[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009002225A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2009002225A
JP2009002225A JP2007163578A JP2007163578A JP2009002225A JP 2009002225 A JP2009002225 A JP 2009002225A JP 2007163578 A JP2007163578 A JP 2007163578A JP 2007163578 A JP2007163578 A JP 2007163578A JP 2009002225 A JP2009002225 A JP 2009002225A
Authority
JP
Japan
Prior art keywords
nox
exhaust
exhaust gas
reduction catalyst
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007163578A
Other languages
Japanese (ja)
Inventor
Yoshihiko Matsui
良彦 松井
Koichi Machida
耕一 町田
Ichiro Tsumagari
一郎 津曲
Yoshihide Takenaka
嘉英 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2007163578A priority Critical patent/JP2009002225A/en
Publication of JP2009002225A publication Critical patent/JP2009002225A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that NOx reduction rate is deteriorated when addition of reducing agent is started when a NOx storage reduction catalyst is regenerated with shutting off flow of exhaust gas. <P>SOLUTION: An exhaust emission control device comprises a pair of NOx storage reduction catalysts 4, 4 installed in the middle of an exhaust pipe 3 in parallel, exhaust change over valves 6, 7 distributing exhaust gas 2 to either of NOx storage reduction catalysts 4, 4, a reducing agent adding means (fuel reforming device 9) individually adding reducing agent (reformed gas 10) to each inlet side of the NOx storage reduction catalysts 4, 4, and a valve open close control means (control device 13) inhibiting a rapid increase of desorbing NOx by variably controlling open close speed of the exhaust change over valves 6, 7 according to operation states. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、排気管の途中に装備した排気浄化用触媒により排気浄化を図ることが行われており、この種の排気浄化用触媒としては、排気空燃比がリーンの時に排気ガス中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し、排気ガス中のO2濃度が低下した時に未燃HCやCO等の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒が知られている。 Conventionally, exhaust purification is carried out with an exhaust purification catalyst installed in the middle of the exhaust pipe. As this type of exhaust purification catalyst, NOx in exhaust gas is oxidized when the exhaust air-fuel ratio is lean. Thus, a NOx occlusion reduction catalyst having the property of temporarily storing in the form of nitrate and decomposing and releasing NOx through the intervention of unburned HC, CO, etc. when the O 2 concentration in the exhaust gas decreases is reduced and purified. Are known.

そして、NOx吸蔵還元触媒においては、NOxの吸蔵量が増大して飽和量に達してしまうと、それ以上のNOxを吸蔵できなくなるため、定期的にNOx吸蔵還元触媒に流入する排気ガスのO2濃度を低下させてNOxを分解放出させる必要がある。 In the NOx occlusion reduction catalyst, when the occlusion amount of NOx increases and reaches the saturation amount, no more NOx can be occluded, and therefore, O 2 of the exhaust gas flowing into the NOx occlusion reduction catalyst periodically. It is necessary to decompose and release NOx by reducing the concentration.

例えば、ガソリン機関に使用した場合であれば、機関の運転空燃比を低下(機関をリッチ空燃比で運転)することにより、排気ガス中のO2濃度を低下し且つ排気ガス中の未燃HCやCO等の還元成分を増加してNOxの分解放出を促すことができるが、NOx吸蔵還元触媒をディーゼル機関の排気浄化装置として使用した場合には機関をリッチ空燃比で運転することが困難である。 For example, when used in a gasoline engine, the operating air-fuel ratio of the engine is reduced (the engine is operated at a rich air-fuel ratio), thereby reducing the O 2 concentration in the exhaust gas and unburned HC in the exhaust gas. It is possible to promote the decomposition and release of NOx by increasing reducing components such as CO and CO. However, when the NOx storage reduction catalyst is used as an exhaust purification device of a diesel engine, it is difficult to operate the engine at a rich air-fuel ratio. is there.

このため、NOx吸蔵還元触媒をディーゼル機関の排気浄化装置として使用するに際しては、NOx吸蔵還元触媒の上流側で排気ガス中に燃料を添加し、この添加燃料を還元剤としてNOx吸蔵還元触媒上でO2と反応させることで排気ガス中のO2濃度を低下させる必要がある。 For this reason, when using the NOx storage reduction catalyst as an exhaust purification device for a diesel engine, fuel is added to the exhaust gas upstream of the NOx storage reduction catalyst, and this added fuel is used as a reducing agent on the NOx storage reduction catalyst. the O 2 concentration in the exhaust gas by reacting with O 2 is required to be reduced.

ただし、連続的に流れ去る排気ガスに燃料を添加してNOx吸蔵還元触媒の周囲の雰囲気を酸欠状態に保持し続けるためには多量の燃料添加が必要であり、大幅な燃費の悪化を招いてしまうことになる。   However, a large amount of fuel needs to be added to keep the atmosphere around the NOx storage and reduction catalyst in an oxygen-deficient state by adding fuel to the exhaust gas that continuously flows away, resulting in a significant deterioration in fuel consumption. It will end up.

そこで、一対のNOx吸蔵還元触媒を並列に装備して排気切替バルブにより交互に排気ガスを振り分けることで片方ずつNOx吸蔵還元触媒の再生を図ることが検討されている(例えば、特許文献1参照)。   Therefore, it has been studied to regenerate the NOx occlusion reduction catalyst one by one by arranging a pair of NOx occlusion reduction catalysts in parallel and alternately distributing the exhaust gas by the exhaust gas switching valve (see, for example, Patent Document 1). .

