JP2009010942A - Piezoelectric component and method of manufacturing the same - Google Patents
Piezoelectric component and method of manufacturing the same Download PDFInfo
- Publication number
- JP2009010942A JP2009010942A JP2008137432A JP2008137432A JP2009010942A JP 2009010942 A JP2009010942 A JP 2009010942A JP 2008137432 A JP2008137432 A JP 2008137432A JP 2008137432 A JP2008137432 A JP 2008137432A JP 2009010942 A JP2009010942 A JP 2009010942A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- chip
- substrate
- saw
- resin sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
本発明は、圧電部品、例えば、弾性表面波(SAW)チップを実装基板上にバンプを用いてフェイスダウンに搭載した後、SAWチップを樹脂により封止したSAWデバイスを製造する方法において、リーク不良、樹脂浸入不良、ダイシング時のずれ等による不良品の発生を防止した、圧電部品及びその製造方法に関する。 The present invention relates to a method of manufacturing a SAW device in which a SAW chip is sealed with a resin after a piezoelectric component, for example, a surface acoustic wave (SAW) chip is mounted on a mounting substrate face down using a bump. In addition, the present invention relates to a piezoelectric component and a method for manufacturing the same, which prevent generation of defective products due to resin penetration failure, shift during dicing, and the like.
弾性表面波デバイス(SAWデバイス)は、水晶、タンタル酸リチウム等の圧電基板上に櫛歯状電極(IDT電極)、及び接続パッド等のパターンを配置した構成を備え、例えばIDT電極に高周波電界を印加することによって、弾性表面波を励起し、弾性表面波を圧電作用によって高周波電界に変換し、フィルタ特性を得る携帯電話機などに搭載される。このSAWデバイスでは、その櫛歯電極部の周囲に所定の空隙(中空部、気密空間)が必要である。そのため、従来は、セラミック基板にSAWチップをフェースアップでダイ・ボンディングし、ワイヤ・ボンディングで電気接続後、金属キャップを被せてシーム溶接または半田封止してパッケージングしていた。 A surface acoustic wave device (SAW device) has a configuration in which patterns such as comb-like electrodes (IDT electrodes) and connection pads are arranged on a piezoelectric substrate such as crystal or lithium tantalate. For example, a high-frequency electric field is applied to IDT electrodes. When applied, the surface acoustic wave is excited, and the surface acoustic wave is converted into a high-frequency electric field by a piezoelectric action to be mounted on a mobile phone or the like that obtains filter characteristics. In this SAW device, a predetermined gap (hollow part, airtight space) is required around the comb electrode part. Therefore, conventionally, SAW chips are die-bonded face-up on a ceramic substrate, electrically connected by wire bonding, and then covered with a metal cap and seam-welded or solder-sealed for packaging.
最近では、SAWデバイスの小型化を図るため、SAWチップをAu(金)バンプまたは半田バンプで配線基板にフリップチップ・ボンディング(フェースダウン・ボンディング)し、樹脂等で封止して小型パッケージデバイスを構成している。 Recently, in order to reduce the size of SAW devices, SAW chips are flip-chip bonded (face-down bonding) to a wiring board with Au (gold) bumps or solder bumps, and sealed with resin or the like to form a small package device. It is composed.
さらにSAWデバイスの小型、低背化を図るため、櫛歯電極部の周囲に空隙を形成し、空隙を保ったまま櫛歯電極側の圧電ウエハ全体を樹脂で封止し、外部接続電極を形成した後、ダイシングにより個別デバイスに分離してなる超小型のチップ・サイズ・パッケージ(Chip Size Package:略称CSP)のSAWデバイスが提案されている。 In addition, in order to reduce the size and height of the SAW device, a gap is formed around the comb electrode part, and the entire piezoelectric wafer on the comb electrode side is sealed with resin while maintaining the gap to form an external connection electrode. after ultra-small chip size package formed by separating the individual devices by dicing: SAW device (C hip S ize P ackage abbreviated CSP) is proposed.
SAWデバイスに関するCSP関連技術は、例えば、特許第3702961号公報(エプソントヨコム)、特許第3689414号公報(エプソントヨコム)、及び特許第3825475号公報(東芝)に、それぞれ記載されている。 CSP-related technologies related to SAW devices are described in, for example, Japanese Patent No. 3702961 (Epson Toyocom), Japanese Patent No. 3687414 (Epson Toyocom), and Japanese Patent No. 3825475 (Toshiba).
従来例1
まず、特許第3702961号公報(特許文献1)では、図7(a),(b)に示すように、絶縁基板103、該絶縁基板103の底部に配置した表面実装用の外部電極104、及び該絶縁基板103の上部に配置され、かつ前記外部電極104と導通した配線パターン105、を備えた実装基板102と、圧電基板118、該圧電基板118の一面に形成したIDT電極117、及び前記配線パターン105と導体バンプ110を介して接続される接続パッド116と、でSAWチップ115を構成する。そして、前記SAWチップ115をフェイスダウン状態で実装基板102にフリップチップ実装し、SAWチップ115外面から実装基板102上面にかけて封止樹脂131Aで被覆形成することにより、前記IDT電極117と前記実装基板102との間に気密空間Sを形成して表面実装型SAWデバイスを構成する。
Conventional Example 1
First, in Japanese Patent No. 3702916 (Patent Document 1), as shown in FIGS. 7A and 7B, an
そして、図8(a),(b)に示すように、従来例1のSAWデバイスの製造方法は、
前記配線パターン105と前記接続パッド116を前記導体バンプ110を介して接続することにより前記実装基板102上にSAWチップ115をフリップチップ実装するフリップチップ実装工程と、
前記SAWチップ115上面にSAWチップ115上面よりも面積が大きい樹脂シート130を載置して該実装基板102の一端から他端へ向けて樹脂シートを軟化させながら樹脂シート130を押圧ロール151と下側ロール152によって加圧することにより、前記気密空間Sを確保しながらSAWチップ115外面を樹脂で覆うラミネート工程と、
前記樹脂シート130で外面をラミネートしたSAWチップ115を加圧しながら加熱することにより、前記気密空間S内の気体の膨張を抑制しつつ該樹脂シート130を硬化させるプレス成形工程と、
プレス成形工程を経たSAWデバイス101を、樹脂が完全に硬化する温度・時間にて加熱する後硬化工程と、を備える。
And, as shown in FIGS. 8A and 8B, the SAW device manufacturing method of Conventional Example 1 is
A flip chip mounting step of flip chip mounting the
A
A press molding step of curing the
And a post-curing step of heating the
ここで、前記ラミネート工程前の樹脂シート130の厚みtrが、
L/[(X+Gx)(Y+Gy)]≦tr……(1)
ただし、L=(X+Gx)(Y+Gy)(H+T+A)−XYT−XYA−[XVyA+YVxA+(4VxVyA)/3]
