[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009008519A - Mobile body detection device - Google Patents

Mobile body detection device Download PDF

Info

Publication number
JP2009008519A
JP2009008519A JP2007169888A JP2007169888A JP2009008519A JP 2009008519 A JP2009008519 A JP 2009008519A JP 2007169888 A JP2007169888 A JP 2007169888A JP 2007169888 A JP2007169888 A JP 2007169888A JP 2009008519 A JP2009008519 A JP 2009008519A
Authority
JP
Japan
Prior art keywords
moving body
magnetic material
rectangular wave
gmr element
wave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007169888A
Other languages
Japanese (ja)
Inventor
Toshinao Kido
利尚 木戸
Seiji Fukuoka
誠二 福岡
Hirokazu Miyamoto
寛和 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007169888A priority Critical patent/JP2009008519A/en
Publication of JP2009008519A publication Critical patent/JP2009008519A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mobile body detection device capable of comparing positional information of a magnetic material rotator or a magnetic material linear mobile body when the power supply is turned on with a conventional technique and accurately detecting it. <P>SOLUTION: The outer peripheral surface of a soft magnetic material rotator 10 comprises top parts 13a-13f where distances from the rotation center O become maximum, minimum parts 14a-14f where distances from the rotation center O become minimum, first surfaces 11a-11f extending from respective top parts on the front side in the rotation direction, and second surfaces 12a-12f extending from respective top parts on the back side in the rotation direction. Each minimum part exists between adjacent top parts. On each first surface, the distance from the rotation center O monotonically increases from the edge opposite to each top part toward each top part. On each second surface, the distance from the rotation center O monotonically decreases from each top part toward the edge opposite to each top part. Each minimum part is positioned at the edge opposite to each top part on the first and second surfaces. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は磁性材移動体の移動に伴う磁界変化からその磁性材移動体の位置情報を検出する技術に関し、例えば工業用工作機械や自動車エンジンに用いられる磁性材回転体あるいは磁性材直線移動体の位置情報を検出するのに用いて好適な移動体検出装置に関する。   The present invention relates to a technique for detecting position information of a magnetic material moving body from a magnetic field change accompanying the movement of the magnetic material moving body, for example, a magnetic material rotating body or a magnetic material linear moving body used in an industrial machine tool or an automobile engine. The present invention relates to a mobile body detection apparatus suitable for use in detecting position information.

本出願人は既に、スピンバルブ型巨大磁気抵抗素子(以下「SV−GMR素子」)を用いて磁性材移動体の移動に伴う磁界変化を検出する移動体検出装置を提案している(下記特許文献1)。
特開2005−233795号公報
The present applicant has already proposed a moving body detection device that detects a magnetic field change accompanying movement of a magnetic material moving body using a spin valve type giant magnetoresistive element (hereinafter referred to as “SV-GMR element”) (the following patent). Reference 1).
Japanese Patent Laid-Open No. 2005-233795

図10は、特許文献1に記載の移動体検出装置800の例示的な概略斜視図である。図11は、図10に示される移動体検出装置800の正面図である。磁性材移動体としての軟磁性体歯車80は外周面に凹凸を有する。具体的には回転中心Oからの角度で約60°ごとに1つ合計6つの凸部802a〜802fがあり、凸部は凹部よりも幅狭である。各凸部の上面は回転中心Oからr1の距離にあり、各凹部の底面は回転中心Oからr2の距離にある(r1>r2)。このような形状の軟磁性体歯車80は例えば軸の回転角度を検出するのに用いられる。フルブリッジ接続される第1SV−GMR素子MR1ないし第4SV−GMR素子MR4は感磁面が軟磁性体歯車80の外周面と対向するようにバイアス磁石50に対して固定配置される。   FIG. 10 is an exemplary schematic perspective view of the moving object detection device 800 described in Patent Document 1. FIG. 11 is a front view of the moving object detection apparatus 800 shown in FIG. The soft magnetic gear 80 as the magnetic material moving body has irregularities on the outer peripheral surface. Specifically, there are a total of six convex portions 802a to 802f at an angle from the rotation center O every approximately 60 °, and the convex portions are narrower than the concave portions. The upper surface of each convex portion is at a distance r1 from the rotation center O, and the bottom surface of each concave portion is at a distance r2 from the rotation center O (r1> r2). The soft magnetic gear 80 having such a shape is used, for example, to detect the rotation angle of the shaft. The first SV-GMR element MR1 to the fourth SV-GMR element MR4 connected in a full bridge are fixedly arranged with respect to the bias magnet 50 so that the magnetosensitive surface faces the outer peripheral surface of the soft magnetic gear 80.

図12は、SV−GMR素子の原理的構成と磁気特性の説明図である。SV−GMR素子の感磁面は感磁パターンとなる磁気抵抗効果膜を有する。磁気抵抗効果膜は、強磁性体のピン層と、非磁性体の層と、強磁性体のフリー層とを積層したものである。ピン層の磁化方向は外部磁界Hによらず固定される一方、フリー層の磁化方向は外部磁界Hによって変化する。SV−GMR素子の磁気特性は、外部磁界の方向とピン層磁化方向とが順平行で抵抗変化率(ΔR/R)はマイナス、外部磁界の方向とピン層磁化方向とが反平行で抵抗変化率(ΔR/R)はプラスである。つまり、SV−GMR素子は、外部磁界の方向とピン層磁化方向とが順平行のとき低抵抗、外部磁界の方向とピン層磁化方向とが反平行のとき高抵抗となる。   FIG. 12 is an explanatory diagram of the principle configuration and magnetic characteristics of the SV-GMR element. The magnetosensitive surface of the SV-GMR element has a magnetoresistive film that forms a magnetosensitive pattern. The magnetoresistive film is formed by laminating a ferromagnetic pinned layer, a nonmagnetic layer, and a ferromagnetic free layer. The magnetization direction of the pinned layer is fixed regardless of the external magnetic field H, while the magnetization direction of the free layer is changed by the external magnetic field H. The magnetic characteristics of the SV-GMR element are such that the direction of the external magnetic field and the pinned layer magnetization direction are forward parallel and the resistance change rate (ΔR / R) is negative, the direction of the external magnetic field and the pinned layer magnetization direction are antiparallel and the resistance change. The rate (ΔR / R) is positive. That is, the SV-GMR element has a low resistance when the direction of the external magnetic field and the pinned layer magnetization direction are forward parallel, and has a high resistance when the direction of the external magnetic field and the pinned layer magnetization direction are antiparallel.

図10に拡大して示されるように、第1SV−GMR素子MR1及び第3SV−GMR素子MR3のピン層磁化方向は軟磁性体歯車80の回転方向の略逆方向であり、第2SV−GMR素子MR2及び第4SV−GMR素子MR4のピン層磁化方向は軟磁性体歯車80の回転方向の略順方向である。   As shown in an enlarged view in FIG. 10, the pinned layer magnetization directions of the first SV-GMR element MR1 and the third SV-GMR element MR3 are substantially opposite to the rotation direction of the soft magnetic gear 80, and the second SV-GMR element The pinned layer magnetization direction of the MR2 and the fourth SV-GMR element MR4 is substantially the forward direction of the rotation direction of the soft magnetic gear 80.

軟磁性体歯車80の凸部が第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の感磁面に接近してきた時、各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は凸部が接近してくる方向(軟磁性体歯車80の回転方向の略逆方向)を向く。この時、上述の磁気特性より第1SV−GMR素子MR1及び第3SV−GMR素子MR3は低抵抗、第2SV−GMR素子MR2及び第4SV−GMR素子MR4は高抵抗となる。   When the convex portion of the soft magnetic gear 80 approaches the magnetic sensitive surface of the first SV-GMR element MR1 to the fourth SV-GMR element MR4, the magnetic material rotation tangential direction of the magnetic field at the magnetic sensitive surface position of each SV-GMR element The component is directed in the direction in which the convex portion approaches (substantially opposite to the rotational direction of the soft magnetic gear 80). At this time, the first SV-GMR element MR1 and the third SV-GMR element MR3 have a low resistance, and the second SV-GMR element MR2 and the fourth SV-GMR element MR4 have a high resistance due to the magnetic characteristics described above.

他方、軟磁性体歯車80の凸部が第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の感磁面から遠ざかる時、SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は凸部が遠ざかる方向(軟磁性体歯車80の回転方向の略順方向)を向く。この時、上述の磁気特性より第1SV−GMR素子MR1及び第3SV−GMR素子MR3は高抵抗、第2SV−GMR素子MR2及び第4SV−GMR素子MR4は低抵抗となる。   On the other hand, when the convex portion of the soft magnetic gear 80 moves away from the magnetosensitive surface of the first SV-GMR element MR1 to the fourth SV-GMR element MR4, the magnetic body rotation tangential component of the magnetic field at the magnetosensitive surface position of the SV-GMR element Indicates a direction in which the convex portion moves away (substantially forward direction of the rotation direction of the soft magnetic gear 80). At this time, the first SV-GMR element MR1 and the third SV-GMR element MR3 have a high resistance, and the second SV-GMR element MR2 and the fourth SV-GMR element MR4 have a low resistance due to the magnetic characteristics described above.

軟磁性体歯車80の回転に伴って軟磁性体歯車80の凸部802a〜802fは順番に第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の感磁面に接近し遠ざかり、それが軟磁性体歯車80の回転に伴い繰り返される。このため各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は軟磁性体歯車80が約60°回転するごとに同じ変化を繰り返す。したがって、第1SV−GMR素子MR1ないし第4SV−GMR素子MR4をフルブリッジ接続することより、軟磁性体歯車80の回転に伴って変化する検出信号が得られる。検出信号は例えばシュミットトリガ回路により矩形波信号に変換され、この矩形波信号に基づいて軟磁性体歯車80の回転情報の検出が可能である。   As the soft magnetic gear 80 rotates, the convex portions 802a to 802f of the soft magnetic gear 80 approach and move away from the magnetic sensing surfaces of the first SV-GMR element MR1 to the fourth SV-GMR element MR4 in turn. Repeated as the body gear 80 rotates. For this reason, the magnetic material rotation tangential component of the magnetic field at the position of the magnetic sensitive surface of each SV-GMR element repeats the same change every time the soft magnetic gear 80 rotates about 60 °. Therefore, a detection signal that changes with the rotation of the soft magnetic gear 80 is obtained by connecting the first SV-GMR element MR1 to the fourth SV-GMR element MR4 with a full bridge. The detection signal is converted into a rectangular wave signal by, for example, a Schmitt trigger circuit, and the rotation information of the soft magnetic gear 80 can be detected based on the rectangular wave signal.

図10及び図11に示されるような軟磁性体歯車80の形状の場合、軟磁性体歯車80の回転に伴って各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は軟磁性体歯車80の凸部のエッジ近傍で短期間だけ急激に変化する一方、エッジから離れた凸面及び凹面(円周面を成す部分)では0付近でほとんど変化しない。すなわちフルブリッジ接続された第1SV−GMR素子MR1ないし第4SV−GMR素子MR4から得られる検出信号は軟磁性体歯車80の凸部のエッジが各SV−GMR素子の上を通過する時だけ変化し、エッジから離れた凸面及び凹面が各SV−GMR素子の上を通過する時には同じ大きさでほとんど変化しない(後述の図4(B)参照)。   In the case of the shape of the soft magnetic gear 80 as shown in FIGS. 10 and 11, the magnetic rotation tangential component of the magnetic field at the position of the magnetic sensitive surface of each SV-GMR element as the soft magnetic gear 80 rotates is While it changes rapidly in the vicinity of the edge of the convex portion of the soft magnetic gear 80 for a short period, it hardly changes in the vicinity of 0 on the convex surface and the concave surface (portion forming the circumferential surface) away from the edge. That is, the detection signal obtained from the first SV-GMR element MR1 to the fourth SV-GMR element MR4 connected in full bridge changes only when the edge of the convex portion of the soft magnetic gear 80 passes over each SV-GMR element. When the convex surface and the concave surface away from the edge pass over each SV-GMR element, they are the same size and hardly change (see FIG. 4B described later).

