベル付き容器の製造方法を提供するものである。   Furthermore, the heat-shrinkable base film formed by uniaxial stretching in the longitudinal direction is conveyed in the stretching direction, the film is cut into a predetermined label length in the stretching direction, and the label is attached to a vertically arranged cylinder, and the label The cut end of is overlapped up and down to form an overlapped portion, the overlapped portion is sandwiched between the cylinder and the pressing tool, and the semiconductor laser beam is applied to the overlapping portion and the lower label near the overlapping portion from the pressing tool side, Irradiating a fiber laser beam or a disk laser beam to weld the overlapped portion to form a cylindrical shrink label, pulling out the cylinder from the lower side or upper side of the cylindrical shrink label, and the upper side or lower side of the label A container having a cylindrical shrink label, wherein a container is inserted from the side, a cylindrical shrink label is attached to the container, and then heat shrinkage is performed. There is provided a production method.

本発明の筒状シュリンクレベルは半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を照射して調製され、前記レーザー光は透明樹脂を透過するためラベル樹脂表面を溶融することなく、外観に優れる。また、重ね部のみならず重ね部近傍の前記下ラベルとに前記レーザー光を照射するため、ラベル端部が硬くなって立ち上がることがなく、外観に優れる。   The cylindrical shrink level of the present invention is prepared by irradiating a semiconductor laser beam, a fiber laser beam or a disk laser beam, and the laser beam is transparent to the transparent resin and thus has an excellent appearance without melting the label resin surface. Moreover, since the said laser beam is irradiated not only to an overlap part but the said lower label of the overlap part, a label edge part becomes hard and does not stand up, and it is excellent in an external appearance.

本発明の筒状シュリンクラベルは接着剤を使用しないため、生産工程を簡略化することができ、コストも低下させることができる。また、ホットメルト型接着剤を使用する場合と比較して、広い温度幅の環境で保管、流通させることができる。   Since the cylindrical shrink label of the present invention does not use an adhesive, the production process can be simplified and the cost can be reduced. In addition, it can be stored and distributed in an environment with a wide temperature range as compared with the case of using a hot melt adhesive.

本発明の筒状シュリンクレベルの製造方法は、重ね部を金属製の押さえ具で挟み、この金属製の押さえ具に半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を照射して製造することができ、これによりレーザー光吸収剤を使用しない、安価かつ環境汚染の影響が少なく、安全性に優れる筒状シュリンクラベルを製造することができる。   The cylindrical shrink level manufacturing method of the present invention can be manufactured by sandwiching the overlapped portion with a metal pressing tool and irradiating the metal pressing tool with a semiconductor laser beam, a fiber laser beam or a disk laser beam. Thus, it is possible to manufacture a cylindrical shrink label that does not use a laser light absorber, is inexpensive, has less influence of environmental pollution, and is excellent in safety.

本発明の筒状シュリンクレベルは、半導体レーザー光などを照射して短時間に筒状に溶着するため、生産効率に優れる。   The cylindrical shrink level of the present invention is excellent in production efficiency because it is welded in a cylindrical shape in a short time by irradiating a semiconductor laser beam or the like.

本発明の第一は、熱収縮性基材フィルムの延伸方向にあるラベル両端を溶着してなる筒状シュリンクラベルであって、縦一軸延伸した熱収縮性基材フィルムを延伸方向の所定サイズに切断してラベルを切り出し、前記ラベルの切断端を上下に重ねてラベルを筒状に成形し、前記重ね部と、重ね部近傍の前記下ラベルとを半導体レーザー光、ファイバーレーザー光またはディスクレーザー光で照射し、前記重ね部を前記レーザー光で溶着することを特徴とする、筒状シュリンクラベルである。   The first of the present invention is a cylindrical shrink label formed by welding both ends of the label in the stretching direction of the heat-shrinkable base film, and the heat-shrinkable base film stretched uniaxially to a predetermined size in the stretching direction. Cut and cut out the label, the cut ends of the label are stacked vertically to form a label, and the overlapping portion and the lower label in the vicinity of the overlapping portion are combined with semiconductor laser light, fiber laser light, or disk laser light. The cylindrical shrink label is characterized in that the overlapped portion is welded with the laser beam.

縦一軸延伸基材フィルムを使用することで、延伸方向にフィルムを移送して切断し、切断面を筒状に重ねて溶着することで筒状シュリンクラベルを製造することができ、このため溶着の際にラベル方向を90度回転させる必要がなく、従来よりもラベラーの構造を簡略化することができる。また、重ね部と、重ね部近傍の前記下ラベルとを前記レーザー光で照射し、前記重ね部を溶着するため、ラベル端部のめくりあがりやラベル表面の溶融がなく外観に優れる。以下、本発明の筒状シュリンクラベル、筒状シュリンクラベル付き容器、筒状シュリンクラベルの製造方法について説明する。   By using a longitudinally uniaxially stretched substrate film, it is possible to produce a cylindrical shrink label by transferring and cutting the film in the stretching direction, and stacking the cut surfaces in a cylindrical shape and welding them. At this time, it is not necessary to rotate the label direction by 90 degrees, and the structure of the labeler can be simplified as compared with the conventional case. Further, since the overlapping portion and the lower label in the vicinity of the overlapping portion are irradiated with the laser beam and the overlapping portion is welded, the label end portion is not turned over and the label surface is not melted, and the appearance is excellent. Hereinafter, the manufacturing method of the cylindrical shrink label of this invention, the container with a cylindrical shrink label, and a cylindrical shrink label is demonstrated.

(1)筒状シュリンクラベルの構成
本発明の筒状シュリンクラベルは、縦一軸延伸した熱収縮性基材フィルムを延伸方向の所定サイズに切断し、前記ラベルの切断端を上下に重ねてラベルを筒状に成形し、前記重ね部と、重ね部近傍の前記下ラベルとを半導体レーザー光、ファイバーレーザー光またはディスクレーザー光で照射し、前記重ね部を溶着して調製される。重ね部近傍にも前記レーザー光を照射することで、ラベル端部の立ち上がりを防止することができる。図1に、前記レーザーの照射幅(36)を斜線で示す。図1に示すように、得られた筒状シュリンクラベル(100)は、ラベル(30)の両端の重ね部(37)にレーザー溶着部(35)が形成されたものであり、円周方向と二重矢印で示すラベル延伸方向とが同方向となっている。また、ラベル上前の切断端が溶着され、熱収縮後にも立ち上がりを生ずることがない。
(1) Configuration of cylindrical shrink label The cylindrical shrink label of the present invention is obtained by cutting a heat-shrinkable base film that has been longitudinally uniaxially stretched into a predetermined size in the stretching direction, and stacking the cut ends of the label up and down. It is formed into a cylindrical shape, and is prepared by irradiating the overlapped portion and the lower label near the overlapped portion with a semiconductor laser beam, a fiber laser beam or a disk laser beam, and welding the overlapped portion. By irradiating the laser beam also in the vicinity of the overlapping portion, it is possible to prevent the label edge from rising. In FIG. 1, the irradiation width (36) of the laser is shown by oblique lines. As shown in FIG. 1, the obtained cylindrical shrink label (100) has a laser welded portion (35) formed on the overlapping portion (37) at both ends of the label (30), The label extending direction indicated by the double arrow is the same direction. In addition, the front cut end on the label is welded and does not rise after heat shrinkage.

筒状シュリンクラベルの長さや太さは、装着する容器の形状や装着の態様に応じて適宜選択することができる。一方、レーザー溶着部(35)の幅は、0.5〜10mmであることが好ましい。この範囲で十分な溶着強度を確保することができる。   The length and thickness of the cylindrical shrink label can be appropriately selected according to the shape of the container to be attached and the manner of attachment. On the other hand, the width of the laser welded part (35) is preferably 0.5 to 10 mm. A sufficient welding strength can be ensured within this range.

また、レーザー溶着のための筒状シュリンクラベルの溶着部の重ね部(37)の幅、および半導体レーザー、ファイバーレーザーまたはディスクレーザーの照射幅(36)は、3〜20mmであることが好ましい。この範囲であれば、2枚の重ね部と近傍の一枚のラベル部とを含む範囲(36)にレーザーを照射して、上記レーザー溶着部(35)を十分に確保することができ、かつラベルの美粧性を確保することができる。   Moreover, it is preferable that the width | variety part (37) of the welding part of the cylindrical shrink label for laser welding, and the irradiation width (36) of a semiconductor laser, a fiber laser, or a disk laser are 3-20 mm. If it is this range, a laser can be irradiated to the range (36) including two overlapping parts and one label part in the vicinity, and the laser welded part (35) can be sufficiently secured, and The cosmetics of the label can be ensured.

本発明の筒状シュリンクラベルは、ラベル−ラベル間の剥離強度、すなわちレーザー溶着部(35)の剥離強度を、0.5〜30N/15mm、より好ましくは2.5〜20N/15mmとすることができる。また、レーザー溶着部(35)の剪断強度は、2〜65N/15mm、より好ましくは3.5〜60N/15mmである。なお、剥離強度および剪断強度は、後記する実施例で記載する数値である。   In the cylindrical shrink label of the present invention, the peel strength between the labels, that is, the peel strength of the laser welded portion (35) is 0.5 to 30 N / 15 mm, more preferably 2.5 to 20 N / 15 mm. Can do. Further, the shear strength of the laser welded portion (35) is 2 to 65 N / 15 mm, more preferably 3.5 to 60 N / 15 mm. The peel strength and shear strength are numerical values described in the examples described later.

なお、前記重ね部のレーザ溶着部と平行に、1以上のミシン目列が形成されていてもよい。使用後の容器からラベルを離脱することが容易だからである。   One or more perforation lines may be formed in parallel with the laser welded portion of the overlapped portion. This is because it is easy to remove the label from the container after use.

(i)熱収縮性基材フィルム
本発明の筒状シュリンクラベルは、縦一軸延伸した熱収縮性基材フィルムを使用する。
(I) Heat-shrinkable base film The cylindrical shrink label of the present invention uses a heat-shrinkable base film that has been longitudinally uniaxially stretched.

熱収縮性基材フィルムとしては、ポリオレフィン系フィルム、ポリエステル系フィルム、ポリスチレン系フィルム、ポリ乳酸系フィルム、およびこれらのフィルムの2種以上の積層フィルムであって、縦一軸延伸したものを好適に使用することができる。より好ましくは、前記ポリオレフィン系フィルムが縦一軸延伸ポリプロピレン系フィルムであり、前記ポリエステル系フィルムが縦一軸延伸ポリエチレンテレフタレート系フィルムであり、その他ポリエステル−ポリスチレン共押出しフィルムの縦一軸延伸フィルムなどである。従来から、縦一軸延伸フィルムは存在したが、縦一軸延伸フィルムをシュリンクラベルとして使用することはなかった。しかしながら、本発明では縦一軸延伸フィルムを使用することで製造工程を簡略化できることを見出し、特に縦一軸延伸フィルムに限定して使用することにした。   As the heat-shrinkable base film, a polyolefin film, a polyester film, a polystyrene film, a polylactic acid film, and a laminate film of two or more of these films, which are longitudinally uniaxially stretched, are preferably used. can do. More preferably, the polyolefin film is a longitudinally uniaxially stretched polypropylene film, the polyester film is a longitudinally uniaxially stretched polyethylene terephthalate film, and a longitudinally uniaxially stretched film of a polyester-polystyrene coextruded film. Conventionally, although a longitudinally uniaxially stretched film exists, the longitudinally uniaxially stretched film has not been used as a shrink label. However, in this invention, it discovered that a manufacturing process could be simplified by using a longitudinally uniaxially stretched film, and decided to use it limiting especially to a longitudinally uniaxially stretched film.

一般には、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリ乳酸系樹脂の1種または2種以上を使用し、押し出し法、キャスト成形法、Tダイ法、切削法、インフレーション法、その他等の製膜化法を用いて単層で製膜化したもの、または2種以上の樹脂を使用して共押し出しなどで多層製膜したもの、または2種以上の樹脂を混合使用して製膜したものを使用することができ、テンター方式やチューブラー方式等で縦一軸延伸してなる各種の延伸フィルムを使用することができる。   Generally, one or more of polyolefin resin, polyester resin, polystyrene resin, polylactic acid resin is used, and extrusion method, cast molding method, T-die method, cutting method, inflation method, etc. Films formed in a single layer using the film-forming method, films formed by coextrusion using two or more resins, or films formed using a mixture of two or more resins What is used can be used, and various stretched films formed by longitudinal uniaxial stretching by a tenter method, a tubular method, or the like can be used.