即ち、このようにすれば、排気ガスの流れを遮断した方のNOx吸蔵還元触媒の入側に燃料を添加することで効果的に雰囲気中のO2濃度を低下し、NOx吸蔵還元触媒を効率良く再生することが可能となる。
特開2002−97940号公報
That is, in this way, by adding fuel to the inlet side of the NOx occlusion reduction catalyst that shuts off the flow of exhaust gas, the O 2 concentration in the atmosphere is effectively reduced, and the NOx occlusion reduction catalyst is made efficient. It is possible to reproduce well.
JP 2002-97940 A

しかしながら、上記の特許文献1の如き排気ガスの流れを遮断して燃料添加を行う形式では、その燃料添加を開始した直後に雰囲気中のO2濃度が低下し、急激にHCリッチ(還元剤リッチ)となることにより吸蔵NOxが一気に脱離してNOxの放出量が急増する結果、NOx吸蔵還元触媒の表面上で還元浄化しきれずに脱離NOxの一部がリークしてしまい、NOx低減率が一時的に悪化してしまうという問題があった。 However, in the type in which the flow of exhaust gas is blocked and the fuel is added as in Patent Document 1 above, the O 2 concentration in the atmosphere decreases immediately after the start of the fuel addition, and the HC rich (reductant rich) ), The amount of NOx stored is desorbed all at once and the amount of NOx released increases rapidly. As a result, the NOx storage reduction catalyst cannot be completely reduced and purified, and part of the desorbed NOx leaks, resulting in a reduction in NOx. There was a problem that it deteriorated temporarily.

本発明は上述の実情に鑑みてなしたもので、排気ガスの流れを遮断してNOx吸蔵還元触媒の再生を行うに際し、還元剤の添加開始時にNOx低減率が悪化してしまう問題を解決することを目的としている。   The present invention has been made in view of the above circumstances, and solves the problem that the NOx reduction rate deteriorates at the start of addition of a reducing agent when the exhaust gas flow is shut off to regenerate the NOx storage reduction catalyst. The purpose is that.

本発明は、排気管の途中に並列に装備された一対のNOx吸蔵還元触媒と、該各NOx吸蔵還元触媒の何れか一方に排気ガスを振り分ける排気切替バルブと、前記各NOx吸蔵還元触媒の夫々の入側に個別に還元剤を添加する還元剤添加手段と、前記排気切替バルブの開閉速度を運転状況に応じ可変制御して脱離NOxの急増を抑制するバルブ開閉制御手段とを備えたことを特徴とする排気浄化装置、に係るものである。   The present invention provides a pair of NOx occlusion reduction catalysts installed in parallel in the middle of an exhaust pipe, an exhaust gas switching valve that distributes exhaust gas to any one of the NOx occlusion reduction catalysts, and each of the NOx occlusion reduction catalysts. A reducing agent adding means for individually adding a reducing agent to the inlet side of the exhaust gas, and a valve opening / closing control means for variably controlling the opening / closing speed of the exhaust gas switching valve according to the operating state to suppress a sudden increase in desorption NOx. The present invention relates to an exhaust emission control device characterized by the above.

而して、このようにすれば、排気管を流れる排気ガスの流れを排気切替バルブにより一方のNOx吸蔵還元触媒に振り分け、他方のNOx吸蔵還元触媒の入側に還元剤を添加して再生を開始する際に、バルブ開閉制御手段により排気切替バルブの開閉速度を可変制御し、運転状況に応じ排気ガスの流量を最適な作動時間をかけて絞り込むことが可能となる。   Thus, in this way, the flow of the exhaust gas flowing through the exhaust pipe is distributed to one NOx storage reduction catalyst by the exhaust switching valve, and the reducing agent is added to the inlet side of the other NOx storage reduction catalyst for regeneration. When starting, it is possible to variably control the opening / closing speed of the exhaust gas switching valve by the valve opening / closing control means, and to narrow down the flow rate of the exhaust gas over an optimal operation time according to the operating situation.

即ち、還元剤の添加を開始した直後に雰囲気中のO2濃度が低下して急激に還元剤リッチにならないように排気ガスの流量を緩慢に絞り込み、NOx吸蔵還元触媒から吸蔵NOxを段階的に脱離させて効率良く還元浄化していくことが可能となるので、NOx吸蔵還元触媒の表面上で還元浄化しきれずに脱離NOxの一部がリークしてしまう事態が未然に防止される。 That is, immediately after the start of the addition of the reducing agent, the exhaust gas flow rate is gently throttled so that the O 2 concentration in the atmosphere does not decrease and the reducing agent becomes suddenly rich, and the stored NOx is gradually reduced from the NOx storage reduction catalyst. Since it can be desorbed and efficiently reduced and purified, a situation in which a part of the desorbed NOx leaks without being completely reduced and purified on the surface of the NOx storage and reduction catalyst is prevented.

また、本発明は、排気管の途中に装備されたNOx吸蔵還元触媒と、該NOx吸蔵還元触媒を迂回して排気ガスを流すバイパス流路と、該バイパス流路及び前記NOx吸蔵還元触媒の何れか一方に排気ガスを振り分ける排気切替バルブと、前記NOx吸蔵還元触媒の入側に還元剤を添加する還元剤添加手段と、前記排気切替バルブの開閉速度を運転状況に応じ可変制御して脱離NOxの急増を抑制するバルブ開閉制御手段とを備えたことを特徴とする排気浄化装置、に係るものでもある。   Further, the present invention provides a NOx occlusion reduction catalyst installed in the middle of an exhaust pipe, a bypass passage that bypasses the NOx occlusion reduction catalyst and flows exhaust gas, and any of the bypass passage and the NOx occlusion reduction catalyst On the other hand, an exhaust switching valve for distributing exhaust gas, a reducing agent adding means for adding a reducing agent to the inlet side of the NOx storage reduction catalyst, and desorption by variably controlling the opening / closing speed of the exhaust switching valve according to the operating conditions The present invention also relates to an exhaust emission control device comprising valve opening / closing control means for suppressing a rapid increase in NOx.