(L:一つのSAWチップ外面を封止するのに必要な樹脂シートの体積、X:SAWチップの一辺の長さ、Y:SAWチップの他辺の長さ、Gx:X方向に隣接し合うSAWチップ間の間隔、Vx:Y方向へ延びるダイシング切りしろから直近のSAWチップの側面までの距離、Gy:Y方向に隣接し合うSAWチップ間の間隔、Vy:X方向へ延びるダイシング切りしろから直近のSAWチップの側面までの距離、H:一つのSAWチップ外面を樹脂シートにて被覆完了した後のSAWチップ上面に位置する樹脂の厚さ、T:圧電基板の厚さ、A:実装基板上面から圧電基板底面までの間隔)であることを特徴としている。
Here, the thickness tr of the
L / [(X + Gx) (Y + Gy)] ≦ tr (1)
However, L = (X + Gx) (Y + Gy) (H + T + A) −XYT−XYA− [XVyA + YVxA + (4VxVyA) / 3]
(L: Volume of resin sheet necessary for sealing one SAW chip outer surface, X: Length of one side of SAW chip, Y: Length of other side of SAW chip, Gx: Adjacent in X direction Distance between SAW chips, Vx: Distance from the dicing cut edge extending in the Y direction to the side surface of the nearest SAW chip, Gy: Spacing between adjacent SAW chips in the Y direction, Vy: Distance from the dicing cut edge extending in the X direction. Distance to the side surface of the SAW chip, H: thickness of the resin positioned on the upper surface of the SAW chip after the outer surface of one SAW chip is completely covered with a resin sheet, T: thickness of the piezoelectric substrate, A: from the upper surface of the mounting substrate The distance between the bottom surface of the piezoelectric substrate).
そして、従来例1では、前記後硬化工程後に、ダイシングしろに沿って巾Dのダイシングプレートで表面側(樹脂による封止側)からダイシングして個々のSAWデバイスを得るようにしていた。 In the conventional example 1, after the post-curing step, individual SAW devices are obtained by dicing along the dicing margin from the surface side (resin sealing side) with a dicing plate having a width D.
しかしながら、特許文献1に示す、従来例1のSAWデバイスの製造方法では、SAWチップ外面を樹脂シートで覆うラミネート工程の後に、樹脂シートを硬化させるプレス成形工程を要するため、その製造方法全体が複雑となる。
However, the SAW device manufacturing method of Conventional Example 1 shown in
さらに、集合基板を個片(SAWデバイス)に切断する際に、セラミック基板上に印刷により形成する電極、ならびに切断目合せ用マークの表裏ずれにより、樹脂封止面より切断した場合には、裏面電極位置がずれたり、裏面端子電極を損傷するなどの問題点があった。 Furthermore, when the aggregate substrate is cut into individual pieces (SAW devices), the back side of the electrode formed by printing on the ceramic substrate and the cut-off alignment mark due to misalignment from the resin sealing surface There have been problems such as electrode positions being displaced and back terminal electrodes being damaged.
また、この問題点を回避するために、集合基板の裏面端子電極側に目合せマークを形成し切断した場合には、封止した樹脂の空隙部を切断することがあり、製品外周に中空部分が露出するという問題点があった。 In addition, in order to avoid this problem, when the alignment mark is formed on the back terminal electrode side of the collective substrate and cut, the sealed resin void may be cut, and a hollow portion is formed around the outer periphery of the product. There was a problem that was exposed.
従来例2
また、特許第3689414号公報(特許文献2)のSAWデバイスの製造方法では、図9(a),(b)に示すように、
SAWチップ215を実装基板202上にフリップチップ実装して該SAWチップ215外面を樹脂231で封止することにより気密空間Sを形成したSAWデバイス201の製造方法において、
前記SAWチップ215上に設けた電極パッド216と前記実装基板202上に設けた接続パッド205とを導体バンプ210を用いてフリップチップ実装する工程と、
前記実装基板202に実装したSAWチップ215の上面に樹脂シート230を載置する工程と、
前記SAWチップ215を実装し該SAWチップ215上面に前記樹脂シート230を載置した実装基板202を密閉容器内に配置し、前記樹脂シート230を加熱しながら加圧することにより、前記気密空間Sを確保しながらSAWチップ215の外面を樹脂シート230で覆うラミネート工程と、
前記ラミネート工程の加圧・加熱状態を保持することにより、前記気密空間Sを保持しながら樹脂シート230を硬化させるプレス成形工程と、
前記樹脂シート230が完全に硬化する温度・時間にて加熱する後硬化工程とを備え、
前記ラミネート工程において、前記密閉容器250は仕切部材により少なくとも2つの空間に区切られ、第一の空間は、前記SAWチップ215を実装し、該SAWチップ215上面に前記樹脂シート230を載置した実装基板202が配置され、雰囲気が減圧あるいは真空状態に保たれており、第二の空間側から圧力を加えて前記仕切部材を前記第一の空間側に圧迫させることで、前記樹脂シート230を前記実装基板202側に加圧することを特徴としている。
Conventional example 2
Moreover, in the manufacturing method of the SAW device disclosed in Japanese Patent No. 3688414 (Patent Document 2), as shown in FIGS. 9A and 9B,
In the manufacturing method of the SAW device 201 in which the SAW
Flip-chip mounting the electrode pads 216 provided on the
Placing the
A
A press molding step of curing the
A post-curing step of heating at a temperature and time for completely curing the
In the laminating step, the sealed container 250 is partitioned into at least two spaces by a partition member, and the first space is mounted with the
ここで、前記ラミネート工程時の樹脂シート230の厚みtrが、
L/{(X+Gx)(Y+Gy)}≦tr……(2)
ただし、L=(X+Gx)(Y+Gy)(H+T+A)−XYA−{XVyA+YVxA+(4VxVyA)/3}
(L:一つのSAWチップ外面を封止するのに必要な樹脂シートの体積、X:SAWチップの一辺の長さ、Y:SAWチップの他辺の長さ、Gx:X方向に隣接し合うSAWチップの間隔、Vx:Y方向へ延びるダイシング切りしろから直近のSAWチップ側面までの距離、Gy:Y方向に隣接し合うSAWチップ間の間隔、Vy:X方向へ延びるダイシング切りしろから直近のSAWチップの側面までの距離、H:一つのSAWチップ外面を樹脂シートにて被覆完了した後のSAWチップ上面に位置する樹脂の厚さ、T:圧電基板の厚さ、A:実装基板上面から圧電基板底面までの間隔)であることを特徴とする。
Here, the thickness tr of the
L / {(X + Gx) (Y + Gy)} ≦ tr (2)
However, L = (X + Gx) (Y + Gy) (H + T + A) −XYA− {XVyA + YVxA + (4VxVyA) / 3}
(L: Volume of resin sheet necessary for sealing one SAW chip outer surface, X: Length of one side of SAW chip, Y: Length of other side of SAW chip, Gx: Adjacent in X direction SAW chip interval, Vx: distance from dicing cut edge extending in Y direction to nearest SAW chip side face, Gy: gap between adjacent SAW chips in Y direction, Vy: nearest SAW chip from dicing cut edge extending in X direction H: The thickness of the resin located on the upper surface of the SAW chip after the outer surface of one SAW chip is completely covered with the resin sheet, T: The thickness of the piezoelectric substrate, A: From the upper surface of the mounting substrate to the piezoelectric substrate The distance to the bottom surface).