したがって、エッジから離れた凸面又は凹面が各SV−GMR素子の上を通過している時の矩形波信号のレベルは、直前に軟磁性体歯車80の凸部のエッジが各SV−GMR素子の上を通過した時の検出信号の変化(以下「検出信号の直前変化」)によって決まることとなる。しかし検出信号の直前変化の情報(各SV−GMR素子の上を凸部の前側エッジ又は後側エッジのいずれが通過した後かを示す情報)は電源投入時には通常ない。このためエッジから離れた凸面及び凹面(円周面を成す部分)が第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上にある状態で電源が投入されると、各SV−GMR素子が電源投入時に軟磁性体歯車80の凸面あるいは凹面のいずれと対向しているのかが不定となる。そうすると電源投入時の軟磁性体歯車80の回転角度位置と移動体検出装置800の出力(矩形波信号)とが対応せず、結果的に誤った矩形波信号を出力する可能性がある。このような問題はラック等の直線移動体の移動を検出する場合にも同様である。   Accordingly, the level of the rectangular wave signal when the convex surface or the concave surface away from the edge passes over each SV-GMR element is such that the edge of the convex portion of the soft magnetic gear 80 immediately before the SV-GMR element It is determined by the change in the detection signal when it passes above (hereinafter referred to as “change immediately before the detection signal”). However, information on the immediately preceding change of the detection signal (information indicating whether the front edge or the rear edge of the convex portion has passed over each SV-GMR element) is not usually present when the power is turned on. Therefore, when the power is turned on with the convex surface and the concave surface (parts forming the circumferential surface) separated from the edge being directly above the first SV-GMR element MR1 to the fourth SV-GMR element MR4, each SV-GMR element It is indefinite whether it faces the convex surface or the concave surface of the soft magnetic gear 80 when the power is turned on. Then, the rotational angle position of the soft magnetic gear 80 when the power is turned on does not correspond to the output (rectangular wave signal) of the moving body detection device 800, and as a result, an erroneous rectangular wave signal may be output. This problem is the same when detecting the movement of a linear moving body such as a rack.

本発明はこうした考察を経てなされたものであり、その目的は、電源投入時の磁性材回転体あるいは磁性材直線移動体の位置情報を従来技術と比較して正確に検出することが可能な移動体検出装置を提供することにある。   The present invention has been made after such considerations, and the purpose of the present invention is to make it possible to accurately detect the position information of the magnetic material rotating body or the magnetic material linear moving body when the power is turned on as compared with the prior art. The object is to provide a body detection device.

本発明の第1の態様の移動体検出装置は、
磁性材回転体と、バイアス磁界発生手段と、前記磁性材回転体の外周面と対向するように前記バイアス磁界発生手段に対して固定配置された少なくとも1つのスピンバルブ型巨大磁気抵抗素子を含む磁気検出部と、前記磁気検出部の出力信号に基づいて矩形波信号を生成する矩形波信号生成回路と備え、前記矩形波信号生成回路により生成された矩形波信号に基づいて前記磁性材回転体の回転情報を検出する移動体検出装置であり、
前記磁性材回転体の前記外周面は、
前記磁性材回転体の回転中心からの距離が極大となる頂部と、
前記磁性材回転体の回転中心からの距離が極小となる極小部と、
前記頂部から回転方向前側に延在する第1の面と、
前記頂部から回転方向後側に延在する第2の面とを有し、
前記第1の面においては前記頂部と反対側の縁から前記頂部に向かって前記回転中心からの距離が単調に増加し、
前記第2の面においては前記頂部から前記頂部と反対側の縁に向かって前記回転中心からの距離が単調に減少し、
前記第1及び第2の面における前記頂部と反対側の縁が前記極小部に位置し、かつ、前記極小部が前記頂部と同数だけ存在することを特徴とする。
The moving body detection apparatus according to the first aspect of the present invention includes:
A magnetic material including a magnetic material rotating body, a bias magnetic field generating means, and at least one spin-valve giant magnetoresistive element fixed to the bias magnetic field generating means so as to face the outer peripheral surface of the magnetic material rotating body. A detection unit and a rectangular wave signal generation circuit that generates a rectangular wave signal based on an output signal of the magnetic detection unit, and based on the rectangular wave signal generated by the rectangular wave signal generation circuit, A moving body detection device for detecting rotation information;
The outer peripheral surface of the magnetic material rotating body is:
The top from which the distance from the rotation center of the magnetic material rotating body is maximized;
A minimal portion where the distance from the rotation center of the magnetic material rotating body is minimal;
A first surface extending forward from the top in the rotational direction;
A second surface extending from the top to the rear side in the rotational direction,
In the first surface, the distance from the rotation center monotonously increases from the edge opposite to the top toward the top.
In the second surface, the distance from the rotation center monotonously decreases from the top toward the edge opposite to the top.
An edge of the first and second surfaces opposite to the top portion is located at the minimum portion, and the same number of the minimum portions as the top portion is present.

第1の態様の移動体検出装置において、前記頂部は複数存在し、前記第1の面は前記複数の頂部の各々から回転方向前側に延在し、前記第2の面は前記複数の頂部の各々から回転方向後側に延在してもよい。   In the moving body detection apparatus according to the first aspect, there are a plurality of the top portions, the first surface extends from each of the plurality of top portions in the rotational direction, and the second surface is formed of the plurality of top portions. You may extend from the rear side in the rotational direction.

第1の態様の移動体検出装置において、前記第1の面は平面であり、前記第2の面は前記外周面外側に凸となる湾曲面であり、前記極小部が屈曲部となってもよい。   In the moving body detection apparatus according to the first aspect, the first surface is a flat surface, the second surface is a curved surface that protrudes outward from the outer peripheral surface, and the minimal portion is a bent portion. Good.

本発明の第2の態様の移動体検出装置は、
磁性材回転体と、バイアス磁界発生手段と、前記磁性材回転体の外周面と対向するように前記バイアス磁界発生手段に対して固定配置された少なくとも1つのスピンバルブ型巨大磁気抵抗素子を含む磁気検出部と、前記磁気検出部の出力信号に基づいて矩形波信号を生成する矩形波信号生成回路と備え、前記矩形波信号生成回路により生成された矩形波信号に基づいて前記磁性材回転体の回転情報を検出する移動体検出装置であり、
前記磁性材回転体の前記外周面は、
前記磁性材回転体の回転中心からの距離が極大となる複数の頂部と、
隣り合う頂部間に1カ所だけ存在し、当該隣り合う頂部を通る平面を基準とする深さが極大となる極深部と、
各頂部から回転方向前側に延在する第1の面と、
各頂部から回転方向後側に延在する第2の面とを有し、
前記第1の面においては前記各頂部と反対側の縁から前記各頂部に向かって深さが単調に減少し、
前記第2の面においては前記各頂部から前記各頂部と反対側の縁に向かって深さが単調に増加し、
前記第1及び第2の面における前記各頂部と反対側の縁が前記極深部に位置することを特徴とする。
The moving body detection apparatus according to the second aspect of the present invention includes:
A magnetic material including a magnetic material rotating body, a bias magnetic field generating means, and at least one spin-valve giant magnetoresistive element fixed to the bias magnetic field generating means so as to face the outer peripheral surface of the magnetic material rotating body. A detection unit and a rectangular wave signal generation circuit that generates a rectangular wave signal based on an output signal of the magnetic detection unit, and based on the rectangular wave signal generated by the rectangular wave signal generation circuit, A moving body detection device for detecting rotation information;
The outer peripheral surface of the magnetic material rotating body is:
A plurality of top portions having a maximum distance from the rotation center of the magnetic material rotating body;
There is only one location between adjacent top portions, and the deep portion where the depth based on the plane passing through the adjacent top portions is maximum,
A first surface extending from each top to the front side in the rotational direction;
A second surface extending from each top to the rear side in the rotational direction,
In the first surface, the depth monotonously decreases from the edge opposite to the top to the top.
In the second surface, the depth monotonously increases from the tops toward the edges opposite to the tops,
An edge of the first and second surfaces opposite to the tops is located in the extreme deep part.

第2の態様の移動体検出装置において、前記第1及び第2の面は平面であり、前記極深部が屈曲部となってもよい。   In the moving body detection device of the second aspect, the first and second surfaces may be flat surfaces, and the extreme deep portion may be a bent portion.

第1又は第2の態様の移動体検出装置において、前記第1の面が前記磁性材回転体の回転中心に対してなす角は、前記第2の面が前記磁性材回転体の回転中心に対してなす角よりも小さいとよい。   In the moving body detection device according to the first or second aspect, the angle formed by the first surface with respect to the rotation center of the magnetic material rotating body is such that the second surface is at the rotation center of the magnetic material rotating body. It is better that the angle is smaller than the angle formed.

本発明の第3の態様の移動体検出装置は、
凹凸面を有する磁性材直線移動体と、バイアス磁界発生手段と、前記磁性材直線移動体の前記凹凸面と対向するように前記バイアス磁界発生手段に対して固定配置された少なくとも1つのスピンバルブ型巨大磁気抵抗素子を含む磁気検出部と、前記磁気検出部の出力信号に基づいて矩形波信号を生成する矩形波信号生成回路と備え、前記矩形波信号生成回路により生成された矩形波信号に基づいて前記磁性材直線移動体の位置情報を検出する移動体検出装置であり、
前記磁性材直線移動体の前記凹凸面は、
高さが極大となる複数の頂部と、
隣り合う頂部間に1カ所だけ存在し、高さが極小となる極小部と、
各頂部から移動方向前側に延在する第1の面と、
各頂部から移動方向後側に延在する第2の面とを有し、
前記第1の面においては前記各頂部と反対側の縁から前記各頂部に向かって高さが単調に増加し、
前記第2の面においては前記各頂部から前記各頂部と反対側の縁に向かって高さが単調に減少し、
前記第1及び第2の面の前記各頂部と反対側の縁に前記極小部が位置することを特徴とする。
The moving body detection apparatus according to the third aspect of the present invention includes:
Magnetic material linear moving body having an uneven surface, bias magnetic field generating means, and at least one spin valve type fixedly disposed to the bias magnetic field generating means so as to face the uneven surface of the magnetic material linear moving body A magnetic detection unit including a giant magnetoresistive element and a rectangular wave signal generation circuit that generates a rectangular wave signal based on an output signal of the magnetic detection unit, and based on the rectangular wave signal generated by the rectangular wave signal generation circuit A moving body detecting device for detecting position information of the magnetic material linear moving body,
The uneven surface of the magnetic material linear moving body is:
A plurality of tops where the height is maximum,
There is only one place between the adjacent tops, and the minimum part has a minimum height,
A first surface extending from the top to the front side in the movement direction;
A second surface extending from each top to the rear side in the moving direction,
In the first surface, the height increases monotonously from the edge opposite to the top to the top.
In the second surface, the height decreases monotonously from each top to the edge opposite to each top,
The minimum portion is located on an edge of the first and second surfaces opposite to the top portions.