而して、このようにすれば、排気管を流れる排気ガスの流れを排気切替バルブによりバイパス流路に振り分け、NOx吸蔵還元触媒の入側に還元剤を添加して再生を開始する際に、バルブ開閉制御手段により排気切替バルブの開閉速度を可変制御し、運転状況に応じ排気ガスの流量を最適な作動時間をかけて絞り込むことが可能となる。   Thus, in this way, when the exhaust gas flow flowing through the exhaust pipe is distributed to the bypass flow path by the exhaust switching valve, and the reductant is added to the inlet side of the NOx storage reduction catalyst, the regeneration is started. The opening / closing speed of the exhaust gas switching valve can be variably controlled by the valve opening / closing control means, and the flow rate of the exhaust gas can be narrowed down over an optimum operation time according to the operating situation.

即ち、還元剤の添加を開始した直後に雰囲気中のO2濃度が低下して急激に還元剤リッチにならないように排気ガスの流量を緩慢に絞り込み、NOx吸蔵還元触媒から吸蔵NOxを段階的に脱離させて効率良く還元浄化していくことが可能となるので、NOx吸蔵還元触媒の表面上で還元浄化しきれずに脱離NOxの一部がリークしてしまう事態が未然に防止される。 That is, immediately after the start of the addition of the reducing agent, the exhaust gas flow rate is gently throttled so that the O 2 concentration in the atmosphere does not decrease and the reducing agent becomes suddenly rich, and the stored NOx is gradually reduced from the NOx storage reduction catalyst. Since it can be desorbed and efficiently reduced and purified, a situation in which a part of the desorbed NOx leaks without being completely reduced and purified on the surface of the NOx storage and reduction catalyst is prevented.

更に、本発明においては、還元剤添加手段が燃料を反応性の高い改質ガスに分解して供給する燃料改質装置で構成されていることが好ましく、このようにすれば、還元剤として燃料をそのまま添加する場合よりも低い温度条件からNOx吸蔵還元触媒の再生を図ることが可能となる。   Furthermore, in the present invention, it is preferable that the reducing agent adding means is composed of a fuel reforming device that decomposes and supplies fuel into reformed gas having high reactivity. It is possible to regenerate the NOx storage reduction catalyst from a lower temperature condition than when adding NO as it is.

しかも、このようにした場合には、改質ガスの反応性が高いが故に脱離NOxの急増がより顕著に現れることになるので、排気切替バルブの開閉速度を運転状況に応じ可変制御して脱離NOxの急増を抑制できることの有効性が高いものと言える。   In addition, in this case, since the reactivity of the reformed gas is high, the rapid increase of desorbed NOx appears more conspicuously. Therefore, the opening / closing speed of the exhaust gas switching valve can be variably controlled according to the operating conditions. It can be said that the effectiveness of suppressing the rapid increase of desorbed NOx is high.

また、本発明を具体的に実施するに際しては、例えば、排気切替バルブの開閉速度をNOx吸蔵還元触媒の触媒床温度とエンジン回転数の二次元マップから読み出して制御するようにバルブ開閉制御手段を構成すれば良い。   Further, when concretely implementing the present invention, for example, the valve opening / closing control means is configured to read and control the opening / closing speed of the exhaust gas switching valve from the two-dimensional map of the catalyst bed temperature of the NOx storage reduction catalyst and the engine speed. What is necessary is just to comprise.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1、2に記載の発明によれば、排気ガスの流れを遮断してNOx吸蔵還元触媒の再生を行うに際し、還元剤の添加を開始した直後に雰囲気中のO2濃度が低下して急激に還元剤リッチにならないように排気ガスの流量を緩慢に絞り込み、NOx吸蔵還元触媒から吸蔵NOxを段階的に脱離させて効率良く還元浄化していくことができるので、NOx吸蔵還元触媒の表面上で還元浄化しきれずに脱離NOxの一部がリークしてしまう事態を未然に防止でき、還元剤の添加開始時にNOx低減率が悪化してしまう問題を解決することができる。 (I) According to the first and second aspects of the present invention, when regenerating the NOx occlusion reduction catalyst by shutting off the flow of exhaust gas, the oxygen in the atmosphere is immediately after the start of the addition of the reducing agent. (2) Since the exhaust gas flow rate is slowly throttled so that the concentration does not drop and the reductant becomes rich suddenly, the stored NOx can be desorbed from the NOx storage reduction catalyst step by step, so that it can be efficiently reduced and purified. In addition, it is possible to prevent a situation in which a part of the desorbed NOx leaks without being reduced and purified on the surface of the NOx occlusion reduction catalyst, and solves the problem that the NOx reduction rate deteriorates at the start of the addition of the reducing agent. be able to.

(II)本発明の請求項3に記載の発明によれば、還元剤として燃料をそのまま添加する場合よりも低い温度条件からNOx吸蔵還元触媒の再生を図ることができ、しかも、改質ガスの反応性が高いが故に起こり易い脱離NOxの急増を効果的に抑制することができる。   (II) According to the invention described in claim 3 of the present invention, the NOx occlusion reduction catalyst can be regenerated from a lower temperature condition than when the fuel is directly added as a reducing agent. The rapid increase of desorbed NOx that is likely to occur due to high reactivity can be effectively suppressed.