本発明において、熱収縮性基材フィルムの厚みは特に限定されないが、耐熱性、剛性、機械適性、外観等を損なわない範囲で適宜選択され、非発泡性縦一軸延伸フィルムの場合には15〜50μmである。上記範囲であれば、容器に装着して使用する際に、十分な機械的強度を確保しうると共に、半導体レーザー光などで溶着強度に優れるからである。なお、前記ラベル厚は、熱収縮前の層厚である。   In the present invention, the thickness of the heat-shrinkable substrate film is not particularly limited, but is appropriately selected within a range that does not impair heat resistance, rigidity, mechanical suitability, appearance, etc. In the case of a non-foaming vertically uniaxially stretched film, 15 to 50 μm. This is because, within the above range, sufficient mechanical strength can be ensured and the welding strength with a semiconductor laser beam or the like is excellent when mounted on a container and used. The label thickness is a layer thickness before heat shrinkage.

上記の熱収縮性基材フィルムには、必要に応じて、滑剤、充填剤、熱安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、着色剤等の各種添加剤が添加されたものであってもよい。また、熱収縮性基材フィルムの表面には、印刷性を向上させるためにコロナ放電処理、プラズマ処理、火炎処理、酸処理などの慣用の表面処理を施してもよい。   Various additives such as a lubricant, a filler, a heat stabilizer, an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, and a colorant are added to the heat-shrinkable base film as necessary. It may be. In addition, the surface of the heat-shrinkable base film may be subjected to conventional surface treatment such as corona discharge treatment, plasma treatment, flame treatment, and acid treatment in order to improve printability.

本発明では、上記熱収縮性基材フィルムとして、縦方向の熱収縮率が温度100℃で5〜85%、より好ましくは20〜70%のものを好適に使用することができる。熱収縮率に優れるため凹部を有する容器にも好適に使用することができる。なお、本発明における熱収縮率とは、100℃の温水による熱収縮率であって、延伸方向の熱収縮率が下記式に従うものとする。従って、縦一軸延伸フィルムの場合には、収縮方向は、フィルム流れ方向であるため、流れ方向に対する熱収縮率が5〜85%である。   In the present invention, as the heat-shrinkable base film, a film having a longitudinal heat shrinkage rate of 5 to 85%, more preferably 20 to 70% at a temperature of 100 ° C. can be suitably used. Since it has an excellent heat shrinkage rate, it can be suitably used for a container having a recess. In addition, the heat shrinkage rate in this invention is a heat shrinkage rate by 100 degreeC hot water, Comprising: The heat shrinkage rate of an extending | stretching direction shall follow a following formula. Therefore, in the case of a longitudinally uniaxially stretched film, the shrinkage direction is the film flow direction, and thus the thermal shrinkage rate with respect to the flow direction is 5 to 85%.

本発明の筒状シュリンクラベルのサイズは、貼付対象の容器のサイズに応じて適宜選択することができる。同様に、溶着部のサイズも、例えばラベル貼付装置の使用態様などに応じて適宜選択することができる。 The size of the cylindrical shrink label of the present invention can be appropriately selected according to the size of the container to be pasted. Similarly, the size of the welded portion can be appropriately selected according to, for example, the usage mode of the label sticking device.

本発明では、熱収縮性基材フィルムとして市販のフィルムを使用してもよい。PET縦一軸延伸フィルム(熱収縮率;100℃、10秒、50%、)、ポリプロピレン縦一軸延伸フィルム(熱収縮率;80℃、10秒;10%、100℃、10秒、25%)、ポリサックプラスチックインダストリーリミテッド(Polysack Plastic Industries Ltd.)の商品名「ポリファンFIT ST(Polyphane FIT ST)」などの100℃での縦方向最大収縮率19%、130℃で70%の縦一軸延伸ポリスチレンフィルム、エクロンモービル社製、商品名「Label−Lyte−Roll−On−Shink−on LR210」、縦方向最大収縮率18%などの縦一軸延伸ポリプロピレンフィルム、縦一軸延伸白色ポリプロピレンフィルム、縦一軸延伸PLA系フィルムなどを好適に使用することができる。   In the present invention, a commercially available film may be used as the heat-shrinkable substrate film. PET longitudinally uniaxially stretched film (heat shrinkage rate: 100 ° C., 10 seconds, 50%), polypropylene longitudinally uniaxially stretched film (heat shrinkage rate: 80 ° C., 10 seconds; 10%, 100 ° C., 10 seconds, 25%), Longitudinal uniaxially stretched polystyrene with a maximum shrinkage of 19% in the longitudinal direction at 100 ° C and 70% at 130 ° C, such as "Polyphane FIT ST", a trade name of Polysack Plastic Industries Ltd. Film, manufactured by Eclone Mobil Co., Ltd., trade name “Label-Lyte-Roll-On-Sink-on LR210”, longitudinal uniaxially stretched polypropylene film such as maximum shrinkage of 18% in the longitudinal direction, longitudinally uniaxially stretched white polypropylene film, longitudinally uniaxially stretched A PLA film or the like can be preferably used.

なお、本発明において「シュリンクラベル」とは、熱処理によって収縮しうるラベルであるが熱収縮の有無は問わない。従って、熱収縮前後のいずれにおいても、シュリンクラベルである。   In the present invention, the “shrink label” is a label that can be shrunk by heat treatment. Therefore, it is a shrink label both before and after heat shrinkage.

(ii)レーザー吸収層
本発明の筒状シュリンクラベルは、前記重ね部の前記熱収縮性基材フィルムと熱収縮性基材フィルムとの間に、熱収縮性基材フィルムのガラス転位温度(Tg)よりも低いTgの樹脂からなるレーザー吸収層が積層されることが好ましい。熱収縮性基材フィルム/レーザー吸収層/熱収縮性基材フィルムとなるようにラベル端部を重ね、いずれかの熱収縮性基材フィルムから半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を照射すると、レーザー光が熱収縮性基材フィルムを透過してレーザー吸収層に到達し、レーザー光のエネルギーを吸収し当該端部の熱収縮性基材フィルムを軟化し、下側熱収縮性基材フィルムとの溶着を促進することができるからである。
(Ii) Laser Absorbing Layer The cylindrical shrink label of the present invention has a glass transition temperature (Tg) of the heat-shrinkable base film between the heat-shrinkable base film and the heat-shrinkable base film in the overlapped portion. It is preferable that a laser absorption layer made of a resin having a lower Tg than is laminated. Overlay the label edge so that it becomes a heat-shrinkable base film / laser absorption layer / heat-shrinkable base film, and irradiate semiconductor laser light, fiber laser light or disk laser light from any heat-shrinkable base film Then, the laser light passes through the heat-shrinkable base film and reaches the laser absorption layer, absorbs the energy of the laser light, softens the heat-shrinkable base film at the end, and the lower heat-shrinkable base material This is because welding with the film can be promoted.

本発明では、レーザー吸収層として、前記熱収縮性基材フィルムのガラス転位温度よりも低いTgの樹脂を使用することが好ましい。レーザー吸収層を積層することで照射時間を短くし、生産性を向上させることができる。このような樹脂としては、前記した熱収縮性基材フィルムを構成する樹脂の中から適宜選択することができる。より好ましくは、熱収縮性基材フィルムと同種の樹脂を使用することである。例えば、熱収縮性基材フィルムがポリエステル系樹脂の場合には、レーザー吸収層に使用する樹脂もポリエステル系樹脂とし、熱収縮性基材フィルムがポリオレフィン系樹脂の場合には、レーザー吸収層に使用する樹脂もポリオレフィン系樹脂とする。   In this invention, it is preferable to use resin of Tg lower than the glass transition temperature of the said heat-shrinkable base film as a laser absorption layer. By laminating the laser absorption layer, the irradiation time can be shortened and productivity can be improved. As such resin, it can select suitably from resin which comprises an above described heat-shrinkable base film. More preferably, the same kind of resin as the heat-shrinkable base film is used. For example, when the heat-shrinkable base film is a polyester resin, the resin used for the laser absorption layer is also a polyester resin. When the heat-shrinkable base film is a polyolefin resin, it is used for the laser absorption layer. The resin to be used is also a polyolefin resin.

また、レーザー吸収層には、更にレーザー吸収剤を含有していてもよい。このようなレーザー吸収剤として、紫外線吸収剤、赤外線吸収剤、近赤外線吸収剤、ブラックカーボン、印刷インク用顔料、印刷インク用染料、アルミノシリケート、シリカ微粉末やカオリン珪藻土、エポキシ樹脂、ポリメチルメタアクリレート等の微粒子などが例示できる。このため、墨印刷などの印刷層をレーザー吸収層として使用することができる。墨印刷に使用される墨インクは、赤外線を吸収するブラックカーボンを顔料として含むため、レーザー吸収層となりうるからである。   Further, the laser absorption layer may further contain a laser absorber. Examples of such laser absorbers include ultraviolet absorbers, infrared absorbers, near-infrared absorbers, black carbon, printing ink pigments, printing ink dyes, aluminosilicates, fine silica powder, kaolin diatomaceous earth, epoxy resins, and polymethylmethacrylate. Examples thereof include fine particles such as acrylate. For this reason, a printing layer such as black ink printing can be used as the laser absorption layer. This is because the black ink used for black printing includes a black carbon that absorbs infrared rays as a pigment, and thus can be a laser absorption layer.

一方、墨印刷は黒色であるため色彩が限定される。本発明では、墨印刷などのレーザー吸収剤に代えて少量のパール顔料を使用すると透明から銀白色であるため他の染料や顔料に影響を与えることなくレーザー光の吸収率を高めることができ、筒状シュリンクラベルの美粧性を向上できることを見出した。パール顔料をレーザー吸収層に配合するとレーザー光の吸収性を向上させることが判明した。したがって、本発明では、レーザー吸収層に上記レーザー吸収剤に代えて、又はレーザー吸収剤と共にパール顔料が配合されていてもよい。なお、パール顔料とは、天然雲母に酸化チタン、酸化鉄などの金属酸化物をコートした顔料である。白色雲母の粒子径5〜130μの微粉末であり、市販品であってもよい。このようなパール顔料として、例えば、メルク社製の商品名「レーザーフレア800」、「イリオジン100シリーズ」、「イリオジン200シリーズ」、などを使用することができる。   On the other hand, black ink is black, so the color is limited. In the present invention, when a small amount of pearl pigment is used instead of a laser absorber such as black ink printing, the absorption rate of laser light can be increased without affecting other dyes and pigments because it is transparent and silver white, It has been found that the cosmetic properties of the cylindrical shrink label can be improved. It has been found that the incorporation of pearl pigment into the laser absorption layer improves the absorption of laser light. Therefore, in the present invention, a pearl pigment may be blended in the laser absorption layer in place of the laser absorber or together with the laser absorber. The pearl pigment is a pigment obtained by coating natural mica with a metal oxide such as titanium oxide or iron oxide. It is a fine powder having a white mica particle size of 5 to 130 μm, and may be a commercially available product. As such pearl pigments, for example, trade names “Laser Flare 800”, “Iriodin 100 Series”, “Iriodin 200 Series”, etc., manufactured by Merck & Co., Inc. can be used.

本発明では、上記レーザー吸収剤またはパール顔料の合計は、レーザー吸収層中に3〜80質量%含有されることが好ましい。この範囲で、フィルムがレーザーをより効率よく吸収して、接着に十分な熱を得ることにより、強度及び生産効率のより優れる溶着を行うことができる。   In the present invention, the total amount of the laser absorber or the pearl pigment is preferably 3 to 80% by mass in the laser absorption layer. Within this range, the film absorbs the laser more efficiently and obtains sufficient heat for bonding, whereby welding with higher strength and production efficiency can be performed.

レーザー吸収層は、熱収縮性基材フィルムに、上記レーザー吸収剤やパール顔料と熱収縮性基材フィルムを構成する樹脂よりもTgの低い樹脂とからなる組成物を印刷し、または塗布することで形成することができる。   The laser absorption layer is printed on or applied to the heat-shrinkable base film with a composition comprising the above-mentioned laser absorber or pearl pigment and a resin having a Tg lower than that of the resin constituting the heat-shrinkable base film. Can be formed.