第3の態様の移動体検出装置において、前記第1の面の移動方向前側及び後側の縁間の距離が前記第2の面の移動方向前側及び後側の縁間の距離よりも短いとよい。   In the moving body detection device of the third aspect, when the distance between the front and rear edges of the first surface in the moving direction is shorter than the distance between the front and rear edges of the second surface in the moving direction. Good.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明の移動体検出装置によれば、第1及び第2の面がバイアス磁界に及ぼす作用によりスピンバルブ型巨大磁気抵抗素子の抵抗値は従来技術と比較して長い期間変化する。これにより磁気検出部からの出力信号は、同じ大きさで変化しない期間が従来技術と比較して短くなる。したがって、電源投入時の磁性材回転体あるいは磁性材直線移動体の位置情報を従来技術と比較して正確に検出することが可能となる。   According to the moving body detection apparatus of the present invention, the resistance value of the spin valve type giant magnetoresistive element changes for a longer period than the prior art due to the action of the first and second surfaces on the bias magnetic field. As a result, the period during which the output signal from the magnetic detection unit does not change with the same magnitude is shorter than in the prior art. Therefore, it is possible to accurately detect the position information of the magnetic material rotating body or the magnetic material linear moving body when the power is turned on, as compared with the prior art.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、重複した説明は適宜省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る移動体検出装置100の例示的な概略斜視図である。図2は、図1に示される移動体検出装置100の正面図である。図3は、図1に示される移動体検出装置100の回路図である。
(First embodiment)
FIG. 1 is an exemplary schematic perspective view of a moving body detection apparatus 100 according to the first embodiment of the present invention. FIG. 2 is a front view of the moving object detection apparatus 100 shown in FIG. FIG. 3 is a circuit diagram of the moving object detection apparatus 100 shown in FIG.

移動体検出装置100は、磁性材回転体としての軟磁性回転体10と、バイアス磁界発生手段としてのバイアス磁石50と、磁気検出部を構成する第1SV−GMR素子MR1ないし第4SV−GMR素子MR4とを備える。板状ないし柱状の軟磁性回転体10は図示しない回転軸に取り付けられ、軟磁性回転体10の外周面は後述のように回転中心O周りの角度に応じて回転中心Oからの距離が変化する。第1SV−GMR素子MR1ないし第4SV−GMR素子MR4は軟磁性回転体10の外周面に対向するように軟磁性回転体10の厚み方向に1列に固定配置され、これらの背後にバイアス磁界発生手段としてのバイアス磁石50が固定配置される。これにより第1SV−GMR素子MR1ないし第4SV−GMR素子MR4はバイアス磁石50によって磁気バイアスされ、軟磁性回転体10の回転に伴って第1SV−GMR素子MR1ないし第4SV−GMR素子MR4への印加磁界が変化する。第1SV−GMR素子MR1ないし第4SV−GMR素子MR4は図3に示されるようにフルブリッジ接続されて磁気検出部120を構成し、軟磁性回転体10の回転に伴って変化する検出信号Vdetが磁気検出部120から出力される。   The moving body detecting apparatus 100 includes a soft magnetic rotating body 10 as a magnetic material rotating body, a bias magnet 50 as a bias magnetic field generating means, and a first SV-GMR element MR1 to a fourth SV-GMR element MR4 constituting a magnetic detection unit. With. The plate-like or columnar soft magnetic rotator 10 is attached to a rotation shaft (not shown), and the outer peripheral surface of the soft magnetic rotator 10 changes in distance from the rotation center O according to the angle around the rotation center O as will be described later. . The first SV-GMR element MR1 to the fourth SV-GMR element MR4 are fixedly arranged in a row in the thickness direction of the soft magnetic rotator 10 so as to face the outer peripheral surface of the soft magnetic rotator 10, and a bias magnetic field is generated behind them. A bias magnet 50 as a means is fixedly arranged. As a result, the first SV-GMR element MR1 to the fourth SV-GMR element MR4 are magnetically biased by the bias magnet 50 and applied to the first SV-GMR element MR1 to the fourth SV-GMR element MR4 as the soft magnetic rotator 10 rotates. The magnetic field changes. The first SV-GMR element MR1 to the fourth SV-GMR element MR4 are connected in a full bridge as shown in FIG. 3 to form a magnetic detection unit 120, and a detection signal Vdet that changes as the soft magnetic rotator 10 rotates is detected. Output from the magnetic detection unit 120.

バイアス磁石50は例えば軟磁性回転体10の外周面に対向する面にN極、反対面にS極を有する永久磁石であり、第1SV−GMR素子MR1ないし第4SV−GMR素子MR4はバイアス磁石50のN極面と軟磁性回転体10の外周面との間に位置する。直線的に配列された第1SV−GMR素子MR1ないし第4SV−GMR素子MR4に均等な磁界を印加できるように、バイアス磁石50の横幅は、第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の配置幅W1より大きいことが望ましい。同様の理由から軟磁性回転体10の厚みW2も配置幅W1以上であることが望ましく、また、第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の感磁面は軟磁性回転体10の外周面に接する平面に平行な同一平面内にあることが望ましい。   The bias magnet 50 is a permanent magnet having, for example, an N pole on the surface facing the outer peripheral surface of the soft magnetic rotator 10 and an S pole on the opposite surface. The first SV-GMR element MR1 to the fourth SV-GMR element MR4 are bias magnets 50, respectively. It is located between the N pole surface and the outer peripheral surface of the soft magnetic rotator 10. The lateral width of the bias magnet 50 is the same as that of the first SV-GMR element MR1 to the fourth SV-GMR element MR4 so that a uniform magnetic field can be applied to the first SV-GMR element MR1 to the fourth SV-GMR element MR4 arranged linearly. It is desirable that it is larger than the arrangement width W1. For the same reason, it is desirable that the thickness W2 of the soft magnetic rotator 10 is also equal to or larger than the arrangement width W1, and the magnetic sensing surfaces of the first SV-GMR element MR1 to the fourth SV-GMR element MR4 are the outer periphery of the soft magnetic rotator 10. It is desirable to be in the same plane parallel to the plane that touches the surface.

軟磁性回転体10の外周面は、回転中心Oからの距離が極大となる頂部13a〜13fと、回転中心Oからの距離が極小となる極小部14a〜14fと、頂部13a〜13fの各々から回転方向前側に延在する第1の面11a〜11fと、頂部13a〜13fの各々から回転方向後側に延在する第2の面12a〜12fとを有する。頂部13a〜13fは等角度間隔(図では60°ごと)に形成され、それぞれ回転中心Oからr1の距離にある。極小部14a〜14fは等角度間隔(図では60°ごと)に形成され、それぞれ回転中心Oからr2の距離にある(r1>r2)。第1の面11a〜11fはそれぞれ平面であり、それらは同一形状とする。第2の面12a〜12fはそれぞれ外周面外側に凸となる湾曲面であり、それらは同一形状とする。極小部14a〜14fの各々は、隣り合う頂部間(頂部13a−13b間、頂部13b−13c間、・・・、頂部13f−13a間)に存在する。第1の面11a〜11fにおいては頂部13a〜13fと反対の縁(極小部14f,14a,・・・,14e)から頂部13a〜13fに向かって回転中心Oからの距離が単調に増加する(変化率がプラス)。第2の面12a〜12fにおいては頂部13a〜13fから頂部13a〜13fと反対の縁(極小部14a〜14f)に向かって回転中心Oからの距離が単調に減少する(変化率がマイナス)。極小部14a〜14fの各々は第1の面11b及び第2の面12aの境界、第1の面11c及び第2の面12bの境界、・・・、第1の面11a及び第2の面12fの境界に位置して屈曲部となっている。   The outer peripheral surface of the soft magnetic rotator 10 is from each of the top portions 13a to 13f having a maximum distance from the rotation center O, the minimum portions 14a to 14f having a minimum distance from the rotation center O, and the top portions 13a to 13f. It has 1st surface 11a-11f extended to the rotation direction front side, and 2nd surface 12a-12f extended to the rotation direction back side from each of the top parts 13a-13f. The top portions 13a to 13f are formed at equiangular intervals (every 60 ° in the figure), and are at a distance r1 from the rotation center O, respectively. The minimal portions 14a to 14f are formed at equiangular intervals (every 60 ° in the figure) and are at a distance of r2 from the rotation center O (r1> r2). Each of the first surfaces 11a to 11f is a flat surface and has the same shape. Each of the second surfaces 12a to 12f is a curved surface that protrudes outward from the outer peripheral surface, and has the same shape. Each of the minimal parts 14a to 14f exists between adjacent top parts (between the top parts 13a-13b, between the top parts 13b-13c,..., Between the top parts 13f-13a). In the first surfaces 11a to 11f, the distance from the rotation center O monotonously increases from the edges (minimum portions 14f, 14a, ..., 14e) opposite to the top portions 13a to 13f toward the top portions 13a to 13f ( The rate of change is positive. In the second surfaces 12a to 12f, the distance from the rotation center O monotonously decreases (the rate of change is negative) from the top portions 13a to 13f toward the edges (minimum portions 14a to 14f) opposite to the top portions 13a to 13f. Each of the minimum portions 14a to 14f is a boundary between the first surface 11b and the second surface 12a, a boundary between the first surface 11c and the second surface 12b, ..., the first surface 11a and the second surface. A bent portion is located at the boundary of 12f.

第1の面11a〜11fが回転中心Oに対してなす角θ1(θ1>0)は、第2の面12a〜12fが回転中心Oに対してなす角θ2よりも小さい。すなわち、第1の面11a〜11fの回転方向前側及び後側の縁間(極小部14f−頂部13a間、極小部14a−頂部13b間、・・・、極小部14e−頂部13f間)の距離は、第2の面12a〜12fの回転方向前側及び後側の縁間(頂部13a−極小部14a間、頂部13b−極小部14b間、・・・、頂部13f−極小部14f間)の距離よりも短い。あるいは第1の面11a〜11fにおける回転中心Oからの距離の変化率は第2の面12a〜12fにおける回転中心Oからの距離の変化率よりも絶対値が大きい(急傾斜である)。   An angle θ1 (θ1> 0) formed by the first surfaces 11a to 11f with respect to the rotation center O is smaller than an angle θ2 formed by the second surfaces 12a to 12f with respect to the rotation center O. That is, the distance between the front and rear edges of the first surfaces 11a to 11f (between the minimum portion 14f and the top portion 13a, between the minimum portion 14a and the top portion 13b,..., Between the minimum portion 14e and the top portion 13f). Is the distance between the front and rear edges of the second surfaces 12a to 12f (between the top 13a and the minimum 14a, between the top 13b and the minimum 14b,..., Between the top 13f and the minimum 14f). Shorter than. Alternatively, the change rate of the distance from the rotation center O in the first surfaces 11a to 11f has a larger absolute value (steep inclination) than the change rate of the distance from the rotation center O in the second surfaces 12a to 12f.

以下、図3を参照して移動体検出装置100の回路構成を説明する。移動体検出装置100は、磁気検出部120と、差動増幅回路140と、矩形波信号生成回路としてのシュミットトリガ回路160と、出力回路240とを備える。本実施の形態ではこれらの回路は単電源Vcc(例として5V)で動作する。   Hereinafter, the circuit configuration of the moving object detection apparatus 100 will be described with reference to FIG. The moving body detection device 100 includes a magnetic detection unit 120, a differential amplifier circuit 140, a Schmitt trigger circuit 160 as a rectangular wave signal generation circuit, and an output circuit 240. In this embodiment, these circuits operate with a single power supply Vcc (for example, 5 V).