(III)本発明の請求項4に記載の発明によれば、NOx吸蔵還元触媒の触媒床温度とエンジン回転数の二次元マップを採用し、既存のセンサ類により把握することが可能なNOx吸蔵還元触媒の触媒床温度やエンジン回転数を指標として排気切替バルブの開閉速度を可変制御することができるので、既存設備に対し大幅なコスト増加を招くことなく実施することができる。   (III) According to the invention described in claim 4 of the present invention, the NOx occlusion that can be grasped by existing sensors by adopting a two-dimensional map of the catalyst bed temperature of the NOx occlusion reduction catalyst and the engine speed. Since the opening / closing speed of the exhaust gas switching valve can be variably controlled using the catalyst bed temperature of the reduction catalyst and the engine speed as an index, the present invention can be implemented without causing a significant increase in cost.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、本形態例の排気浄化装置においては、ディーゼルエンジン1から排出される排気ガス2が流通する排気管3の途中に、一対のNOx吸蔵還元触媒4が並列に設けられており、該各NOx吸蔵還元触媒4,4の夫々に対して適宜に排気ガス2を振り分けて流し得るよう排気管3を二つの分岐流路3A,3Bに分岐させて前記各NOx吸蔵還元触媒4,4に接続し且つその下流側で再び合流させてパティキュレートフィルタ5へと導くように構成してあり、前記各分岐流路3A,3Bの分岐箇所には、排気管3を流れる排気ガス2を各分岐流路3A,3Bに対し交互に切り替えて流し得るよう排気切替バルブ6,7が夫々設けられている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In the exhaust purification apparatus of this embodiment, a pair of NOx occlusions are provided in the middle of an exhaust pipe 3 through which exhaust gas 2 discharged from a diesel engine 1 flows. A reduction catalyst 4 is provided in parallel, and the exhaust pipe 3 is branched into two branch flow paths 3A and 3B so that the exhaust gas 2 can be appropriately distributed to the NOx storage reduction catalysts 4 and 4 respectively. And connected to each of the NOx occlusion reduction catalysts 4 and 4 and joined again at the downstream side thereof to be guided to the particulate filter 5. Exhaust gas switching valves 6 and 7 are respectively provided so that the exhaust gas 2 flowing through the exhaust pipe 3 can be switched alternately to the branch flow paths 3A and 3B.

更に、各NOx吸蔵還元触媒4,4の入側には、還元剤を排気ガス2中に添加するための還元剤添加ノズル8,8が夫々配設されており、該各還元剤添加ノズル8,8に対し還元剤添加手段を成す燃料改質装置9からの改質ガス10が還元剤として個別に供給されるようになっている。   Further, reducing agent addition nozzles 8 and 8 for adding a reducing agent into the exhaust gas 2 are arranged on the inlet side of the NOx storage reduction catalysts 4 and 4, respectively. , 8, the reformed gas 10 from the fuel reformer 9 constituting the reducing agent addition means is individually supplied as a reducing agent.

ここで、燃料改質装置9とは、燃料(軽油)をそのまま還元剤として供給するのではなく、燃料を改質触媒やプラズマ装置などを用いてH2やCOなどの反応性の高い改質ガス10に分解して供給するようにしたものであり、この改質ガス10を各還元剤添加ノズル8,8に供給するに際しては、排気ガス2の一部を搬送ガスとして利用して送り出すように構成したり、改質ガス10のみをそのまま送り出すように構成することが可能である。 Here, the fuel reformer 9 does not supply fuel (light oil) as a reducing agent as it is, but reforms the fuel with a high reactivity such as H 2 or CO using a reforming catalyst or a plasma device. The gas 10 is decomposed and supplied. When the reformed gas 10 is supplied to the reducing agent addition nozzles 8 and 8, a part of the exhaust gas 2 is used as a carrier gas and sent out. It is possible to configure so that only the reformed gas 10 is sent out as it is.

また、分岐流路3A,3Bの前後の排気管3には、排気ガス2中のNOx濃度を検出するためのNOxセンサ11,12が夫々配設されており、該各NOxセンサ11,12からの検出信号11a,12aがエンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置13に対し入力されるようになっている。   Further, NOx sensors 11 and 12 for detecting the NOx concentration in the exhaust gas 2 are provided in the exhaust pipes 3 before and after the branch flow paths 3A and 3B, respectively. These detection signals 11a and 12a are inputted to a control device 13 constituting an engine control computer (ECU: Electronic Control Unit).

一方、前記制御装置13では、各NOxセンサ11,12からの検出信号11a,12aに基づき、排気ガス2が振り分けられている側のNOx吸蔵還元触媒4を経由することでNOx値がどの程度減少したかが監視されるようになっており、この減少分を積算していくことで前記NOx吸蔵還元触媒4におけるNOxの吸蔵量が推定されるようになっている。   On the other hand, in the control device 13, based on the detection signals 11a and 12a from the NOx sensors 11 and 12, how much the NOx value decreases by passing through the NOx occlusion reduction catalyst 4 on the side where the exhaust gas 2 is distributed. The amount of NOx occluded in the NOx occlusion reduction catalyst 4 is estimated by accumulating the decrease.

そして、前記制御装置13において、NOxの吸蔵量の推定値が所定の閾値を超えたものと判定された時に、諸条件を確認した上で排気切替バルブ6,7と燃料改質装置9に向け制御信号6a,7a,9aが出力され、再生すべきNOx吸蔵還元触媒4への排気ガス2の流れを遮断して反対側のNOx吸蔵還元触媒4へ排気ガス2を振り分けると共に、該排気ガス2の流れを遮断した方の再生すべきNOx吸蔵還元触媒4の入側に改質ガス10を添加する再生制御が実行されるようになっている。   When the control device 13 determines that the estimated value of the stored amount of NOx exceeds a predetermined threshold value, the control device 13 confirms various conditions and then directs the exhaust switch valves 6 and 7 and the fuel reformer 9 to each other. Control signals 6a, 7a, 9a are output, the flow of the exhaust gas 2 to the NOx storage reduction catalyst 4 to be regenerated is interrupted, the exhaust gas 2 is distributed to the NOx storage reduction catalyst 4 on the opposite side, and the exhaust gas 2 The regeneration control for adding the reformed gas 10 to the inlet side of the NOx occlusion reduction catalyst 4 to be regenerated, which is the one that cuts off the flow, is executed.

この際、前記制御装置13は、ただ単に一様な開閉速度で排気切替バルブ6,7の開閉作動を制御するのではなく、該排気切替バルブ6,7の開閉速度を運転状況に応じ可変制御するバルブ開閉制御手段として機能するようになっており、より具体的には、図2に一例を示す通り、NOx吸蔵還元触媒4の触媒床温度とエンジン回転数の二次元マップから排気切替バルブ6,7の開閉作動に要する設定時間を読み出し、その設定時間で排気切替バルブ6,7の開閉作動を実行するようにしてある。   At this time, the control device 13 does not simply control the opening / closing operation of the exhaust gas switching valves 6, 7 at a uniform opening / closing speed, but variably controls the opening / closing speed of the exhaust gas switching valves 6, 7 according to the operating condition. More specifically, as shown in FIG. 2, as shown in FIG. 2, the exhaust gas switching valve 6 is determined from a two-dimensional map of the catalyst bed temperature of the NOx storage reduction catalyst 4 and the engine speed. , 7 is read out, and the opening / closing operation of the exhaust gas switching valves 6, 7 is executed during the set time.