しかしながら、特許文献2に示す、従来例2のSAWデバイスの製造方法でも、前出特許文献1(従来例1)のものと同様に、SAWチップの外面を樹脂シートで覆うラミネート工程を必要とし、かつ、このラミネート工程で実装基板を配置した密閉容器を仕切部材により少なくとも2つの空間に区切ることが不可欠であるとともに、ラミネート工程の後に、樹脂シートを硬化させるプレス成形工程をさらに必要とするため、その製造方法全体が複雑となる。さらに、個々のSAWデバイスへの分割時に実装基板の表面側からダイシングしていたため、SAWデバイスの表裏面間の分割用マーキングの印刷ずれによる外部電極の切損等の問題点を生じていた。
However, the SAW device manufacturing method of Conventional Example 2 shown in
従来例3
さらに、特許第3825475号公報(特許文献3)に示す従来例3の電子部品(SAWデバイス)の製造方法では、図10に示す電子部品(SAWデバイス)を、複数個の配線基板301の集合体に対し所定位置に複数の機能素子303をフェースダウン・ボンディング方式により位置決めする工程と、前記機能素子303と前記配線基板301の集合体とを導電性接合部材306を介して所定間隔を維持して組み立てる工程と、前記配線基板301および前記機能素子303の集合体に対し加熱溶融型部材311を配置する工程と、前記配線基板301と前記機能素子303との間に空隙部310を残しつつ前記加熱溶融型部材311を加熱溶融する工程と、前記複数個の配線基板301の集合体を前記加熱溶融型部材311とともに分割して個々の電子部品を得る工程と、で製造する。
Conventional example 3
Furthermore, in the manufacturing method of the electronic component (SAW device) of Conventional Example 3 shown in Japanese Patent No. 3825475 (Patent Document 3), the electronic component (SAW device) shown in FIG. In contrast, the step of positioning a plurality of
しかしながら、特許文献3に示す、従来例3の電子部品(SAWデバイス)の製造方法では、加熱溶融型部(薄片状樹脂)を一旦加熱溶融させるので、溶融時に生じるシリコン、フィラー、水分等の不純物と溶融樹脂とが当該空隙部(ギャップ)に侵入し、不良品を生じる一因となっていた。また、前出の特許文献1及び2と同様に、個々の電子部品(SAWデバイス)への分割時に表面側からダイシングしていたため、裏面側に実装した外部電極の切損等の問題点を生じていた。
本発明が解決しようとする問題点は、圧電部品を構成するSAWデバイスの樹脂封止時における、気密空間への樹脂の浸入と、集合基板の表裏面に印刷したダイシング・マークの印刷ずれによる端子電極等の切損である。 The problem to be solved by the present invention is that the resin is infiltrated into the airtight space at the time of resin sealing of the SAW device that constitutes the piezoelectric component, and a terminal due to printing deviation of the dicing mark printed on the front and back surfaces of the collective substrate This is a cut of an electrode or the like.
上記した課題を解決するため請求項1の発明は、集合基板にバンプ付のSAWチップをフリップチップ実装する工程と、実装済の前記集合基板に前記集合基板の上面より面積の大きい樹脂シートを加熱軟化し中空部を残しつつ貼付け、さらに加熱硬化によって樹脂封止する工程と、封止・硬化した実装済の前記集合基板の裏面にダイシング・マークを設け、該ダイシング・マークを用いて前記集合基板を個片に切断する工程と、を備えた圧電部品(SAWデバイス)の製造方法において、
前記樹脂封止する工程前の樹脂シートの厚みtが
t>(i×k×H−(4((g−a)/2×(j−b)/2)×1/3×d)+((((g−a)/2×b)×2)×d)
+((((j−b)/2)×a)×2)×d))−(a×b×c)+(a×b×d))/(g×i)
(ここで、a:チップ(SAWチップ)の幅
b:チップの奥行き
c:チップの厚み
d:チップと基板のギャップ
e:製品(圧電部品)の外形(幅)
f:製品の外形(奥行き)
g:製品外形+切断しろ(幅)
i:製品外形+切断しろ(奥行き)
j:製品外形−表裏ずれ(幅)
k:製品外形−表裏ずれ(奥行き)
H:樹脂封止層厚)
である、ことを特徴とする。
In order to solve the above-described problems, the invention of
The thickness t of the resin sheet before the resin sealing step is
t> (i × k × H− (4 ((g−a) / 2 × (j−b) / 2) × 1/3 × d) + ((((g−a) / 2 × b) × 2) × d)
+ ((((J−b) / 2) × a) × 2) × d)) − (a × b × c) + (a × b × d)) / (g × i)
(Where a: the width of the chip (SAW chip)
b: Depth of chip
c: Chip thickness
d: Gap between chip and substrate
e: External shape (width) of product (piezoelectric component)
f: Product outline (depth)
g: Product outline + cutting width (width)
i: Product outline + cutting depth (depth)
j: Product outline-front / back displacement (width)
k: Product outline-front / back displacement (depth)
H: Resin sealing layer thickness)
It is characterized by being.