(iii)デザイン印刷層
本発明の筒状シュリンクラベル(100)は、熱収縮性基材フィルムのラベル最内層または最外層にデザイン印刷層を有するものであってもよい。ただし、前記重ね部(37)において、筒状に重ねる際に熱収縮性基材フィルムと熱収縮性基材フィルムとの間には印刷層がないことが好ましい。半導体レーザー光、ファイバーレーザー光またはディスクレーザー光による溶着を阻害する場合があるからである。
(Iii) Design Print Layer The cylindrical shrink label (100) of the present invention may have a design print layer on the innermost label or the outermost layer of the heat-shrinkable base film. However, it is preferable that there is no printed layer between the heat-shrinkable base film and the heat-shrinkable base film when the superposed portion (37) is stacked in a cylindrical shape. This is because welding by semiconductor laser light, fiber laser light, or disk laser light may be hindered.

印刷方法に限定はなく、例えばグラビア印刷で印刷層を形成することができる。印刷層としては、樹脂と溶媒から通常のインキビヒクルの1種ないし2種以上を調製し、これに、必要ならば、可塑剤、安定剤、酸化防止剤、光安定剤、紫外線吸収剤、硬化剤、架橋剤、滑剤、帯電防止剤、充填剤、その他等の助剤の1種ないし2種以上を任意に添加し、更に、染料・顔料等の着色剤を添加し、溶媒、希釈剤等で充分に混練してインキ組成物を調整して得たインキ組成物を使用することができる。   There is no limitation in the printing method, for example, a printing layer can be formed by gravure printing. As the printing layer, one or more ordinary ink vehicles are prepared from a resin and a solvent, and if necessary, a plasticizer, a stabilizer, an antioxidant, a light stabilizer, an ultraviolet absorber, and a curing agent. 1 to 2 or more kinds of auxiliaries such as additives, crosslinking agents, lubricants, antistatic agents, fillers, etc. are optionally added, and further colorants such as dyes and pigments are added, and solvents, diluents, etc. The ink composition obtained by sufficiently kneading and adjusting the ink composition can be used.

このようなインキビヒクルとしては、公知のもの、例えば、あまに油、きり油、大豆油、炭化水素油、ロジン、ロジンエステル、ロジン変性樹脂、シェラック、アルキッド樹脂、フェノール系樹脂、マレイン酸樹脂、天然樹脂、炭化水素樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸系樹脂、ポリスチレン系樹脂、ポリビニルブチラール樹脂、アクリルまたはメタクリル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、尿素樹脂、メラミン樹脂、アミノアルキッド系樹脂、ニトロセルロース、エチルセルロース、塩化ゴム、環化ゴム、その他などの1種または2種以上を併用することができる。インクビヒクルは、版から被印刷物に着色剤を運び、被膜として固着させる働きをする。   As such an ink vehicle, known ones such as sesame oil, drill oil, soybean oil, hydrocarbon oil, rosin, rosin ester, rosin modified resin, shellac, alkyd resin, phenolic resin, maleic resin, Natural resin, hydrocarbon resin, polyvinyl chloride resin, polyacetic acid resin, polystyrene resin, polyvinyl butyral resin, acrylic or methacrylic resin, polyamide resin, polyester resin, polyurethane resin, epoxy resin, urea resin , Melamine resin, amino alkyd resin, nitrocellulose, ethyl cellulose, chlorinated rubber, cyclized rubber, etc. can be used alone or in combination. The ink vehicle serves to carry the colorant from the plate to the substrate and fix it as a coating.

また、溶剤によってインキの乾燥性が異なる。印刷インキに使用される主な溶剤は、トルエン、MEK、酢酸エチル、IPAであり、速く乾燥させるために沸点の低い溶剤を用いるが、乾燥が速すぎると印刷物がかすれたり、うまく印刷できない場合があり、沸点の高い溶剤を適宜混合することができる。これによって、細かい文字もきれいに印刷できるようになる。着色剤には、溶剤に溶ける染料と、溶剤には溶けない顔料とがあり、グラビアインキでは顔料を使用する。顔料は無機顔料と有機顔料に分けられ、無機顔料としては酸化チタン(白色)、カーボンブラック(黒色)、アルミ粉末(金銀色)などがあり、有機顔料としてはアゾ系のものを好適に使用することができる。   Further, the drying property of the ink varies depending on the solvent. The main solvents used in printing inks are toluene, MEK, ethyl acetate, and IPA. Solvents with a low boiling point are used for quick drying. However, if the drying is too fast, the printed matter may be faded or printing may not be successful. Yes, a solvent having a high boiling point can be appropriately mixed. This makes it possible to print fine characters neatly. Colorants include dyes that are soluble in solvents and pigments that are insoluble in solvents, and gravure inks use pigments. Pigments are classified into inorganic pigments and organic pigments. Examples of inorganic pigments include titanium oxide (white), carbon black (black), and aluminum powder (gold and silver), and organic pigments are preferably azo. be able to.

上記は、グラビア印刷で説明したが、凸版印刷、スクリーン印刷、転写印刷、フレキソ印刷、その他等の印刷方式であってもよい。また、印刷は、裏印刷でも、表印刷でもよい。   Although the above was demonstrated by gravure printing, printing systems, such as letterpress printing, screen printing, transfer printing, flexographic printing, etc., may be sufficient. The printing may be back printing or front printing.

本発明で好適に使用できるラベルの構成を図5に示す。熱収縮性基材フィルム(10)のレーザー溶着部の重ね部の双方(37,37’)を除いて印刷層(15)が裏印刷された態様を示し、図5(b)は、前記印刷層(15)と共に、レーザー溶着部の重ね部の一方(37’)にレーザー吸収層(17)が裏印刷された態様を示す。図5(a)を筒状に成形すると、熱収縮性基材フィルム/熱収縮性基材フィルムとなり、図5(b)は、熱収縮性基材フィルム/レーザー吸収層/熱収縮性基材フィルムとなる。   FIG. 5 shows the structure of a label that can be suitably used in the present invention. FIG. 5 (b) shows an aspect in which the printed layer (15) is printed on the back side except for both of the overlapping portions (37, 37 ′) of the laser welded portion of the heat-shrinkable base film (10). A mode in which the laser absorption layer (17) is printed on one side (37 ′) of the overlapping portion of the laser welded portion together with the layer (15) is shown. When FIG. 5A is formed into a cylindrical shape, it becomes a heat-shrinkable base film / heat-shrinkable base film, and FIG. 5B shows a heat-shrinkable base film / laser absorption layer / heat-shrinkable base film. Become a film.

(iv)外層
本発明の筒状シュリンクラベルは、前記熱収縮性基材フィルムの表面側に更に外層を設けてもよい。このような外層としては、筒状シュリンクラベルの用途や意匠性などによって適宜選択することができ、ラベル表面の滑り性を付与する場合にはOPニスを、ラベルを触ったときの触感を付与する場合にはスエードインキによる印刷層を、マット感を付与する場合にはマットOPなどを使用することが好ましい。なお、外層は、2層以上の積層とすることができ、外層にデザイン印刷層を形成してもよい。ただし、重ね部のレーザー照射範囲(図1の符号36)には外層には印刷層が形成されないことが好ましい。レーザー光のラベル透過性を低下させ、溶着を困難とする場合がある。この際、重ね部(37’)の外側の外層には墨を含む印刷層(15)は形成されないことが好ましい。切断しやすくなる場合があるからである。
(iv) Outer layer The cylindrical shrink label of this invention may provide an outer layer further on the surface side of the said heat-shrinkable base film. As such an outer layer, it can be appropriately selected depending on the use and design properties of the cylindrical shrink label, and OP varnish is given when the label surface is touched to give the label surface slipperiness. In some cases, it is preferable to use a printed layer of suede ink, and in the case of giving a matte feeling, a mat OP or the like. The outer layer can be a laminate of two or more layers, and a design print layer may be formed on the outer layer. However, it is preferable that a printed layer is not formed on the outer layer in the laser irradiation range (reference numeral 36 in FIG. 1) of the overlapping portion. In some cases, the label permeability of the laser beam is lowered, making welding difficult. At this time, it is preferable that the printing layer (15) containing black is not formed on the outer layer outside the overlapping portion (37 ′). It is because it may become easy to cut | disconnect.

(2)容器
本発明の筒状シュリンクラベルを添付しうる容器としては、ガラス容器;PETなどの合成樹脂性容器;セラミックボトルなどの無機物容器;アルミや鉄、SUSなどの金属製容器;ガラス、合成樹脂、セラミック、金属、紙などを含む複合材からなる容器に好適に装着することができる。
(2) Container As a container to which the cylindrical shrink label of the present invention can be attached, a glass container; a synthetic resin container such as PET; an inorganic container such as a ceramic bottle; a metal container such as aluminum, iron, or SUS; It can be suitably mounted on a container made of a composite material including synthetic resin, ceramic, metal, paper and the like.

一方、前記容器が合成樹脂製容器である場合には、該容器を構成する熱可塑性樹脂層としては、PETなどのポリエステル樹脂、PPなどのポリオレフィン系樹脂を使用することが、軽量で、機械的強度、耐熱性、ガス遮断性、耐薬品性、保香性、衛生性等に優れるため好ましい。容器は、ポリエステル樹脂やポリオレフィン系樹脂を射出成形、真空成形、圧空成形等することにより製造することができる。   On the other hand, when the container is a synthetic resin container, it is lightweight and mechanical to use a polyester resin such as PET and a polyolefin resin such as PP as the thermoplastic resin layer constituting the container. It is preferable because it is excellent in strength, heat resistance, gas barrier properties, chemical resistance, aroma retention, hygiene and the like. The container can be manufactured by injection molding, vacuum forming, pressure forming, or the like of polyester resin or polyolefin resin.

容器の形状としては、筒状シュリンクラベルが装着される容器の横断面が丸型に限定されず、四角、八角などの多角型であってもよい。また、筒状シュリンクラベルが装着される容器胴部は、胴部の全長に亘って同一径である場合に限定されず、容器の胴部縦断面が四角である以外に、たとえばひょうたん型などであってもよい。むしろ、本発明では、熱収縮率に優れる縦一軸延伸フィルムを使用するため、容器が凹凸のある形状であっても好適に装着することができる。従って、図2に示すように、容器の筒状シュリンクラベル装着部の最大周径に対する最小周径(最小周径×100/最大周径(%))が50〜100%、より好ましくは70〜90%、特に好ましくは75〜85%のものを好適に使用することができる。   As the shape of the container, the cross section of the container to which the cylindrical shrink label is attached is not limited to a round shape, and may be a polygonal shape such as a square or an octagon. Further, the container body to which the cylindrical shrink label is attached is not limited to the same diameter over the entire length of the body, and other than the case where the container body has a rectangular vertical section, for example, a gourd type There may be. Rather, in the present invention, since a longitudinally uniaxially stretched film having an excellent heat shrinkage rate is used, even if the container has an uneven shape, it can be suitably mounted. Therefore, as shown in FIG. 2, the minimum circumference (minimum circumference x 100 / maximum circumference (%)) with respect to the maximum circumference of the cylindrical shrink label mounting portion of the container is 50 to 100%, more preferably 70 to 90%, particularly preferably 75 to 85%, can be suitably used.

本発明の筒状シュリンクラベルを図2の容器に装着し、熱収縮処理した後の筒状シュリンクラベル付き容器を図3に示す。   FIG. 3 shows a container with a cylindrical shrink label after the cylindrical shrink label of the present invention is attached to the container of FIG.

(3)筒状シュリンクラベルの製造方法
(i)ラベルの調製
本発明で使用するラベルは縦一軸延伸フィルムを使用し、適宜印刷層やレーザー吸収層を形成することで調製することができる。
(3) Manufacturing method of cylindrical shrink label (i) Preparation of label The label used by this invention can be prepared by forming a printing layer and a laser absorption layer suitably using a longitudinally uniaxially stretched film.