ここで、各NOx吸蔵還元触媒4,4の触媒床温度は、該各NOx吸蔵還元触媒4,4の出側の排気ガス2の温度を代用値として温度センサ14により検出され、検出信号14aとして制御装置13に入力されるようになっており、エンジン回転数は、ディーゼルエンジン1に付帯装備されている回転センサ15により検出され、検出信号15aとして制御装置13に入力されるようになっている。   Here, the catalyst bed temperature of each NOx storage reduction catalyst 4, 4 is detected by the temperature sensor 14 using the temperature of the exhaust gas 2 on the outlet side of each NOx storage reduction catalyst 4, 4 as a substitute value, and is detected as a detection signal 14 a. The engine speed is detected by a rotation sensor 15 attached to the diesel engine 1 and is input to the control device 13 as a detection signal 15a. .

尚、排気ガス2の流れを遮断してNOx吸蔵還元触媒4の再生を行うに際し、その再生時におけるNOxの放出量が、排気切替バルブ6,7の開閉速度の違いにより大きな影響を受けることについては、本発明者らが鋭意研究の末に独自に見いだした知見であり、事実、本発明者らによる試験結果では、排気切替バルブ6,7の開閉作動に要する設定時間を一般的な200msec程度とした場合に、図3にグラフで示す如きNOxの放出量(NOx濃度)の急増が確認されたが、設定時間を2000msecまで長くした場合には、図4にグラフで示す如きNOxの放出量(NOx濃度)の急増が著しく抑制されることが確認されており、また、その際におけるNOx低減率についても、図3の場合で約85%まで悪化してしまっていたものが、図4の場合では約92%まで改善されることが確認されている。   Note that when the NOx occlusion reduction catalyst 4 is regenerated by shutting off the flow of the exhaust gas 2, the amount of NOx released during the regeneration is greatly affected by the difference in the opening and closing speeds of the exhaust switching valves 6 and 7. Is the knowledge that the present inventors have independently found after intensive research. In fact, according to the test results by the present inventors, the set time required for the opening / closing operation of the exhaust switching valves 6 and 7 is about 200 msec in general. In this case, a rapid increase in the amount of NOx released (NOx concentration) as shown in the graph of FIG. 3 was confirmed, but when the set time was increased to 2000 msec, the amount of NOx released as shown in the graph of FIG. It has been confirmed that the rapid increase in (NOx concentration) is remarkably suppressed, and the NOx reduction rate at that time has also deteriorated to about 85% in the case of FIG. In this case, it is confirmed that the improvement is about 92%.

また、排気切替バルブ6,7の開閉速度を運転状況に応じて可変制御するにあたり、NOx吸蔵還元触媒4の触媒床温度とエンジン回転数の二次元マップを採用しているのは、NOx吸蔵還元触媒4における再生時の反応が触媒床温度(触媒活性)と雰囲気中のO2量(エンジン回転数により増減する排気ガス流量に応じO2量も増減する)に大きな影響を受け、これらの条件が変わることでNOxの放出量の急増を抑制するための排気切替バルブ6,7の最適な開閉速度が異なるからであるが、NOx吸蔵還元触媒4の触媒床温度とエンジン回転数の二次元マップを採用すれば、排気切替バルブ6,7の開閉速度の最適化を図ることが可能である。 In addition, when the open / close speed of the exhaust gas switching valves 6 and 7 is variably controlled according to the operating conditions, the NOx occlusion reduction employs a two-dimensional map of the catalyst bed temperature of the NOx occlusion reduction catalyst 4 and the engine speed. the reaction at the time of reproduction in the catalyst 4 is greatly influenced by the catalyst bed temperature (catalytic activity) and the amount of O 2 in the atmosphere (also increase or decrease the amount of O 2 according to the exhaust gas flow to increase or decrease the engine rotational speed), these conditions This is because the optimum opening / closing speed of the exhaust gas switching valves 6 and 7 for suppressing the rapid increase in the amount of NOx released due to the change of the engine is different, but the two-dimensional map of the catalyst bed temperature and the engine speed of the NOx storage reduction catalyst 4 If this is adopted, it is possible to optimize the opening and closing speed of the exhaust gas switching valves 6 and 7.

ただし、制御装置13では、NOxの吸蔵量の推定値が既に把握されているので、これを更なる最適化のパラメータとして利用し、前記二次元マップから読み出された設定時間に対し、NOxの吸蔵量の推定値に応じた補正係数を適宜に乗算して設定時間に更なる補正を加えることも可能である。   However, since the estimated value of the storage amount of NOx is already grasped in the control device 13, this is used as a parameter for further optimization, and the NOx value is compared with the set time read from the two-dimensional map. It is also possible to add further correction to the set time by appropriately multiplying a correction coefficient according to the estimated value of the occlusion amount.