これによれば、樹脂封止工程を実施する際に、使用する樹脂シートの肉厚を適切な値に設定したことにより、SAWチップ間の谷間に充填された軟化樹脂をSAWチップ裾部にまで確実に行きわたらせて気密空間を確実に形成すると共に、ダイシングによってSAWデバイス個片に分割する際に、端子電極等を切損するおそれがなくなる。 According to this, when the resin sealing process is carried out, the thickness of the resin sheet to be used is set to an appropriate value, so that the softened resin filled in the valleys between the SAW chips can reach the bottom of the SAW chip. As a result, the airtight space is reliably formed by spreading, and there is no possibility of breaking the terminal electrode or the like when dividing into SAW device pieces by dicing.
請求項2の発明は、請求項1において、前記樹脂封止工程が、下型に実装済み前記集合基板を載置する工程と、載置した前記集合基板上に前記集合基板の上面より面積の大きい樹脂シートを載置する工程と、上型及び減圧容器を前記下型上に配置してから該減圧容器内を脱気・減圧する工程と、前記樹脂シートを軟化温度以上に加熱しつつ、前記上型で押圧し貼付して封止する工程と、前記減圧容器内を大気圧に戻してから前記上型及び前記減圧容器を前記下型から取り外す工程と、前記封止済みの前記集合基板を前記下型から取り出す工程と、からなることを特徴とする。 According to a second aspect of the present invention, in the first aspect, the resin sealing step includes a step of placing the assembled substrate mounted on a lower mold, and an area larger than an upper surface of the collective substrate on the placed collective substrate. A step of placing a large resin sheet, a step of degassing and depressurizing the inside of the decompression vessel after disposing the upper die and the decompression vessel on the lower die, and heating the resin sheet above the softening temperature, A process of pressing and pasting and sealing with the upper mold, a process of removing the upper mold and the decompression container from the lower mold after returning the inside of the decompression container to atmospheric pressure, and the sealed aggregate substrate And a step of removing from the lower mold.
これにより、樹脂封止工程を実施する際、所定の気密空間を確実に形成できる。 Thereby, when implementing a resin sealing process, a predetermined airtight space can be formed reliably.
請求項3の発明は、請求項1において、軟化した前記樹脂シートが7,000〜20,000Pa・sの粘度を有することを特徴とする。
The invention of
これにより、樹脂封止時に樹脂が気密空間内に浸入するのを阻止できる。 Thereby, it is possible to prevent the resin from entering the airtight space at the time of resin sealing.
請求項4の発明は、請求項1において、前記樹脂シートが加熱軟化する温度が30℃〜150℃であることを特徴とする。
The invention of claim 4 is characterized in that, in
これにより、樹脂シートを確実に軟化できる。 Thereby, a resin sheet can be softened reliably.
請求項5の発明は、請求項1において、前記樹脂シートがエポキシ樹脂であることを特徴とする。
The invention of
請求項6の発明は、請求項2において、前記脱気・減圧時の前記減圧容器内の圧力が0.01〜0.05気圧であることを特徴とする。
The invention of
これにより、同様に、樹脂シートを確実に軟化できる。 Thereby, similarly, the resin sheet can be reliably softened.
請求項7の発明は、請求項1から6において、前記圧電部品がSAWデバイスであることを特徴とする。 A seventh aspect of the invention is characterized in that, in the first to sixth aspects, the piezoelectric component is a SAW device.
樹脂封止時におけるIDT電極周辺の中空部(気密空間)への樹脂の浸入を有効に阻止し、かつ、封止済集合基板を正確に個々の圧電部品に端子電極等を切損することなくダイシングして分割できる。 Dicing without effectively damaging the terminal electrodes etc. to individual piezoelectric parts while preventing resin penetration into the hollow part (airtight space) around the IDT electrode during resin sealing. Can be divided.
以下、本発明の圧電部品の製造方法を、表面実装型弾性表面波デバイス(以下、“SAWデバイス”という)の実施例の製造方法について詳細に説明する。 Hereinafter, a method for manufacturing a piezoelectric component according to the present invention will be described in detail for a method for manufacturing an example of a surface-mounted surface acoustic wave device (hereinafter referred to as “SAW device”).
図1は、本発明の圧電部品の製造方法の実施例であるSAWデバイスの製造方法により製造するSAWデバイス1の縦断面図を示す。
FIG. 1 is a longitudinal sectional view of a
このSAWデバイス1(圧電部品)は、セラミックを数枚積層して形成したセラミック基板(絶縁基板)3と、このセラミック基板3の上面に金(Au)バンプ5を介して実装された、例えばタンタル酸リチウム(LiTaO3)からなるSAWチップ2と、このSAWチップ2を樹脂封止するエポキシ樹脂(樹脂封止部)6と、セラミック基板3の底面に実装された外部端子電極4とから構成されている。そして、SAWチップ2に形成されたIDT電極7とセラミック基板3の上面との間に気密空間Sを形成するようエポキシ樹脂により封止する。
This SAW device 1 (piezoelectric component) includes a ceramic substrate (insulating substrate) 3 formed by laminating several ceramics, and mounted on the upper surface of the
ここで、SAWチップ2に形成したIDT電極7は、給電側のリード端子から高周波電界を印加することによって、弾性表面波を励起し、弾性表面波を圧電作用によって高周波電界に変換することによって、フィルタ特性を得ることができるようになっている。
Here, the IDT electrode 7 formed on the
次に、図2から図6に基づいて本発明の実施例のSAWデバイスの製造方法を説明する。 Next, a method for manufacturing a SAW device according to an embodiment of the present invention will be described with reference to FIGS.
製造方法(組立工程)
図2は、本発明の実施例のSAWデバイスのフリップチップ実装工程、樹脂封止工程及びダイシング工程を含む製造方法(組立工程)を示す。
Manufacturing method (assembly process)
FIG. 2 shows a manufacturing method (assembly process) including a flip chip mounting process, a resin sealing process, and a dicing process for the SAW device according to the embodiment of the present invention.