磁気検出部120は、第1SV−GMR素子MR1ないし第4SV−GMR素子MR4をフルブリッジ(ホイートストンブリッジ)接続したものであり、図1で既述のように軟磁性回転体10の回転に伴って磁界の変化する位置に配置される。第1SV−GMR素子MR1及び第2SV−GMR素子MR2の対は電源ラインと接地との間に直列接続される。第4SV−GMR素子MR4及び第3SV−GMR素子MR3の対も電源ラインと接地との間に直列接続される。磁気検出部120の検出信号Vdetは、第1SV−GMR素子MR1及び第2SV−GMR素子MR2の接続点と、第3SV−GMR素子MR3及び第4SV−GMR素子MR4の接続点との電位差として得られる。磁気検出部120の検出信号Vdetは差動増幅回路140で増幅される。   The magnetic detection unit 120 is a full-bridge (Wheatstone bridge) connection of the first SV-GMR element MR1 to the fourth SV-GMR element MR4. As described above with reference to FIG. It is arranged at a position where the magnetic field changes. The pair of the first SV-GMR element MR1 and the second SV-GMR element MR2 are connected in series between the power supply line and the ground. A pair of fourth SV-GMR element MR4 and third SV-GMR element MR3 is also connected in series between the power supply line and the ground. The detection signal Vdet of the magnetic detection unit 120 is obtained as a potential difference between the connection point of the first SV-GMR element MR1 and the second SV-GMR element MR2 and the connection point of the third SV-GMR element MR3 and the fourth SV-GMR element MR4. . The detection signal Vdet of the magnetic detection unit 120 is amplified by the differential amplifier circuit 140.

差動増幅回路140は、抵抗R3ないしR6と、オペアンプ142とを含む。抵抗R3及びR4は、第3SV−GMR素子MR3及び第4SV−GMR素子MR4の接続点と、オペアンプ142の出力端子との間に直列接続される。抵抗R3及びR4の接続点はオペアンプ142の反転入力端子に接続される。抵抗R5及び抵抗R6は、第1SV−GMR素子MR1及び第2SV−GMR素子MR2の接続点と、基準電圧源Vref(2.5V)の出力端子との間に直列接続される。抵抗R5及び抵抗R6の接続点はオペアンプ142の非反転入力端子に接続される。抵抗R3ないしR6の抵抗値はR3=R5かつR4=R6である。したがって、差動増幅回路140の増幅度はR4/R3であり、差動増幅回路140の増幅信号Vampは、
Vamp=−(R4/R3)Vdet+2.5[V]
である。なお、増幅度は1近傍に設定されてもよい。
Differential amplifier circuit 140 includes resistors R3 to R6 and an operational amplifier 142. The resistors R3 and R4 are connected in series between the connection point of the third SV-GMR element MR3 and the fourth SV-GMR element MR4 and the output terminal of the operational amplifier 142. The connection point of the resistors R3 and R4 is connected to the inverting input terminal of the operational amplifier 142. The resistors R5 and R6 are connected in series between the connection point of the first SV-GMR element MR1 and the second SV-GMR element MR2 and the output terminal of the reference voltage source Vref (2.5 V). A connection point between the resistors R5 and R6 is connected to a non-inverting input terminal of the operational amplifier 142. The resistance values of the resistors R3 to R6 are R3 = R5 and R4 = R6. Therefore, the amplification degree of the differential amplifier circuit 140 is R4 / R3, and the amplified signal Vamp of the differential amplifier circuit 140 is
Vamp = − (R4 / R3) Vdet + 2.5 [V]
It is. The amplification degree may be set near 1.

矩形波信号生成回路としてのシュミットトリガ回路160は、差動増幅回路140から出力される増幅信号Vampに基づいて矩形波信号Vrctを生成する。シュミットトリガ回路はスレッショルド電圧が切り替わる回路(ヒステリシスコンパレータ等)である。例えばシュミットトリガ回路160のスレッショルド電圧がVth1,Vth2(Vth1>Vth2)であり、現在のスレッショルド電圧がVth1であるとすると、差動増幅回路140から出力される増幅信号VampがVth1を超えた時にシュミットトリガ回路160の出力信号のレベルが遷移(ハイレベルからローレベルに遷移)し、シュミットトリガ回路160のスレッショルド電圧はVth1からVth2に切り替わる。この状態において差動増幅回路140から出力される増幅信号VampがVth2を下回るとシュミットトリガ回路160の出力信号のレベルは遷移(ローレベルからハイレベルに遷移)し、シュミットトリガ回路160のスレッショルド電圧はVth2からVth1に切り替わる。なおVth1,Vth2の差をヒステリシス幅という。差動増幅回路140から出力される増幅信号VampがVth1を超えた後あるいはVth2を下回った後にヒステリシス幅の範囲内のノイズ成分が増幅信号Vampに混入してもシュミットトリガ回路160の出力信号のレベルは遷移しないのでノイズに強い。   A Schmitt trigger circuit 160 as a rectangular wave signal generation circuit generates a rectangular wave signal Vrct based on the amplified signal Vamp output from the differential amplifier circuit 140. The Schmitt trigger circuit is a circuit (such as a hysteresis comparator) that switches a threshold voltage. For example, assuming that the threshold voltage of the Schmitt trigger circuit 160 is Vth1, Vth2 (Vth1> Vth2) and the current threshold voltage is Vth1, the Schmitt is performed when the amplified signal Vamp output from the differential amplifier circuit 140 exceeds Vth1. The level of the output signal of the trigger circuit 160 transitions (transition from the high level to the low level), and the threshold voltage of the Schmitt trigger circuit 160 switches from Vth1 to Vth2. In this state, when the amplified signal Vamp output from the differential amplifier circuit 140 falls below Vth2, the level of the output signal of the Schmitt trigger circuit 160 transitions (transitions from low level to high level), and the threshold voltage of the Schmitt trigger circuit 160 is Switching from Vth2 to Vth1. The difference between Vth1 and Vth2 is called the hysteresis width. The level of the output signal of the Schmitt trigger circuit 160 even if a noise component within the hysteresis width is mixed into the amplified signal Vamp after the amplified signal Vamp output from the differential amplifier circuit 140 exceeds Vth1 or falls below Vth2. Because it does not transition, it is resistant to noise.

シュミットトリガ回路160から出力される矩形波信号Vrctは出力回路240に入力され、出力回路240から出力信号Voutとして出力される。なお、出力信号Voutは矩形波信号Vrctと極性が反転する。出力回路240は、抵抗R1及びR2と、バイポーラトランジスタQとを含む。抵抗R2は、シュミットトリガ回路160の出力端子とバイポーラトランジスタQのベースとの間に設けられる。抵抗R1は、電源ラインとバイポーラトランジスタQのコレクタとの間に設けられる。バイポーラトランジスタQのエミッタは接地される。バイポーラトランジスタQのコレクタ電圧が出力回路240の出力信号Voutとなる。   The rectangular wave signal Vrct output from the Schmitt trigger circuit 160 is input to the output circuit 240 and is output from the output circuit 240 as the output signal Vout. Note that the polarity of the output signal Vout is inverted from that of the rectangular wave signal Vrct. The output circuit 240 includes resistors R1 and R2 and a bipolar transistor Q. The resistor R2 is provided between the output terminal of the Schmitt trigger circuit 160 and the base of the bipolar transistor Q. The resistor R1 is provided between the power supply line and the collector of the bipolar transistor Q. The emitter of the bipolar transistor Q is grounded. The collector voltage of the bipolar transistor Q becomes the output signal Vout of the output circuit 240.

図4(A)は、図1〜図3に示される移動体検出装置100の動作を例示するタイムチャートである。このタイムチャートは上から順に、軟磁性回転体10の外周面のうち第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上に位置する部分の回転中心からの距離、差動増幅回路140から出力される増幅信号Vamp、出力回路240の出力信号Voutを示す。   FIG. 4A is a time chart illustrating the operation of the moving object detection apparatus 100 shown in FIGS. In this time chart, in order from the top, the distance from the rotation center of the portion of the outer peripheral surface of the soft magnetic rotator 10 located immediately above the first SV-GMR element MR1 to the fourth SV-GMR element MR4, the differential amplifier circuit 140 The amplified signal Vamp output from the output circuit 240 and the output signal Vout of the output circuit 240 are shown.

軟磁性回転体10が回転して第1の面(第1の面11a〜11fのいずれか)が第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上に近づいてくると、各SV−GMR素子の感磁面位置において、第2の面(第2の面12a〜12fのいずれか)がバイアス磁界に及ぼす影響は小さくなり第1の面がバイアス磁界に及ぼす影響は大きくなる。このため、各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は第1の面が接近してくる方向(軟磁性回転体10の回転方向の略逆方向)を向く。これにより第1SV−GMR素子MR1及び第3SV−GMR素子MR3は低抵抗、第2SV−GMR素子MR2及び第4SV−GMR素子MR4は高抵抗となる。そうすると差動増幅回路140から出力される増幅信号Vampは大きくなり、極小部14a〜14fのいずれかが第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上を通過した後に増幅信号Vampはシュミットトリガ回路160の上側スレッショルド電圧Vth1を超え、シュミットトリガ回路160から出力される矩形波信号Vrctを反転した出力信号Voutはローレベルからハイレベルに遷移する(図4(A)中、期間T2の終了及び期間T1の開始)。   When the soft magnetic rotator 10 rotates and the first surface (any one of the first surfaces 11a to 11f) approaches the first SV-GMR element MR1 to the fourth SV-GMR element MR4, each SV. The influence of the second surface (any one of the second surfaces 12a to 12f) on the bias magnetic field is small and the influence of the first surface on the bias magnetic field is large at the position of the magnetosensitive surface of the GMR element. For this reason, the magnetic body rotation tangential component of the magnetic field at the position of the magnetically sensitive surface of each SV-GMR element faces the direction in which the first surface approaches (substantially opposite to the rotation direction of the soft magnetic rotator 10). As a result, the first SV-GMR element MR1 and the third SV-GMR element MR3 have a low resistance, and the second SV-GMR element MR2 and the fourth SV-GMR element MR4 have a high resistance. As a result, the amplified signal Vamp output from the differential amplifier circuit 140 increases, and after any one of the minimum portions 14a to 14f passes immediately above the first SV-GMR element MR1 to the fourth SV-GMR element MR4, the amplified signal Vamp is The output signal Vout, which exceeds the upper threshold voltage Vth1 of the Schmitt trigger circuit 160 and is inverted from the rectangular wave signal Vrct output from the Schmitt trigger circuit 160, transitions from the low level to the high level (in FIG. 4A, during the period T2). End and start of period T1).

その後、軟磁性回転体10がさらに回転して頂部(頂部13a〜13fのいずれか)が第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上に近づいてくると、各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は0に近づいてくる。そして頂部が第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上を通過すると、今度は第2の面がバイアス磁界に及ぼす影響により、各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は第2の面が遠ざかる方向(軟磁性回転体10の回転方向の略順方向)を向く。これにより第1SV−GMR素子MR1及び第3SV−GMR素子MR3は高抵抗、第2SV−GMR素子MR2及び第4SV−GMR素子MR4は低抵抗となる。そうすると差動増幅回路140から出力される増幅信号Vampは小さくなり、頂部13a〜13fが第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上を通過した直後に増幅信号Vampはシュミットトリガ回路160の下側スレッショルド電圧Vth2を下回り、出力信号Voutはハイレベルからローレベルに遷移する(図4(A)中、期間T1の終了及び期間T2の開始)。   Thereafter, when the soft magnetic rotator 10 further rotates and the top portion (any one of the top portions 13a to 13f) approaches the first SV-GMR element MR1 to the fourth SV-GMR element MR4, each SV-GMR element. The magnetic material rotation tangential component of the magnetic field at the position of the magnetosensitive surface approaches 0. Then, when the top portion passes directly above the first SV-GMR element MR1 to the fourth SV-GMR element MR4, this time, the influence of the second surface on the bias magnetic field causes the magnetic field at each magneto-sensitive surface position of each SV-GMR element. The magnetic material rotation tangential component is directed in the direction in which the second surface moves away (substantially forward direction of the rotation direction of the soft magnetic rotator 10). As a result, the first SV-GMR element MR1 and the third SV-GMR element MR3 have a high resistance, and the second SV-GMR element MR2 and the fourth SV-GMR element MR4 have a low resistance. Then, the amplified signal Vamp output from the differential amplifier circuit 140 becomes small, and immediately after the top portions 13a to 13f pass right above the first SV-GMR element MR1 to the fourth SV-GMR element MR4, the amplified signal Vamp is a Schmitt trigger circuit. The output signal Vout changes from a high level to a low level below the lower threshold voltage Vth2 of 160 (the end of the period T1 and the start of the period T2 in FIG. 4A).