而して、制御装置13において、各NOxセンサ11,12からの検出信号11a,12aに基づき、例えば、分岐流路3A側のNOx吸蔵還元触媒4におけるNOxの吸蔵量の推定値が所定の閾値を超えたものと判定されると、諸条件の確認後に排気切替バルブ6,7と燃料改質装置9に向け制御信号6a,7a,9aが出力され、排気切替バルブ6が閉じ且つ排気切替バルブ7が開いて、排気管3を流れる排気ガス2の流れが分岐流路3A側のNOx吸蔵還元触媒4に振り分けられ、分岐流路3B側のNOx吸蔵還元触媒4の入側に、燃料改質装置9からの改質ガス10が還元剤添加ノズル8を介し添加されて再生が開始される。   Thus, in the control device 13, based on the detection signals 11a and 12a from the NOx sensors 11 and 12, for example, the estimated value of the stored amount of NOx in the NOx storage and reduction catalyst 4 on the branch flow path 3A side is a predetermined threshold value. If it is determined that the value exceeds the control range, the control signals 6a, 7a and 9a are output to the exhaust gas changeover valves 6 and 7 and the fuel reformer 9 after confirming the various conditions, the exhaust gas changeover valve 6 is closed and the exhaust gas changeover valve is 7 opens, the flow of the exhaust gas 2 flowing through the exhaust pipe 3 is distributed to the NOx storage reduction catalyst 4 on the branch flow path 3A side, and the fuel reforming is performed on the inlet side of the NOx storage reduction catalyst 4 on the branch flow path 3B side. The reformed gas 10 from the apparatus 9 is added through the reducing agent addition nozzle 8 and regeneration is started.

この際、制御装置13内でNOx吸蔵還元触媒4の触媒床温度とエンジン回転数の二次元マップ(図2参照)から排気切替バルブ6,7の開閉作動に要する設定時間が読み出され、その設定時間で排気切替バルブ6,7の開閉作動が実行される結果、排気切替バルブ6,7の開閉速度が可変制御され、運転状況に応じ分岐流路3B側の排気ガス2の流量が最適な作動時間をかけて絞り込まれることになる。   At this time, a set time required for opening / closing the exhaust gas switching valves 6 and 7 is read from the two-dimensional map (see FIG. 2) of the catalyst bed temperature of the NOx storage reduction catalyst 4 and the engine speed in the control device 13. As a result of the opening and closing operation of the exhaust gas switching valves 6 and 7 being executed in the set time, the opening and closing speed of the exhaust gas switching valves 6 and 7 is variably controlled, and the flow rate of the exhaust gas 2 on the branch flow path 3B side is optimal according to the operating situation It will be narrowed down over the operation time.

即ち、改質ガス10の添加を開始した直後に雰囲気中のO2濃度が低下して急激に還元剤リッチにならないように排気ガス2の流量を緩慢に絞り込み、NOx吸蔵還元触媒4から吸蔵NOxを段階的に脱離させて効率良く還元浄化していくことが可能となるので、NOx吸蔵還元触媒4の表面上で還元浄化しきれずに脱離NOxの一部がリークしてしまう事態が未然に防止される。 That is, immediately after the addition of the reformed gas 10 is started, the flow rate of the exhaust gas 2 is slowly throttled so that the O 2 concentration in the atmosphere does not decrease and the reducing agent becomes suddenly rich, and the NOx occlusion reduction catalyst 4 As a result, it is possible to desorb the NOx stepwise and efficiently reduce and purify it. Therefore, there is a situation in which a part of the desorbed NOx leaks without being completely reduced and purified on the surface of the NOx occlusion reduction catalyst 4. To be prevented.

従って、上記形態例によれば、排気ガス2の流れを遮断してNOx吸蔵還元触媒4の再生を行うに際し、改質ガス10の添加を開始した直後に雰囲気中のO2濃度が低下して急激に還元剤リッチにならないように排気ガス2の流量を緩慢に絞り込み、NOx吸蔵還元触媒4から吸蔵NOxを段階的に脱離させて効率良く還元浄化していくことができるので、NOx吸蔵還元触媒4の表面上で還元浄化しきれずに脱離NOxの一部がリークしてしまう事態を未然に防止でき、還元剤である改質ガス10の添加開始時にNOx低減率が悪化してしまう問題を解決することができる。 Therefore, according to the above embodiment, when the NOx storage reduction catalyst 4 is regenerated by blocking the flow of the exhaust gas 2, the O 2 concentration in the atmosphere decreases immediately after the addition of the reformed gas 10 is started. NOx occlusion reduction is possible because the exhaust gas 2 is slowly throttled so that it does not suddenly become rich in reducing agent, and the NOx occlusion reduction catalyst 4 is gradually desorbed from the NOx occlusion reduction catalyst 4 for efficient reduction and purification. A problem that a part of the desorbed NOx leaks without being reduced and purified on the surface of the catalyst 4 can be prevented in advance, and the NOx reduction rate deteriorates at the start of the addition of the reformed gas 10 as a reducing agent. Can be solved.

また、特に本形態例においては、還元剤として反応性の高い改質ガス10を使用しているので、燃料をそのまま添加する場合よりも低い温度条件からNOx吸蔵還元触媒4の再生を図ることができ、しかも、改質ガス10の反応性が高いが故に起こり易い脱離NOxの急増を効果的に抑制することができる。   In particular, in the present embodiment, the reformed gas 10 having high reactivity is used as the reducing agent, so that the NOx storage reduction catalyst 4 can be regenerated from a lower temperature condition than when the fuel is added as it is. In addition, it is possible to effectively suppress the rapid increase of desorbed NOx that is likely to occur due to the high reactivity of the reformed gas 10.

更に、NOx吸蔵還元触媒4の触媒床温度とエンジン回転数の二次元マップを採用し、既存のセンサ類により把握することが可能なNOx吸蔵還元触媒4の触媒床温度やエンジン回転数を指標として排気切替バルブ6,7の開閉速度を可変制御することができるので、既存設備に対し大幅なコスト増加を招くことなく実施することができる。   Furthermore, a two-dimensional map of the catalyst bed temperature of NOx occlusion reduction catalyst 4 and engine speed is adopted, and the catalyst bed temperature of NOx occlusion reduction catalyst 4 and engine speed that can be grasped by existing sensors are used as indices. Since the opening / closing speed of the exhaust gas switching valves 6 and 7 can be variably controlled, it can be carried out without significantly increasing the cost of existing equipment.