(ii)ラベルの筒状成形
本発明の筒状シュリンクラベルは、縦一軸延伸してなる熱収縮性基材フィルムを延伸方向に搬送し、前記フィルムを延伸方向の所定ラベル長に切断し、前記ラベルを鉛直に配置されたシリンダにまき付けて、前記ラベルの切断端を上下に重ねて重ね部を成形し、前記重ね部を前記シリンダと押さえ具とではさみ、前記押さえ具側から前記重ね部(37)と、重ね部近傍の下ラベルからなる前記レーザー光照射幅(3)とにレーザー光を照射して前記重ね部に溶着部(35)を形成して筒状シュリンクラベルを成形し、筒状シュリンクラベルを製造することができる。この方法によれば、フィルム搬送方向と延伸方向とが同方向であるから、切断したラベルを筒状に成形して切断端を重ねると延伸方向の両端部を溶着することができる。すなわち、フィルムを水平方向に移動させるだけでフィルム切断、ラベル筒状溶着を行うことができるために、横一軸延伸フィルムを使用する場合のように、ラベルを90度回転させる工程が不要となる。また、ラベル上前の切断端の端部が下ラベルに溶着されるため、熱収縮後にも外観に優れる筒状シュリンクラベルとなる。また、半導体などのレーザー光で溶着するため、接着剤を使用することなく接着でき、短時間で効率的な溶着が行える。また、容器リサイクル時にラベルを剥がした際、接着剤で接着する場合と相違して、溶着部分が汚れることがなくリサイクル性に優れる。
(Ii) Cylindrical forming of label The cylindrical shrink label of the present invention transports a heat-shrinkable base film formed by longitudinal uniaxial stretching in the stretching direction, cuts the film into a predetermined label length in the stretching direction, The label is attached to a vertically arranged cylinder, the cut end of the label is overlapped up and down to form an overlapped portion, the overlapped portion is sandwiched between the cylinder and the pressing tool, and the overlapping portion from the pressing tool side (37) and the laser beam irradiation width (3) composed of the lower label in the vicinity of the overlapped portion to irradiate laser light to form a welded portion (35) in the overlapped portion to form a cylindrical shrink label, A cylindrical shrink label can be manufactured. According to this method, since the film conveying direction and the stretching direction are the same direction, both ends in the stretching direction can be welded by forming the cut label into a cylindrical shape and overlapping the cut ends. That is, since the film cutting and label cylindrical welding can be performed only by moving the film in the horizontal direction, the step of rotating the label by 90 degrees as in the case of using a laterally uniaxially stretched film becomes unnecessary. Moreover, since the edge part of the cutting edge before a label is welded to a lower label, it becomes a cylindrical shrink label excellent in an external appearance even after heat shrink. Moreover, since it welds with laser beams, such as a semiconductor, it can adhere | attach without using an adhesive agent and can perform efficient welding in a short time. In addition, when the label is peeled off when recycling the container, the welded portion is not contaminated unlike the case of bonding with an adhesive, and the recyclability is excellent.

より具体的には図4に示すように、鉛直に配置されたシリンダ(20)にまきつけるように前記熱収縮性基材フィルム(10)を繰り出し、所定のラベル長に切断し、ラベル(30)の前端部からシリンダ(20)を回転させながらまきつけ、前記ラベル前端部の上にラベル後端部を重ね、ラベル後端部をガラス板やSUS板などの押さえ具で固定し、斜線で示す、重ね部(35)と、重ね部近傍の前記下ラベルとからなるレーザー照射幅(36)を、押さえ具側からレーザー光を照射して溶着し、溶着幅0.5〜10mmのレーザー溶着部(35)部を形成し、筒状シュリンクラベル(100)を製造することができる。使用するシリンダ(20)は、その表面に空気を吸引しまたは排出する空気孔(25)が多数設けられたものであれば、切断されたラベル(30)を前記シリンダ表面で吸引しながら安定してまき付けることができる。また、シリンダ(20)を鉛直方向を軸として回転させればラベル(30)のまき付けが容易となる。一般には重ね部は、幅3〜20mmである。この重ね部は、ガラス板などの押さえ具で固定することでレーザー光の照射を安定して行うことができる。   More specifically, as shown in FIG. 4, the heat-shrinkable base film (10) is fed out so as to be attached to a vertically arranged cylinder (20), cut into a predetermined label length, and labeled (30). The cylinder (20) is rotated while rotating from the front end of the label, the label rear end is overlaid on the label front end, the label rear end is fixed with a pressing member such as a glass plate or a SUS plate, and indicated by oblique lines, The laser irradiation width (36) composed of the overlapping portion (35) and the lower label in the vicinity of the overlapping portion is welded by irradiating laser light from the pressing tool side, and a laser welding portion having a welding width of 0.5 to 10 mm ( 35) part can be formed and a cylindrical shrink label (100) can be manufactured. If the cylinder (20) to be used has a large number of air holes (25) for sucking or discharging air on its surface, the cylinder (20) is stable while sucking the cut label (30) on the cylinder surface. Can be attached. Further, if the cylinder (20) is rotated about the vertical direction, the label (30) can be easily attached. In general, the overlapping portion has a width of 3 to 20 mm. This overlapping portion can be stably irradiated with laser light by being fixed with a pressing member such as a glass plate.

本発明では、半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を照射して溶着する点に特徴があり、ガラス板などの押さえ具側から前記レーザー光をシリンダに向けて照射し、溶着させる。したがって、押さえ具は、前記レーザー光を透過する必要がある。このような材質のものとして、ガラス、石英ガラスなどがあり、その他、半導体レーザー光、ファイバーレーザー光またはディスクレーザー光の透過性樹脂などを好ましく使用することができる。本発明では、半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を使用するが、これらはいずれも、PETフィルムなどの熱収縮性基材フィルムを透過するため、前記レーザー光照射幅(36)の範囲でラベルが一枚の部分を切断したり、ラベル表面を溶融することがなく、外観に優れる筒状シュリンクラベルを製造することができるからである。一方、重ね部(37)の熱収縮性基材フィルムと熱収縮性基材フィルムとの間にレーザー吸収層を積層すれば短時間に重ね部を溶着することができ、かつ筒状シュリンクラベルとして実用的な接着強度を確保することができる。また、前記重ね部をガラス板、石英や半導体レーザー光、ファイバーレーザー光またはディスクレーザー光の透過性樹脂などの押さえ具で固定することで、重ね部のズレを回避することができる。重ね部(37)の熱収縮性基材フィルムと熱収縮性基材フィルムとの間にレーザー吸収層が積層される場合には、押さえ具は石英ガラスなどのガラス板であることが好ましい。前記レーザー光がガラス板および熱収縮性基材フィルムを経てレーザー吸収層に到達し、レーザー吸収層を溶融して熱収縮性基材フィルムと熱収縮性基材フィルムとの溶着を効率的に行うことができるからである。   The present invention is characterized in that it is welded by irradiation with semiconductor laser light, fiber laser light or disk laser light, and the laser light is irradiated toward the cylinder from the side of the pressing tool such as a glass plate to be welded. Therefore, the pressing tool needs to transmit the laser beam. Examples of such a material include glass and quartz glass. In addition, a semiconductor laser light, a fiber laser light, or a disk laser light transmitting resin can be preferably used. In the present invention, a semiconductor laser beam, a fiber laser beam or a disk laser beam is used, and these all pass through a heat-shrinkable base film such as a PET film, so that the range of the laser beam irradiation width (36). This is because it is possible to produce a cylindrical shrink label having an excellent appearance without cutting a part of the label or melting the label surface. On the other hand, if a laser absorption layer is laminated between the heat-shrinkable base film and the heat-shrinkable base film in the superposed portion (37), the superposed portion can be welded in a short time, and as a cylindrical shrink label Practical adhesive strength can be ensured. Further, the overlapping portion can be avoided by fixing the overlapping portion with a pressing member such as a glass plate, quartz, semiconductor laser light, fiber laser light, or disc laser light transmitting resin. When a laser absorption layer is laminated between the heat-shrinkable base film and the heat-shrinkable base film in the overlapping portion (37), the presser is preferably a glass plate such as quartz glass. The laser beam reaches the laser absorbing layer through the glass plate and the heat shrinkable base film, and the laser absorbing layer is melted to efficiently weld the heat shrinkable base film and the heat shrinkable base film. Because it can.

一方、本発明の筒状シュリンクラベルの製造方法では、重ね部(37)の熱収縮性基材フィルムと熱収縮性基材フィルムとの間にレーザー吸収層がない場合でも、熱収縮性基材フィルムと熱収縮性基材フィルムとを短時間で溶着することができる。前記重ね部を金属製の押さえ具で挟み、いずれかの金属製の押さえ具側から半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を照射すると、金属製の押さえ具で挟まれた熱収縮性基材フィルムを溶着しうるからである。具体的には、シリンダ(20)がSUSなどの金属製である場合には、押さえ具としてSUS板を使用し、SUS板側から前記レーザー光を照射すればよい。なお、押さえ具の形状としては板状に限定されず、例えば略平行に連結した二本の金属棒を使用し、金属棒のない個所からレーザー光を照射してもよい。金属製の押さえ具で重ね部を挟むことで溶着できる理由は明確ではないが、金属がレーザー光を吸収して発熱する一方、レーザー光の反射板として機能し、この結果、金属製の押さえ具に挟まれた熱収縮性基材フィルムが溶着すると考えられる。本発明では、ラベルがシリンダ(20)に巻き取られているため、シリンダ(20)がSUSなどの金属製であれば、重ね部(37)を形成した後にSUSからなる押さえ具で重ね部(37)を押さえ、SUS板側から半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を照射するだけで、連続して重ね部(37)にレーザー溶着部(35)を形成することができる。これにより、レーザー光吸収剤を使用しない場合であっても、筒状シュリンクラベルとしての実用的な接着強度を確保することができる。   On the other hand, in the manufacturing method of the cylindrical shrink label of this invention, even when there is no laser absorption layer between the heat-shrinkable base film and the heat-shrinkable base film of the overlapping part (37), the heat-shrinkable base material The film and the heat-shrinkable base film can be welded in a short time. When the overlapping portion is sandwiched between metal pressers and irradiated with semiconductor laser light, fiber laser light or disk laser light from either metal presser side, the heat-shrinkable base sandwiched between the metal pressers This is because the material film can be welded. Specifically, when the cylinder (20) is made of metal such as SUS, a SUS plate may be used as a pressing tool, and the laser light may be irradiated from the SUS plate side. The shape of the presser is not limited to a plate shape. For example, two metal rods connected substantially in parallel may be used, and laser light may be irradiated from a place where there is no metal rod. The reason why welding can be achieved by sandwiching the overlapping part with a metal pressing tool is not clear, but the metal absorbs the laser beam and generates heat, while functioning as a reflector for the laser beam. As a result, the metal pressing tool It is considered that the heat-shrinkable base film sandwiched between the two is welded. In the present invention, since the label is wound around the cylinder (20), if the cylinder (20) is made of metal such as SUS, the overlapping portion (37) is formed with a pressing member made of SUS after forming the overlapping portion (37). 37), the laser welded portion (35) can be continuously formed on the overlapping portion (37) simply by irradiating the semiconductor laser light, the fiber laser light or the disk laser light from the SUS plate side. Thereby, even if it is a case where a laser beam absorber is not used, practical adhesive strength as a cylindrical shrink label is securable.

レーザー照射条件は、スポット径0.1〜15mm、出力5〜500W、加工速度1〜300mm/secである。これにより実用的な接着強度を確保することができる。   The laser irradiation conditions are a spot diameter of 0.1 to 15 mm, an output of 5 to 500 W, and a processing speed of 1 to 300 mm / sec. Thereby, practical adhesive strength can be ensured.

(4)筒状シュリンクラベル付き容器の製造方法
本発明の筒状シュリンクラベル付き容器は、上記で製造した筒状シュリンクラベルに、ラベルの上部または下部から容器を挿入して容器に筒状シュリンクラベルを装着し、ついで熱収縮処理することで製造することができる。なお、以下は、半導体レーザーの場合で説明するが、ファイバーレーザー光やディスクレーザー光の場合も同様である。
(4) Manufacturing method of container with cylindrical shrink label The cylindrical shrink label container of the present invention is a cylindrical shrink label inserted into the cylindrical shrink label manufactured above by inserting the container from the upper part or the lower part of the label. It can be manufactured by mounting and then heat shrinking. In the following description, the case of a semiconductor laser will be described, but the same applies to the case of a fiber laser beam or a disk laser beam.