比較例について説明する。図4(B)は、図10及び図11に示される移動体検出装置800の動作を例示するタイムチャートである。移動体検出装置800の回路は図3と同じものを用いている。既述のように軟磁性体歯車80の回転に伴って各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は軟磁性体歯車80の凸部のエッジ近傍で急激に変化するもののエッジから離れた凸面及び凹面(円周面を成す部分)では0に近くほとんど変化しない。このため図4(B)からも明らかなように、比較例の場合、軟磁性体歯車80の回転に伴って凸部の回転方向前側のエッジ直前あるいは凸部の回転方向後側のエッジ直後にごく短時間だけ増幅信号Vampは変化し、それ以外の部分すなわちエッジから離れた凸面及び凹面(円周面を成す部分)では増幅信号Vampは同じ大きさ(2.5V近傍)でほとんど変化しない。   A comparative example will be described. FIG. 4B is a time chart illustrating the operation of the moving object detection device 800 illustrated in FIGS. 10 and 11. The circuit of the moving object detection device 800 is the same as that shown in FIG. As described above, as the soft magnetic gear 80 rotates, the magnetic rotation tangential component of the magnetic field at the position of the magnetic sensitive surface of each SV-GMR element changes abruptly near the convex edge of the soft magnetic gear 80. However, the convex surface and the concave surface (parts forming the circumferential surface) away from the edge are close to 0 and hardly change. Therefore, as is apparent from FIG. 4B, in the case of the comparative example, the soft magnetic gear 80 is rotated immediately before the front edge of the convex portion in the rotational direction or immediately after the rear edge of the convex portion in the rotational direction. The amplified signal Vamp changes only for a very short time, and the amplified signal Vamp has the same magnitude (near 2.5 V) and hardly changes in the other portions, that is, the convex surface and the concave surface (portion forming the circumferential surface) separated from the edge.

これに対して図4(A)に示される本実施の形態の場合、増幅信号Vampが同じ大きさ(2.5V近傍)でほとんど変化しない期間は顕著に短くなっている。これは図10及び図11に示される軟磁性体歯車80のように外周面の大部分が円周面を成しているものに替えて、図1及び図2に示されるように回転中心Oからの距離が単調に増加あるいは減少する第1及び第2の面で外周面が構成される軟磁性回転体10を用いたことによる。すなわち第1の面は各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分を軟磁性回転体10の回転方向の略逆方向に保つ期間が長いため、増幅信号Vampが2.5Vを離れて上昇している期間が長い。同様に第2の面は各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分を軟磁性回転体10の回転方向の略順方向に保つ期間が長いため、増幅信号Vampが2.5Vを離れて下降している期間が長い。したがって本実施の形態では増幅信号Vampが2.5V近傍から離れている期間が比較例よりも顕著に長い。   On the other hand, in the case of the present embodiment shown in FIG. 4A, the period in which the amplified signal Vamp is the same magnitude (near 2.5 V) and hardly changes is significantly shortened. This is because, instead of the soft magnetic gear 80 shown in FIGS. 10 and 11, the outer peripheral surface is mostly a circumferential surface, the rotational center O as shown in FIGS. This is because the soft magnetic rotating body 10 whose outer peripheral surface is constituted by the first and second surfaces whose distance from the surface increases or decreases monotonously is used. That is, since the first surface has a long period during which the magnetic material rotation tangential direction component of the magnetic field at the position of the magnetosensitive surface of each SV-GMR element is substantially opposite to the rotation direction of the soft magnetic rotator 10, the amplified signal Vamp is 2 Long period of rising off 5V. Similarly, since the second surface has a long period during which the magnetic material rotation tangential component of the magnetic field at the position of the magnetic sensitive surface of each SV-GMR element is kept approximately in the forward direction of the rotation direction of the soft magnetic rotator 10, the amplified signal Vamp is The period of falling off 2.5V is long. Therefore, in the present embodiment, the period during which the amplified signal Vamp is separated from the vicinity of 2.5 V is significantly longer than that of the comparative example.

本実施の形態と比較例の上述した相違点は電源投入時に特に意義がある。以下これについて説明する。   The above-described differences between the present embodiment and the comparative example are particularly significant when the power is turned on. This will be described below.

図5(A)は、図1〜図3に示される移動体検出装置100の電源投入時の動作を例示するタイムチャートである。この図は第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上に第1の面が位置している時に電源が投入され、かつシュミットトリガ回路160のスレッショルド電圧が電源投入時Vth1である場合を示している。電源が投入された時、第1の面がバイアス磁界に及ぼす作用により各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は軟磁性回転体10の回転方向の略逆方向を向いているので、増幅信号Vampは直ちに上昇してシュミットトリガ回路160の上側スレッショルド電圧Vth1を超え、シュミットトリガ回路160から出力される矩形波信号Vrctを反転した出力信号Voutはローレベルからハイレベルに遷移する。すなわち本実施の形態では電源投入時から軟磁性回転体10の位置を反映した矩形波の出力信号が得られている。   FIG. 5A is a time chart illustrating an operation at the time of power-on of the moving object detection apparatus 100 shown in FIGS. In this figure, the power is turned on when the first surface is located immediately above the first SV-GMR element MR1 to the fourth SV-GMR element MR4, and the threshold voltage of the Schmitt trigger circuit 160 is Vth1 when the power is turned on. Shows the case. When the power is turned on, the magnetic surface rotation tangential component of the magnetic field at the position of the magnetic sensitive surface of each SV-GMR element is substantially opposite to the rotation direction of the soft magnetic rotating body 10 due to the action of the first surface on the bias magnetic field. Therefore, the amplified signal Vamp immediately rises and exceeds the upper threshold voltage Vth1 of the Schmitt trigger circuit 160, and the output signal Vout obtained by inverting the rectangular wave signal Vrct output from the Schmitt trigger circuit 160 is changed from the low level to the high level. Transition to. That is, in this embodiment, a rectangular wave output signal reflecting the position of the soft magnetic rotator 10 is obtained from the time of power-on.

比較例について説明する。図5(B)は、図10及び図11に示される移動体検出装置800の電源投入時の動作を例示するタイムチャートである。この図は第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上に凸部の円周面部分が位置している時に電源が投入され、かつシュミットトリガ回路160のスレッショルド電圧が電源投入時Vth1である場合を示している。電源が投入された時、各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分は0付近である。このため増幅信号Vampは2.5V近傍のヒステリシス幅内に留まってシュミットトリガ回路160の上側スレッショルド電圧Vth1を超えない。したがって出力信号Voutはローレベルのまま変化しない。しかし、電源投入時すなわち第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上に凸部の円周面部分が位置している時は本来であれば図4(B)に示されるように出力信号Voutはハイレベルである。つまり、比較例では電源投入時は軟磁性体歯車80の位置を反映した矩形波の出力信号が得られない。   A comparative example will be described. FIG. 5B is a time chart illustrating the operation of the moving object detection apparatus 800 illustrated in FIGS. 10 and 11 when the power is turned on. This figure shows that the power is turned on when the circumferential surface of the convex portion is located immediately above the first SV-GMR element MR1 to the fourth SV-GMR element MR4, and the threshold voltage of the Schmitt trigger circuit 160 is turned on. A case of Vth1 is shown. When the power is turned on, the magnetic material rotation tangential component of the magnetic field at the position of the magnetic sensitive surface of each SV-GMR element is close to zero. Therefore, the amplified signal Vamp stays within the hysteresis width near 2.5V and does not exceed the upper threshold voltage Vth1 of the Schmitt trigger circuit 160. Therefore, the output signal Vout remains at a low level. However, when the power is turned on, that is, when the circumferential surface portion of the convex portion is located immediately above the first SV-GMR element MR1 to the fourth SV-GMR element MR4, as shown in FIG. The output signal Vout is at a high level. That is, in the comparative example, when the power is turned on, a rectangular wave output signal reflecting the position of the soft magnetic gear 80 cannot be obtained.

本実施の形態によれば、以下の効果を奏することができる。   According to the present embodiment, the following effects can be achieved.

(1) 第1の面11a〜11fによるバイアス磁界に対する作用により第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の感磁面位置における磁界の磁性体回転接線方向成分は軟磁性回転体10の回転方向の略逆方向に従来技術と比較して長い期間変化する。これにより差動増幅回路140から出力される増幅信号Vampは2.5V付近で変化しない期間が従来技術と比較して短くなり、シュミットトリガ回路160の上側スレッショルド電圧Vth1を超えている期間が長くなる。すなわち、出力信号Voutがハイレベルを出力すべき期間(図4(A)中に期間T1)において増幅信号Vampはシュミットトリガ回路160の上側スレッショルド電圧Vth1を超えている期間が長くなる。このため出力信号Voutがハイレベルを出力すべき状態で電源が投入されたときにその状態を反映して出力信号Voutがハイレベルとなる確実性が高い。したがって電源投入時の軟磁性回転体10の回転情報をより正確に検出することが可能となる。第2の面12a〜12fによるバイアス磁界に対する作用も同様の効果を奏する。 (1) Due to the action of the first surfaces 11a to 11f on the bias magnetic field, the magnetic material rotating tangential component of the magnetic field at the position of the magnetic sensitive surface of the first SV-GMR element MR1 to the fourth SV-GMR element MR4 It changes for a longer period in the direction opposite to the rotation direction compared to the prior art. As a result, the period during which the amplified signal Vamp output from the differential amplifier circuit 140 does not change in the vicinity of 2.5 V is shorter than that in the prior art, and the period in which the upper threshold voltage Vth1 of the Schmitt trigger circuit 160 is exceeded is increased. . That is, in the period during which the output signal Vout should output a high level (period T1 in FIG. 4A), the period during which the amplified signal Vamp exceeds the upper threshold voltage Vth1 of the Schmitt trigger circuit 160 becomes longer. For this reason, when the power is turned on in a state where the output signal Vout should output a high level, there is a high degree of certainty that the output signal Vout becomes a high level reflecting the state. Therefore, it is possible to more accurately detect the rotation information of the soft magnetic rotator 10 when the power is turned on. The effect | action with respect to the bias magnetic field by 2nd surface 12a-12f also has the same effect.

(2) 上述のように差動増幅回路140から出力される増幅信号Vampは2.5V付近で変化しない期間が従来技術と比較して短いため、ノイズに強い。すなわち、増幅信号Vampが2.5V付近で変化しない期間にシュミットトリガ回路160のヒステリシス幅以上のノイズが入ると出力信号Voutに誤ったパルスが入るリスクがあるところ、本実施の形態では従来技術と比較して増幅信号Vampは2.5V付近で変化しない期間が短いためそのようなリスクが低減される。 (2) As described above, the amplified signal Vamp output from the differential amplifier circuit 140 is resistant to noise because the period during which the amplified signal Vamp does not change in the vicinity of 2.5 V is shorter than that of the prior art. That is, if noise exceeding the hysteresis width of the Schmitt trigger circuit 160 is input during a period in which the amplified signal Vamp does not change around 2.5 V, there is a risk that an erroneous pulse is input to the output signal Vout. In comparison, the amplified signal Vamp has a short period in which it does not change in the vicinity of 2.5 V, so that such a risk is reduced.