また、図5は本発明の別の形態例を示すもので、この形態例においては、前述した図1で一対のNOx吸蔵還元触媒4,4を並列に設けていたことに替えて、一方の分岐流路3AだけにNOx吸蔵還元触媒4を設け、他方の分岐流路3BのNOx吸蔵還元触媒4を無くし、分岐流路3Bを前記NOx吸蔵還元触媒4を迂回させて排気ガス2を流すためのバイパス流路として利用するようにしたものである。   FIG. 5 shows another embodiment of the present invention. In this embodiment, one pair of NOx occlusion reduction catalysts 4 and 4 is provided in parallel in FIG. The NOx storage reduction catalyst 4 is provided only in the branch flow path 3A, the NOx storage reduction catalyst 4 in the other branch flow path 3B is eliminated, and the exhaust gas 2 flows through the branch flow path 3B by bypassing the NOx storage reduction catalyst 4. This is used as a bypass flow path.

而して、このようにした場合においても、排気管3を流れる排気ガス2の流れを排気切替バルブ6,7によりバイパス流路を成す分岐流路3B側に振り分け、NOx吸蔵還元触媒4の入側に改質ガス10を添加して再生を開始する際に、制御装置13により排気切替バルブ6,7の開閉速度を可変制御し、運転状況に応じ排気ガス2の流量を最適な作動時間をかけて絞り込めば、改質ガス10の添加を開始した直後に雰囲気中のO2濃度が低下して急激に還元剤リッチにならないように排気ガス2の流量を緩慢に絞り込み、NOx吸蔵還元触媒4から吸蔵NOxを段階的に脱離させて効率良く還元浄化していくことが可能となるので、NOx吸蔵還元触媒4の表面上で還元浄化しきれずに脱離NOxの一部がリークしてしまう事態が未然に防止されることになる。 Thus, even in this case, the flow of the exhaust gas 2 flowing through the exhaust pipe 3 is distributed to the branch flow path 3B side forming the bypass flow path by the exhaust switching valves 6 and 7, and the NOx occlusion reduction catalyst 4 enters. When the reformed gas 10 is added to the side and the regeneration is started, the control device 13 variably controls the opening / closing speed of the exhaust gas switching valves 6 and 7 so that the flow rate of the exhaust gas 2 is set to the optimum operating time according to the operating conditions. If the exhaust gas 2 is narrowed down, the flow rate of the exhaust gas 2 is slowly reduced so that the O 2 concentration in the atmosphere decreases immediately after the start of the addition of the reformed gas 10 and does not suddenly become rich in the reducing agent. The NOx occluded from the NOx 4 can be desorbed stepwise and efficiently reduced and purified. Therefore, the NOx occluded reduction catalyst 4 cannot be completely reduced and purified, and a part of the desorbed NOx leaks. Is prevented It will be.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、排気切替バルブは排気管の分岐箇所に三方弁として構成しても良いこと、パティキュレートフィルタはNOx吸蔵還元触媒より上流側に配置されていても良いこと、還元剤添加手段には必ずしも燃料改質装置を採用しなくても良く、燃料などの還元剤をそのまま添加するような方式であっても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiment. The exhaust gas switching valve may be configured as a three-way valve at a branch point of the exhaust pipe, and the particulate filter is NOx occlusion reduction. It may be arranged upstream of the catalyst, and the reducing agent addition means may not necessarily employ a fuel reformer, and may be a system in which a reducing agent such as fuel is added as it is. Of course, various modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の制御装置で用いる二次元マップの一例を示す線図である。It is a diagram which shows an example of the two-dimensional map used with the control apparatus of FIG. 排気切替バルブの一般的な開閉速度でのNOx放出量を示すグラフである。It is a graph which shows the NOx discharge | release amount in the general opening-and-closing speed of an exhaust gas switching valve. 開閉速度を可変制御して最適化した場合のNOx放出量を示すグラフである。It is a graph which shows NOx discharge | release amount at the time of variably controlling opening and closing speed and optimizing. 本発明の別の形態例を示す概略図である。It is the schematic which shows another form example of this invention.

符号の説明Explanation of symbols

2 排気ガス
3 排気管
3A 分岐流路
3B 分岐流路(バイパス流路)
4 NOx吸蔵還元触媒
6 排気切替バルブ
7 排気切替バルブ
9 燃料改質装置(還元剤添加手段)
10 改質ガス(還元剤)
13 制御装置(バルブ開閉制御手段)
14 温度センサ
15 回転センサ
2 Exhaust gas 3 Exhaust pipe 3A Branch channel 3B Branch channel (bypass channel)
4 NOx occlusion reduction catalyst 6 Exhaust gas switching valve 7 Exhaust gas switching valve 9 Fuel reformer (reducing agent addition means)
10 Reformed gas (reducing agent)
13 Control device (valve opening / closing control means)
14 Temperature sensor 15 Rotation sensor

Claims (4)