まず、図1に示したSAWデバイス1を製造するために、図2に示すように、セラミック基板3にSAWウエハWから切断した金(Au)バンプ5付のSAWチップ2をフェイスダウンで、金・金超音波熱圧着によりフリップチップ実装して実装(集合)基板50を作製する((1)フリップチップ実装工程)。
First, in order to manufacture the
次に、フリップチップ実装した実装基板50に後述する封止工程で樹脂封止を行った後、樹脂を硬化させる((2)樹脂封止工程)。
Next, resin sealing is performed on the mounting
さらに、樹脂面にCO2ガスレーザーを照射して、製品番号、ロット番号等を刻設して、捺印する((3)レーザー捺印工程)。 Further, the resin surface is irradiated with a CO 2 gas laser, and the product number, lot number, etc. are engraved and stamped ((3) laser stamping process).
次いで、ダイシング・ソーを用いて実装基板50の裏面に形成した認識パターンに基づいて、後述するダイシング工程で実装基板を個々のSAWデバイス(個片)1に分割する((4)ダイシング工程)。
Next, based on the recognition pattern formed on the back surface of the mounting
さらに(5)加熱処理工程(150℃で3時間加熱)、(6)リーク試験工程(沸点の高いフロリナート等に漬ける)、(7)測定(規格通りの周波数を出力できるか否か検査する)・テーピング(エンボステープを用いて分割したSAWデバイスを集約する)工程を経て、SAWデバイスを(8)梱包・出荷する。 In addition, ( 5 ) Heat treatment process (heated at 150 ° C for 3 hours), ( 6 ) Leak test process (soaked in high boiling point fluorinate, etc.), ( 7 ) Measurement (inspection of whether or not the standardized frequency can be output) -After the taping (aggregating the divided SAW devices using embossed tape) process, ( 8 ) packing and shipping the SAW devices.
とくに、本発明の実施例であるSAWデバイスの製造方法の特徴的構成(要旨)は、以下に詳述する1)樹脂封止工程及び2)ダイシング工程、にある。 In particular, the characteristic configuration (summary) of the SAW device manufacturing method according to the embodiment of the present invention is in 1) resin sealing step and 2) dicing step, which will be described in detail below.
樹脂封止工程
まず、樹脂封止工程について、図3を参照しつつ説明する。
Resin Sealing Step First, the resin sealing step will be described with reference to FIG.
この樹脂封止工程には、図3に示すように、減圧容器12を用い、この減圧容器12の内部に下型10を載置し、この下型10に対向して同じく減圧容器12の内部に収容した上型11が昇降するよう構成する。
In this resin sealing step, as shown in FIG. 3, a
まず、図3に示すように、下型10にSAWチップ2を実装済みの基板(集合基板)50を載置する。次いで、実装済みの基板50上に、この集合基板50の上面よりも面積が大きい樹脂シート6を載置し、上型11と減圧容器12を下型10上に配置してから、減圧容器12内を0.01〜0.05気圧に脱気・減圧する。そして、上型11を降下させて樹脂シート6をホットプレートで加熱軟化させ上型11で、例えば、100kg以上のプレス圧で押圧し(プレス成形)、実装済み基板に樹脂シート6を貼付し、SAWチップ2等を樹脂封止する。樹脂封止完了後、型(上型11・下型10)内を完全に大気圧に戻してから、上型11及び減圧容器12を下型10から取り外し、100℃で30分オーブンにて封止済製品を加熱して仮硬化させてから、封止済み製品を下型10から取り外して、次の工程(レーザー捺印工程、ダイシング工程)を行う。
First, as shown in FIG. 3, a substrate (collected substrate) 50 on which the
とくに、SAWチップ2等の樹脂封止の際には、前述したように、SAW素子は、図1に示すように、IDT(櫛歯)電極7とSAWチップ2(圧電基板)により、SAWチップ2表面上を振動が伝播するので、SAW素子として機能するため、IDT電極7上に空間Sを保ちながら、SAWチップ2全体を如何に樹脂により封止するかが極めて重要な要因となる。
In particular, at the time of resin sealing of the
例えば、アンダーフィル材などの低粘度の液状樹脂により、SAWチップ2とセラミック基板3間の狭いギャップを空間に封止しようとすると、毛細管現象により、このギャップからこの空間S内に液状樹脂が侵入してしまう。
For example, when a narrow gap between the
一般に封止材料の粘度は高く、このギャップが狭いと、樹脂の浸入に要する時間が長くなり、所定の中空(空間)構造を得ることもできるが、液状樹脂で中空構造を形成する場合は、高粘度で、かつ速硬化であることと、樹脂中の低粘度材料が、硬化するまで分離(ブリード)しないことが条件となり、技術的に難易度が高くなる。 In general, the viscosity of the sealing material is high, and if this gap is narrow, the time required for the resin to enter becomes longer, and a predetermined hollow (space) structure can be obtained, but when forming a hollow structure with a liquid resin, It is technically difficult because of the high viscosity and fast curing, and the low viscosity material in the resin is not separated (bleeded) until cured.
これに対して、本発明の実施例のSAWデバイスの製造方法のように、粘度の高い樹脂シートを樹脂封止に用いた場合には、樹脂シートは、流動性の無いゲル状の材料であり、かつ液状樹脂では、回避できない樹脂成分のギャップへの侵入が生じない。このため、樹脂封止する領域の体積に合せて、樹脂シートの上面からプレスする高さ(セラミック基板の上面から、上型のプレス板までのギャップ)をスペーサーあるいは高さ調整冶具を用いて調整することにより、所定の中空部を残し、封止することができるようになる。 On the other hand, when a resin sheet having a high viscosity is used for resin sealing as in the method of manufacturing a SAW device according to the embodiment of the present invention, the resin sheet is a gel-like material having no fluidity. And in liquid resin, the penetration | invasion to the gap of the resin component which cannot be avoided does not arise. For this reason, the height (gap from the top surface of the ceramic substrate to the upper press plate) that is pressed from the top surface of the resin sheet is adjusted using a spacer or height adjustment jig according to the volume of the resin sealing area. By doing so, it becomes possible to leave a predetermined hollow portion and seal it.
すなわち、樹脂シートの体積=製品体積−(SAWチップ体積+中空部分)+切りしろ、となるように、上型のプレス板による樹脂シートの押し込み量を調整することで、樹脂の浸入やリーク不良の発生なしに封止することができる。 In other words, by adjusting the amount of the resin sheet pushed by the upper press plate so that the volume of the resin sheet = product volume− (SAW chip volume + hollow part) + cutting distance, resin intrusion or leakage failure It can seal without generation | occurrence | production of.
ここで、本発明に用いる樹脂シートとしては、例えばエポキシ樹脂を用いることができる。このエポキシ樹脂は、図4の粘度・温度特性を示すグラフのように、液状樹脂に比べて、はるかに高い粘度を有し、例えば、軟化した樹脂シートは、7,000〜20,000Pa・sの粘度を有する。この状態では、樹脂シートはゲル状で流動性が無いため、通常、液状樹脂で発生する毛細管現象による狭ギャップ部への樹脂の混入は発生しない。したがって、図3に示す上型11による押圧を停止すると樹脂シートのそれ以上の変形はなくなる。
Here, as a resin sheet used for this invention, an epoxy resin can be used, for example . This epoxy resin has a much higher viscosity than the liquid resin as shown in the graph showing the viscosity / temperature characteristics in FIG. 4. For example, a softened resin sheet has a viscosity of 7,000 to 20,000 Pa · s. Having a viscosity of In this state, since the resin sheet is in the form of a gel and has no fluidity, the resin is not mixed into the narrow gap due to the capillary phenomenon that is normally generated in the liquid resin. Therefore, when the pressing by the
ここで、樹脂シートの加熱軟化温度は、30℃〜150℃、好ましくは、80℃〜100℃、である。 Here, the heat softening temperature of the resin sheet is 30 ° C to 150 ° C, preferably 80 ° C to 100 ° C.
それ故、上型11の押し込み量が過多であれば、SAWデバイスの中空部(空間)の体積が減少し樹脂がIDT電極に到達するため、特性不良が増加し、また、押し込み量が不足すると樹脂が十分に行きわたらず、リーク不良を生じる。
Therefore, if the pushing amount of the
そこで、この押し込み量を適宜調整することにより、樹脂浸入、リーク不良のないSAWデバイスを製造できるようになる。 Therefore, by appropriately adjusting the pushing amount, it is possible to manufacture a SAW device free from resin penetration and leakage defects.
本発明者の知見によると、減圧容器内の圧力が低いほど(例えば、0.05気圧)リーク不良が減少するほか、加熱温度が80℃以上の温度範囲(例えば、80℃〜100℃)及び少くとも5分以上の加熱時間が当該材料による封止に適すること、さらに、上型の押し込み量が過多であれば、中空部の体積が減少し樹脂がIDT電極に到達するため、特性不良が増加し、他方、押し込み量が不足すると、樹脂が十分に行き渡らずリーク不良が生じる。押し込み量を適宜調整することにより、樹脂浸入、リーク不良の無いSAWデバイスが得られることになる。 According to the knowledge of the present inventor, the lower the pressure in the decompression vessel (for example, 0.05 atm), the smaller the leakage defect, the temperature range of the heating temperature of 80 ° C. or higher (for example, 80 ° C. to 100 ° C.) and A heating time of at least 5 minutes or more is suitable for sealing with the material, and if the amount of pressing of the upper die is excessive, the volume of the hollow portion decreases and the resin reaches the IDT electrode, resulting in poor characteristics. On the other hand, if the push-in amount is insufficient, the resin does not spread sufficiently and a leak failure occurs. By appropriately adjusting the push-in amount, a SAW device free from resin permeation and leakage failure can be obtained.
ダイシング工程及びレーザー捺印工程
さらに、本発明の実施例であるSAWデバイスの製造方法では、樹脂封止工程及びダイシング工程の後にレーザーによる捺印を行う。これにより捺印のズレがなくなる。
Dicing Step and Laser Stamping Process Furthermore, in the SAW device manufacturing method according to the embodiment of the present invention, laser marking is performed after the resin sealing step and the dicing step . This eliminates the misalignment of the seal .
当該SAWデバイスの製造方法では、集合基板50を構成する個々の製品単位(SAWデバイス外形+ダイシングしろ)が、この集合基板内に連続した状態で配置され、かつ、ダイシングしろの直線延長線上に図5に示すような認識パターンであるダイシング用の目合せマーク(ダイシングマーク)がそれぞれ集合基板50に設けられている。
In the SAW device manufacturing method, individual product units (SAW device outer shape + dicing margin) constituting the
このダイシング工程では、樹脂封止したSAW実装基板(集合基板)50から、個々のSAWデバイス1にダイシング・ソーで分割する際、図5に示すように、実装基板(セラミック基板)の裏面の縁に沿って縦横に印刷した認識パターン(ダイシング・マーク)を用いる。
In this dicing process, when the resin-encapsulated SAW mounting substrate (collective substrate) 50 is divided into
この実装基板の裏面に印刷した認識パターンにより、実装基板50の表裏面に印刷した認識パターン間にずれがあっても、該裏面に実装した端子電極、外部電極等を切損あるいは切断位置ずれを生じることなく、所定寸法(例えば、2.0mm×1.6mm)の個々のSAWデバイス(個片)に分割することができるようになる。
Even if there is a deviation between the recognition patterns printed on the front and back surfaces of the mounting
樹脂シート厚の選定
本発明の実施例であるSAWデバイスの製造方法では、前述した特徴ある樹脂封止工程及びダイシング工程を確実に実施して欠陥のない個々のSAWデバイスを製造するために、以下に記載する公式(3)により樹脂封止前の樹脂シート厚tを算出し、その製造に用いるようにする。
Selection of Resin Sheet Thickness In the SAW device manufacturing method according to an embodiment of the present invention, in order to manufacture the individual SAW devices without defects by surely carrying out the characteristic resin sealing step and dicing step described above, The resin sheet thickness t before resin sealing is calculated according to the formula (3) described in (1), and is used for its manufacture.
t>(i×k×H−(4((g−a)/2×(j−b)/2)×1/3×d)+((((g−a)/2×b)×2)×d)
+((((j−b)/2)×a)×2)×d))−(a×b×c)+(a×b×d))/(g×i)……(3)
上記公式(3)で、
a:チップ(SAWチップ)の幅
b:チップの奥行き
c:チップの厚み
d:チップと基板のギャップ
e:製品(SAWデバイス)の外形(幅)
f:製品の外形(奥行き)
g:製品外形+切断しろ(幅)
i:製品外形+切断しろ(奥行き)
j:製品外形−表裏ずれ(幅)
k:製品外形−表裏ずれ(奥行き)
H:樹脂封止層厚
t:樹脂シート厚
とする(図6(a)及び図6(b)参照)。
t> (i × k × H− (4 ((g−a) / 2 × (j−b) / 2) × 1/3 × d) + ((((g−a) / 2 × b) × 2) × d)
+ ((((J−b) / 2) × a) × 2) × d)) − (a × b × c) + (a × b × d)) / (g × i) (3)
In the above formula (3),
a: Chip (SAW chip) width b: Chip depth c: Chip thickness d: Gap between chip and substrate e: External shape (width) of product (SAW device)
f: Product outline (depth)
g: Product outline + cutting width (width)
i: Product outline + cutting depth (depth)
j: Product outline-front / back displacement (width)
k: Product outline-front / back displacement (depth)
H: Resin sealing layer thickness t: Resin sheet thickness (see FIGS. 6A and 6B).