例えば、図6、図7に示すように、(a)ラベル(30)をシリンダ(20)にまき付け、(b)ラベル切断端の重ね部(37)を形成し押さえ具で押さえ、(c)押さえ具側から、前記レーザー光照射幅で半導体レーザーを照射して、重ね部(37)にレーザー溶着部(35)を形成して筒状に溶着する。次いで、(d)シリンダ(20)を下方から引き抜く。具体的には、シリンダ(20)には多数の空気孔(25)が設けられており、半導体レーザー光で溶着した後にシリンダ(20)の前記空気孔(25)から空気を排出させると、シリンダ(20)とラベル(30)との間に空気を送り込むことができる。この状態で、シリンダ(20)をラベルの下端から下方に移動させると、容易に筒状シュリンクラベルからシリンダ(20)を引き抜くことができる。(e)これにより筒状シュリンクラベル(100)を鉛直した状態で製造することができる。   For example, as shown in FIG. 6 and FIG. 7, (a) the label (30) is placed on the cylinder (20), (b) the overlapped portion (37) of the label cut end is formed and pressed with a presser (c ) A laser beam is irradiated from the side of the pressing tool with the laser beam irradiation width to form a laser welding part (35) in the overlap part (37) and welded in a cylindrical shape. Next, (d) the cylinder (20) is pulled out from below. Specifically, the cylinder (20) is provided with a large number of air holes (25). When the air is discharged from the air holes (25) of the cylinder (20) after welding with the semiconductor laser beam, the cylinder (20) Air can be sent between (20) and the label (30). When the cylinder (20) is moved downward from the lower end of the label in this state, the cylinder (20) can be easily pulled out from the cylindrical shrink label. (E) Thereby, the cylindrical shrink label (100) can be manufactured in a vertical state.

次いで、(f)筒状シュリンクラベルの上部から容器(90)を降下させ、(g)筒状シュリンクラベル(100)を容器(90)に装着し、次いで(h)熱収縮処理を順次行う。熱収縮処理は、ラベルの熱収縮性基材フィルムの種類や厚さ、延伸率などによって適宜選択することができ、例えば、60〜230℃の熱風や、水蒸気及び水蒸気が結露した湯気により加熱するスチームや、赤外線等の輻射熱を作用させてシュリンクラベルを周方向に高収縮させ、容器の胴部をシュリンクラベルで被覆することができる。なお、上記は、シリンダ(20)を、筒状シュリンクラベルの下部側から引き抜き、上部側から容器を挿入する態様を示したが、筒状シュリンクラベルの上部側から引き抜き、下部側から容器を挿入する態様であってもよい。   Next, (f) the container (90) is lowered from the upper part of the cylindrical shrink label, (g) the cylindrical shrink label (100) is attached to the container (90), and then (h) heat shrinkage treatment is sequentially performed. The heat shrink treatment can be appropriately selected depending on the type and thickness of the heat shrinkable base film of the label, the stretching ratio, and the like. For example, the heat shrink treatment is performed with hot air at 60 to 230 ° C. or steam with condensation of water vapor and water vapor. The shrink label can be highly shrunk in the circumferential direction by applying radiant heat such as steam or infrared rays, and the body of the container can be covered with the shrink label. In addition, although the above showed the aspect which pulls out a cylinder (20) from the lower side of a cylindrical shrink label and inserts a container from an upper side, it pulls out from the upper side of a cylindrical shrink label and inserts a container from the lower side It is also possible to use this mode.

本発明では、前記したように、フィルムを水平方向に移動するだけでフィルムの切断、ラベルの筒状溶着を行うことができるため、鉛直に配置されたシリンダにまきつければラベルの筒状化を円滑かつ容易に行うことができ、シリンダの外部から半導体レーザー光を照射することで、簡便かつ確実にレーザー溶着部を行うことができる。   In the present invention, as described above, the film can be cut and the label can be welded by simply moving the film in the horizontal direction. It can be carried out smoothly and easily, and the laser welding part can be carried out simply and reliably by irradiating the semiconductor laser light from the outside of the cylinder.

(5)筒状シュリンクラベル付き容器
本発明の筒状シュリンクラベル付き容器は、上記筒状シュリンクラベル(100)が容器(90)の全長に亘って被覆するように装着されたものでもよく、容器(90)の上部のみ、下部のみ、蓋部のみ、など容器の一部のみに装着してもよい。更に、容器底部を包み込むように熱収縮させたり、容器蓋部から底部の全体に筒状シュリンクラベルを装着し、熱収縮させて、全面被覆することもできる。
(5) Container with cylindrical shrink label The container with cylindrical shrink label of the present invention may be one in which the cylindrical shrink label (100) is mounted so as to cover the entire length of the container (90). (90) Only the upper part, only the lower part, only the lid part, etc. may be attached to only a part of the container. Furthermore, it is possible to heat-shrink so as to wrap the container bottom, or to attach a cylindrical shrink label to the entire bottom from the container lid and heat-shrink to cover the entire surface.

次に実施例を挙げて本発明を具体的に説明するが、これらの実施例は何ら本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated concretely, these Examples do not restrict | limit this invention at all.

(実施例1)
115mm巾、フィルム厚さが25μmのPET縦一軸延伸フィルム(熱収縮率;100℃、10秒、50%、Tg81℃)を使用し、ラベルデザイン印刷をラベル後端の溶着部を除いて裏刷りし、および前記ラベル後端の溶着部に、ポリエステル樹脂(ユニチカ製、商品名「エリーテルUE3223」、Tg4℃)にパール顔料(メルク社製、商品名「レーザーフレア820」)を1:1で配合したレーザー吸収層を8g/m2となるように裏印刷し、延伸方向に巻き取った。
Example 1
Using a PET uniaxially stretched film (heat shrinkage rate: 100 ° C., 10 seconds, 50%, Tg 81 ° C.) with a width of 115 mm and a film thickness of 25 μm, label printing is printed on the back side of the label except for the welded portion. In addition, a polyester resin (trade name “Elitel UE3223”, Tg4 ° C.) and a pearl pigment (trade name “Laser Flare 820”, manufactured by Merck & Co., Inc.) are blended in a 1: 1 ratio at the rear end of the label. The laser absorption layer thus obtained was printed on the back so as to be 8 g / m 2 and wound up in the stretching direction.

ラベラーに上記印刷ロールラベルをセット、延伸方向に繰り出してロータリーカッター部分で238mmの長さにカットして枚葉ラベルとした。   The above-mentioned printing roll label was set on a labeler, fed out in the stretching direction, and cut into a length of 238 mm at a rotary cutter portion to obtain a single wafer label.

前記枚葉ラベルの切断した先端部を前記シリンダにエアーで吸引しながら巻きつけ、ラベル両端部に4mmの重なりを設け、重ね部に石英ガラス板を圧着させて固定した。前記重ね部は、ガラス板側から、PET/レーザー吸収層/PET/墨を含まないデザイン印刷層/シリンダとなる。   The cut end portion of the single wafer label was wound around the cylinder while being sucked with air, an overlap of 4 mm was provided at both ends of the label, and a quartz glass plate was crimped to the overlapping portion and fixed. The overlapped portion becomes a design print layer / cylinder not including PET / laser absorption layer / PET / black from the glass plate side.

ラベル重ね部および重ね部近傍の下ラベルの幅4mmに、ガラス板の上部から半導体レーザー光を照射して溶着した。照射は、半導体励起ファイバーレーザー、ミヤチテクノス社製、ML6500A、波長1080nm、最大出力300W、CW発振(連続)を使用し、スポットサイズ1.2mm、出力30W、加工速度400mm/secで行い、溶着幅1.0mmの筒状シュリンクラベルを調製した。   The label overlapping part and the width of the lower label in the vicinity of the overlapping part were welded by irradiation with semiconductor laser light from the upper part of the glass plate. Irradiation is performed using a semiconductor excitation fiber laser, manufactured by Miyachi Technos, ML6500A, wavelength 1080 nm, maximum output 300 W, CW oscillation (continuous), spot size 1.2 mm, output 30 W, processing speed 400 mm / sec, welding width A 1.0 mm cylindrical shrink label was prepared.

レーザー照射表面(PET)はラベル重ね部(2枚の部分)と非重ね部(一枚の部分)ともにレーザー光による損傷がなく、ラベル後端に未溶着部も存在せず、外観良好であった。なお、接着強度は、剪断強度7.5N/15mm、剥離強度28N/15mm)であった。   The laser-irradiated surface (PET) is not damaged by the laser beam in both the overlapping part (two parts) and the non-overlapping part (one part), and there is no unwelded part at the rear end of the label, and the appearance is good. It was. The adhesive strength was a shear strength of 7.5 N / 15 mm and a peel strength of 28 N / 15 mm.

なお、剥離強度は、試験片を長さ50mm、幅15mmに切出し、端部をはがしてつまみしろを作成した。これを引張試験機(オリエンテック社製)を用いて、JIS K6854に準じて、180度剥離により300mm/分の引張速度で測定し、15mm当たりの剥離強度(単位:N/15mm)で評価した。また、剪断強度は、試験片を長さ70mm、幅15mmに切り出し、引張り試験機でJIS K6850に準じて300mm/分で測定した。   For the peel strength, the test piece was cut out to a length of 50 mm and a width of 15 mm, and the edge was peeled off to create a pinch. This was measured at a tensile speed of 300 mm / min by 180-degree peeling according to JIS K6854 using a tensile tester (Orientec), and evaluated by peel strength per 15 mm (unit: N / 15 mm). . In addition, the shear strength was measured at 300 mm / min according to JIS K6850 using a tensile tester by cutting a test piece into a length of 70 mm and a width of 15 mm.

次いで、前記筒状シュリンクラベルを500mLの変形PETボトルの上部から装着し、熱風式シュリンクトンネルで95℃×10秒加熱してラベルを収縮させた。   Next, the cylindrical shrink label was attached from the top of a 500 mL modified PET bottle, and the label was shrunk by heating at 95 ° C. for 10 seconds in a hot air type shrink tunnel.

得られた筒状シュリンクラベルは、熱収縮時にも溶着部分が剥がれることなかった。また、得られたシュリンクラベル装着容器は、50cmの高さから落下してもラベルの脱落がなく、十分な溶着強度を有していた。結果を表1に示す。   The obtained cylindrical shrink label did not peel off the welded part even during heat shrinkage. Further, the obtained shrink label mounting container did not drop off the label even when dropped from a height of 50 cm, and had sufficient welding strength. The results are shown in Table 1.

(実施例2)
860mm巾、フィルム厚さが25μmのPET縦一軸延伸フィルム(熱収縮率;100℃、10秒、50%、Tg81℃)を使用し、ラベルデザイン印刷をラベル後端の溶着部を除いて裏刷りし、および前記ラベル後端の溶着部に、ポリエステル樹脂(ユニチカ製、商品名「エリーテルUE9200」、Tg65℃)にパール顔料(メルク社製、商品名「レーザーフレア820」)を1:1で配合したレーザー吸収層を3g/m2となるように裏印刷し、72mm巾で10列のラベルをスリットして延伸方向に巻き取った。
(Example 2)
Using a PET longitudinally uniaxially stretched film (heat shrinkage rate: 100 ° C., 10 seconds, 50%, Tg 81 ° C.) with a width of 860 mm and a film thickness of 25 μm, the label design is printed on the backside of the label, excluding the welded portion. In addition, a polyester resin (made by Unitika, trade name “Eritel UE9200”, Tg65 ° C.) and a pearl pigment (made by Merck, trade name “Laser Flare 820”) are blended 1: 1 at the welded portion at the rear end of the label. The laser absorbing layer thus obtained was printed on the back so as to be 3 g / m 2, and 10 rows of labels with a width of 72 mm were slit and wound in the stretching direction.

ラベラーに上記印刷ロールラベルをセット、延伸方向に繰り出してロータリーカッター部分で238mmの長さにカットして枚葉ラベルとした。   The above-mentioned printing roll label was set on a labeler, fed out in the stretching direction, and cut into a length of 238 mm at a rotary cutter portion to obtain a single wafer label.