排気管の途中に並列に装備された一対のNOx吸蔵還元触媒と、該各NOx吸蔵還元触媒の何れか一方に排気ガスを振り分ける排気切替バルブと、前記各NOx吸蔵還元触媒の夫々の入側に個別に還元剤を添加する還元剤添加手段と、前記排気切替バルブの開閉速度を運転状況に応じ可変制御して脱離NOxの急増を抑制するバルブ開閉制御手段とを備えたことを特徴とする排気浄化装置。   A pair of NOx occlusion reduction catalysts installed in parallel in the middle of the exhaust pipe, an exhaust switching valve for distributing exhaust gas to one of the NOx occlusion reduction catalysts, and an inlet side of each NOx occlusion reduction catalyst A reducing agent adding means for individually adding a reducing agent, and a valve opening / closing control means for variably controlling the opening / closing speed of the exhaust gas switching valve according to an operating state to suppress a sudden increase in desorption NOx. Exhaust purification device. 排気管の途中に装備されたNOx吸蔵還元触媒と、該NOx吸蔵還元触媒を迂回して排気ガスを流すバイパス流路と、該バイパス流路及び前記NOx吸蔵還元触媒の何れか一方に排気ガスを振り分ける排気切替バルブと、前記NOx吸蔵還元触媒の入側に還元剤を添加する還元剤添加手段と、前記排気切替バルブの開閉速度を運転状況に応じ可変制御して脱離NOxの急増を抑制するバルブ開閉制御手段とを備えたことを特徴とする排気浄化装置。   NOx occlusion reduction catalyst installed in the middle of the exhaust pipe, a bypass passage for flowing exhaust gas bypassing the NOx occlusion reduction catalyst, and exhaust gas is supplied to either the bypass passage or the NOx occlusion reduction catalyst An exhaust switching valve that distributes, a reducing agent addition means that adds a reducing agent to the inlet side of the NOx storage reduction catalyst, and an open / close speed of the exhaust switching valve are variably controlled according to operating conditions to suppress a sudden increase in desorbed NOx. An exhaust purification device comprising a valve opening / closing control means. 還元剤添加手段が燃料を反応性の高い改質ガスに分解して供給する燃料改質装置で構成されていることを特徴とする請求項1又は2に記載の排気浄化装置。   The exhaust emission control device according to claim 1 or 2, wherein the reducing agent addition means comprises a fuel reforming device that decomposes and supplies fuel into reformed gas having high reactivity. 排気切替バルブの開閉速度をNOx吸蔵還元触媒の触媒床温度とエンジン回転数の二次元マップから読み出して制御するようにバルブ開閉制御手段が構成されていることを特徴とする請求項1、2又は3に記載の排気浄化装置。   The valve opening / closing control means is configured to read and control the opening / closing speed of the exhaust gas switching valve from a two-dimensional map of the catalyst bed temperature of the NOx storage reduction catalyst and the engine speed. The exhaust emission control device according to 3.
JP2007163578A 2007-06-21 2007-06-21 Exhaust emission control device Pending JP2009002225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007163578A JP2009002225A (en) 2007-06-21 2007-06-21 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163578A JP2009002225A (en) 2007-06-21 2007-06-21 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2009002225A true JP2009002225A (en) 2009-01-08

Family

ID=40318886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163578A Pending JP2009002225A (en) 2007-06-21 2007-06-21 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2009002225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148818A1 (en) * 2010-05-28 2011-12-01 いすゞ自動車株式会社 Exhaust gas purification device for internal combustion engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734917A (en) * 1993-07-23 1995-02-03 Mazda Motor Corp Traction controller of vehicle
JP2000130154A (en) * 1998-10-20 2000-05-09 Toyota Motor Corp Internal combustion engine
JP2000240428A (en) * 1999-02-23 2000-09-05 Toyota Motor Corp Exhaust gas purification device for internal combustion engine
JP2002097940A (en) * 2000-09-27 2002-04-05 Hino Motors Ltd Operating method of exhaust emission control device
JP2003074327A (en) * 2001-09-04 2003-03-12 Toyota Motor Corp Exhaust gas purification device
JP2004052603A (en) * 2002-07-17 2004-02-19 Toyota Motor Corp Exhaust gas purification device for internal combustion engine
JP2004132185A (en) * 2002-10-08 2004-04-30 Toyota Motor Corp Fuel cut control device for internal combustion engine
JP2006161768A (en) * 2004-12-10 2006-06-22 Hino Motors Ltd Exhaust emission control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734917A (en) * 1993-07-23 1995-02-03 Mazda Motor Corp Traction controller of vehicle
JP2000130154A (en) * 1998-10-20 2000-05-09 Toyota Motor Corp Internal combustion engine
JP2000240428A (en) * 1999-02-23 2000-09-05 Toyota Motor Corp Exhaust gas purification device for internal combustion engine
JP2002097940A (en) * 2000-09-27 2002-04-05 Hino Motors Ltd Operating method of exhaust emission control device
JP2003074327A (en) * 2001-09-04 2003-03-12 Toyota Motor Corp Exhaust gas purification device
JP2004052603A (en) * 2002-07-17 2004-02-19 Toyota Motor Corp Exhaust gas purification device for internal combustion engine
JP2004132185A (en) * 2002-10-08 2004-04-30 Toyota Motor Corp Fuel cut control device for internal combustion engine
JP2006161768A (en) * 2004-12-10 2006-06-22 Hino Motors Ltd Exhaust emission control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148818A1 (en) * 2010-05-28 2011-12-01 いすゞ自動車株式会社 Exhaust gas purification device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4702318B2 (en) Exhaust gas purification system for internal combustion engine
US8042328B2 (en) Exhaust gas purifier
KR960004832B1 (en) Exhaust Gas Purification System
JP5000405B2 (en) Exhaust purification device
USRE48658E1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP6305128B2 (en) Lean knock strap desulfurization apparatus and method
JP5431677B2 (en) Exhaust gas purification device
JP2009185763A (en) Exhaust emission control device
JP5285296B2 (en) Exhaust gas purification device
JP2855986B2 (en) Exhaust gas purification device
JP2010209737A (en) Exhaust emission control device for internal combustion engine
JP2018145869A (en) Exhaust emission control system and sulfur poisoning restriction method for exhaust emission control system
JP2013245606A (en) Exhaust gas purification system
JP2009002225A (en) Exhaust emission control device
JP2006022741A (en) Exhaust emission control system for internal combustion engine
JP5285309B2 (en) Exhaust gas purification device
WO2006095918A1 (en) Exhaust gas purification system for internal combustion engine
JP2827738B2 (en) Exhaust gas purification device
JP2010116821A (en) Emission control device for internal combustion engine
JP2006022740A (en) Exhaust gas purification system for internal combustion engine
JP2008045445A (en) Exhaust emission control device
JP2007077875A (en) Exhaust gas purification system for internal combustion engine
JP2006022739A (en) Exhaust gas purification system for internal combustion engine
JP2007205304A (en) Desulfurization control method for exhaust emission control device
JP2003027925A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529