(3) 第1の面11a〜11fが回転中心Oとなす角θ1を第2の面12a〜12fが回転中心Oとなす角θ2よりも小さくし、かつ頂部13a〜13fの両側位置において第1の面11a〜11fを第2の面12a〜12fよりも回転中心Oからの距離の変化を急勾配としている。このため頂部13a〜13fが第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上を通過するごく近傍で出力信号Voutを確実にレベル遷移させることができる。したがって軟磁性回転体10の位置検出精度が高い。 (3) The angle θ1 formed by the first surfaces 11a to 11f with the rotation center O is smaller than the angle θ2 formed by the second surfaces 12a to 12f with the rotation center O, and the first surfaces 11a to 13f are positioned at both sides. Changes in the distance from the rotation center O of the surfaces 11a to 11f of the first surface 11a to 11f are steeper than those of the second surfaces 12a to 12f. For this reason, the level of the output signal Vout can be reliably shifted in the very vicinity where the top portions 13a to 13f pass directly above the first SV-GMR element MR1 to the fourth SV-GMR element MR4. Therefore, the position detection accuracy of the soft magnetic rotator 10 is high.

(4) 第1の面11a〜11fは平面であるため加工が容易である。また第2の面12a〜12fは外周面外側に凸となる湾曲面であるため、平面や外周面内側に凸となる湾曲面の場合と比較して、各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分を軟磁性回転体10の回転方向の略順方向に保つ期間が長くなり好都合である。 (4) Since the first surfaces 11a to 11f are flat surfaces, processing is easy. In addition, since the second surfaces 12a to 12f are curved surfaces that protrude outwardly from the outer peripheral surface, the position of the magnetic sensitive surface of each SV-GMR element is higher than that of a curved surface that protrudes outward from the flat surface or outer peripheral surface. It is convenient that the period during which the magnetic material rotation tangential component of the magnetic field in FIG.

(第2の実施の形態)
本実施の形態では第1の実施の形態における軟磁性回転体の形状を若干変更し、それ以外の構成は第1の実施の形態と同様とする。
(Second Embodiment)
In the present embodiment, the shape of the soft magnetic rotator in the first embodiment is slightly changed, and other configurations are the same as those in the first embodiment.

図6は、本発明の第2の実施の形態に係る移動体検出装置200の例示的な概略斜視図である。図7は、図6に示される移動体検出装置200の正面図である。これらの図においては軟磁性回転体20の形状が図1及び図2に示される軟磁性回転体10の形状と異なる。以下この点を中心に説明する。   FIG. 6 is an exemplary schematic perspective view of a moving object detection apparatus 200 according to the second embodiment of the present invention. FIG. 7 is a front view of the moving object detection apparatus 200 shown in FIG. In these drawings, the shape of the soft magnetic rotator 20 is different from the shape of the soft magnetic rotator 10 shown in FIGS. 1 and 2. Hereinafter, this point will be mainly described.

軟磁性回転体20の外周面は、回転中心Oからの距離が極大となる頂部23a〜23fと、隣り合う頂部間(頂部23a−23b間、頂部23b−23c間、・・・、頂部23f−23a間)に存在し、当該隣り合う頂部を通る平面を基準とする深さが極大となる極深部24a〜24fと、頂部23a〜23fの各々から回転方向前側に延在する第1の面21a〜21fと、頂部23a〜23fの各々から回転方向後側に延在する第2の面22a〜22fとを有する。頂部23a〜23fは等角度間隔(図では60°ごと)に形成され、それぞれ回転中心Oからr1の距離にある。極深部24a〜24fは等角度間隔(図では60°ごと)に形成され、それぞれ回転中心Oからr2の距離にある(r1>r2)。第1の面21a〜21fは平面であり、それらは同一形状とする。第2の面22a〜22fも平面であり、それらは同一形状とする。第1の面21a〜21fにおいては、頂部23a〜23fと反対の縁(極深部24f,24a,・・・,24e)から頂部23a〜23fに向かって隣り合う頂部(頂部23f−23a、頂部23a−23b、・・・、頂部23e−23f)を通る平面を基準とする深さが単調に減少する(変化率がマイナス)。第2の面22a〜22fにおいては、頂部23a〜23fから頂部23a〜23fと反対の縁(極深部24a〜24f)に向かって頂部(頂部23a−23b、頂部23b−23c、・・・、頂部23f−23a)を通る平面を基準とする深さが単調に増加する(変化率がプラス)。極深部24a〜24fの各々は第1の面21b及び第2の面22aの境界、第1の面21c及び第2の面22bの境界、・・・、第1の面21a及び第2の面22fの境界に位置して屈曲部となっている。   The outer peripheral surface of the soft magnetic rotator 20 has a top 23a to 23f at which the distance from the rotation center O is maximum, and the adjacent tops (between the tops 23a-23b, between the tops 23b-23c,..., The top 23f- 23a), and the first surface extending from the top portions 23a to 23f to the front side in the rotational direction from the deep portions 24a to 24f having a maximum depth based on the plane passing through the adjacent top portions. 21a to 21f and second surfaces 22a to 22f extending from the top portions 23a to 23f to the rear side in the rotation direction. The top portions 23a to 23f are formed at equiangular intervals (every 60 ° in the figure), and are at a distance r1 from the rotation center O, respectively. The extreme deep portions 24a to 24f are formed at equal angular intervals (every 60 ° in the figure), and are at a distance of r2 from the rotation center O (r1> r2). The first surfaces 21a to 21f are flat surfaces and have the same shape. The second surfaces 22a to 22f are also flat and have the same shape. In 1st surface 21a-21f, the top part (top part 23f-23a, top part) which adjoins toward the top parts 23a-23f from the edge (extreme deep part 24f, 24a, ..., 24e) opposite to the top parts 23a-23f. 23a-23b,..., The depth based on the plane passing through the tops 23e-23f) monotonously decreases (change rate is negative). In the second surfaces 22a to 22f, the top portions (top portions 23a-23b, top portions 23b-23c,...) From the top portions 23a to 23f toward the edges opposite to the top portions 23a to 23f (extremely deep portions 24a to 24f). The depth based on the plane passing through the tops 23f-23a) monotonously increases (the rate of change is positive). Each of the extreme deep portions 24a to 24f is a boundary between the first surface 21b and the second surface 22a, a boundary between the first surface 21c and the second surface 22b, ..., the first surface 21a and the second surface 22a. A bent portion is located at the boundary of the surface 22f.

第1の面21a〜21fが回転中心Oに対してなす角θ1(θ1>0)は、第2の面22a〜22fが回転中心Oに対してなす角θ2よりも小さい。すなわち、第1の面21a〜21fの回転方向前側及び後側の縁間(極深部24f−頂部23a間、極深部24a−頂部23b間、・・・、極深部24e−頂部23f間)の距離は、第2の面22a〜22fの回転方向前側及び後側の縁間(頂部23a−極深部24a間、頂部23b−極深部24b間、・・・、頂部23f−極深部24f間)の距離よりも短い。あるいは第1の面21a〜21fにおける深さの変化率は第2の面22a〜22fにおける深さの変化率よりも絶対値が大きい(急傾斜である)。   An angle θ1 (θ1> 0) formed by the first surfaces 21a to 21f with respect to the rotation center O is smaller than an angle θ2 formed by the second surfaces 22a to 22f with respect to the rotation center O. That is, between the front-side and rear-side edges of the first surfaces 21a to 21f (between the extreme deep part 24f and the top part 23a, between the extreme deep part 24a and the top part 23b,..., Between the extreme deep part 24e and the top part 23f. ) Is the distance between the front and rear edges of the second surfaces 22a to 22f (between the top 23a and the deep part 24a, between the top 23b and the deep part 24b,..., The top 23f and the deep part). Shorter than the distance between the portions 24f). Alternatively, the depth change rate of the first surfaces 21a to 21f has a larger absolute value (steep slope) than the depth change rate of the second surfaces 22a to 22f.

本実施の形態の移動体検出装置200の動作及び作用効果は第1の実施の形態の移動体検出装置100と概ね同様である。ただし、本実施の形態においては第2の面22a〜22fが平面であるため、第2の面が外周面外側に凸となる湾曲面である第1の実施の形態と比較して、各SV−GMR素子の感磁面位置における磁界の磁性体回転接線方向成分を軟磁性回転体20の回転方向の略順方向に保つ期間が短くなる点では若干不利といえる。しかし第2の面が湾曲面でなく平面であるため加工容易性の点で有利である。   The operation and effect of the moving object detection device 200 of this embodiment are substantially the same as those of the moving object detection device 100 of the first embodiment. However, since the second surfaces 22a to 22f are flat in the present embodiment, each SV is compared with the first embodiment in which the second surface is a curved surface that protrudes outward from the outer peripheral surface. It can be said to be slightly disadvantageous in that the period during which the magnetic body rotation tangential component of the magnetic field at the position of the magnetosensitive surface of the GMR element is kept approximately in the forward direction of the rotation direction of the soft magnetic rotor 20 is shortened. However, since the second surface is not a curved surface but a flat surface, it is advantageous in terms of ease of processing.

(第3の実施の形態)
本実施の形態では第1及び第2の実施の形態の技術を軟磁性直線移動体の位置検出に応用する。
(Third embodiment)
In the present embodiment, the techniques of the first and second embodiments are applied to position detection of a soft magnetic linear moving body.

図8は、本発明の第3の実施の形態に係る移動体検出装置300の例示的な概略斜視図である。図9は、図8に示される移動体検出装置300の正面図である。これらの図においては軟磁性直線移動体30が図1及び図2に示される軟磁性回転体10に替えて用いられる。以下、軟磁性直線移動体30の形状を中心に説明する。   FIG. 8 is an exemplary schematic perspective view of a moving object detection apparatus 300 according to the third embodiment of the present invention. FIG. 9 is a front view of the moving object detection apparatus 300 shown in FIG. In these drawings, a soft magnetic linear moving body 30 is used in place of the soft magnetic rotating body 10 shown in FIGS. Hereinafter, the shape of the soft magnetic linear moving body 30 will be mainly described.

磁性材直線移動体としての軟磁性直線移動体30は、例えば工作機械(不図示)における直線移動部分に取り付けられる。軟磁性直線移動体30は板状ないし柱状であり、凹凸面(図では下面)を有する。この凹凸面は、凸方向を正とする高さ(以下、単に「高さ」と標記)が極大となる頂部33a〜33dと、隣り合う頂部間(頂部33a−33b間、頂部33b−33c間、頂部33d−33d間)に存在し、高さが極小となる極小部34a〜34dと、頂部33a〜33dの各々から移動方向前側に延在する第1の面31a〜31dと、頂部33a〜33dの各々から移動方向後側に延在する第2の面32a〜32dとを有する。頂部33a〜33dの高さはh1、極小部34a〜34dの高さはh2である(h1>h2)。第1の面31a〜31dは平面であり、それらは同一形状とする。第2の面32a〜32dも平面であり、それらは同一形状とする。第1の面31a〜31dにおいては頂部33a〜33dと反対の縁(端部34x、極小部34a〜34c)から頂部33a〜33dに向かって高さが単調に増加する(変化率がプラス)。第2の面32a〜32dにおいては頂部33a〜33dから頂部33a〜33dと反対の縁(極小部34a〜34d)に向かって高さが単調に減少する(変化率がマイナス)。極小部34a〜34dの各々は第1の面31b及び第2の面32aの境界、第1の面31c及び第2の面32bの境界、第1の面31d及び第2の面32cの境界に位置して屈曲部となっている。頂部の数が図示の場合より多いときも同様である。   The soft magnetic linear moving body 30 as the magnetic material linear moving body is attached to a linear moving portion in a machine tool (not shown), for example. The soft magnetic linear moving body 30 has a plate shape or a column shape, and has an uneven surface (lower surface in the figure). The concavo-convex surface has a top portion 33a to 33d having a maximum height in the convex direction (hereinafter simply referred to as “height”), and between adjacent top portions (between the top portions 33a and 33b and between the top portions 33b and 33c). Between the top portions 33d to 33d), the minimum portions 34a to 34d having a minimum height, the first surfaces 31a to 31d extending from the top portions 33a to 33d to the front side in the moving direction, and the top portions 33a to 33d. Second surfaces 32a to 32d extending rearward in the movement direction from each of 33d. The height of the top portions 33a to 33d is h1, and the height of the minimal portions 34a to 34d is h2 (h1> h2). The first surfaces 31a to 31d are flat surfaces and have the same shape. The second surfaces 32a to 32d are also flat and have the same shape. In the first surfaces 31a to 31d, the height monotonously increases from the edges opposite to the top portions 33a to 33d (end portion 34x, minimum portions 34a to 34c) toward the top portions 33a to 33d (change rate is positive). In the second surfaces 32a to 32d, the height monotonously decreases from the top portions 33a to 33d toward the edges (minimum portions 34a to 34d) opposite to the top portions 33a to 33d (change rate is negative). Each of the minimum portions 34a to 34d is located at the boundary between the first surface 31b and the second surface 32a, the boundary between the first surface 31c and the second surface 32b, and the boundary between the first surface 31d and the second surface 32c. It is located and becomes a bent part. The same applies when the number of tops is greater than in the illustrated case.