前記枚葉ラベルの切断した先端部を前記シリンダにエアーで吸引しながら巻きつけ、ラベル両端部に4mmの重なりを設け、重ね部にガラス板を圧着させて固定した。前記重ね部は、ガラス板側から、PET/レーザー吸収層/PET/デザイン印刷層/シリンダとなる。   The cut end portion of the single-wafer label was wound around the cylinder while sucking with air, an overlap of 4 mm was provided at both ends of the label, and a glass plate was crimped to the overlapping portion and fixed. The overlapping portion is PET / laser absorption layer / PET / design printing layer / cylinder from the glass plate side.

ラベル重ね部および重ね部近傍の下ラベルの幅4mmに、ガラス板の上部から半導体レーザー光を照射して溶着した。半導体レーザーとして、ミヤチテクノス社製、LD励起ファイバーレーザー「ML6500A」を使用し、スポット径4.1mm、出力30W、加工速度400mm/secでレーザー溶着し、溶着幅3.5mmの筒状シュリンクラベルを調製した。   The label overlapping part and the width of the lower label in the vicinity of the overlapping part were welded by irradiation with semiconductor laser light from the upper part of the glass plate. As a semiconductor laser, an LD pumped fiber laser “ML6500A” manufactured by Miyachi Technos Co., Ltd. is used. Laser welding is performed at a spot diameter of 4.1 mm, an output of 30 W, and a processing speed of 400 mm / sec. Prepared.

レーザー照射表面(PET)はラベル重ね部(2枚の部分)と非重ね部(一枚の部分)ともにレーザー光による損傷がなく、ラベル後端に未溶着部も存在せず、外観良好であった。なお、接着強度は、剪断強度20N/15mm、剥離強度5N/15mm)であった。   The laser-irradiated surface (PET) is not damaged by the laser beam in both the overlapping part (two parts) and the non-overlapping part (one part), and there is no unwelded part at the rear end of the label, and the appearance is good. It was. The adhesive strength was a shear strength of 20 N / 15 mm and a peel strength of 5 N / 15 mm.

次いで、前記筒状シュリンクラベルを500mLの変形PETボトルの上部から装着し、熱風式シュリンクトンネルで95℃×10秒加熱してラベルを収縮させた。   Next, the cylindrical shrink label was attached from the top of a 500 mL modified PET bottle, and the label was shrunk by heating at 95 ° C. for 10 seconds in a hot air type shrink tunnel.

得られた筒状シュリンクラベルは、熱収縮時にも溶着部分が剥がれることなかった。また、得られたシュリンクラベル装着容器は、50cmの高さから落下してもラベルの脱落がなく、十分な溶着強度を有していた。結果を表1に示す。また、断面形状を図9に示す。   The obtained cylindrical shrink label did not peel off the welded part even during heat shrinkage. Further, the obtained shrink label mounting container did not drop off the label even when dropped from a height of 50 cm, and had sufficient welding strength. The results are shown in Table 1. The cross-sectional shape is shown in FIG.

(実施例3)
115mm巾、フィルム厚さが40μmのポリプロピレン縦一軸延伸フィルム(熱収縮率;100℃、10秒、25%)を使用し、ラベルデザイン印刷をラベル後端の溶着部を除いて裏刷りし、および前記ラベル後端の溶着部に、ポリオレフィン樹脂(商品名「アローベース」)にパール顔料(メルク社製、商品名「レーザーフレア820」)を1:1で配合したレーザー吸収層を8g/m2となるように裏印刷し、延伸方向に巻き取った。
(Example 3)
Using a polypropylene longitudinally uniaxially stretched film (heat shrinkage rate: 100 ° C., 10 seconds, 25%) having a width of 115 mm and a film thickness of 40 μm, the label design printing is printed back except for the welded portion at the rear end of the label, and 8 g / m 2 of a laser absorption layer in which a pearl pigment (trade name “Laser Flare 820”, manufactured by Merck & Co., Inc.) is mixed 1: 1 with a polyolefin resin (trade name “Arrow Base”) in the welded portion at the rear end of the label. The back was printed so that

ラベラーに上記印刷ロールラベルをセット、延伸方向に繰り出してロータリーカッター部分で238mmの長さにカットして枚葉ラベルとした。   The above-mentioned printing roll label was set on a labeler, fed out in the stretching direction, and cut into a length of 238 mm at a rotary cutter portion to obtain a single wafer label.

前記枚葉ラベルの切断した先端部を前記シリンダにエアーで吸引しながら巻きつけ、ラベル両端部に4mmの重なりを設け、重ね部にガラス板を圧着させて固定した。前記重ね部は、ガラス板側から、PP/レーザー吸収層/PP/デザイン印刷層/シリンダとなる。   The cut end portion of the single-wafer label was wound around the cylinder while sucking with air, an overlap of 4 mm was provided at both ends of the label, and a glass plate was crimped to the overlapping portion and fixed. The overlapped portion is PP / laser absorption layer / PP / design printing layer / cylinder from the glass plate side.

ラベル重ね部および重ね部近傍の下ラベルの幅4mmに、ガラス板の上部から半導体レーザー光を照射して溶着した。半導体レーザーとしてミヤチテクノス社製、商品名「半導体レーザーCWタイプ」を使用し、スポットサイズ1.2mm、750W、速度400mm/secで、レーザー加工幅4mmで溶着し溶着幅1.0mmの筒状シュリンクラベルを調製した。   The label overlapping part and the width of the lower label in the vicinity of the overlapping part were welded by irradiation with semiconductor laser light from the upper part of the glass plate. A cylindrical shrink with a welding width of 1.0 mm by welding with a laser processing width of 4 mm at a spot size of 1.2 mm, 750 W and a speed of 400 mm / sec using the product name “semiconductor laser CW type” manufactured by Miyachi Technos as a semiconductor laser. A label was prepared.

レーザー照射表面(PP)はラベル重ね部(2枚の部分)と非重ね部(一枚の部分)ともにレーザー光による損傷がなく、ラベル後端に未溶着部も存在せず、外観良好であった。なお、接着強度は、剪断強度25N/15mm、剥離強度6.2N/15mm)であった。   The laser-irradiated surface (PP) is not damaged by the laser beam in both the label overlapping part (two parts) and the non-overlapping part (one part), and there is no unwelded part at the rear end of the label and the appearance is good. It was. The adhesive strength was a shear strength of 25 N / 15 mm and a peel strength of 6.2 N / 15 mm.

次いで、前記筒状シュリンクラベルを500mLの変形PETボトルの上部から装着し、熱風式シュリンクトンネルで120℃×10秒加熱してラベルを収縮させた。   Next, the cylindrical shrink label was attached from the top of a 500 mL modified PET bottle, and the label was contracted by heating at 120 ° C. for 10 seconds in a hot air type shrink tunnel.

得られた筒状シュリンクラベルは、熱収縮時にも溶着部分が剥がれることなかった。また、得られたシュリンクラベル装着容器は、50cmの高さから落下してもラベルの脱落がなく、十分な溶着強度を有していた。結果を表1に示す。   The obtained cylindrical shrink label did not peel off the welded part even during heat shrinkage. Further, the obtained shrink label mounting container did not drop off the label even when dropped from a height of 50 cm, and had sufficient welding strength. The results are shown in Table 1.

(実施例4)
860mm巾、フィルム厚さが25μmのPET縦一軸延伸フィルム(熱収縮率;100℃、10秒、50%、Tg81℃)を使用し、ラベルデザイン印刷をラベル後端の溶着部を除いて裏刷りし、72mm巾で10列のラベルをスリットして延伸方向に巻き取った。
Example 4
Using a PET longitudinally uniaxially stretched film (heat shrinkage rate: 100 ° C., 10 seconds, 50%, Tg 81 ° C.) with a width of 860 mm and a film thickness of 25 μm, the label design is printed on the backside of the label, excluding the welded portion. Then, 10 rows of labels with a width of 72 mm were slit and wound in the stretching direction.

ラベラーに上記印刷ロールラベルをセット、延伸方向に繰り出してロータリーカッター部分で238mmの長さにカットして枚葉ラベルとした。   The above-mentioned printing roll label was set on a labeler, fed out in the stretching direction, and cut into a length of 238 mm at a rotary cutter portion to obtain a single wafer label.

前記枚葉ラベルの切断した先端部を前記シリンダにエアーで吸引しながら巻きつけ、ラベル両端部に4mmの重なりを設け、重ね部に厚さ0.1mmのSUS板を圧着させて固定した。前記重ね部は、SUS板側から、PET(無地)/PET/デザイン印刷層/シリンダとなる。   The cut end portion of the single wafer label was wound around the cylinder while being sucked with air, an overlap of 4 mm was provided at both ends of the label, and a SUS plate having a thickness of 0.1 mm was fixed to the overlap portion by pressing. From the SUS plate side, the overlapped portion becomes PET (plain fabric) / PET / design printing layer / cylinder.

ラベル重ね部および重ね部近傍の下ラベルの幅4mmに、ラベル重ね部のSUS板の上部から半導体レーザー光を照射して溶着した。半導体レーザーとして、ミヤチテクノス社製、LD励起ファイバーレーザー 商品名「ML6500A」を使用し、スポット径4.1mm、出力120W、加工速度100mm/secでレーザー溶着し、溶着幅2.5mmの筒状シュリンクラベルを調製した。   The label overlapping part and the width of the lower label in the vicinity of the overlapping part were welded by irradiation with semiconductor laser light from the upper part of the SUS plate in the label overlapping part. As the semiconductor laser, LD pumped fiber laser manufactured by Miyachi Technos Co., Ltd., trade name “ML6500A” is used, laser welding is performed with a spot diameter of 4.1 mm, an output of 120 W, a processing speed of 100 mm / sec, and a cylindrical shrink with a welding width of 2.5 mm A label was prepared.

レーザー照射表面(PET)はラベル重ね部(2枚の部分)と非重ね部(一枚の部分)ともにレーザー光による損傷がなく、ラベル後端に未溶着部も存在せず、外観良好であった。なお、接着強度は、剪断強度15N/15mm、剥離強度3.8N/15mm)であった。   The laser-irradiated surface (PET) is not damaged by the laser beam in both the overlapping part (two parts) and the non-overlapping part (one part), and there is no unwelded part at the rear end of the label, and the appearance is good. It was. The adhesive strength was a shear strength of 15 N / 15 mm and a peel strength of 3.8 N / 15 mm.

次いで、前記筒状シュリンクラベルを500mLの変形PETボトルの上部から装着し、熱風式シュリンクトンネルで95℃×10秒加熱してラベルを収縮させた。   Next, the cylindrical shrink label was attached from the top of a 500 mL modified PET bottle, and the label was shrunk by heating at 95 ° C. for 10 seconds in a hot air type shrink tunnel.

得られた筒状シュリンクラベルは、熱収縮時にも溶着部分が剥がれることなかった。また、得られたシュリンクラベル装着容器は、50cmの高さから落下してもラベルの脱落がなく、十分な溶着強度を有していた。結果を表1に示す。   The obtained cylindrical shrink label did not peel off the welded part even during heat shrinkage. Further, the obtained shrink label mounting container did not drop off the label even when dropped from a height of 50 cm, and had sufficient welding strength. The results are shown in Table 1.

(比較例1)
ラベル重ね部に、スポットサイズ0.96mmで半導体レーザー光を照射し、幅1mmの溶着幅を形成した以外は、実施例1と同様に操作して、筒状シュリンクラベルを製造した。なお、接着強度は、剪断強度24N/15mm、剥離強度8.0N/15mm)であった。この筒状シュリンクラベルの外観を図8に示す。
(Comparative Example 1)
A cylindrical shrink label was produced in the same manner as in Example 1 except that the label overlap portion was irradiated with semiconductor laser light at a spot size of 0.96 mm to form a welding width of 1 mm in width. The adhesive strength was a shear strength of 24 N / 15 mm and a peel strength of 8.0 N / 15 mm. The appearance of this cylindrical shrink label is shown in FIG.

次いで、前記筒状シュリンクラベルを500mLの変形PETボトルの上部から装着し、熱風式シュリンクトンネルで95℃×10秒加熱してラベルを収縮させた。   Next, the cylindrical shrink label was attached from the top of a 500 mL modified PET bottle, and the label was shrunk by heating at 95 ° C. for 10 seconds in a hot air type shrink tunnel.

得られた筒状シュリンクラベルは、熱収縮時後にラベル端部が硬化し、めくれ上がった。結果を表1に示す。   The obtained cylindrical shrink label was turned up after the end of the label was cured after heat shrinkage. The results are shown in Table 1.