上記公式(3)のように、樹脂封止に用いる樹脂シート厚tを選定することにより、たとえセラミック基板の表裏に印刷した図5に示す認識パターン間に印刷ずれがあっても、個々のSAWデバイスに切断後、所定の樹脂封止領域を確保できるようになる。 By selecting the resin sheet thickness t used for resin sealing as in the above formula (3), even if there is a printing misalignment between the recognition patterns shown in FIG. After cutting into devices, a predetermined resin sealing region can be secured.
本発明の圧電部品及びその製造方法は、正確な樹脂封止及びダイシング後の寸法・形状が不可欠なSAWデバイス、圧電薄膜フィルタ等の圧電部品の製造に利用できる。 The piezoelectric component and the manufacturing method thereof of the present invention can be used for manufacturing a piezoelectric component such as a SAW device or a piezoelectric thin film filter in which accurate resin sealing and dimensions and shape after dicing are indispensable.
1 SAW(弾性表面波)デバイス
2 SAWチップ
3 セラミック基板
4 外部電極
5 金バンプ
6 樹脂封止部(樹脂シート)
7 IDT電極(櫛歯電極)
10 下型
11 上型
12 減圧容器
50 実装(集合)基板
S 空間
DESCRIPTION OF
7 IDT electrode (comb electrode)
10
Claims (8)
実装済の前記集合基板に前記集合基板の上面より面積の大きい樹脂シートを加熱軟化し中空部を残しつつ貼付け、さらに加熱硬化によって樹脂封止する工程と、
封止・硬化した実装済の前記集合基板の裏面にダイシング・マークを設け、該ダイシング・マークを用いて前記集合基板を製品単位に切断する工程と、を備え、
前記樹脂封止する工程前の樹脂シートの厚みtが
t>(i×k×H−(4((g−a)/2×(j−b)/2)×1/3×d)+((((g−a)/2×b)×2)×d)
+((((j−b)/2)×a)×2)×d))−(a×b×c)+(a×b×d))/(g×i)
(ここで、a:チップ(SAWチップ)の幅
b:チップの奥行き
c:チップの厚み
d:チップと基板のギャップ
e:製品(圧電部品)の外形(幅)
f:製品の外形(奥行き)
g:製品外形+切断しろ(幅)
i:製品外形+切断しろ(奥行き)
j:製品外形−表裏ずれ(幅)
k:製品外形−表裏ずれ(奥行き)
H:樹脂封止層厚)
である、ことを特徴とする圧電部品の製造方法。 Flip chip mounting a bumped SAW chip on an aggregate substrate;
A process of heat-softening and pasting a resin sheet having a larger area than the upper surface of the aggregate substrate to the mounted aggregate substrate, leaving a hollow portion, and further resin-sealing by heat curing;
Providing a dicing mark on the back surface of the mounted assembly substrate that has been sealed and cured, and using the dicing mark to cut the assembly substrate into product units,
The thickness t of the resin sheet before the resin sealing step is
t> (i × k × H− (4 ((g−a) / 2 × (j−b) / 2) × 1/3 × d) + ((((g−a) / 2 × b) × 2) × d)
+ ((((J−b) / 2) × a) × 2) × d)) − (a × b × c) + (a × b × d)) / (g × i)
(Where a: the width of the chip (SAW chip)
b: Depth of chip
c: Chip thickness
d: Gap between chip and substrate
e: External shape (width) of product (piezoelectric component)
f: Product outline (depth)
g: Product outline + cutting width (width)
i: Product outline + cutting depth (depth)
j: Product outline-front / back displacement (width)
k: Product outline-front / back displacement (depth)
H: Resin sealing layer thickness)
A method for manufacturing a piezoelectric component, characterized in that
下型に実装済み前記集合基板を載置する工程と、
載置した前記集合基板上に前記集合基板の上面より面積の大きい樹脂シートを載置する工程と、
上型及び減圧容器を前記下型上に配置してから該減圧容器内を脱気・減圧する工程と、
前記樹脂シートを軟化温度以上に加熱しつつ、前記上型で押圧し貼付して封止する工程と、
前記減圧容器内を大気圧に戻してから前記上型及び前記減圧容器を前記下型から取り外す工程と、
前記封止済みの前記集合基板を前記下型から取り出す工程と、
からなることを特徴とする請求項1に記載の圧電部品の製造方法。 The resin sealing step
Placing the assembled substrate mounted on the lower mold; and
Placing a resin sheet having a larger area than the upper surface of the collective substrate on the collective substrate placed; and
A step of degassing and decompressing the inside of the decompression container after disposing the upper mold and the decompression container on the lower mold;
While heating the resin sheet above the softening temperature, pressing and pasting with the upper mold and sealing,
Removing the upper mold and the decompression container from the lower mold after returning the inside of the decompression container to atmospheric pressure;
Removing the sealed aggregate substrate from the lower mold;
The method for manufacturing a piezoelectric component according to claim 1, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008137432A JP2009010942A (en) | 2007-05-29 | 2008-05-27 | Piezoelectric component and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007141253 | 2007-05-29 | ||
JP2008137432A JP2009010942A (en) | 2007-05-29 | 2008-05-27 | Piezoelectric component and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009010942A true JP2009010942A (en) | 2009-01-15 |
Family
ID=40325499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008137432A Pending JP2009010942A (en) | 2007-05-29 | 2008-05-27 | Piezoelectric component and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009010942A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016076666A (en) * | 2014-10-09 | 2016-05-12 | 新日本無線株式会社 | Electronic component and method of manufacturing the same |
JP2019033264A (en) * | 2014-09-26 | 2019-02-28 | 東芝ホクト電子株式会社 | Light emitting module and manufacturing method thereof |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000216660A (en) * | 1999-01-20 | 2000-08-04 | Nec Corp | Mount structure for element device and its manufacture |
JP2001332654A (en) * | 2000-03-17 | 2001-11-30 | Matsushita Electric Ind Co Ltd | Module provided with built-in electric element and manufacturing method thereof |
JP2003017979A (en) * | 2001-06-28 | 2003-01-17 | Nagase Chemtex Corp | Surface acoustic wave device and its manufacturing method |
JP2003283295A (en) * | 2002-03-25 | 2003-10-03 | Toshiba Corp | Surface acoustic wave device and its manufacturing method |
JP2004007051A (en) * | 2002-05-30 | 2004-01-08 | Mitsubishi Electric Corp | Sealing member, and method for producing surface acoustic wave apparatus by using the same |