第1の面31a〜31dの各々の移動方向前側及び後側の縁間(端部34x−頂部33a間、極小部34a−頂部33b間、・・・、極小部34c−頂部33d間)の距離は、第2の面32a〜32dの各々の移動方向前側及び後側の縁間(頂部33a−極小部34a間、頂部33b−極小部34b間、・・・、頂部33d−極小部34d間)の距離よりも短い。あるいは第1の面31a〜31dにおける高さの変化率は第2の面32a〜32dにおける高さの変化率よりも絶対値が大きい(急傾斜である)。   Distance between the front and rear edges of each of the first surfaces 31a to 31d (between the end 34x and the top 33a, between the minimum 34a and the top 33b,..., Between the minimum 34c and the top 33d) Is between the front and rear edges of each of the second surfaces 32a to 32d (between the top 33a and the minimum part 34a, between the top 33b and the minimum part 34b,..., Between the top 33d and the minimum part 34d). Shorter than the distance. Alternatively, the height change rate of the first surfaces 31a to 31d has a larger absolute value (steep slope) than the height change rate of the second surfaces 32a to 32d.

本実施の形態の移動体検出装置300の動作は、検出対象が回転体から直線移動体に替わったことを除いて第1の実施の形態の移動体検出装置100と概ね同様である。また電源投入時の軟磁性直線移動体30の位置情報を正確に検出できる点やノイズに強い点も第1の実施の形態と同様である(第1の実施の形態の効果(1),(2)に対応)。また、本実施の形態では第1の面31a〜31dの各々の移動方向前側及び後側の縁間距離を第2の面32a〜32dの各々の移動方向前側及び後側の縁間距離よりも短くしている。このため頂部33a〜33dが第1SV−GMR素子MR1ないし第4SV−GMR素子MR4の真上を通過するごく近傍で出力信号Voutを確実にレベル遷移させることができる。したがって軟磁性直線移動体30の位置検出精度が高い。また第1及び第2の面はともに平面であるため加工が容易である。   The operation of the moving body detection device 300 of the present embodiment is substantially the same as that of the moving body detection device 100 of the first embodiment except that the detection target is changed from a rotating body to a linear moving body. The point that the position information of the soft magnetic linear moving body 30 when the power is turned on can be accurately detected and the point that it is resistant to noise are the same as in the first embodiment (effects (1) and (1) of the first embodiment). 2)). In the present embodiment, the distance between the front and rear edges of each of the first surfaces 31a to 31d is greater than the distance between the front and rear edges of each of the second surfaces 32a to 32d. It is shortened. Therefore, the level of the output signal Vout can be reliably shifted in the very vicinity where the top portions 33a to 33d pass immediately above the first SV-GMR element MR1 to the fourth SV-GMR element MR4. Therefore, the position detection accuracy of the soft magnetic linear moving body 30 is high. Further, since both the first and second surfaces are flat, processing is easy.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way. Hereinafter, modifications will be described.

実施の形態における頂部の個数は一例であり、変形例においては頂部の個数を増減してもよい。例えば第1の実施の形態では1以上の任意の個数、第2の実施の形態では3以上の任意の個数、第3の実施の形態では2以上の任意の個数でよい。頂部の個数は必要となる精度や用途に応じて適宜決めればよい。   The number of top portions in the embodiment is an example, and the number of top portions may be increased or decreased in a modification. For example, any number of 1 or more may be used in the first embodiment, any number of 3 or more in the second embodiment, or any number of 2 or more in the third embodiment. The number of tops may be appropriately determined according to the required accuracy and application.

実施の形態においては複数の頂部を等間隔に形成したが、変形例においては隣り合う頂部のペアごとに間隔を異ならせてもよい。間隔を異ならせる場合はそれに応じて複数の第1の面を別形状とし、複数の第2の面も別形状とする(両縁間の距離を変える)。どのような間隔で頂部を形成するかは用途等に応じて決めればよい。   In the embodiment, a plurality of top portions are formed at equal intervals. However, in a modification, the intervals may be different for each pair of adjacent top portions. When the intervals are made different, the plurality of first surfaces are made different shapes and the plurality of second surfaces are made different shapes (changing the distance between both edges). The interval at which the top portion is formed may be determined according to the application.

第1の実施の形態において第1の面は平面としたが、変形例ではこれに替えて外周面内側に凸となる湾曲面(凹曲面)としてもよい。また第3の実施の形態において第1及び第2の面を平面としたが、変形例ではこれに替えて第1の面を高さの負方向に凸となる湾曲面(つまり凹曲面)とし第2の面を高さの正方向に凸となる湾曲面(つまり凸曲面)としてもよい。   In the first embodiment, the first surface is a flat surface, but in a modified example, it may be a curved surface (concave curved surface) that is convex on the inner peripheral surface instead. In the third embodiment, the first and second surfaces are flat surfaces. However, in the modified example, the first surface is a curved surface (that is, a concave curved surface) that is convex in the negative height direction. The second surface may be a curved surface that is convex in the positive direction of the height (that is, a convex curved surface).

第1及び第2の実施の形態において軟磁性回転体の回転方向は図2及び図7に示されるように反時計回りとしたが、変形例では軟磁性回転体の回転方向を逆(図2及び図7で時計回り)としてもよい。この場合も従来技術と比較して電源投入時の軟磁性回転体の回転情報を正確に検出でき、またノイズにも強い。第3の実施の形態についても同様で、軟磁性直線移動体の移動方向は図9に示される左方向に替えて右方向としてもよい。   In the first and second embodiments, the rotation direction of the soft magnetic rotator is counterclockwise as shown in FIGS. 2 and 7, but in the modification, the rotation direction of the soft magnetic rotator is reversed (FIG. 2). And clockwise in FIG. 7). Also in this case, the rotation information of the soft magnetic rotator when the power is turned on can be accurately detected as compared with the prior art, and it is also resistant to noise. The same applies to the third embodiment, and the moving direction of the soft magnetic linear moving body may be the right direction instead of the left direction shown in FIG.

実施の形態ではSV−GMR素子をフルブリッジ接続したが、SV−GMR素子の接続形態はこれに限定されず、ハーフブリッジ接続であってもよい。磁気検出感度や温度特性の面ではフルブリッジ接続の方が優れているものの、ハーフブリッジ接続の場合はSV−GMR素子が2つでよいため部品点数の削減が可能となる。さらに、SV−GMR素子と固定抵抗とでハーフブリッジを形成することも可能である。この場合、SV−GMR素子2つでハーフブリッジを形成する場合よりも磁気検出感度は落ちるもののコスト低減が可能となる。このことはフルブリッジ接続についても同様で、4つのSV−GMR素子でフルブリッジを形成するのに替えて2つのSV−GMR素子と2つの固定抵抗とでフルブリッジを形成してもよい。   In the embodiment, the SV-GMR element is full-bridge connected, but the connection form of the SV-GMR element is not limited to this, and may be a half-bridge connection. Although full-bridge connection is superior in terms of magnetic detection sensitivity and temperature characteristics, in the case of half-bridge connection, the number of components can be reduced because only two SV-GMR elements are required. Further, it is possible to form a half bridge with the SV-GMR element and a fixed resistor. In this case, although the magnetic detection sensitivity is lower than that in the case where the half bridge is formed by two SV-GMR elements, the cost can be reduced. The same applies to the full-bridge connection. Instead of forming a full bridge with four SV-GMR elements, a full bridge may be formed with two SV-GMR elements and two fixed resistors.

実施の形態では移動体検出装置が単電源駆動である場合を例に説明したが、これに限定されず、例えば±5Vの両電源駆動であってもよい。両電源駆動であれば基準電圧源Vref(2.5V)は不要となり、これは接地に置き換えることができる。   In the embodiment, the case where the moving body detection device is driven by a single power source has been described as an example. However, the present invention is not limited to this. In the case of dual power supply driving, the reference voltage source Vref (2.5 V) is unnecessary and can be replaced with ground.

実施の形態では磁界発生手段を永久磁石としたが、動作原理上、電磁石を用いることも可能である。   In the embodiment, the magnetic field generating means is a permanent magnet. However, an electromagnet may be used on the principle of operation.

本発明の第1の実施の形態に係る移動体検出装置の例示的な概略斜視図である。1 is an exemplary schematic perspective view of a mobile object detection device according to a first exemplary embodiment of the present invention. 図1に示される移動体検出装置の正面図である。It is a front view of the moving body detection apparatus shown by FIG. 図1に示される移動体検出装置の回路図である。It is a circuit diagram of the moving body detection apparatus shown by FIG. (A)は、図1〜図3に示される移動体検出装置の動作を例示するタイムチャート、(B)は、図10及び図11に示される移動体検出装置の動作を例示するタイムチャートである。(A) is a time chart illustrating the operation of the mobile body detection device shown in FIGS. 1 to 3, and (B) is a time chart illustrating the operation of the mobile body detection device shown in FIGS. 10 and 11. is there. (A)は、図1〜図3に示される移動体検出装置の電源投入時の動作を例示するタイムチャート、(B)は、図10及び図11に示される移動体検出装置の電源投入時の動作を例示するタイムチャートである。(A) is a time chart illustrating the operation when the mobile object detection device shown in FIGS. 1 to 3 is turned on, and (B) is when the mobile object detection device shown in FIGS. 10 and 11 is turned on. It is a time chart which illustrates the operation | movement of. 本発明の第2の実施の形態に係る移動体検出装置の例示的な概略斜視図である。It is an exemplary schematic perspective view of the moving body detection apparatus which concerns on the 2nd Embodiment of this invention. 図6に示される移動体検出装置の正面図である。It is a front view of the moving body detection apparatus shown by FIG. 本発明の第3の実施の形態に係る移動体検出装置の例示的な概略斜視図である。It is an exemplary schematic perspective view of the moving body detection apparatus which concerns on the 3rd Embodiment of this invention. 図8に示される移動体検出装置の正面図である。It is a front view of the moving body detection apparatus shown by FIG. 特許文献1に記載の移動体検出装置の例示的な概略斜視図である。It is an exemplary schematic perspective view of the moving body detection apparatus described in Patent Document 1. 図10に示される軟磁性体歯車の正面図である。It is a front view of the soft magnetic gear shown in FIG. SV−GMR素子の原理的構成と磁気特性の説明図である。It is explanatory drawing of the fundamental structure and magnetic characteristic of a SV-GMR element.