(比較例2)
重ね部のデザイン印刷層に墨印刷を行い、出力を120Wにしてレーザー光を照射した以外は実施例2と同様に操作して、筒状シュリンクラベルを製造した。前記重ね部は、ガラス板側から、PET/レーザー吸収層/PET/墨印刷を含むデザイン印刷層/シリンダとなる。その結果、ラベルが2枚の重ね部は溶着したが、ラベルが1枚の個所は、切断されてしまった。
(Comparative Example 2)
A cylindrical shrink label was manufactured in the same manner as in Example 2 except that black printing was performed on the design print layer of the overlapping portion, the output was 120 W, and laser light was irradiated. The overlapping portion becomes a design printing layer / cylinder including PET / laser absorption layer / PET / ink printing from the glass plate side. As a result, the overlapping portion with two labels was welded, but the portion with one label was cut.

(比較例3)
出力を80Wに変更した以外は、比較例2と同様に操作して、筒状シュリンクラベルを製造した。前記重ね部は、ガラス板側から、PET/レーザー吸収層/PET/墨印刷を含むデザイン印刷層/シリンダとなる。その結果、接着強度は、剥離強度が0.8N/15mmと極めて弱いものとなってしまった。
(Comparative Example 3)
A cylindrical shrink label was manufactured in the same manner as in Comparative Example 2 except that the output was changed to 80W. The overlapping portion becomes a design printing layer / cylinder including PET / laser absorption layer / PET / ink printing from the glass plate side. As a result, the adhesive strength was extremely weak with a peel strength of 0.8 N / 15 mm.

(比較例4)
レーザー光の照射条件を、コヒレント社製、DIAMOND K−250(出力250W、100Hz、波長10.6μ)の炭酸ガスレーザーを使用し、パルス間隔500μs、パルス幅19μs、加工速度12m/minの条件で、溶着線巾が約2mmとなるように焦点距離をずらしてレーザー光を照射した以外は、実施例1と同様に操作して筒状シュリンクラベルを製造した。比較例2と同様に、ラベルが2枚の重ね部は溶着したが、ラベルが1枚の個所は、切断されてしまった。
(Comparative Example 4)
The laser light irradiation conditions were as follows: COHIENT CO., DIAMOND K-250 (output 250W, 100Hz, wavelength 10.6μ) carbon dioxide laser, pulse interval 500μs, pulse width 19μs, processing speed 12m / min. A cylindrical shrink label was manufactured in the same manner as in Example 1 except that the laser beam was irradiated while shifting the focal length so that the welding line width was about 2 mm. Similar to Comparative Example 2, the overlapping portion with two labels was welded, but the portion with one label was cut.

本発明に係る筒状シュリンクラベルは、半導体レーザー光で溶着によりラベルを筒状に成形するものであり、生産性高く、かつ接着剤を使用することなく筒状シュリンクラベルを製造することができ、有用である。   The cylindrical shrink label according to the present invention is formed into a cylindrical shape by welding with a semiconductor laser beam, can be manufactured with high productivity and without using an adhesive, Useful.

図1は、本発明の筒状シュリンクラベルを説明する斜視図である。FIG. 1 is a perspective view for explaining a cylindrical shrink label of the present invention. 図2は、本発明で使用しうる容器であって、胴部のラベル溶着部における最大周径に対する最小周径(最小周径×100/最大周径(%))が、50〜100%の凹部を有するものを説明する図である。FIG. 2 shows a container that can be used in the present invention, wherein the minimum peripheral diameter (minimum peripheral diameter × 100 / maximum peripheral diameter (%)) with respect to the maximum peripheral diameter in the label welded portion of the trunk is 50 to 100%. It is a figure explaining what has a recessed part. 図3は、本発明の筒状シュリンクラベル付き容器の好ましい態様の一例を示す図である。Drawing 3 is a figure showing an example of a desirable mode of a container with a cylindrical shrink label of the present invention. 図4は、本発明の筒状シュリンクラベルを製造する工程を説明する図である。FIG. 4 is a diagram for explaining a process for producing the cylindrical shrink label of the present invention. 図5は、本発明で使用できるラベルの層構成を説明する図である。FIG. 5 is a diagram for explaining a layer structure of a label that can be used in the present invention. 図6は、本発明の筒状シュリンクラベル付き容器を製造する工程のうち、(a)ラベルのシリンダへのまき付け、(b)切断端の重ね、(c)重ね部のレーザー溶着部、(d)シリンダの下方への移動を説明する図である。FIG. 6 shows the steps of manufacturing a container with a cylindrical shrink label according to the present invention. (A) Labeling onto a cylinder, (b) Stacking of cut ends, (c) Laser welding portion of the overlapping portion, d) It is a figure explaining the downward movement of a cylinder. 図7は、本発明の筒状シュリンクラベル付き容器を製造する工程のうち、(e)筒状シュリンクラベルの鉛直、(f)容器の降下、(g)筒状シュリンクラベルの容器への装着、(h)熱収縮処理した筒状シュリンクラベル付き容器を説明する図である。FIG. 7 shows the steps of manufacturing a container with a cylindrical shrink label of the present invention. (E) Vertical of the cylindrical shrink label, (f) Lowering of the container, (g) Mounting of the cylindrical shrink label on the container, (H) It is a figure explaining the container with a cylindrical shrink label which carried out the heat shrink process. 比較例1で製造した筒状シュリンクラベルの外観を示す図である。It is a figure which shows the external appearance of the cylindrical shrink label manufactured by the comparative example 1. FIG. 実施例2のラベル溶着部の断面図である。It is sectional drawing of the label welding part of Example 2. FIG.

符号の説明Explanation of symbols

10・・・熱収縮性基材フィルム、
13・・・外層、
15・・・印刷層、
17・・・レーザー吸収層、
20・・・シリンダ、
25・・・空気孔、
30・・・ラベル、
35・・・レーザー溶着部、
36・・・レーザー照射範囲、
37・・・ラベル重ね部、
90・・・容器、
100・・・筒状シュリンクラベル。
10 ... heat-shrinkable substrate film,
13 ... outer layer,
15 ... printing layer,
17 ... Laser absorption layer,
20 ... Cylinder,
25 ... Air holes,
30 ... label,
35 ... laser welding part,
36: Laser irradiation range,
37: Label overlapping part,
90 ... container,
100: A cylindrical shrink label.

Claims (11)

熱収縮性基材フィルムの延伸方向にあるラベル両端を溶着してなる筒状シュリンクラベルであって、
縦一軸延伸した熱収縮性基材フィルムを延伸方向の所定サイズに切断してラベルを切り出し、
前記ラベルの切断端を上下に重ねてラベルを筒状に成形し、
前記重ね部と、重ね部近傍の前記下ラベルとを半導体レーザー光、ファイバーレーザー光またはディスクレーザー光で照射し、前記重ね部を前記レーザー光で溶着することを特徴とする、筒状シュリンクラベル。
A cylindrical shrink label formed by welding both ends of the label in the stretching direction of the heat-shrinkable base film,
Cut the heat-shrinkable base film stretched uniaxially to a predetermined size in the stretching direction, cut out the label,
The label is formed into a cylindrical shape by overlapping the cut ends of the label up and down,
A cylindrical shrink label, wherein the overlapping portion and the lower label in the vicinity of the overlapping portion are irradiated with semiconductor laser light, fiber laser light, or disk laser light, and the overlapping portion is welded with the laser light.
前記重ね部の前記熱収縮性基材フィルムと熱収縮性基材フィルムとの間に、熱収縮性基材フィルムのガラス転位温度よりも低いTgの樹脂からなるレーザー吸収層が積層され、前記レーザー光をレーザー吸収層に照射して前記重ね部を溶着することを特徴とする、請求項1記載の筒状シュリンクラベル。   Between the heat-shrinkable base film and the heat-shrinkable base film in the overlapped portion, a laser absorption layer made of a resin having a Tg lower than the glass transition temperature of the heat-shrinkable base film is laminated, and the laser 2. The cylindrical shrink label according to claim 1, wherein the overlapping portion is welded by irradiating a laser absorption layer with light. 前記レーザー吸収層は、更にレーザー光吸収剤および/またはパール顔料を含むことを特徴とする、請求項2記載の筒状シュリンクラベル。   The cylindrical shrink label according to claim 2, wherein the laser absorption layer further contains a laser light absorber and / or a pearl pigment. 前記熱収縮性基材フィルムが、ポリオレフィン系フィルム、ポリエステル系フィルム、ポリスチレン系フィルム、ポリ乳酸系フィルム、およびこれらのフィルムの2種以上の積層フィルムであって、縦方向の熱収縮率が温度100℃で5〜85%である、請求項1〜3のいずれかに記載の筒状シュリンクラベル。   The heat-shrinkable base film is a polyolefin-based film, a polyester-based film, a polystyrene-based film, a polylactic acid-based film, or a laminate film of two or more of these films, and the heat shrinkage rate in the vertical direction is 100 The cylindrical shrink label according to any one of claims 1 to 3, which is 5 to 85% at ° C. 前記ポリオレフィン系フィルムが縦一軸延伸ポリプロピレン系フィルムであり、前記ポリエステル系フィルムが縦一軸延伸ポリエチレンテレフタレート系フィルムである、請求項4記載の筒状シュリンクラベル。   The cylindrical shrink label according to claim 4, wherein the polyolefin film is a longitudinally uniaxially stretched polypropylene film, and the polyester film is a longitudinally uniaxially stretched polyethylene terephthalate film. 前記筒状シュリンクラベルは、熱収縮性基材フィルムのラベル最内層または最外層にデザイン印刷層を有することを特徴とする、請求項1〜5のいずれかに記載の筒状シュリンクラベル。   The said cylindrical shrink label has a design printing layer in the label innermost layer or outermost layer of a heat-shrinkable base film, The cylindrical shrink label in any one of Claims 1-5 characterized by the above-mentioned. 請求項1〜6いずれかに記載の筒状シュリンクラベルを装着し、熱収縮処理してなる筒状シュリンクラベル付き容器。   A container with a cylindrical shrink label, which is provided with the cylindrical shrink label according to any one of claims 1 to 6 and subjected to a heat shrink treatment. 前記容器は、容器の筒状シュリンクラベル装着部の最大周径に対する最小周径(最小周径×100/最大周径(%))が50〜100%の凹部を有することを特徴とする、請求項7記載の筒状シュリンクラベル付き容器。   The said container has a recessed part whose minimum circumference with respect to the maximum circumference of the cylindrical shrink label mounting part of a container (minimum circumference x100 / maximum circumference (%)) is 50-100%, It is characterized by the above-mentioned. Item 8. A container with a cylindrical shrink label according to Item 7. 縦一軸延伸してなる熱収縮性基材フィルムを延伸方向に搬送し、
前記フィルムを延伸方向の所定ラベル長に切断し、
前記ラベルを鉛直に配置されたシリンダにまき付けて、前記ラベルの切断端を上下に重ねて重ね部を成形し、
前記重ね部を前記シリンダと押さえ具とではさみ、
前記押さえ具側から前記重ね部と、重ね部近傍の前記下ラベルとに半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を照射して前記重ね部を溶着して筒状シュリンクラベルを成形することを特徴とする、筒状シュリンクラベルの製造方法。
A heat-shrinkable base film formed by uniaxial stretching is conveyed in the stretching direction,
Cutting the film into a predetermined label length in the stretching direction,
The label is attached to a vertically arranged cylinder, the cut ends of the label are stacked up and down to form an overlapped portion,
The overlap portion is sandwiched between the cylinder and the presser,
Forming a cylindrical shrink label by irradiating the overlapping portion and the lower label near the overlapping portion from the pressing tool side with semiconductor laser light, fiber laser light or disk laser light to weld the overlapping portion. A method for producing a cylindrical shrink label, which is characterized.
前記シリンダと押さえ具とが、共に金属製である、請求項9記載の筒状シュリンクラベルの製造方法。   The method for manufacturing a cylindrical shrink label according to claim 9, wherein the cylinder and the pressing member are both made of metal. 縦一軸延伸してなる熱収縮性基材フィルムを延伸方向に搬送し、
前記フィルムを延伸方向の所定ラベル長に切断し、
前記ラベルを鉛直に配置されたシリンダにまき付けて、前記ラベルの切断端を上下に重ねて重ね部を成形し、
前記重ね部を前記シリンダと押さえ具とではさみ、
前記押さえ具側から前記重ね部と、重ね部近傍の前記下ラベルとに半導体レーザー光、ファイバーレーザー光またはディスクレーザー光を照射して前記重ね部を溶着して筒状シュリンクラベルを成形し、
前記筒状シュリンクラベルの下部側または上部側から前記シリンダを抜き出し、かつラベルの上部側または下部側から容器を挿入して前記容器に筒状シュリンクラベルを装着し、
ついで熱収縮処理することを特徴とする、筒状シュリンクラベル付き容器の製造方法。
A heat-shrinkable base film formed by uniaxial stretching is conveyed in the stretching direction,
Cutting the film into a predetermined label length in the stretching direction,
The label is attached to a vertically arranged cylinder, the cut ends of the label are stacked up and down to form an overlapped portion,
The overlap portion is sandwiched between the cylinder and the presser,
Irradiate semiconductor laser light, fiber laser light or disk laser light to the overlapping portion and the lower label in the vicinity of the overlapping portion from the presser side to form the cylindrical shrink label by welding the overlapping portion,
The cylinder is extracted from the lower side or the upper side of the cylindrical shrink label, and a container is inserted from the upper side or the lower side of the label, and the cylindrical shrink label is attached to the container,
Next, a method for producing a container with a cylindrical shrink label, which is subjected to heat shrinkage treatment.
JP2007173317A 2007-06-29 2007-06-29 Cylindrical shrink label, container with cylindrical shrink label, and manufacturing method thereof Expired - Fee Related JP5088019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007173317A JP5088019B2 (en) 2007-06-29 2007-06-29 Cylindrical shrink label, container with cylindrical shrink label, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173317A JP5088019B2 (en) 2007-06-29 2007-06-29 Cylindrical shrink label, container with cylindrical shrink label, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009012781A true JP2009012781A (en) 2009-01-22
JP5088019B2 JP5088019B2 (en) 2012-12-05