JP2004129092A (en) * | 2002-10-04 | 2004-04-22 | Toyo Commun Equip Co Ltd | Method for manufacturing surface mounted saw device |
JP2004201285A (en) * | 2002-12-06 | 2004-07-15 | Murata Mfg Co Ltd | Method of producing piezoelectric component and piezoelectric component |
JP2004343378A (en) * | 2003-05-15 | 2004-12-02 | Toyo Commun Equip Co Ltd | Surface acoustic wave device and its manufacturing method |
JP2004363770A (en) * | 2003-06-03 | 2004-12-24 | Toyo Commun Equip Co Ltd | Method for manufacturing surface acoustic wave device |
WO2005071731A1 (en) * | 2004-01-22 | 2005-08-04 | Murata Manufacturing Co., Ltd. | Electronic component manufacturing method |
JP2006032478A (en) * | 2004-07-13 | 2006-02-02 | Nippon Steel Chem Co Ltd | Process for manufacturing semiconductor device |
JP2006050582A (en) * | 2004-06-28 | 2006-02-16 | Kyocera Corp | Manufacturing method for elastic surface wave apparatus and radio communication equipment |
-
2008
- 2008-05-27 JP JP2008137432A patent/JP2009010942A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000216660A (en) * | 1999-01-20 | 2000-08-04 | Nec Corp | Mount structure for element device and its manufacture |
JP2001332654A (en) * | 2000-03-17 | 2001-11-30 | Matsushita Electric Ind Co Ltd | Module provided with built-in electric element and manufacturing method thereof |
JP2003017979A (en) * | 2001-06-28 | 2003-01-17 | Nagase Chemtex Corp | Surface acoustic wave device and its manufacturing method |
JP2003283295A (en) * | 2002-03-25 | 2003-10-03 | Toshiba Corp | Surface acoustic wave device and its manufacturing method |
JP2004007051A (en) * | 2002-05-30 | 2004-01-08 | Mitsubishi Electric Corp | Sealing member, and method for producing surface acoustic wave apparatus by using the same |
JP2004129092A (en) * | 2002-10-04 | 2004-04-22 | Toyo Commun Equip Co Ltd | Method for manufacturing surface mounted saw device |
JP2004201285A (en) * | 2002-12-06 | 2004-07-15 | Murata Mfg Co Ltd | Method of producing piezoelectric component and piezoelectric component |
JP2004343378A (en) * | 2003-05-15 | 2004-12-02 | Toyo Commun Equip Co Ltd | Surface acoustic wave device and its manufacturing method |
JP2004363770A (en) * | 2003-06-03 | 2004-12-24 | Toyo Commun Equip Co Ltd | Method for manufacturing surface acoustic wave device |
WO2005071731A1 (en) * | 2004-01-22 | 2005-08-04 | Murata Manufacturing Co., Ltd. | Electronic component manufacturing method |
JP2006050582A (en) * | 2004-06-28 | 2006-02-16 | Kyocera Corp | Manufacturing method for elastic surface wave apparatus and radio communication equipment |
JP2006032478A (en) * | 2004-07-13 | 2006-02-02 | Nippon Steel Chem Co Ltd | Process for manufacturing semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019033264A (en) * | 2014-09-26 | 2019-02-28 | 東芝ホクト電子株式会社 | Light emitting module and manufacturing method thereof |
JP2016076666A (en) * | 2014-10-09 | 2016-05-12 | 新日本無線株式会社 | Electronic component and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5113627B2 (en) | Electronic component and manufacturing method thereof | |
CN102800662B (en) | Layered semiconductor device and manufacturing method thereof | |
US11394362B2 (en) | Electronic component housing package, electronic apparatus, and electronic module | |
JP3702961B2 (en) | Manufacturing method of surface mount type SAW device | |
US7969072B2 (en) | Electronic device and manufacturing method thereof | |
KR100345621B1 (en) | Method of producing semiconductor device and lead frame used in said method | |
US7239023B2 (en) | Package assembly for electronic device | |
US7450395B2 (en) | Circuit module and circuit device including circuit module | |
CN100568498C (en) | Semiconductor device and manufacture method thereof | |
JP2012028484A (en) | Module and manufacturing method of the same | |
JP5264281B2 (en) | Method for manufacturing piezoelectric component | |
JP2009278058A (en) | Method and apparatus for manufacturing electronic component | |
JP2002368028A (en) | Semiconductor package and method of manufacturing the same | |
JP4173024B2 (en) | Electronic component manufacturing method and base substrate thereof | |
CN100440464C (en) | Method of manufacturing stack-type semiconductor device and method of manufacturing stack-type electronic component | |
JP2009010942A (en) | Piezoelectric component and method of manufacturing the same | |
JP3912324B2 (en) | Manufacturing method of surface acoustic wave device | |
JP2003152131A (en) | Hollow sealed package and its manufacturing method | |
CN101295710B (en) | Semiconductor device | |
JP2008108782A (en) | Electronic equipment and manufacturing method thereof | |
JP2008219348A (en) | Manufacturing method of piezoelectric device, and piezoelectric device | |
JP3917405B2 (en) | Manufacturing method of electronic component device | |
JP3611463B2 (en) | Manufacturing method of electronic parts | |
JP2012015446A (en) | Method of manufacturing semiconductor device | |
JP3398580B2 (en) | Semiconductor device manufacturing method and substrate frame |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110523 |
|
A521 | Written amendment |
Effective date: 20120410 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121211 |
|
A02 | Decision of refusal |
Effective date: 20130423 Free format text: JAPANESE INTERMEDIATE CODE: A02 |