符号の説明Explanation of symbols

10 軟磁性回転体
11a〜11f 第1の面
12a〜12f 第2の面
13a〜13f 頂部
14a〜14f 極小部
50 バイアス磁石
100 移動体検出装置
MR1〜MR4 第1〜第4SV−GMR素子
DESCRIPTION OF SYMBOLS 10 Soft magnetic rotating body 11a-11f 1st surface 12a-12f 2nd surface 13a-13f Top part 14a-14f Minimal part 50 Bias magnet 100 Moving body detection apparatus MR1-MR4 1st-4th SV-GMR element

Claims (8)

磁性材回転体と、バイアス磁界発生手段と、前記磁性材回転体の外周面と対向するように前記バイアス磁界発生手段に対して固定配置された少なくとも1つのスピンバルブ型巨大磁気抵抗素子を含む磁気検出部と、前記磁気検出部の出力信号に基づいて矩形波信号を生成する矩形波信号生成回路と備え、前記矩形波信号生成回路により生成された矩形波信号に基づいて前記磁性材回転体の回転情報を検出する移動体検出装置であり、
前記磁性材回転体の前記外周面は、
前記磁性材回転体の回転中心からの距離が極大となる頂部と、
前記磁性材回転体の回転中心からの距離が極小となる極小部と、
前記頂部から回転方向前側に延在する第1の面と、
前記頂部から回転方向後側に延在する第2の面とを有し、
前記第1の面においては前記頂部と反対側の縁から前記頂部に向かって前記回転中心からの距離が単調に増加し、
前記第2の面においては前記頂部から前記頂部と反対側の縁に向かって前記回転中心からの距離が単調に減少し、
前記第1及び第2の面における前記頂部と反対側の縁が前記極小部に位置し、かつ、前記極小部が前記頂部と同数だけ存在することを特徴とする移動体検出装置。
A magnetic material including a magnetic material rotating body, a bias magnetic field generating means, and at least one spin-valve giant magnetoresistive element fixed to the bias magnetic field generating means so as to face the outer peripheral surface of the magnetic material rotating body. A detection unit and a rectangular wave signal generation circuit that generates a rectangular wave signal based on an output signal of the magnetic detection unit, and based on the rectangular wave signal generated by the rectangular wave signal generation circuit, A moving body detection device for detecting rotation information;
The outer peripheral surface of the magnetic material rotating body is:
A top portion at which the distance from the rotation center of the magnetic material rotating body is maximized;
A minimal portion where the distance from the rotation center of the magnetic material rotating body is minimal;
A first surface extending forward from the top in the rotational direction;
A second surface extending from the top to the rear side in the rotational direction,
In the first surface, the distance from the rotation center monotonously increases from the edge opposite to the top toward the top.
In the second surface, the distance from the rotation center monotonously decreases from the top toward the edge opposite to the top.
The moving body detecting apparatus according to claim 1, wherein an edge of the first and second surfaces opposite to the top portion is located at the minimum portion, and the same number of the minimum portions as the top portion is present.
請求項1に記載の移動体検出装置において、前記頂部は複数存在し、前記第1の面は前記複数の頂部の各々から回転方向前側に延在し、前記第2の面は前記複数の頂部の各々から回転方向後側に延在することを特徴とする移動体検出装置。   2. The moving body detection apparatus according to claim 1, wherein there are a plurality of the top portions, the first surface extends from each of the plurality of top portions in a rotation direction front side, and the second surface is the plurality of top portions. A moving body detection apparatus, wherein the moving body detection apparatus extends rearward in the rotation direction. 請求項1又は2に記載の移動体検出装置において、前記第1の面は平面であり、前記第2の面は前記外周面外側に凸となる湾曲面であり、前記極小部が屈曲部となることを特徴とする移動体検出装置。   3. The moving body detection apparatus according to claim 1, wherein the first surface is a flat surface, the second surface is a curved surface protruding outward from the outer peripheral surface, and the minimal portion is a bent portion. A moving body detection apparatus characterized by comprising: 磁性材回転体と、バイアス磁界発生手段と、前記磁性材回転体の外周面と対向するように前記バイアス磁界発生手段に対して固定配置された少なくとも1つのスピンバルブ型巨大磁気抵抗素子を含む磁気検出部と、前記磁気検出部の出力信号に基づいて矩形波信号を生成する矩形波信号生成回路と備え、前記矩形波信号生成回路により生成された矩形波信号に基づいて前記磁性材回転体の回転情報を検出する移動体検出装置であり、
前記磁性材回転体の前記外周面は、
前記磁性材回転体の回転中心からの距離が極大となる複数の頂部と、
隣り合う頂部間に1カ所だけ存在し、当該隣り合う頂部を通る平面を基準とする深さが極大となる極深部と、
各頂部から回転方向前側に延在する第1の面と、
各頂部から回転方向後側に延在する第2の面とを有し、
前記第1の面においては前記各頂部と反対側の縁から前記各頂部に向かって深さが単調に減少し、
前記第2の面においては前記各頂部から前記各頂部と反対側の縁に向かって深さが単調に増加し、
前記第1及び第2の面における前記各頂部と反対側の縁が前記極深部に位置することを特徴とする移動体検出装置。
A magnetic material including a magnetic material rotating body, a bias magnetic field generating means, and at least one spin-valve giant magnetoresistive element fixed to the bias magnetic field generating means so as to face the outer peripheral surface of the magnetic material rotating body. A detection unit and a rectangular wave signal generation circuit that generates a rectangular wave signal based on an output signal of the magnetic detection unit, and based on the rectangular wave signal generated by the rectangular wave signal generation circuit, A moving body detection device for detecting rotation information;
The outer peripheral surface of the magnetic material rotating body is:
A plurality of top portions having a maximum distance from the rotation center of the magnetic material rotating body;
There is only one location between adjacent top portions, and the deep portion where the depth based on the plane passing through the adjacent top portions is maximum,
A first surface extending from each top to the front side in the rotational direction;
A second surface extending from each top to the rear side in the rotational direction,
In the first surface, the depth monotonously decreases from the edge opposite to the top to the top.
In the second surface, the depth monotonously increases from the tops toward the edges opposite to the tops,
An edge of the first and second surfaces opposite to the tops is located at the extreme deep part.
請求項4に記載の移動体検出装置において、前記第1及び第2の面は平面であり、前記極深部が屈曲部となることを特徴とする移動体検出装置。   5. The moving body detection apparatus according to claim 4, wherein the first and second surfaces are flat surfaces, and the extreme deep portion is a bent portion. 請求項1から5のいずれかに記載の移動体検出装置において、前記第1の面が前記磁性材回転体の回転中心に対してなす角は、前記第2の面が前記磁性材回転体の回転中心に対してなす角よりも小さいことを特徴とする移動体検出装置。   6. The moving body detection device according to claim 1, wherein an angle formed by the first surface with respect to a rotation center of the magnetic material rotating body is such that the second surface is the magnetic material rotating body. A moving body detection apparatus characterized by being smaller than an angle formed with respect to a rotation center. 凹凸面を有する磁性材直線移動体と、バイアス磁界発生手段と、前記磁性材直線移動体の前記凹凸面と対向するように前記バイアス磁界発生手段に対して固定配置された少なくとも1つのスピンバルブ型巨大磁気抵抗素子を含む磁気検出部と、前記磁気検出部の出力信号に基づいて矩形波信号を生成する矩形波信号生成回路と備え、前記矩形波信号生成回路により生成された矩形波信号に基づいて前記磁性材直線移動体の位置情報を検出する移動体検出装置であり、
前記磁性材直線移動体の前記凹凸面は、
高さが極大となる複数の頂部と、
隣り合う頂部間に1カ所だけ存在し、高さが極小となる極小部と、
各頂部から移動方向前側に延在する第1の面と、
各頂部から移動方向後側に延在する第2の面とを有し、
前記第1の面においては前記各頂部と反対側の縁から前記各頂部に向かって高さが単調に増加し、
前記第2の面においては前記各頂部から前記各頂部と反対側の縁に向かって高さが単調に減少し、
前記第1及び第2の面の前記各頂部と反対側の縁に前記極小部が位置することを特徴とする移動体検出装置。
Magnetic material linear moving body having an uneven surface, bias magnetic field generating means, and at least one spin valve type fixedly disposed to the bias magnetic field generating means so as to face the uneven surface of the magnetic material linear moving body A magnetic detection unit including a giant magnetoresistive element and a rectangular wave signal generation circuit that generates a rectangular wave signal based on an output signal of the magnetic detection unit, and based on the rectangular wave signal generated by the rectangular wave signal generation circuit A moving body detecting device for detecting position information of the magnetic material linear moving body,
The uneven surface of the magnetic material linear moving body is:
A plurality of tops where the height is maximum,
There is only one place between the adjacent tops, and the minimum part has a minimum height,
A first surface extending from the top to the front side in the movement direction;
A second surface extending from each top to the rear side in the moving direction,
In the first surface, the height increases monotonously from the edge opposite to the top to the top.
In the second surface, the height decreases monotonously from each top to the edge opposite to each top,
The moving body detecting apparatus, wherein the minimal portion is located at an edge opposite to the top portions of the first and second surfaces.
請求項7に記載の移動体検出装置において、前記第1の面の移動方向前側及び後側の縁間の距離が前記第2の面の移動方向前側及び後側の縁間の距離よりも短いことを特徴とする移動体検出装置。   The moving body detection apparatus according to claim 7, wherein a distance between front and rear edges of the first surface in a moving direction is shorter than a distance between front and rear edges of the second surface in the moving direction. A moving body detection apparatus characterized by that.
JP2007169888A 2007-06-28 2007-06-28 Mobile body detection device Withdrawn JP2009008519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169888A JP2009008519A (en) 2007-06-28 2007-06-28 Mobile body detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169888A JP2009008519A (en) 2007-06-28 2007-06-28 Mobile body detection device

Publications (1)

Publication Number Publication Date
JP2009008519A true JP2009008519A (en) 2009-01-15

Family

ID=40323748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169888A Withdrawn JP2009008519A (en) 2007-06-28 2007-06-28 Mobile body detection device

Country Status (1)

Country Link
JP (1) JP2009008519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098190A1 (en) 2009-02-26 2010-09-02 アルプス電気株式会社 Rotation detection device
JP2020122721A (en) * 2019-01-31 2020-08-13 株式会社デンソー Position sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098190A1 (en) 2009-02-26 2010-09-02 アルプス電気株式会社 Rotation detection device
JP2020122721A (en) * 2019-01-31 2020-08-13 株式会社デンソー Position sensor

Similar Documents

Publication Publication Date Title
JP5144803B2 (en) Rotation detector
US6661225B2 (en) Revolution detecting device
JP7153012B2 (en) Determining system for determining at least one rotational parameter of a rotating member
JP5013075B2 (en) Magnetic detector
JPWO2008050581A1 (en) Rotation angle detector
JP4973869B2 (en) Moving body detection device
JP2007285741A (en) Rotation detection device
JP7242352B2 (en) A system for determining at least one rotational parameter of a rotating member
JP2008008699A (en) Rotation detecting apparatus
JP2009008519A (en) Mobile body detection device
JP4979487B2 (en) Angle sensor
US7557567B2 (en) Magnetic detection device
JP4484033B2 (en) Moving body detection device
JP2002357454A (en) Rotation detector
JP2004109113A (en) Magnetism detection device
JP4506960B2 (en) Moving body position detection device
JP4737371B2 (en) Rotation angle detector
JP5497621B2 (en) Rotation angle detector
US7053605B2 (en) Rotation information detecting apparatus with noise suppression circuit
JP2003004484A (en) Rotation sensor
JP2004028600A (en) Rotation detection device
JP6041959B1 (en) Magnetic detector
US11422007B2 (en) Magnetic sensor including sensor elements of bridge circuits arranged along a partial circle circumference about a center of the sensor elements
JP5454204B2 (en) Angle sensor
JP2002090180A (en) Rotation detection sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907