Family

ID=40354169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173317A Expired - Fee Related JP5088019B2 (en) 2007-06-29 2007-06-29 Cylindrical shrink label, container with cylindrical shrink label, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5088019B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032657A (en) * 2010-07-30 2012-02-16 Dainippon Printing Co Ltd Roll shrink label, container with roll shrink label, and method of manufacturing those
JP2012032658A (en) * 2010-07-30 2012-02-16 Dainippon Printing Co Ltd Roll shrink label, and container with roll shrink label
JP2012240686A (en) * 2011-05-16 2012-12-10 Toyo Seikan Kaisha Ltd Container mounted with shrink label
JP2013511443A (en) * 2009-11-18 2013-04-04 サクミ・ヴェローナ・ソシエタ・ペル・アチオニ Manufacturing method and manufacturing apparatus for sleeve-shaped label
JP2013516364A (en) * 2009-12-30 2013-05-13 サクミ・ヴェローナ・ソシエタ・ペル・アチオニ Shrink sleeve label production equipment
ITTO20120125A1 (en) * 2012-02-13 2013-08-14 Sidel Spa Con Socio Unico METHOD AND UNIT FOR THE FORMATION OF TUBULAR SHEETS OF MATERIAL IN THE FORM OF TAPE, IN PARTICULAR IN A LABELING MACHINE
EP2626312A1 (en) * 2012-02-13 2013-08-14 Sidel S.p.a. Con Socio Unico Method and unit for forming tubular lengths of web material, particularly in a labelling machine
ITVR20120109A1 (en) * 2012-05-31 2013-12-01 Sacmi Verona Spa PROCEDURE FOR WELDING PORTIONS OF FILM IN PLASTIC MATERIAL THROUGH LASER WELDING
JP2015146049A (en) * 2015-05-07 2015-08-13 大日本印刷株式会社 Roll shrinkable label, container with roll shrinkable label and manufacturing method thereof
JP2016195027A (en) * 2015-03-31 2016-11-17 株式会社住化分析センター Method for removing solid electrolyte membrane from membrane-electrode assembly of fuel cell
WO2019098160A1 (en) * 2017-11-19 2019-05-23 西川 吉秀 Automatic insertion device and automatic insertion method for backing-equipped shrink film packaging
EP3622998A3 (en) * 2014-06-06 2020-05-27 Zeus Industrial Products, Inc. Peelable heat-shrink tubing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249739A (en) * 1985-04-30 1986-11-06 Toyo Glass Kk Manufacture of plastic sleeve and its device
JPH0977037A (en) * 1995-09-13 1997-03-25 Saraya Kk Container
JPH09226738A (en) * 1996-02-23 1997-09-02 Toyobo Co Ltd Metal can and synthetic resin film for metal can
JP2000218698A (en) * 1999-01-28 2000-08-08 Leister Process Technologies Method and apparatus for bonding resins by laser
US20040232023A1 (en) * 2003-05-21 2004-11-25 Unilever Bestfoods North America Asymmetric package for market appeal
JP2005292195A (en) * 2004-03-31 2005-10-20 C I Kasei Co Ltd Heat-shrinkable film for label
JP2006058869A (en) * 2004-07-22 2006-03-02 Daicel Polymer Ltd Label for laser welding and composite molding
US20070056679A1 (en) * 2005-09-12 2007-03-15 Sacmi Labelling S.P.A. Apparatus and method for obtaining labels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249739A (en) * 1985-04-30 1986-11-06 Toyo Glass Kk Manufacture of plastic sleeve and its device
JPH0977037A (en) * 1995-09-13 1997-03-25 Saraya Kk Container
JPH09226738A (en) * 1996-02-23 1997-09-02 Toyobo Co Ltd Metal can and synthetic resin film for metal can
JP2000218698A (en) * 1999-01-28 2000-08-08 Leister Process Technologies Method and apparatus for bonding resins by laser
US20040232023A1 (en) * 2003-05-21 2004-11-25 Unilever Bestfoods North America Asymmetric package for market appeal
JP2005292195A (en) * 2004-03-31 2005-10-20 C I Kasei Co Ltd Heat-shrinkable film for label
JP2006058869A (en) * 2004-07-22 2006-03-02 Daicel Polymer Ltd Label for laser welding and composite molding
US20070056679A1 (en) * 2005-09-12 2007-03-15 Sacmi Labelling S.P.A. Apparatus and method for obtaining labels

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511443A (en) * 2009-11-18 2013-04-04 サクミ・ヴェローナ・ソシエタ・ペル・アチオニ Manufacturing method and manufacturing apparatus for sleeve-shaped label
JP2013516364A (en) * 2009-12-30 2013-05-13 サクミ・ヴェローナ・ソシエタ・ペル・アチオニ Shrink sleeve label production equipment
JP2012032657A (en) * 2010-07-30 2012-02-16 Dainippon Printing Co Ltd Roll shrink label, container with roll shrink label, and method of manufacturing those
JP2012032658A (en) * 2010-07-30 2012-02-16 Dainippon Printing Co Ltd Roll shrink label, and container with roll shrink label
JP2012240686A (en) * 2011-05-16 2012-12-10 Toyo Seikan Kaisha Ltd Container mounted with shrink label
EP2626311A1 (en) * 2012-02-13 2013-08-14 Sidel S.p.a. Con Socio Unico Method and unit for forming tubular lengths of web material, particularly in a labelling machine
CN103241423B (en) * 2012-02-13 2016-12-28 西得乐独资股份公司 For forming unit and the labelling machine of the tubular sections of web material
ITTO20120126A1 (en) * 2012-02-13 2013-08-14 Sidel Spa Con Socio Unico METHOD AND UNIT FOR THE FORMATION OF TUBULAR SHEETS OF MATERIAL IN THE FORM OF TAPE, IN PARTICULAR IN A LABELING MACHINE
CN103241422A (en) * 2012-02-13 2013-08-14 西得乐独资股份公司 Method and unit for forming tubular lengths of web material, and labelling machine
CN103241423A (en) * 2012-02-13 2013-08-14 西得乐独资股份公司 Method and unit for forming tubular lengths of web material, and labelling machine
ITTO20120125A1 (en) * 2012-02-13 2013-08-14 Sidel Spa Con Socio Unico METHOD AND UNIT FOR THE FORMATION OF TUBULAR SHEETS OF MATERIAL IN THE FORM OF TAPE, IN PARTICULAR IN A LABELING MACHINE
JP2013209155A (en) * 2012-02-13 2013-10-10 Sidel Spa Con Socio Unico Method and unit for forming tubular length of web material in labelling machine
JP2013209156A (en) * 2012-02-13 2013-10-10 Sidel Spa Con Socio Unico Method and unit for forming tubular length of web material in labelling machine
EP2626312A1 (en) * 2012-02-13 2013-08-14 Sidel S.p.a. Con Socio Unico Method and unit for forming tubular lengths of web material, particularly in a labelling machine
US9522757B2 (en) 2012-02-13 2016-12-20 Sidel S.P.A. Con Socio Unico Method and unit for forming tubular lengths of web material particularly in a labelling machine
US9233770B2 (en) 2012-02-13 2016-01-12 Sidel S.P.A. Method and unit for forming tubular lengths of web material, particularly in a labelling machine
ITVR20120109A1 (en) * 2012-05-31 2013-12-01 Sacmi Verona Spa PROCEDURE FOR WELDING PORTIONS OF FILM IN PLASTIC MATERIAL THROUGH LASER WELDING
EP3622998A3 (en) * 2014-06-06 2020-05-27 Zeus Industrial Products, Inc. Peelable heat-shrink tubing
JP2016195027A (en) * 2015-03-31 2016-11-17 株式会社住化分析センター Method for removing solid electrolyte membrane from membrane-electrode assembly of fuel cell
JP2015146049A (en) * 2015-05-07 2015-08-13 大日本印刷株式会社 Roll shrinkable label, container with roll shrinkable label and manufacturing method thereof
WO2019098160A1 (en) * 2017-11-19 2019-05-23 西川 吉秀 Automatic insertion device and automatic insertion method for backing-equipped shrink film packaging
US11472586B2 (en) 2017-11-19 2022-10-18 Yoshihide Nishikawa Automatic insertion device and automatic insertion method for backing-equipped shrink film packaging

Also Published As

Publication number Publication date
JP5088019B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5088019B2 (en) Cylindrical shrink label, container with cylindrical shrink label, and manufacturing method thereof
JP2009096527A (en) Shrink label, container with tubular shrink label and manufacturing process therefor
JP5157145B2 (en) Wound label, container with roll label, and manufacturing method thereof
JP6210991B2 (en) Cylindrical shrink label and manufacturing method thereof
JP5381085B2 (en) Wrapped shrink label, container with rolled shrink label, and method for producing them
KR102360734B1 (en) Composite preform and manufacturing method thereof, composite container and manufacturing method thereof, and product filled with beer in composite container
KR20210130265A (en) Composite preform, composite container, composite preform, plastic member and method for producing composite container
JP7069005B2 (en) Manufacturing method of packaging
JP2009012779A (en) Cylindrical shrink label, container having cylindrical shrink label, and method for manufacturing them
JP5866898B2 (en) Label manufacturing method
JP6781715B2 (en) Manufacturing method of products with sleeves
JP2009119807A (en) Laser fusible laminated material, laser fusing method, and packaging body
JP5476814B2 (en) LASER PRINTED LAMINATE, LASER PRINTING METHOD, AND PACKAGE BODY USING THE LASER PRINTING LAMINATE
JP5266673B2 (en) Cylindrical shrink label, container with cylindrical shrink label
JP4996836B2 (en) Laser welding labels and composite molded products
JP5169100B2 (en) Laser-markable packaging materials and packaging bags
JP2010064360A (en) Thermal transfer sheet, thermal transfer image receiving sheet, and bobbin or cassette used for the same
JP7370692B2 (en) Packaging bodies, packaging bags and their marking methods
JP2012032657A (en) Roll shrink label, container with roll shrink label, and method of manufacturing those
JP2009048147A (en) Thermal-shrinkable label and method of sticking same
WO1993008011A1 (en) Method of manufacturing a labelling sleeve, and sleeve thereby obtained
JP2008152145A (en) Body label
JP2013122514A (en) Wraparound label
JP2022082378A (en) Laminated sheet for tube container and tube container
JP2000148020A (en) Heat shrinkable label

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees